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ABSTRACT

The basic theory and analytical methods used im the development of accurate mic:
wave measurement methods and standards are presented.

Developments at the U.S. National Bureau of Standards during 1948-1968 are des-
cribed in which the above theory and analytical methods were applied.

These developments were in the fields of power, impedance, attenuation and phase

shift, and led to the establishment of National Standards and calibration methods at

frequencies from about 300 MHz to 30 GHz.

Key words: Attenuation definitions; attenuation measurement; barretter mount

efficiency; coaxial connectors; impedance measurement; microwave network
theory; mismatch errors; phase shift-meastuirement; power measurement;

reflectometers; wavegulde joints; waveguidle theory.



PREFACE

The purpose of this monograph is to show how microwave waveguide and circuit
theory was formulated and applied to the development of accurate measurement methods
and standards at the U.S. National Bureau of Standards.

The topics of power, impedance, attenuation, and phase shift standards and meas-
urement techniques have been selected for discussion. Appropriate research papers by
the author and his associates have been partially revised and updated for the above
purposes. In addition, new material, especially on attenuation definitions, has been
included.

It is not possible here to present a complete history of NBS research in this
area, nor to accurately describe the present state-of-the-art. However, an attempt
has been made to put the work in perspective by giving references to previous and
subsequent NBS pertinent research.

It is intended that this monograph will indicate the character and extent of the
research which must be performed in order to develop accurate microwave measurement
methods and standards at the highest level. It is hoped that the collected works
and discussions will be helpful and stimulating to other workers in the same general

field.
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APPLICATIONS OF WAVEGUIDE AND CIRCUIT THEORY TO THE DEVELOPMENT OF ACCURATE

MICROWAVE MEASUREMENT METHODS AND STANDARDS

R. W. Beatty
National Bureau of Standards

Boulder, Colorado

The basic theory and analytical methods used in the develop-
ment of accurate microwave measurement methods and standards are
presented.

Developments at the U.S. National Bureau of Standards during
1948-1968 are described in which the above theory and analytical
methods were applied.

These developments were in the fields of power, impedance,
attenuation and phase shift, and led to the establishment of
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1. Introduction

1.1. General

This monograph presents a formulation of waveguide and circuit theory with
selected applications to the development of accurate measurement methods and
standards. A portion of the research at the U.S. National Bureau of Standards by
the author and co-workers during the period 1948-1968 is described.

Although considerable work had been done prior to 1948 in the field of micro-
wave measurements at the M.I.T. Radiation Laboratory and other laboratories, much
remained to be accomplished before U.S. radio frequency and microwave standards
and calibration services could be established.

The theory of waveguides and of microwave circuits needed to be re-examined
and the foundations exposed and strengthened. The quantities to be measured needed
to be precisely defined, and the conditions under which the theory remains valid
needed to be clearly stated. New and refined measurement techniques and standards
needed to be developed. Errors needed to be analyzed and limits of uncertainty

evaluated.



In the following, the above points are illustrated with specific examples.
In Chapters 2 and 3, respectively, a formulation of waveguide and circuit theory is
given which is slanted towards measurement applications. Selected applications are
given in Chapters 4 through 7, respectively, for the topics of power, impedance,

attenuation, and phase shift.

1.2. Theory

Waveguide and circuit theory is presented in Chapters 2 and 3, respectively.
Although this theory must be considered well-known, it has previously not been
as clearly presented in a form convenient for measurement applications. Greater
attention is paid to fundamental aspects of the theory, the assumptions made, and
the conditiomns required for validity.

The waveguide theory of Chapter 2 applies mainly to lossless,! uniform cylin-
drical waveguides of arbitrary cross-section. A rigorous and general treatment of
this subject has been published (Kerns and Beatty, 1967). Much of the same material
is presented in this monograph, from a somewhat less general point of view, but with
specific applications in mind.

First, the basic terms "waveguide junction,”'"waveguide leads," "terminal
surface" and '"terminal variables'" are defined in section 2.1. Two sets of terminal
variables are discussed in section 2.2. One set consists of quantities v and i
which are generalizations of voltage and current. The other set are the complex
amplitudes a and b of the traveling waves which interfere to give rise to the gener-
alized voltage and current. These terminal variables are related to the waveguide
fields corresponding to a given mode in a given waveguide.

The theory of waveguides leading to modal equations is based upon assumptions
of uniform, cylindrical waveguide geometry, and freedom from dissipative loss and
from leakage. As shown in Chapter 2 the transverse fields for a given mode can
each be resolved into two components; one in the complex plane, and one vector (space)
component. The complex components denoted by the letters v and i are regarded as
generalizations of voltage and current. Under certain conditions, they may be made

to coincide with actual voltage and current in transmission lines.

'The case of small losses is not treated in Chapter 2, but is illustrated in a later
example (sec. 5.3),.



1t further develops that these variables may be referred to a given terminal
surface in a waveguide which is part of a waveguide junction (a microwave network
or circuit). When so referred, they may be regarded as terminal variables, similar
to the familiar terminal variables 'voltage" and "current" encountered in lumped
element network theory. It follows that conventional network theory may be applied
to the analysis of microwave circuits involving waveguides.

Power and impedance normalization are discussed and normalization factors are
defined. The consequences of some specific choices of these factors are explored and
a scheme for suppressing them for convenience in manipulating circuit equations is
given. The concept of '"characteristic impedance" is clarified.

General power relationships for waveguide junctions are examined and the real-
izability conditions (including lossnessness) are precisely stated. In addition, the
reciprocity condition is given in matrix form. Finally, representation of sources by
terminal variables and impedances or reflection coefficients is discussed together
with the simple, but important, equations for joining together elements of waveguide
circuits.

Following the presentation of the general theory, special theory for two-arm
waveguide junctions (Z-ports) is developed in Chapter 3, along lines considered
useful for analysis of measurement circuits. Some theory for 3-ports and 4-ports
is also developed.

Spbecial emphasis is given to the use of scattering coefficients and they are
used in developing equations for many basic concepts. For example, efficiency,
mismatch loss, substitution loss, transducer loss, insertion loss, and attenuation
of a 2-port network are all carefully defined and equations given. The concepts of
phase difference and phase shifts associated with a 2-port are introduced. Transmis-
sion phase shift, insertion phase shift, and differential phase shift are defined.
Analytical tools based upon the cascading of 2-port networks and upon the transfor-
mation of reflection coefficient by a 2-port network are presented.

The realizability, reciprocity, and lossless conditions on the scattering coef-
ficients of 3-port networks are given. Scattering matricos for circuit elements
such as directional couplers and circulators are given. Finally, the basic circuit
used in many measurement applications, consisting of a source, a 3-port network, a

detector, and load, is analyzed and équations are presented.



1.3. Applications

In Chapters 4 through 7, applications of the theory and analytical techniques to
the development of accurate measurement methods and standards are given.

The mismatch errors in the calibration and use of microwave power meters were
originally quite large. Application of the foregoing theory led to the reduction
of these errors and made possible the evaluation of 1limits of uncertainty as stated
in the calibration reports. In 4.2, the analysis and pertinent equations are
presented.

In 4.3, the development of an improved method for measuring efficiencies of
barretter mounts is described. This work resulted in the first accurate determination
of efficiencies of coaxial barretter moumts. The analysis in terms of scatteving and
reflection coefficients was found useful in later developments.

Applications to impedance or reflection coefficient measurement techniques and
standards are discussed in Chapter 5. The adjustable sliding termination described
in 5.2 is an improvement on previous designs. It employs a simple resistive strip
which can rotate and move relative to a short-circuit, in such a way as to produce
reflection coefficients ranging from zero to nearly unity. The entire termination
is designed to be slid 1nside a waveguide so that the phase of the retflection coef-
ficient can be varied. This has proven to be a useful tool in measurement applicatioms.

In section 5.3, formulas, graphs, and conductivity data are presented to aid
any laboratory in designing and evaluating impedance standards consisting of quarter-
wavelength short-circuited sections of coaxial line or rectangular waveguide. All
standard sizes are covered over a frequency range from 200 MHz to 330 GHz.

A number of interesting circuits yielding squared VSWR response are analyzed
in 5.4. An even more useful development is "magnified response.'” It permits very
sensitive measurements of small reflection coefficients or of small differences
between impedances which are alm@st equal. The application of these techniques
to a modified phasable load method of impedance measurement is indicated.

The adjustment of tuners for some impedance measurement applicaliovns is
described in 5.5. The use of tuners led to the development of the tuned reflectom-
eter, which, together with the quarter-wavelength short-circuit standard, became

the most accurate calibration technique for reflection coefficient standards.



An interesting variation of the tuned reflectometer is described in 5.6. It
consists of constructing a tuned reflectometer using rectangular waveguide components,
except for the output waveguide, which is coaxial. One then slides loads in the
coaxial section and adjusts the tuners belonging to the rectangular waveguide instru-
ments. Once adjusted, it is used to measure reflection coefficients of coaxial
terminations and devices.

The tuned reflectometer is also used to measure the reflections and losses of
waveguide joints or coaxial connectors by a sensitive technique described in 5.7.

There are many applications of microwave circuit theory to attenuation measure-
ments as discussed in Chapter 6. The subject of attenuation definitions is discussed
at some length in 6.2. Circuit theory is used to clearly show different results from
different definitions. Precise definitions suitable for highly accurate measurement
applications are formulated and the conditions of measurement are tightly specified.

The error due to mismatch often causes the greatest uncertainty in attenuation
measurements. Mismatch effects in cascade-connected attenuators are analyzed in 6.3
and mismatch errors in measuring fixed and variable atlenuaturs are treated in 6.4.
Usually, only the magnitudes of the reflection coefficients of the circuits and the
attenuators are measured or estimated when evaluating mismatch errors. Of course,
the phases are also involved, but it is assumed that they can take on any value,
and the 1imits of error are calculated, assuming the most unfavorable conditions.
Actually, the realizability conditions limit' the range over which reflection coef-
ficient phases can vary. Thus the limits of error calculated by the above method
may he too conservative in some cases. In 6.5, it is shown that the effect of
realizability on error limit calculations is practically unimportant except for
low-loss attenuators, below, say 1 decibel.

In most analytical techniques, an attenuator is represented by a simple 2-port
network. However, this model gives no information regarding the effect of imper-

fections of connectors or adapters. A more complicated model is required, and this

In sections 6.7 and 6.8, techniques for measuring attenuation are described.
The first makes use of the theory of linear fractional transformation of reflection
coefficient. The second technique is a simple measurement of power ratio, but is
refined to give unprecedented accuracy. Circuit theory is applied to evaluate

small mismatch errors which contribute to the uncertainty of the measurement.



The measurement of small attenuations, such as losses in waveguide joints and
in short sections o&f waveguide, by a 2-channel nulling method is described in section
6.9. A circuit for producing known, very small changes of attenuation or phase shift
is described in section 6.10.

