Skip Navigation National Human Genome Research InstituteNational Human Genome Research InstituteNational Human Genome Research InstituteNational Institutes of Health
     
Home | About NHGRI | Newsroom | Staff Directory
Research Grants Health Policy & Ethics Educational Resources Careers & Training
Division of Intramural Research

Overview
Organizational Chart
Research Branches
Cancer Genetics Branch
Genetic Disease Research Branch
Genetics & Molecular Biology Branch
Genome Technology Branch
Inherited Disease Research Branch
Medical Genetics Branch
Social and Behavioral Research Branch
Research Investigators
Profiles, publications, links
Clinical Research
Clinical trials, patient recruitment, IRB, FAQ, Overview
NHGRI Affiliated Centers
Online Research Resources Developed at NHGRI
Databases, software, tools, more.
Division of Intramural Research Calendar
Workshops, conferences, seminar series, courses, more.
Books and Publications



In Other Sections:

Research Training Opportunities

Intramural Training Office

Technology Transfer Office

Administrative Office




Home>Research>Intramural Research>Research Branches at NHGRI>Genome Technology Branch >Baxevanis Lab


Andreas D. Baxevanis

Andreas D. Baxevanis, Ph.D.

Deputy Scientific Director
Division of Intramural Research

Head
Computational Genomics Program

Associate Investigator
Genome Technology Branch

B.S. Cornell University, 1984
Ph.D. The Johns Hopkins University, 1991
phone (301) 496-8570
fax (301) 480-2634
e-mail andy@nhgri.nih.gov
Building 50, Room 5222B
50 South Drive, MSC 8002
Bethesda, MD 20892-8002
Selected Publications
Books by Researchers at NHGRI

Postdoctoral Fellowship Position

ArrayDB 2.0
GeneMachine
Histone Sequence Database
Homeodomain Resource
WebBLAST


The major focus of my research group involves the computational analysis of disease-causing mutations from a structural standpoint. The primary technique employed is called homology model building, or "threading." This technique, coupled with the examination of surface charges and geometry, allows for an assessment of the discrete structural effect of a mutation on a protein, one which can help to discern the underlying cause of phenotypes characterizing a given genetic disorder.

We have utilized this approach with numerous mutations observed in members of the homeodomain family. These proteins play a fundamental role in a diverse set of functions that include the specification of body plan, pattern formation, and cell fate determination during metazoan development. First, we examined mutations in the homeobox gene PITX2; several mutations within the PITX2 homeodomain region are responsible for the development of the related ocular disorders Rieger syndrome and iridogoniodysgenesis. Here, the threading-based analysis revealed that point mutations responsible for the development of these genetic disorders lead to the inability of PITX2 to adopt its proper structure and bind to the regulatory sequences of its target gene(s), which, in turn, affects its metabolic role in the cell.

More recently, we have devoted our attention to understanding mutations in the DNA-binding region of a number of forkhead transcription factors that have been implicated in the development of diverse inherited disorders. One such study involved the examination of mutations in the winged-helix FOXC1 transcription factor, mutations that underlie Axenfeld-Rieger anterior eye segment defects. Computational analysis identified a point mutation (I87M) that putatively reduced the thermodynamic stability of the FOXC1 protein; parallel biochemical analyses on this mutant also indicated that the I87M mutation reduced FOXC1 protein stability. We have also studied point mutations in FOXP2 that are responsible for a severe speech and language disorder, as well as mutations in FOXP3 that lead to X-linked polyendocrinopathy, immune dysfunction and diarrhea (IPEX). In both cases, these point mutations led to dramatic changes in the charge distribution on the surface of these proteins, particularly in areas known to be responsible for DNA binding. These marked changes in both charge distribution and surface geometry may impair critical biological processes that involve protein surface recognition. Finally, molecular modeling studies on the viral oncoprotein Qin suggest that missense mutations observed in these proteins alter the DNA-binding surface of the Qin forkhead domain, possibly interfering with oncogenic transformation.

Additional studies on the homeodomain proteins have centered on the evolutionary relationships between members of this protein family. All members of this family are characterized by a helix-turn-helix DNA-binding motif, and these proteins regulate various cellular processes by specifically binding to the transcriptional control region of a target gene. An evolutionary classification of 129 human homeodomain proteins, many of which are involved in inherited human disorders when mutated, indicates that these proteins segregate into six distinct classes; this classification is consistent with the known structural and functional characteristics of these proteins. This analysis, coupled with recent observations from the initial analysis of the human genome sequence, provides some insight as to the pattern of distribution of the homeobox genes within the genome and to the array of functions that can be performed by these proteins.

As an outgrowth of our studies on the homeodomain class of proteins, we have developed and continue to maintain the Homeodomain Resource. This publicly-available database provides a curated collection of information that includes full-length homeodomain-containing sequence data, experimentally-derived structures, protein-protein interaction data, DNA-binding sites, and mutations leading to human genetic disorders.

In addition to basic research questions directly involving human disease genes, our group is involved in the development and application of automated methods for the analysis of sequence and expression data. Additional information on these software development projects may be found by following the links at the top of this page.

Top of page Top of page

Last Updated: June 2004




Print Version


Other Genome Technology Branch Investigators

Robert W. Blakesley, Ph.D.

Gerard Bouffard, Ph.D.

Lawrence C. Brody, Ph.D.

Shawn Burgess, Ph.D.

Settara C. Chandrasekharappa, Ph.D.

Francis S. Collins, M.D., Ph.D.

Eric D. Green, M.D., Ph.D.

James C. Mullikin, Ph.D.

Tyra Wolfsberg, Ph.D.



PrivacyContactAccessibilitySite IndexStaff DirectoryHome Government LinksDepartment of Health and Human ServicesFirstGovNational Institutes of Health