The -topic of phése shift measurements and standards at microwave frequencies
was long neglected. In section 7.2, phase shift equations for 2-ports are presented.
The development of the tuned refle;tometer made possible one form of microwave phase
shift standard. The phase of the reflectometer output signal is made to closely
track the position of a short-circuit sliding in a precision waveguide. Phase
measurements then reduce to a measurement of frequency and of mechanical displacements
and dimensions. The errors in such a standard were analyzed in 7.3.

A modification of the tuned reflectometer circuit was developed using two
short-circuits sliding in waveguides of slightly different widths in order to produce
known, small phase shifts. This is the basic principle of the differential phase
shifter described in 7.4.

Finally, the definitions of phase shift of various terminal variables are
analyzed and equations are derived in 7.2. The concept of an ideal phase shifter
is examined. This section, together with 3.10, gives a number of basic phase shift

equations useful in the analysis of phase shift measuring circuits.

1.4. Conclusions and References

In section 8, it is concluded that the foregoing applications of the thcory
demonstrate its usefulness in developing accurate standards and measurement methods.
The steps in the development include precise definitions of the quantities to be
measured, development and evaluation of accurate standards and measuring techniques,
and the analysis and evaluation of errors.

A 1list of references, arranged alphabetically by the name of the senior author,
is given in section 9. The references not only support the work described but

indicate later work which extended or superseded the earlier work.



2. Basic Theory of Waveguide Junctions

2.1. Definitions

a. Waveguide Junctions

A "waveguide junction" is not simply a junction where some waveguides come
together and are joined where their walls intersect. The term has a broader meaning
but includes such simple junctions. For purposes of analysis, a waveguide junction
is considered to be an idealized representation of a given actual electromagnetic
device to which access is provided by means of waveguides.

Such a waveguide junction is linear and has uniform, lossless, cylindrical
waveguide leads which may be of arbitrary cross-section. It does not leak, or, in
other words, electromagnetic energy enters and leaves only thru waveguide leads.

In general, sources may be present inside the junction and there may be attenuated
modes present in the waveguide leads. However, in this monograph, these possibilities

are both excluded from consideration.

b. Terminal Surfaces and Terminal Variables

The outer boundaries of a waveguide junction are perfectly conducting surfaces
which prevent the flow of electromagnetic energy except inside the waveguide leads.
The waveguide junction may be considered to terminate somewhere inside the waveguide
leads at terminal surfaces which may be arbitrarily chosen. For convenience, they
are usually chosen to be planes perpendicular to the waveguide axes.

In order to provide a convenient measure of the flow of electromagnetic energy
in the waveguide leads, quantities such as v and i are defined which are derived from
the transverse electric and magnetic fields at the terminal surfaces. These quan-
tities are called "terminal variables" and usually a set of two suffices to charac-
terize the flow of energy in a given mode in a given waveguide lead. If more than
one mode is propagating in a given waveguide lead, there is a different set of

terminal variables associated with each mode.



2.2. v, i, a and b for Waveguide'

a. Introduction
It is convenient to define quantities denoted as v and i for waveguide that
behave in a similar way to voltage and current in lumped circuit element networks.
Then it becomes possible to apply conventional circuit theory to the analysis of
waveguide junctions and circuits.
The quantities called v and i are derived from the transverse components E, and

t

Ht of the electric and magnetic complex vector field amplitudes corresponding to a

given waveguide mode. For example, E, is written as the product of two factors, v

t
and ¢°. The factor v is complex and represents the time variation and phase of the
field. The factor e is a vector function which gives the relative strength and
direction of the field in the waveguide (i.e., the mode pattern).

If there is more than one mode propagating in the waveguide, then a different
v and i are obtained corresponding to each mode (also a different e’ and h").

We write'expressions for E and Hy in terms of complex and vector potential
functions and then obtain v, i, e’ and h® in terms of them. In order to make v and
i behave like voltage and current, it is necessary to examine power and wave impedance
relationships and then define power and impedance normalization constants W0 and ZO‘
The consequences of choosing these constants in different ways are discussed. For
example, by a suitable choice of Z,, v and i can be made to coincide with actual
voltage and current in a coaxial waveguide operating in the TEM-mode (transmission

1line).

b. Basic Derivation of v; i, e° and h°
For a given mode at a given terminal surface in a waveguide, we resolve E, and
He into factors as follows:
Et = v e", and

H, = ih', (2.1)

where v and i are complex and contain the information representing sinusoidal time
variation in the complex plane, and e’ and h® contain information about the relative

magnitudes and directions of the transverse field components. We call v and i

!The principal concepts and conditions underlying the definitions of these symbols
are given in Kerns (1967),



respectively,generalized voltage and current, and we call e’ and h° the basis fields
for a given waveguide mode.

Since E. and H, may be expressed in terms of complex and vector potential
functions, it is also possible to express, v, i, e and h® in terms of these func-

tions as will be shown.

c. Complex and Vector Potential Functions
Let the axis of the waveguides be the z-axis and let the direction of proﬁagation
be the +z-direction. Waveguide field equations may be derived from Hertz potentials
of the form

n=1x¢ €, (2.2)

where f is a function only of the transverse coordinates, ¢ is a function only of z,
e, is the unit vector in the +z-direction, and I satisfies the vector wave equation
v2I + k20 = 0, where k? = w?ue. ' (2.3)
We obtain a scalar wave equation
V2f + K*f = 0, (2.8
where the solutions for f depend upon the boundary conditions corresponding to a given

waveguide. We also obtain a one-dimensional wave equation in ¢ whose solution is
b = Ae" Y% + Be¥Z, (2.5)
where the propagation constant y = a + jB.

For TM (transverse magnetic) fields it can be shown (Kerns and Beatty, 1967) that

E

VxYxI = ¢'VE + K2f¢ez

H

JweVXI = jwe¢(foez), (2.6)

and for TE (transverse electric) fields,

E = -jouVxIl = —jwu¢(Vgxez)

1}

H = vxvxll = ¢'Vg + K’goe (2.7)

Z’
where g has been used instead of f because it is subject to different boundary
conditions.

Some examples of f and g functions for certain waveguide cross-sections follow.



For rectangular waveguide of width a and height b, application of the boundary
conditions yields:(Kerns and Beatty, 1967);

For TM-modes

f = 51n[—ﬂgﬁ sin(EIXJ
mn a b
2 2
o (0 :
mn \a b ( )
For TE-modes
€m = cos(mﬂf] cos(ﬁmq
a b
mr) 2 nr)?
Kin = (‘“J ¥ [‘"} . (2.9)
a b

For the TEM-mode in coaxial waveguide in which p denotes the radial coordinate,
we obtain

£

l

C1 In p + C

K# =0 (2.10)
In general, we can write for the transverse field components in the case of
TM-modes

e

G'VE = vel

H

¢ = jued(VExe ) = ih°, (2.11)

where v = ¢', €® « Vf, i = jwep, and h® « (VExe,) .

The corresponding relationships for TE-modes are

Ey = -jupo(Vgxe,) = ve'

H = ¢'Vg = ih°, (2.12)
where v « -jop¢, e’ « (VgXez), i o ¢!, and h? « vg.
The constants of proportionality are to be determined, and will be done so in

the most convenient manner in the following.

d. Power and Impedance Normalization

Consider the relationships for power P, (integral of Poynting's vector across

the terminal surface) and wave impedance Zw in terms ol Et and Ht. We write the
following
P = Re(W), where (2.13)
W=k [ E XH, +e ds, or (2.14)
2 t ot Tz

10



W = (Tv) % f onhooez ds, or (2.158)
W= (iv) - W, (2.16)
1
where Wy = 7 [ e’xh’-e, ds. (2.17)
W0 is a power normalizing constant to be chosen for convenience. For example,

if i and v denote root-mean-square (rms) complex amplitudes, it is convenient to
choose WO = 1, so that P = Re(Iv). Once the value of W0 has been chosen, it fixes
the product |e°h°| for a given mode in a waveguide.

Next, we write the following expression for the wave impedance ZW for a given

mode in a given waveguide

e xEF + e xe°
A R A 4 (2.18)
H i h° w

In this expression, E: and H; are the transverse components of the electric and
magnetic field waves traveling in the +z-direction, v' and i* are the corresponding
traveling waveé of "voltage' and ''current," Z& is the 'wave impedance'" of the basis
fields e’ and h®, and Z0 is an impedance normalization constant.

It can be seen that Z0 is proportional to the wave impedance ZW, and the constant
of proportionality 1/23 is real (since e’ and h® are not complex) and dimensionless
(since Zw and Z0 have the dimensions of ohms). Note that the dimensions of WO’ ZO’

v and i can be chosen in several different ways, but the choice used here is con-

sidered to be the most convenient for use in circuit analysis.
e. Examples of Waveguide v and i

(1) TEM-mode in Coaxial Waveguide

The familiar coaxial waveguide operating in the TEM-mode (transmission line mode)
is an interesting example of convenient choices of normalizing constants W0 and ZO.
Depending upon how they are chosen, v and i can be made to coincide with actual voltage
and current in the transmission line. This is shown as follows. It has been shown
(Kerns and Beatty, 1967) that the potential function f for the TEM-mode in coaxial
waveguide is of the form [see eq. (2.10)]

f = Cl in p + C,

11



where the cylindrical coordinates p, 6, and z apply, and the radii a and b, with
b > a, are used. Following eq. (2.11), let

0 1
= = = C e
e f 5

17
h = Co(fxe ) =L, e (2
3 Z p "2 7o i :
In the above equation, e, ep, and e, are unit vectors and-C2 = CSC'
The power normalization factor WO is
b
c,C
1 Z 0,0 . S 2mp _ Lo b
WO =7 [ e~ t!Z ds ) J —2_ dp = TleLZZII a (2.
g e
a
o s
(2.
(2
(2.
Now consider the actual rms voltage V and current I in the transmission line
terms of their line integral definitions.
b b
V=—lf}3t . d£=v—_1_fe°-e del|, or
vZ /2 P
a a
W
V=V\//E~——9-!Ln E, and (2.
€ 2wl a
0
I =
(2.
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23)

in

24)

25)



1t is apparent from inspection of eqs. (2.24) and (2.25) that we can obtain the

convenient relationships V = v and I =1 if we put Wy =1 and

zy = £ e b (2.26)
e 2T a

This is the well-known equation for the "characteristic impedance" of the coaxial
line. Although this represents the most convenient choice for ZO’ other choices
would be possible in which v # V and i # I. (This fact is not so well-known.)
if Zgy is chosen as above, it involves only the radii of the line and the
properties u and € of the medium inside the line. For a given line operating in
the TEM mode, there is only one valuc of ZO and thus, it is '"characteristic' of that
1ine. The name 'characteristic impedance' is apt in this case.
However, when modes higher than the TEM are considered, in coaxial waveguide
as well as other types of waveguide, the term "characteristic impedance'" is less ap-
propriate. In these cases, there is a v and i associated with each mode, but the line
integrals of Et and Ht depend upon the path and there is no single convenient choice
of W0 and or of ZO'
If one chooses Z0 for a given mode in a given waveguide, then Z0 is '"characteristic"
of that mode in that waveguide for that choice. However, since different choices might

be found convenient for different purposes, Z, is in the broad sense simply a normali-

0
zation constant and is not really ''characteristic' of either the waveguide or the

mode. 2

(2) TElO.Mode.in Rectangular Waveguide

Proceeding as in the previous section, we can obtain expressions for e® and h°®

starting with eq. (2.9) and applying eqs. (2.12), (2.17), and (2.18). They are

W
e =2 w, 0 sin(zzl e
'7.0 ah a 4
W
ho = -2 ZO . —% [sin(ﬂ‘—” e (2.27)
a a

Again, we consider some line integral definitions of "voltage" V, and '"current"

I, which are arbitrary in that we choose the path of integration. Suppose that we

2It is considered that if Ly were to be characteristic of a given waveguide, then there
could be only one value of Zy for that waveguide. Similarly, if Zp were to be charac-
teristic of a given mode, then there could be only one value of ZO for that mode.

13



choose V to be the line integral of electric field along the center of the waveguide
cross-section which bisects the wide dimension. Then

b b
= . = 0 .
vV = é (B nax ey dy = v é (€®) pax ey dy, or

N (2.28)
Zy ab

If we choose Wy =1 and Z, = 4(b/a)Zw, then V = v,

Now suppose that I is the total currcnt in onc of the wide walle. Then

a a
I=-[H +e dx=-ifh® e dx,or
0 0

7 W
1=i-‘E‘-’—9-—9. (2.29)
L ZW ab

If we again choose W, and Z0 as above, we find that

0
1= (. (z.30)

We would find it more convenient if I were to equal i. This can be arranged by rede
fining I; Suppose that the new 1, or ln represents the current in a strip of width w,
instead of the current in the entire wall. Let the strip be centered in the waveguide
wall. It can then be shown that In = i when w 2 0.406a, where a is the total width
of the wall.

If, on the other hand, we were to choose Z, = {%}2 %-Zw then I = i. We could
then redefine V to be the line integral over a shorter path. If the path length
were approximately 0.393b, then the new V would equal v.

In the above redefining of V and I, we could not take V larger than the line
integral of Et over the full height of the waveguide, and we could not take I larger
than the current in the total width of the widest wall. Thus, the limits between which

Z0 may be chosen to obtain simultaneously V = v and I = i are
b ‘M4 b
b3l 22 (3 3 e (2.31)

where
u
A R X i S f—i ohms . (2.32)
w f )2 €
\/1 - ( ] T

In the above expression, f is the operating frequency, fC is the cutoff frequency,

and 1 and £y ATe respectively the relative permeability and the relative permittivity.

14



The above example illustrates the arbitrary nature of the choice of WO and Z0

and shows some of the consequences of various choices.

f. Traveling Wave Amplitudes a and b
AnotheT convenient set of terminal variables are the voltage traveling wave

amplitudes a and b. They are related to v and i by

V=a+b a = %{V + Zoi)

Z

it
O

'
o

. 1 -
o b= z(v - Zpl) (2.33)

The power and impedance (or reflection coefficient) relationships are

W
P = WyRe(Iv) = WjRe[l- (@-F) (a+b)] = 20 (jaj2 - |b]?) (2.34)
Z Z
0 0
v - Z,1 Z -1
0
E = 0_ = ’ (2.35)
a v T+ Zol z ZO

where Z = Y. Let

z. -2, (Z./1)-1 % -1
W 0 _‘Y'w' "0 - W (2.36)

" 0
z, + 2y (B /2)+1 22+ 1

Fw =

Note that if Z0 is in ohms, Z&, the wave impedance of the basis fields, is a normalized

impedance and is dimensionless.

g. Other Traveling Wave Amplitudes
Two other sets of traveling wave amplitudes will be mentioned. They are sometimes
called power waves, since they have the dimensions of the square root of power.
One set of traveling wave ampl%tudes is very simply related to a and h and is
used to suppress W0 and Z0 from the power and impedance relations. This can be
convenient when carrying through a complicated analysis. The suppressed constants
can be reinserted after the analysis has been completed, if desired.

If we define a new set of terminal variables

a' = af-—, and b' =Db [—, (2.37)

then the power relationship is simply

P=lat|® - [br[2, (2.38)

15



and there is no change in the reflection coefficient

b _ b
aT = 3 (2.39)
Then
Z W
v = f_Q (a' +b") 2! = % f_Q (v + Z,1)
W VA
0 0
7 (2.40)
JWZ- i =a' + b b= L/ 0 v -z 1)
070 2 7 0
0

Another set of terminal variables is used in the analysis of tramsistor circuits,
for example, and is defined as follows (Kerns, 1967).

_11 :
am = . 2, (Vm + Zmlm)

oo

(z.41)

in which Zm is the impedance terminating port m.

The existence of different sets of terminal variables each designated as a and b

is sometimes confusing and can lead to errors if the basic definitions are not clearly

understood.

2.3, Parameter Matrices

a. Impedance and Admittance Matrices
The sets of simultaneous linear equations relating the pairs of terminal variables

of a waveguide junction can be written compactly in matrix form. For example, for a

total number N of propagated modes, we define the column matrices

5

Vi 1y
Va2 1

ve=| - , and 1= | - s (2.42)
VN N

We can then write the set of equations relating the v's and i's in matrix form

v =2Zi, or i = Yv, (2.43)

16



where

i1 %12 77 Ly
Zy1 Zyp 77 Iy

Zs= . . . s
Int Znz TTT Eww

and Y is the inverse of Z. The above Z and Y matrices are called the impedance and

admittance matrices, respectively.

b. The Scattering Matrix
If we consider the terminal variables a and b in a similar way, we obtain
b = Sa, (2.44)
where S is the séattefing matrix. It has elements similar to those of the above
impedance matrix, and the elements are called scattering coefficients.

Since there are several sets of terminal variables denoted by the letters a and
L, it happens that there are also different scattering matrices denoted by the letter
§. For example, the coefficients in the scattering matrix used to relate power waves
(Bodway, 1967) are sometimes called "S-parameters."

This situation can cause confusion. In order to distinguish between different
scattering matrices, it is necessary to examine the definitions of the terminal var-
iables that they relate.

In this monograph, the scattering matrix will relate the complex voltage wave
amplitudes a and b as defined in eq. (2.33).-

The relationships connecting Z, Y, and S, are written in matrix equations as
follows

Z=(+8)@ -8tz =yt (2.45)

1 -1

(zZZ-

o 1)(2261 + 1)

=5=(1-2V)(1 + ZDY)“l (2.46)

c. Power

(1) General
The total complex power input to a waveguide junction is by extension of
eq. (2.16), in matrix notation

W= i*W v, (2.47)
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where * denotes the Hermitian conjugate and

Wy O - 0

. Wy, -- O

0 - - - -

0 0 - Wy
It can be shown that
W= i%W Zi = vEY*W v, and (2.48)
P = Re(W) = a*(W 2.1 - s*W 21 )a (2.49)
0%o 0o )2

(2) TRealizability Conditions

A waveguide junction is said tn he '"realizahle" if its Z, Y, and X are such that
Re(W) > 0 for arbitrary v or i. The conditions thus placed on Z, Y, and S are the
"realizability conditions" for passive waveguide junctions.

Consider the impedance matrix Z, and define HZ = %(WOZ + Z*WO). Note that HZ
is Hermitian (H; = HZ). Since

Re(W) = Re(i*WyZi) = i*H,i, (2.50)

conditions on Re(W) are equivalent to conditions on the matrix of the Hermitian form
i*HZi.

We now distinguish (Kerns and Beatty, 1967) three cases of realizability, according
to whether the dissipation in the junction is positive for every non-zero i, for only
some i, or for no 1i.

(a) “Strict realizability': Re(W) » 0 for every non-zero i. In this case the
Hermitian matrix HZ and the associated form are said to be 'positive definite" (or,
sometimes, "strictly positive"). A useful criterion for this case is: a Hermitian
matrix is positive definite if and only if all its principal minors are positive.?®

(b) ™"Semi-realizability'": Re(W) > 0 for every i and Re(W) = 0 for some non-zero
i, In this case HZ and the associated form are said to be '"'positive semi-definite";

a criterion for this case is: a Hermitian matrix is positive semi-definite if and

only if it is singular and all its principal minors are nonnegative (Mirsky, 1955).

?For a proof of this theorem see Mirsky (1955). A "principal minor" of a matrix A
is a minor whuse diagonal is part of the diagonal of A. Thus a principal minor is
obtained by selecting rows and columns with the same sets of indices. Special cases
of the principal minors of A are the diagonal elements of A and the determinant of A.
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) "Losslessness'": Re(W) = 0 for every i. For this case it is easily shown
directly that HZ must be the (NxN) zero matrix.

For the admittance matrix Y and for the scattering matrix S, the matrices cor-
responding to Hy are Hy = 2(W Y + Y*W ) and Hg = (WyZg' - S*W 20%s), respectively.

Realizability conditions for Z, Y, and S may be summarized as follows: Real-
jzability requires the matrices HZ’ H, , and HS to be positive definite, positive semi-
definite, or zero, according as case a, b, or c applies.

At this point it is observed that certain simplifications may be obtained in the
above analysis and results by suitable choices of normalization. For example, if WO
js a scalar matrix (i.e. a scalar multiple of the unit matrix), it cancels out in

the statement of realizability conditions for Z and Y; similarly, if WOZ(;1 is a scalar

matrix, it cancels out in the statements pertaining to S (see table 2-1).

" Table 2-1. Realizability and reciprocity conditions under simplifying

normalizations.
z y , s
(Wo SCALAR, Z | (W, SCALAR, Zg 1
ARBITRARY) ARBITRARY) (WgZy ~ SCALAR)
REALIZABILITY Z+1*PD, Y+Y*PD, 1-S*SPD,
PSD, OR O. PSD, OR O. PSD, OR 0.
RECIPROCITY 7=z Y=y T =5

NOTE: 1. PD = POSITIVE DEFINITE, PSD = POSITIVE SEMI-DEFINLIE.
2. RECIPROCITY MAY OF COURSE HOLD SIMULTANEOUSLY WITH
ANY CASE OF REALIZABILITY.

d. Reciprocity
Provided that the parameters np, & (which may be complex) are symmetric tensors
(which may reduce to scalars) it can be shown that (XKerns, 1949a)

z é (EIXHII - E"XH') . nm ds = (), (2.51)

m=1 n

where E', H', and E", H" denote any two electromagnetic fields (of the same frequency)
that can exist in the given waveguide junction. From eqs. (2.1) and (2.17) it follows

that eq. (2.51) is equivalent to

i"wov' - i'wov" =0, (2.52)

where the ~ denotes the transpose of a matrix.
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To find the consequences of eq. (2.52) for Z, Y, we first inmsert v' = Zi',

v = Zi". After taking the transpose of the second term, Wwe obtain
?n - o 31 =
i (WOZ ZWO)l 0,

which implies

WoZ - ZWy = 0, (2.53)
since i', i" are arbitrary. Since Z = y! (and Z = Y_l), the relation
WOY - YWO =0 (2.54)

is an immediate consequence of eq. (2.53).

To find the conditions imposed on S we nse eq. (2.33) and find from eq. (2.52)
~n -1 v ~| -1 1" o=
a ZO WOb a ZO Wob = 0.
Hence, using b = Sa, we must have

-1 ar-1 _
Z0 WOS - SZ0 WD = 0. (2.55)

The reciprocity conditions eq. (2.52) and eq. (2.55) may be simplified by appropriate
choice of normalizations, and it happens that the appropriate choices are the same
as in the case of the realizability conditions considered above. Table (2-1)

furnishes a summary of all these relations in simplified form.
e. Sources; Joining Equations

(1) General

We have already noted that our basic expression for the power input contributed
by one waveguide mode, Wa = I;Va (for W; = 1), is of the same form as the expression
for input power at a pair of terminals in an altermating-current network. We shall

now consider two further funddmental relations that are required to establish the

basis of the application of equations of the form of network equations tc waveguide

problems,

(2) Sources

For simplicity consider a waveguide "junction" having just one waveguide lead,
in which just one mode propagates. We choose a terminal surface and consider the

terminal variables vy, il‘ We assume that the junction is linear (from an external
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point of view) but not necessarily passive. The most general linear relation con-

pecting Vi and il can be written
vy < Zglll + vgl (2.56)

or

i 7 Ygpvy toigps (2.57)
where Zgl’ Ygl’ Vgl’ ig1 are constants, The presence of sources may be manifested
in these -equations in two ways: in the inhomogencity of the equations (i.e. Vgl # 0)
or in a violation of the realizability condition as applied to Zgl and Ygl' The
latter possibility means for these 1 x 1 matrices Re(Zgl) < 0 and Re(Ygl) < 0, as
may be seen in table (2-1), It should be observed that eq. (2.56) and eq. (2.57)
respectively vepresent versions of Thevenin's and Norton's theorems.

‘ Alternatively, we may describe the source in terms of the terminal variables

by By The most general linear relation connecting these variables may be written

b1 = Sgla1 + bgl’ (2.58)
where Sgl and bgl are constants characterizing the source. This might be called Kerns'
theorem, after D. M, Kerns, The equation states that the general emergent wave b1 is
the sum of the wave bgl that would be emitted into a non-reflecting load and- the
reflected portion of the incident wave 2. From table (2-1) we see that violation

of the realizability condition for the 1 x 1 scattering matrix Sgl means |Sg1| > 1.

(3) Joining Equations

Suppose that a waveguide lead of one system is to be connected to a waveguide
lead of another system. We assume that the terminal surfaces associated with each
system haye been so located that they coincide when the connection is made (fig. 2-1).
The transverse components of E, H on the common terminal surface S are then given

by the equations

By = I vaels
H, = ) iah;, (2.59)

associated with the one system and also by the equations

Al

A\l 1
= [}
Et 2 Va€a
1 .1 “|
H, = ] ihd, (2.60)
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associated with the other. We assume

eg = e; 5 (2.61)
this implies
1
hY = -hJ, (2.62)
\ !1 /
]
ne—I|—=np
|
EH }E,_‘

A

/( S k
Figure 2-1. Coincident terminal surfaces.

since n = -n'. For the electromagnetic fields corresponding to eqs. (2.59) and (2.60)

to be continued properly across S, it is necessary and sufficient that

|

1
E = Et’ H = He. This means that it is in turn necessary and sufficient that
]
Va ® Va
. . '
i, = -1, (2.63)

for each mode involved. These are the joining equations of waveguide theory. They
are of exactly the same form as the equations in circuit theory that describe the
joining of two pairs of terminals. To verify this, comsider that the terminal pairs

shown in figure 2-2 are to be joined.

i —i
0----0-
VT Tv‘
O =0

Figure 2-2. An "equivalent circuit!
for joining.

With the sign conventions indicated in figure 2-2, circuit theory obviously requires
v =v',i=-i'.. (The sign conventions are determined by eq. (2.62) together with

the choice of n as the inward normal on Sm.)
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in the equations that characterize a waveguide junction, such as the matrix
equation vV = Zi, the number of variables is twice the number of equations. In a
waveguide junction characterized by a set of N equations, the electromagnetic
state has N degrees of freedom. However, if loads or sources® are connected at all
terminal surfaces and the joining equations are applied, the number of equations
becomes equal to the number of unknowns in the system. Thus, except for special
cases where the equations are not all independent, the terminal variables (and hence

the electromagnetic state) become determinate.

?A passive waveguide junction possessing just one waveguide lead (multimode or not)
is termed a "load" or a "termination"; if not passive, it is termed a "source."
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3. Introductory Network Analysis
3.1. Linear Network Parameters

a, Introduction
It has been shown in the previou§ section that network equations developed for
alternating current networks consisting of distinct circuit elements may also be used
in waveguide problems in which distinct circuit elements do not exist as lumped
elements, but are distributed in space.
These network equations are briefly reviewed as a point of departure to reintro-

duce scattering coeflficients and other pavameters used to relale wave amplitudes.

b. Terminal Variables

It is customary to provide access to a network by means of terminals, and in
most cases, these are grouped in pairs. We can have input terminal pairs to which
sources are connected to feed energy into a network, and we can have output terminal
pairs to which loads or terminations are connected to absorb or reflect energy emerging
from the network. Usually, there is a terminal pair to which a detector is connected,
especially in circuits used for measurement purposes.

The voltage v across a given pair of terminals, and the current i tlowing into
one terminal (and out of the other) are the terminal variables in common use. The
relationship between the terminal variables at one tcrminal pair and thosc at anothor
terminal pair is determined by the characteristics of the network. If all of the
network elements are linear, the relationship is given by a set of linear equations,
having coefficients which are independent of the terminal variables. These coef-

ficients are called network parameters.

c. Network Parameters
It is possible to obtain more than one set of parameters for a given network,
depending upon how the terminal variables are selected at the terminals. Three fre-
quently encountered sets of parameters for a two-terminal pair network (four-pole,

or 2-port) are shown in figure 3-1.
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The equations defining the parameters are given in three forms. The first form
is the usual set of two simultaneous linear equations. The second form is the cor-
responding matrix equation. The last form is the short form of the matrix equation,

where the matrices are indicated by single letters.

iy — ip

vi} tv,

Figure 3-1. Representation of a
fourpole (2-port)

_ i . \ ) .
Vy = Z33ip * 201, Vi 211 2121
. - = s v o= Zi. (3.1)
Vo T Iaatr iy W) (I Zp)d,
by = Mqvy vy [ Y11 Y12] (V1
. = ;1= Yv, (3.2)
1p = Ypqvp * Yoovps Uiyl \Yyp Ypullvy
_ - ] ) X
V1 = sz B12 vy A B v2
) ) = _ (3.3)
i, = Cv2 - D12; i, C D -i,)

The above matrices are called respectively the impedance matrix, the admittance
matrix, and the ABCD matrix (general circuit parameters). The ABCD matrix may also

be called the v and i cascading matrix.

d. Complex Wave Amplitudes a and b
Access to a waveguide junction is provided by means of waveguide leads. Terminal
surfaces chosen in the waveguide leads form part of the outer boundary of the waveguide
junction. The amplitude a of the voltage wave incident on the junction and the
amplitude b of the voltage wave emerging from the junction at each such terminal
surface are one type of terminal variables in common use. The terminal surfaces where

energy may enter or emerge from a waveguide junction are also called ports.

e. Parameters Associated with a and b
It is possible to define many sets of parameters relating a and b for a given
waveguide junction. Three of these sets of parameters for a 2-port network are shown

in figure 3-2, and defined in eqs. (3.4), (3.5), and (3.6).
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e,

d L

t
Figure 3-2. Representation of a 2-port waveguide junction with
terminal surfaces and terminal variables a and b.

by =8y521 7 5122 ™ 511 S120(®%1

= ; b = Sa (3.4)
by = Sp8p * Spp8y5 By Sy1 Sa2iiay
ay = g11by *g1gby (B €11 ®12((P1

= ; 8 = gb (3.5)
a; = 82101 * 22025 (3 821 822)1bg
by = T8y * Tyyby by Ty Tiz]|®2

= (3.6)
ay = Ipp2y * Tppby 13y Tor T220iby

The coefficients in the above equations are called scattering, gathering, and

cascading coefficients, respectively.

f£f. Other Terminal Variables
Another set of terminal variables v and i can be used with waveguide junctions.
They are generalizations of voltage and current and can actually represent transmission
line voltages and currents in cases where only the TEM-mode propagates. The param-
eters relating v and 1 for waveguide junctions are called by the same names as the
corresponding ones relating voltage and current. Still other terminal variables
could be defined by forming linear combinations of the ones already mentioned. How-

ever, terminal variables other than v and i, and a and b have not been widely used.

g. Network Equivalent to a Waveguide Junction

A network which shares an identical set of parameters with a waveguide junction
is said to be equivalent to that junction. Such equivalence may hold at only one
frequency at which the parameters are defined, or in the less usual case, might
hold over a range of frequencies.

For example, the parameters relating the terminal variables v and i for a
waveguide junction may be identical with those which relate voltage and curryent for
a network. In this case, the impedance matrices would certainly be identical. It
follows that all of the other parameter matrices would be the same as the cor-
responding ones for the equivalent network. This is true because each set of

parameters relating terminal variables is linearly related to each other set.
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Occasionally some difficulty may arise in identifying equivalent networks if,
for example, we are given a scattering matrix for a wavsguide junction and find
that the impedance matrix does not exist (the elements may be infinitely large).

An example is the following, in which the equivalent circuit is a single series

jmpedance Z, 'as shown in figure 3-3.

Z
)

o0

Figure 3-3. A fourpole having a single series
element.

By inspection, the admittance matrix is

y =L [ ! '1].
2, .11

1t follows from eq. (2.46) that the corresponding scattering matrix is

7. - 2oy - Z..) 27
S - 1 [ 1 o1 ~ Zoz 01 ]_ (3.7)
2y + (Zog * Zgy) 2Z4, 2y * (Zg1 - Zpg)
If we choose Z01 = Z02 = ZO’ then
(Z:/2.) 2
S = 1 [ 170 . (3.8)
(2 /2 +2 | 2 (/7

Application of eq. (2.45) in order to obtain an impedance matrix will reveal that
each of the elements is infinite. It is then said that the impedance matrix does

not exist.

3.2. The Scattering Matrix

a. General Remarks

The scattering matrix has an appropriate name as we can see from the example

below.

Figure 3-4. Representation of a multi-arm
waveguide junction with energy
incident in arm 1.
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As shown in figure 3-4, a wave of amplitude al_entering the waveguide junction
in arm 1 is scattered, and some of the energy is transmitted to each of the other
arms of the junction. (For simplicity, it has been assumed that the other arms have
nonreflecting terminations so that there are no reflected waves in these arms.) The
coefficients in the linear equations relating the amplitudes of the emergent waves
(the b's) to the amplitudes of the incident waves (the a's) are called the scattering
coefficients. The matrix of these coefficients is called the scattering matrix which
was defined more formally in eq. (2.44).

In general some scattering will also occur as a result of reflection. Since
scattering involves both transmission and reflection of energy, it is to be expected
that the scattering coefficients will be of two kinds; transmission coefficients and
reflection coefficients. This will be illustrated clearly in the case of two-arm
waveguide junctions (2-ports), to be discussed.

Much of the theory of two-arm waveguide junctions may be applied to waveguide
junctions with more than two arms, as will be shown below. Consider a waveguide
junction having n arms, all of which are terminated by non-reflecting loads except

h h

the pt and qt arms. This requires that all incident wave amplitudes vanish except

for ap and aq. The scattering equation b = Sa for the waveguide junction then reduces

to
b =S a + S a
p PP D pa‘q
b =S a_ +5S_ a,, (3.9)
q ap’p aqa”q
h th

considering only the emergent waves in the pt and q arms. This is of the same
form as that for a two-arm waveguide junction, so that one can for example determine
S S S and S s i ini

o0’ Spq’ Sqpe n aq by the gme techniques developed for determining Sll’ SlZ’
521, and SZZ of two-arm junctions, to be described.

b. Scattering Coefficients of a Two-Arm Waveguide Junction
Consider a two-arm waveguide junction with a source connected to arm 1 and a load

connected to arm 2. The reflection coefficient of the load is designated by I, as

L
shown in figure 3-5. The reflection coefficient of a load is defined to be the
ratio of the amplitude of the wave reflected from that load to the amplitude of the

wave incident upon it.
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b | —
l‘“"} > 2
1Zon o2

Figure 3-5. A two-arm waveguide junction connected
between a source and a load.

Referring to eq. (3.4) it can be seen that the input reflection coefficient T

1
can be written
5,,5,,T (s,,8 -~ 8;,8,,)1; + S
r. =g s 12721°L 12721 11722°°L 11. (3.10)
oy osoor 1-5S,,T
22°L 22°L
Note that if there is no reflection from the load (FL = 0), the only source of
reflection is within the waveguide junction, and
hl
- = (P]_) = Sl]_' (3.11)
a, FL—O

Therefore S11 is the reflection coefficient "observed looking into'" arm 1 with
arm 2 terminated in a non-reflecting load. We can say that S11 characterizes the
reflecting property of the waveguide junction for energy entering arm 1.

A similar argument with the above roles of arms 1 and 2 reversed will show that
S22 is the reflection coefficient "ubserved looking into" arm 2z with arm 1 terminated
in a non-reflecting load. Thus, the scattering coefficients Sll and S22 are reflec-
tion coefficients. We can generalize on the basis of previous remarks about cq. (3.9)
that any scattering coefficient of the form Spq is a reflection coefficient if p = q.

It can be shown conversely that when p # q, the scattering coefficient Spq is
a transmission coefficient. If the transmission coefficient is defined as the ratio

of the amplitude b2 of the wave emerging from arm 2 to the amplitude a, of the wave

1
incident in arm 1, when a non-reflecting load is connected to arm 2, then inspection

of eq. (3.4) shows that

2 =8 (3.12)

A similar argument applies to S and extension to Spq is straightforward.

122
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c. Effects of Moving Terminal Surfaces

The scattering coefficients of a given waveguide junction have been defined in
terms of wave amplitudes at certain arbitrarily selected terminal surfaces. If new
terminal surfaces are chosen, a new set of scattering coefficients will then apply.
Since only a simple change was made in the waveguide junction, one would hope for a
simple relationship between the new and old sets of scattering coefficients. That
this is the case may be shown as follows. Consider the new set of wave amplitudes
and scattering coefficients to be denoted by primes.

It is well known that 2 wave traveling along a uniform section of waveguide
experiences attenuation and phase delay as it progresses. If, as in figure 3-6, a
wave traveling to the right has an amplitude ai at terminal surface 1', it will have
an amplitude a; = aie-Y21 at terminal surface 1. Similarly, a wave traveling to the
left having an amplitude b, at terminal surface 1 will have an amplitude bi = ble—vil
at terminal surface 1'. Here we regard 21 only as a distance between two terminal
surfaces, considered as always positive, since we have not set up any conventions of

positive and negative displacement in this case.

1 1 2 2
o |
S 1
— ] g
Ir—ogl :_—g‘ lL—.bz b5
B bt ‘]2*—JIL Gp—
T |
g 14—12—4

Figure 3-6, Changes of locations of terminal surfaces
from 1 and 2 to 1’ and 2’.

Assuming that the waveguide leads are lossless, their propagation constants (y's)

will be jBl and jB,, and the following relationships will hold:

] 3 t -
- -iB1ta - -jB1%1
aq ae R b1 = ble
(-

- . .
a, = a,e 82 2, b, = b,e iB222

(3.13)

- - . - ' 1
We apply the definitions of S11 and 821 as in eqgs. (3.11) and (3.12) to S11 and 821,

obtaining
T 1 3
- ~j2B18, v -3 (B121+B24%,)
$11 Slle and Sy1 = $,,8 22l (3.14)
Interchanging subscripts 1 and 2 yields
v -j282% v -5 (B2R2+B12
522 S,5e 2%2  and 812 = SIZe J (82228 1). (3.15)

No such simple relationship would be obtained with impedances and admittances, and

this is one important advantage of using scattering coefficients.
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If we now designate the original set of terminal surfaces and scattering coef-
ficients by primes, eqs. (3.14) and (3.15) will still hold, but we will want to solve
them for 511’ 812’ 521, and SZZ' Upon doing this, it will be found that the algebraic
sign of the exponents will be positive instead of negative. The effect of shifting

a terminal surface to a new position in either direction should now be evident.

3.3. Reciprocity, Realizability, and Losslessness for 2-Ports

The relationships derived for waveguide junctions in general will be specialized
to apply to 2-ports. The meanings of these relationships in terms of energy flow will
be examined later.

In the following, the usual symbol Z0 will be used to designate the normalizing
impedance of the propagating mode (usually only one in each waveguide lead), and an
additional subscript will be added to designate the particular waveguide lead of the
waveguide junclioun (these waveguide leads are often identical, bul are sometimes quite
different from one another).

The power normalization matrix W0 will be taken equal to the unit matrix so that
it will disappear from the following equations. This is felt to be justified because
it seldom happens that we need to choose W0 otherwise, and if we do, we can refer back
to sections 2.2 and 2.3.

We will carry through the Z0 normalization factor because it is more often useful.
Cases continue to occur where the waveguide arms of a junction are not identical and

we do not wish to choose all of the Zo‘s equal.

a. Reciprocity
In terms of the scattering coefficients it has been shown that the reciprocity
condition is given by eq. (2.55). Assuming that the power normalization matrix is
the unit matrix, we have

zéls - szél. (3.16)

Performing the indicated multiplication for the 2x2 matrices, we obtain

S11 S12 S11 Sa1
Zo1 Zo;1 Zo1 Zo2
= (3.17)
521 S22 S12 S22
Zoz Zo2 Zo1 Zo2
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The resulting condition on the scattering coefficients is

S.,Z 01" (3.18)

12202 = S21?
It is often stated that reciprocity implies the equality of S12 and S21 but it is seen
that this is true only! when Z01 and 202 are equal. It is not always convenient or
appropriate to choose them equal, so the correct relationship above should be kept

in mind.

b. Strict Realizability
The condition of strict realizability, discussed in section 2.3, excludes
losslessness, and is given by the following matrix inequality

Re (W) = a*Hsa > 0, for arbitrary a # 0,

where Hg = Wyzpb - swzls, (3.19)

as in eq. (2.49). This condition requires that HS be positive definite, which in

turn requires that all of the principal minors of HS be positive. However, it is

not necessary to show that all of the prinecipal minors are positive, since this

follows automatically if one shows that the leading minors are positive. The leading
minors are the ones which progressively include the elements on the principal diagonal,
starting at upper left.

The equation for Hg for 2x2 matrices, assuming that WO is the unit matrix, is

_ 2 2 S g 3
L= 085417 1851 _{Sllblz S21522}

+

Zo1 Zo2 Zo1 Zo2
Hg = | _ - . (3.20)
_{512311 . S22521] L - 185,17 18,12
Zo1 Zo2 Zo2 Zo1
Thus, strict realizability requires that
z 1S, ]2
01, ____JLL___; <1,
Zoz 1 1844l
202 1S121°
ez 1z g,
Zop 1~ ISp2l®
1¥f new terminal variables are employed such that Siz = 51,7(2y,/Z4;) and
- . - . ' - ' 3
Sy SZIV(ZOI/ZOZ)’ then reciprocity requires S12 = Sp1- See section 2.2.g.
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[1 - Isll|2 B [821!2] [1 - ISZZIZ _ !812[2}
201 Zo2 Zo2 Zo1

511512, S21522

Zo1 202

2

> 0. (3.21)

On testing a scattering matrix to see whether it corresponds to a strictly
realizable waveguide junction, only two of the above inequalities need to be considered;
the last one, and either of the remaining ones. It is noteworthy that the first two
inequalities involve the magnitudes but not the phases of the scattering coefficients,

while the third inequality involves both magnitudes and phases.

c. Losslessness
While a lossless waveguide junction is not actually obtainable in practice, one
can approach this condition closely, and it is therefore important. The assumption
of lossless waveguide leads which has been made, is of comparable importance. It has
been stated, in section 2.3, that losslessness requires HS to be zero, which requires
each element of Hg to vanish, This yields the following restraints upon the scattering

coefficients:

1S101% I8, 5y

™~
)

0

—

|

S 5.8
12 12°11
- - 3.22
B 1-1s,,]? 5.5 5.5, (s.22)
02 21 221 21°22 22521

IS

It can be shown that an equivalent and more revealing set of restraints on the
scattering equations is the following:
lslll = ‘sZZI =S,
= =/ _g2
Zopl8211 = ZgalSypl = V2o 2o, (1)1,

and

Y12 * ¥p1 T ¥qp * o ¥pp * (20 - D, _ (3.23)
wher i i i

e wpq is the phase of Spq and n is an integer.

It is interesting to note that the condition of losslessness implies a partial
symmetry in that 'Slli = ]SZZI’ and a partial reciprocity in that 201|821l = ZOZISIZI'
Une, also notes that this condition requires every element of HS to vanish, while the
strict realizability condition requires that all of the principal minors be greater

than zero. Therefure, vne should not in general simply replace the inequality signs

in eq. (3.21) by equals signs to convert to the lossless condition.
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3.4, Power and Efficiency
A two-arm waveguide junction is often connected between a source of energy and
a load as shown in figure 3-7.
This arrangement shown in figure 3-7 is frequently encountered in measurement
systems. The rate of encrgy flow into the junction P1 equals the incident power le
minus the reflected power Pp..

—bg }—»p

| ! WAVEGUIDE

|
{
i
0AD
! L
2o | duNCTION |z, b,
I
|
{
P

SOURCE

Figure 3-7. Diagram of a simple waveguide system with energy
flowing from left to right, with net powers P, and
P, and with incident and reflected powers P
and Pgy. I

The rate of energy dissipation in the load is PL, and the rate of energy dissipation in
the waveguide junction is P1 - PL' The efficiency nq of the waveguide junction is
defined to be the ratio of P, to Pl' An expression for the efficiency is developed

as follows: The net power P1 crossing terminal surface 1 to the right is

P p

1 = Prg 7 Py (3.24)

. - 2 - 2
where the incident power P , |a1| /741> and the reflected power Pp, |b1| /Zg1>
and therefore
lagl?
1
P1=—E~—~(1 - irllz); (3.25)
01
where Fl = bl/al‘
Similarly, the net power P absorbed by the load is
[by |2
P = - a- Irl*, (3.26)
02 )

where FL = az/bz.

The efficiency ny of the waveguide junction when energy is fed into arm 1 is

b

4

Z o1 - ;|2
. ______J;_;, (3.27)
1- |

P

PL_Zop |
1 Zo2

n

Substituting eq. (3.10) for T'., and solving eq. (3.4) for the ratio of b2 to

1

aj, one obtains

nl T e « (3.28)

Zo1 1S,712CL = |1 1)
VA - 2
|1 + 8,1

2 - -
02 STy 10815857 = 811522071
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The efficiency is seen to be not only a property of the waveguide junctionm,

but also of the reflection coefficient FL of the load. In the special case of a

non—reflecting load,

2
S F R b S L 5.29)
1la =0 - . .
2 ZOZ 1 1511‘

1f the positions of the source and the load with respect to the waveguide junc-
tion were to be reversed, it is apparent that the expressions for the efficiency n,
would be of the same form, but with subscripts 1 and 2 interchanged. Thus

181,170 - T 1)
ny = —= ¢ 12 - , (3.30)

- 2 _ - 2
Zop 11 - SqqTd 10512521 = 511522071 * S5l
and
Z [s,,1?
02 12

nyly o = —= + —2—— (3.31
a,=0 _ 2 -31)

L Zop 1 155,

T+ is interesting to compare eqs. (3.29) and (3.31) with the ineqnalities eq.
(3.21). The first two inequalities simply state that the efficiency of a strictly
realizable waveguide junction is less than unity for two conditions. The first
condition assumes that energy enters arn 1 and there is no reflection from the load

on arm 2. The second condition is similar except that 1 and 2 are interchanged.

3.5. Representation of the Source
If we consider a source connected to arm 1 of a waveguide junction as in figure

3-7, it is possible to show in a number of ways that

a; = by *+ byTlq, (3.32)
where ay is the amplitude of the wave in arm 1 incident upon the junction, bG is the
amplitude of the wave that the generator would emit to a non-reflecting load,? bl
is the amplitude of the wave reflected from the junction in arm 1, and Ta is the
reflection coefficient of the source. It is considered desirable to build confidence
in this relationship by giving alternate derivations, since it is widely used in

circuit analysis.

a. From Linear Relation for Source and Joining Equations

For convenience, the wave amplitudes referred to in eq. (2.58) will be primed,

2 > . . .

It 1s assumed here that the generator is unaffected by load changes. This is not
true in general, but is approximately true if isolation or buffering is employed
between the active source and terminal surface No. 1.
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and bgl and Sgl become respeutively bG and I Then the diagram of figure 3-8

represents the situation when a source is joined to arm 1 of a waveguide junction.

The joining equations are evidently

a, = b
1 1’
1
by = 23, (5.33%)
d
an b 1
i -
o 9 | wavesuioe
S0URCE .
E“bﬁ_ JUNCTION
i
1

TFigure 3-8, Represcentation of e waveguide junction
connected to a source of energy.

Substituting these into the modified eq. (2.58) yields eq. (3.32). Note that the

a's and b's of eq. (3.32) are chosen in different directions than in section 2.3.e.

b. From a Constant Voltage Generator

If we postulate a constant voltage source as shown in figure 3-9 and relate a

and b to v and i in the usual manner, it is found that eq. (3.32) can again be

obtained.

e [
4 L .

i
Figure 3-9. A constant voltage generator with a waveguide output
having either terminal variables vy and i) or a;

and by .
The steps are as follows:
vy = et il
Zg L+ Tg
a1+b1=e-;—~(al-b1)=e~1_r (8 - by),
01 G

2a,(1 - TyTg) = e(1 - Tg),

1 e
a, = ——— . 12 - 1)
1T T {2 G ) (3.34)

We define b, as the amplitude of the emergent wave from the generator (a1) when a
non-reflecting load is connected U‘l = 0). Thus

bg = 2 a-rg. (3.35)

36



Then it follows that

b
ay = —l (3.36)
1 - rlTG
or
a; = bg + b T, (3.32)

c. Summation of Wave Reflections
Supposing that a wave amplitude bG emerges from the generator, one can consider

the multiple reflections that take place as shown in figure 3-10.

L +——T

SOULIRCF

—bg
be T +—]
b T
b I7 I .
—beh Ty

3.2
LR

ETC.

Figure 3-10. Representation of multiple reflections at a terminal
surface in the waveguide connected to an energy source.

The sum of wave amplitudes reflected toward the generator is

by = bgly[1 + (T + (rGrl)2 + ...,

or
b.T bb
bl = __.._E_..].'__, or bl = G'1
1 - I‘Gl"l al - erl
or
a; = by + b Tg, (3.32)

3.6, Net Power and Available Power

a. Net Power to a Waveguide Junction
Suppose that a source is connected to a waveguide junction as shown in figure

5-7. The net power delivered to the junction is

|a1|2 !bG]? . 1- lf'llz

. (3.37)
201 Zo1 11 - rgryl
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The components of this power associated with the incident and reflected waves are

respectively
Ibgl? 1
Pry = ’ 2’
Zg1 |1 - 10y
and
[bgl? IT; )2
Ppy = —— ¢ . (3.38)
Zop 11 7 rghyl

It is sometimes erroneously assumed that the incident power from a generator is
always independent of the load. However one can see from the above equation that this

can be true only if the generator is non-reflecting, or FG = 0.

b. Available Power from Generator
It is seen above that the net, incident, and reflected power from a generator all
depend upon the reflection coefficient Fl of the effective load terminating the
generator. It is well known that the net power will be maximum when the load impedance

is the complex conjugate of the generator impedance, or when

Z1 = Zg. (3.39)
This condition in terms of the corresponding reflection coefficients (remembering that
Z01 is real for lossless waveguide leads) is

Fl = PG. (3.40)

The net power output from the source under this condition is termed the available

power PA’ and is obtained by substituting eq. (3.40) into eq. (3.37), as follows:
2
_ Ibgl® 1
- 2
Z01 1 !PG[

The components of the available power associated with the incident and reflected waves

A (3.41)

respectively are

Par = Pel” L - A >
ZD]. (1- - ‘FG|2)2 1 - \rGtz
and
b.)? r.l? ra.l?
Pg lel® — =7, -—i-ﬁi_—;. (3.42)
Zg1 a - Irgl® 1 - (1l
Compare these to the net power PO delivered to a non-reflecting load,
[bgl?
PO = . . (3.43)
01

Thus PO is generally less than P, except when the generator is non-reflecting (TG = 0),

and then they are the same.
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3.7. Mismatch Loss

a. Mismatch Loss in General
We define mismatch loss LM as the ratio in decibels of the power PM absorbed

a matched load to the power P absorbed by a mismatched load, when these loads

by
are alternately connected to the same source (generator), or
Py
Ly = 10 logy, ;——. (3.44)
MM

It is necessary to undcrstand what is mcant by tho terms "match' and ''mismatch,"
and their meanings will be discussed later.

One sees that the above mismatch loss is simply a special case of the ratio of
the powers absorbed by two different loads which are alternately connected to the same

generator. If the load initially connected has a reflection coefficient ir the load

1,

finally connected has a reflection coefficient frl, and the genérator has a reflection

coefficient TG’ the ratio expessed in decibels is

|*r, |2 py

LC = 10 log10 = 10 log10 E— (3.45)
|2 R

1
and is called (Beatty, 1964a) the comparison loss. An expression of this form is
widely used (Beatty and MacPherson, 1953) in the analysis of mismatch errors in power
measurements.

If one is given iPl expressed in decibels referred to some convenient level, one
subtracts LC in order to obtain fPl. Supposing that the load initially connected
were matched and the load finally connected were mismatched, then eq. (3.45) reduces to

eq. (3.44), which gives the power loss in decibels due to mismatch.

b. Meaning of Mismatch
The term "mismatch" implies that other than matched conditions exist. This is
clear enough, but there are various interpretations of the term '"match." In a manner
of speaking, one impedance is said té match another when the two are identical.

Thus, a load that matches a given generator yields the condition

However, the concept of a conjugate match is well established and the conditions are

given by eqs. (3.39) and (3.40).
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One could argue that a conjugate match is really a mismatch since the two
impedances involved are not exactly equal to each other. The resistive components
are equal, but the reactive components have opposite sign. However, the word
"matched" is commonly used to mean adapted, fit, or suited. Tor cxample, a married
couple are said to be well matched if they complement each other. Thus the word
"matched" can have various meanings other than "equal." In precise work, we must
be careful that we understand just what meaning is implied.

It is said that a load matches a waveguide when its impedance equals the charac-
teristic impedance of the waveguide, or Z, = Z and Pl = 0. If Z01 is real, then

1 01

this type of non-reflecting match or Z, match may be equivalent to a conjugate match,

0
providing that the impedance Zg of the generator feeding the waveguide also equals

ZOl‘ However, if 201 is complex, a non-reflecting or Z0

result in maximum power absorbed in the load, although there will be no retlection of

match will not in gemneral

energy back towards the generator.
One should be aware that other types of impedance matching have been defined
in addition to those above, so that the terms '"match' and "mismatch'" should be used

with care. A load that is matched in one sense, may be mismatched in another.

c. Conjugate Mismatch Loss
A generator delivers its available power PA when terminated in a load which
provides a conjugate match as mentioned above. When a different load terminates the
generator, the net power delivered, Pl’ is less. The ratio of PA to Pl’ expressed?

in decibels, is the conjugate mismatch loss MC:

la-]
>

[1 - 1gryl?
MC = 10 1og10 — =10 10g10 .
P, (1 - Jrgl®@ - Iyl

(3.46)

The conjugate mismatch loss MC cannot be negative, since Py is either equal to

or greater than P In the simple case when the generator is non-reflecting (FG = 0),

1

the conjugate mismatch loss reduces to

= 1
[MC]FG=0 = 10 loglo[m]. (3.47)

One sometimes finds this expression given for mismatch loss without the statement

that it requires a non-reflecting generator to be correct.

3This follows from eqs. (3.37) and (3.41).
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d. The Z0 Mismatch Loss

When a transmission line or waveguide is terminated in such a way that there are
no reflected waves, the impedance of the termination equals or matches the charac-
toristic impedance of the transmission line or waveguide. If the generator were to
have the same impedance, then maximum net power would be delivered to the load,
assuming of course that there were no losses in between. If one were then to connect
a different load, there would be less .power delivered, and a mismatch loss would result.
The expression for mismatch loss would be eq. (3.47).

However, the generator is not always non-reflecting so that the Z0 mismatch

1o0ss is

J

M 101 0 101 1 - FGT1|2 (3.48)
= 08,y — = 0g, —————, .
Z, 10 P, 10 4 Iflfz

It is possible for this expressiuvn Lo become negative (when Pl > PO), but this

can occur only when rG # 0.

e. Difference Between Conjugate and Z0 Mismatch Losses

It has been observed that the conjugate mismatch loss and the Z0 mismatch loss
are the same when the generator is non-reflecting, and are given by eq. (3.47). In
general, however, these two quantities are not the same and their difference is given

by

P
= = 1
MC - M, =10 log;, — = 10 log,, —
0 PO 1 - |FG|

o=

(3.49)

This is the ratio expressed in decibels of the available power from the generator
to the power which would be absorbed by a non-reflecting load connected to that

generator.

3.8. Transmission Properties of 2-Ports
Enough theory has already been developed to enable calculation of the net power
transmitted through a 2-port. For example, the net power input to arm 1 may be cal-
culated from eq. (3.37) and the net power output to a load connected to arm 2 is then
obtained from eq. (3.28) for the efficiency. In terms of bG and Tas the scattering
coefficients of the 2-port, Zgps and the reflection coefficient Iy of the load,
the net power transmitted to the load is
_Ioglz 5,020 - |12

L - - - =
Zo2 [(1 - 89T (1 = SguT) - 84,58,9T6T ]

(3.50)
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It is often desirable to compare the transmission properties on two 2-ports, and
this problem has given rise to the concept of substitution loss which will be defined.
The allied concepts of transducer 1loss, insertion loss, and attenuation are special
cases of substitution loss, as will be shown.

In the following, unless otherwise stated, it will be assumed that the generator
connects to arm number 1 of the 2-port and the load connects to arm number 2. This
will allow a simpler notation. It then follows that a reversal of these connections

will require a reversal of the subscripts 1 and 2 in the equations.

a. Substitution Loss
If one 2-port is removed from between a given generator and load, and another
Z-port is substituted in its place, the net powers absorbed by the load under the
initial and final conditions will have the following ratio, expressed in decibels:

i i £ £ £, £
Lo = 10 Togy, —L = 20 1o 85100 - "Sq4TE) (1 - 78551 ) - "Sq57S5976TL]
s - 10 810 |7

i i
P 5001 - 7834Tg) (1 - 785,T)

(3.51)

i. i
812 5217¢M]

where the front superscripts i and f denote initial and final conditions, respectively,
and it has been assumed that the act of substituting one 2-port for the other does not
change the characteristics of either the generator or the load.

The above expression applies to cases in which the two arms of the waveguide
are dissimilar, and/or have different propagating modes, as well as to the more usual
case in which they are identical and the same mode propagates in each.

The suhstitution lass LS’ as defined above may range from -« to +x, and upon
assuming negative values, could be regarded as a gain, rather than a loss. This
continues to hold true even when we exclude "active" 2-ports such as amplifiers, for
the final 2-port might be a better transducer than the initial 2-port.

The substitution loss may be restricted to positive values by specifying certain
characteristics for the initial 2-port, or for the generator and the load, as will be
discussed later.

Actually, the substitution loss most closely corresponds to what one can meas-
ure, since even if initially no 2-port device is placed between generator and load,
one must still have a joint or connector. When very accurate measurements are to be
made, it is not permissible to neglect the reflection and dissipative loss of the
connector (Beatty, 1964), so that it must be considered as the initial waveguide
junction. As shown in figure 3-11, one always measures the substitution loss, even

when the initial waveguide junction consists only of a connector.
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A step attenuator, in which one attenuator is removed and another inserted in
jts place, is an excellent example of the need for the concept of substitution loss.
This concept may also be applied to the case of a smoothly variable attenuator which
may be regarded as though one removes an initial attenuator (corresponding to the
jnitial setting) and substitutes in its place another attenuator (corresponding to
the final setting) even though one does not physically remove the variable attenuator
from the circuit. Thus it is analytically equivalent to a step attenuator, and the

substitution loss concept applies.

/ CONNECTOR
(o)
INITIAL
CONDITION
1

> CONNECTORS

/’

(b}
WAVEGUIDE FINAL
JUNCTION CONDITION

1 2

Figure 3-11, Insertion of a waveguide junction into a waveguide system,
(a) Initial condition—one connector pair. (b) Final condition-—
waveguide junction core and two connector pairs.

b. Transducer Loss
As a special case of substitution loss, consider that the initial waveguide
junction is a perfect transducer and transmits all of the available generator power
PA to the load. In order to do this the perfect transducer must not only be lossless,
but must transform the load impedance to the complex conjugate of the generator
impedance. The substitution 1nss is then ohtained from eqs. (3.41) and (3.50) and

is called the transducer 1loss:

P Zoo (L - 8;,T)(1 - S, ,I'') - 5,8, .T.T, |2
7= 10 10g10_5=10 log,, 02 11°G 22°L 12721 G'L' | (3.52)

Py Loy [Sp12 - Irgl®@ - Irpl®)

L

It follows from the above equation that the transducer loss of a passive 2-port
cannot be negative. It is a measure of how closely the performance of the 2-port

approaches that of a perfect transducer connected between a given generator and load.
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Although the transducer loss is felt to be a useful concept, any attempts to
measure transducer 1loss will be in error by the amount by which the initial 2-port
fails to be a perfect transducer, unless the transducer loss of the initial 2-port
can be closely estimated, and added to the observed loss.

Like substitution loss, transducer loss may apply to 2-ports having dissimilar
arms, and/or -dissimilar propagating modes in each arm. It cannot be used to specify

a property of a 2-port since T, and T, are involved in eq. (3.52).
prop P G L

c. Insertion Loss
Another special case of substitution loss is the insertion loss.* Here it is
assumed that the initial 2-port is a perfect connector or adapter, which has no dis-
sipative loss and introduces no reflection or phase shift. The initial power is given

by eq. (3.37) substituting Iy for T and the final power is given by eq. (3.50), so

1’
that the insertion 10ss 1s
i
*p 7 ] - 8y TR) (1 - SonTr) - S,,S,.Tal |2
L, = 10 log L log 02 11'G 22°L 12°21°G'L . (3.53)
1 10 ¢ 10 1, 1S, (1 - T.r )|z :
P 01 21 G'L

L
It is apparent that the insertion loss is normally positive, but could be nega-

tive; for example, in the case where the load does not provide a conjugate match to
the generator, and the 2-port which is inserted is lossless and does provide a
conjugate match.

The idealized initial condition of a perfect connector may perhaps be more closely
approached in practice than the initial condition of perfect transducer, and hence
the insertion loss may be more accurately measured than the transducer loss. Neither
can be used in general to specify the characteristics of a 2-port, since generator
and load characteristics affect both. However, they both become equivalent in the

case of non-reflecting generator and load to be discussed below.

d. Attenuation® or Characteristic Insertion Loss
A concept which is useful for specification of a characteristic of a 2-port is

its attenuation, which is the transducer loss or the insertion loss of the 2-port

L*In.'d_le'IRE definition of Insertion Loss see p. 75 of IRE Dictionary (1961), the
definition is "fuzzy" because nothing is said about the initial connector which is
opened to insert the device.

SSee section 6.2 for further discussion of definitions of attenuation.
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when placed in a non-reflecting system. Making the substitution ', = I' = 0 in

eq- (3.52) or eq. (3.53) yields

Z
A =10 log . |-02 . 1 | (3.54)
01 21

In attempting to measure the attenuation of a 2-port, one should note that errors
will be produced by any failure to meet the assumed initial conditions, and the condi-
tion of a non-reflecting system. The actual quantity measured will be the substitution
10ss, and the error may be analyzed by comparison of eqs. (3.54) and (3.51).°

In the special but often encountered case in which arms 1 and 2 of the 2-port

are identical, it is convenient to choose Z01 = 202, and its attenuation is

[Al, -, ° 20 log;, (3.55)

01 EN

It is apparent that }Sle may be determined by measuring the attenuation of the
z-purt, provided that we specify Z01 and ZOZ' Similarly, |812| may be determined by
connecting the generator to arm 2 and the load to arm 1.

The attenuation of a waveguide junction’ for energy traveling into arm 2 and out

of arm 1 is

(z .
A, = 10 log,. |2+ . L | (3.56)
2 10 7 ]S ‘2

02 12

The difference between the '""forward" and "backward' attenuations is

201521

02512

A, - Ay = 20 log,

2 1 ‘ (3.57)

It is interesting to note that a waveguide junction which satisfies the recipro-
city condition (Z,;S,, = Z;,5;,) has the same "forward" and "backward" attenuations.
This is one test for reciprocity, but is not a sufficient condition, since it tells

nothing about the phase relationship between 512 and 821.

e. Components of Losses
It is convenient and instructive to separate the substitution loss and its
derivatives into components, one associated with the dissipation of energy, and

Lo 1 . . Y
LUT ULne Dl WAL HLSmalClle

*A detailed error analysis is given later in sections 6.4, 6.5, and 6.6.

fOue can specity the attenuatlon between any two arms of a multiport having all of
1ts arms terminated in some specified manner to passive loads.
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The net power transmitted to the load equals the input power multiplied by the
efficiency of the: 2-port. If the available power from the generator is given, then
the input power to the 2-port may be obtained from the conjugate mismatch loss. Thus
two quantities, (1) the conjugate mismatch loss and (2) the efficiency, are sufficient
to determine the power absorbed by the load, if the available power from the generator
is given. (1) is associated with mismatch, and (2) is associated with the dissipation
of energy.

It is evident that substitution of another 2-port for the initial one will cause
a change of power absorbed by the load, and that the change will be equal to the

changes of (1) and (2) above. Thus the substitution loss may be written

. i
- (f i ni -
Lg = (M, - ™M) + 10 10g10[g—} = (Lgly *+ (Lg)p- (3.58)
n

Referring to eq. (3.46) we can write

2 .
1 - rGfrl 1- ]1r1|2
(Lgdy = 10 logy, ——~w—*;—- . —————E—~—; > (3.59)
1-r14Ty 1 - rll
and referring to eq. (3.28), we can wWrite
3 2
1821 1 - fszer 1 - [fr1|2
(Lg)p = 10 logy, . ‘ . - s (3.60)
fg 1- 3 ¢ 1 - |, |2
21 22°L 1

where Fl is given by eq. (2.12).

The substitution loss is obtained by adding eqs. (3.59) and (3.60), which yields

i £ £
S, 1-Tfs.r 1-r.fr
2 2271 G
Lg = 20 log y|—2 - _ . L. (3.61)

£ i i
Spp 1= TSy, 1 -Tg0y

It is apparent that substitution of eq. (3.10) into eq. (3.61) will yield eq. (3.51),
verifying that eq. (3.61) does represent the substitution loss.
The components of transducer loss may be obtained by appropriate specialization

of eq. (3.58) and are

|1 - reryl?
[Le]y = 10 log , (3.62)
o Voa - rglna - g
and
[Lply = 10 logyy =, (3.63)

where ny is given by eq. (3.28).
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gimilarly the components of insertion loss are

1-rT.r0,.012 1- |r;]?
. G L
[Lyly = L0 loglol — rl . T . (3.64)
G'L 1
and
1
[L;1p = 10 log,, = (3.65)
n
Finally, the components of attenuation are
[Aly = 10 log;y ————— (3.66)
10 o .
1 - 18,
and
Z 1 - [S.,]2
0?2
[A]D = 10 loglo —_— *‘S*—‘}%— . (3.07)
o I8l

Comparison of eq. (3.67) with eq. (3.29) shows that the component of attenuation
associated with dissipation may also be written

1

[AI]D = 10 logg (3.68)

[nl]a2=0

3.9. Maximum Transmitted Power
The conditions for maximum transmission of power to a load are given with
reference to figure 3-12, in which two lossless tuners are shown connected one on
each side of the waveguide junction.
First, the maximum power available from the generator must be obtained at the
input to the waveguide junction. The conjugate match Ty = fb must be obtained by
adjustment of the tuner Tv’ and the generator will then deliver maximum power. Since

Tv is lossless, maximum power will be obtained in arm 1 of the waveguide junction,

and the conjugate match ry = f£ will apply there.

2
I

]
—

|
i
|

WAVEGUIDE |

JUNCTION | T ! LoAD

I
i
|

. i
i !
Ig==ln [=—T Lie—ly L -0

I

1

1
GENERATOR | Ty

[

1

Figure 3-12. Two lossless tuners attached to waveguide junction in order
to obtain maximum power to load.
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Second, maximum power must be obtained at the output arm of the wavguide junc-
tion, arm 2. This will occur when Ty = Féi’ where Tos is the reflection coefficient
of the equivalent generator at that terminal surface. Under this condition, it is

evident that the efficiency of the waveguide junction is maximum. It is also evi-

U is lossless, the condition rL=Te will also apply.

In practice, adjustment of tuners in the above sequence would not produce the

dent that since T

maximum transmission of power with only one adjustment of each, since the second
adjustment would in general upset the conditions achieved by the first adjustment.?®
Rather, a series of adjustments converging upon the desired condition might be

necessary.

a. Maximum Efficiency

The efficiency of a two-arm waveguide junction was seen to depend upon I the
reflection coefficient of the load. With the load terminating arm 2 of the 2-port,
the»efficiency ny is given by eq. (3.28). One expects that the efficiency would have
a maximum value URTY for a particular value FM of the reflection coefficient of the
load.

The following problem is often of interest. Given the characteristics of the
waveguide junction (for example, the scattering coefficients and the characteristic
impedances of the waveguide leads) calculate FM and UETYE The solutions will be given,
one based upon analysis of eq. (3.28), and the other based upon the maximum power

considerations discussed previously.

(1) Gradient of Efficiency

According to eq. (3.28), efficiency is a function of Tps which is complex, and
one can.plot contours of efficiency in the I;-plane. Maxima and minima will occur
when the gradient of ny vanishes.

The gradient of n, is

N, . . .an
Vny = ?‘F | 4. ?w SR — (3.69)
L 'a|rL| Lr | Y

®There are special cases in which the second adjustment would not upset the first.
For example, when the waveguide junction is an isolator,
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Both components of the gradient vanish at a maximum point. In order for the ¥, -

component of the gradient to vanish,

—2201|521|2(1"FL|2)|FL[[lszzlSin(Wz2+wL) + I512521"511822]1511]Sincwu'wll+wL)]

_ 2_ _ 2712
Zopll1-8y5 Ty 12-1(S155,1-8118,2)T #8111 71

(3.70)
where Uy is the phase angle of (812521 - 811322). It vanishes when
572 sin(¥yq - ¥y - Uy
- _— = - , (3.71)
(512521 7 5115229511 sin(hy, + Wy

where Yy is the phase of Ty+ The solution of eq. (3.71) for Yy gives the argument
of the reflection coefficient of the load for the maximum efficiency point. This
solution is independent of [Ty|.
In a similar way, it can be shown that the [Ty |-component of the gradient
vanishes when
ATy |? - B|r | + A =0, (3.72)
where
A= I8yl cosChyy * ) + [(S58y1 = 51955208141 cosCiyy - vy - ¥y,
and
= - 2 2 _ - 2
B o= (1 - [81q0® + 155517 - 1815551 - 81155217
Note that Uy has been substituted for wL in A,
The solution for Ty is then
Iy
e . (3.73)

2A
Substitution of Iy for Iy in eq. (3.28) will then give U the maximum efficiency:

Z 18,1121 - |1y|?)
nyy = —% - . le - g . (3.74)
02 117 SpaTyl® = 10812557 = 5195529y * Sp4
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(2) Maximum Efficiency from Maximum Power Considerations

Referring to figure 3-13,

WAVEGUIDE
GENERATOR J Ty UNCTION

Te =L LT, Li—Tu

Figure 3-13. Generator, tuner, and waveguide junction.

the conditions for maximum power transmission (and maximum efficiency) are

Fl = FB’ (3.75)
and
Ty = Tpi- (3.76)
Rewriting eqs. (3.75) and (3.76)
= oo o B12%21 " S1a%22)Tw * S
B~ "1 1 -3 ’ (3.77)
T S22Tm
and
o (5458, - 5145,0Ty * 5y
Ty = Ta: = IR . (3.78)
11°B
We can eliminate Tﬁ and obtain a quadratic equation with variable Ty
aF}i- BI'M+5= 0, (3.79)
where
2= Syp + 511051251 7 5118220
and

B =1 - IS990+ 55212 = 1515521 = S1155217-

The solution of eq. (3.79) is

|, 2laly?
Thy = — * 1 - { ) . 3.80
M Z2a B ( )
The expression for maximum efficiency is then
. 1S, 12(1 - |ryl2)
Ny = =L 21 u (3.74)

- 2 - 3 ~ - N s
02 11 - SppTyl® = 10515521 = S198,0Ty + Sqpl*
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Since the complex I} can be obtained from eq. (3.79), one can also separately find

-3y
the magnitude and phase of Ty as follows. If we multiply eq. (3.79) by e M, we

obtain

iy _ i
ae’ M|ryl? - Byl + 3 M= o0. (3.81)

Taking the real part, we obtain

Afryl® - BTyl + A = 0.
which is of the same form as eq. (3.72), and taking the imaginary part of eq. (3.81),

we obtain

Sy2 _sinyy * oy - dgg)

811812521 = 8115;,9) sin(¥yy + W)

(3.71)

Thus the two solutions for Iy are seen to be equivalent. However, the minimum
joss method yields the complex value of Ty from solution of eq. (3.79) while the
vanishing of the gradient method requires first a calculation of ¥y» then a calcula-

tion of |PM} by eqs. (3.71) and (3.73).

b. Minimum Transducer Loss
The following problem is of some interest in connection with maximum transmis-
sion of power. Suppose that the lossless tuners TU and TV are connected as shown
in figure 3-12 and adjusted to give maximum transmission of power. Under these
conditions, the transducer loss of the resulting waveguide junction (including
the tuners) is minimum. What is the value in terms of the characteristics of the
original waveguide junction?
It is apparent that the component of transducer loss associated with mismatch
as given by eq. (3.62) is zero. Thus the minimum transducer loss is given by eq. (3.63),
where n is the efficiency of the resulting waveguide junction. However, since tuners
TU and Tv are lossless, the efficiency is also that of the original waveguide junction.
Under the above condition of maximum transmission of power, this efficiency is a
maximum s and hence the minimum transducer loss is
[Lyly = 10 logyg . (5.82)
M
It has not been assumed in this instance that I; and T vanish, hence we cannot
conclude that resulting waveguide junction is non-reflecting, and in general, it will

not fulfill this condition.
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c. Intrinsic Attenuation
The minimum attenuation of a 2-port, obtained by adjusting tuners connected as
shown in figure 3-12, is by definition (Beatty, 1964c) the minimum transducer loss
under the conditions of non-reflecting generator and load (FG = FL =0). It is given
by eq. (3.82) and may be called the intrinsic attenuation for reasons similar to those
given above.
The resulting composite waveguide junction including the tuners is non-reflecting

(a bilateral Z, match), since the conjugate match condition exists at both input

0
and output terminal surfaces, and the generator and load are non-reflecting. Re-
writing eq. (3.82)
_ 1 3.83
A; = 10 logyq —, ( )
M
3.10. Phase Shift

a. Relative Phase
A quantity such as voltage, current, or voltage wave amplitude which varies

sinusoidally at a fixed frequency f may be represented by a complex quantity

u = Aed(@t+B) _ 4 36 (3.84)
The phase of u at any instant of time t is
6 = arg u = wt + B. (3.85)

vwhere w = 27f.

Since we cannot tell absolutely when t was equal to zero, B cannot bec absolutely
determined and thus phase is always relative. The phase 6 may be expressed in degrees,
radians, or cycles.

We choose the convention that the angle 6 is positive when measured counterclock-

wise in the complex ‘plane, and we choose u as above (not u = Ae-Je).

b. Shift of Phase by a 2-Port?®
We are interested in different kinds of relative phase or phase shit+t. For

example, we may observe the phase of the output voltage!® of a 2-port relative to the

°See Kerns and Beatty (1967), and Beatty (1964d). In this monograph, phase shift is
positive if it is a phase advance (lead) and negative if it is a phase delay (lag).

However, it should be noted that the term '"phase shift" is often used to denote the
absolute magnitude of a phase difference, and is then always positive.

1%0ther quantities, such as current or electric wave amplitude may also be of interest.
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nase of the output from a signal source, which is padded or isolated and phase locked
p

to an oscillator of stable frequency. If the 2-port changes, the relative phase of the

output voltage may be shifted to a different value. The phase shift is

AD =

&)

i

9,

(3.86)

where front superscripts i and f denote respectively the initial and final values of

the relative phase of the output voltage.

C.

Different Kinds of Phase Shift of 2-Ports

Three kinds of phase shift associated with 2-ports are illustrated in figure

3-14.
| l—i,
— — |
vy ] 2-PORT v
1 b b, I
1 2
(1) TRANSMISSION PHASE SHIFT op
i,
| 4 —"2
| : ,
- i LOAD
| 2-PORT " v,
- }
1 J 2
f.
| £ —"2
| |
i 2-PORT | *, LOAD
| i "2
1 7 2
(2) DIFFERENTIAL PHASE SHIFT A0
l |
INITIAL I
i v LOAD
2-PORT | 2
]
i 2
| ]
' FINAL |
| f, LOAD
[ 2-PORT 1 2
1 L
1 2
(3) -SUBSTITUTION PHASE SHIFT o

Figure 3-14. Three kinds of phase shift associated with a 2-port.
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They are:

(1) Transmission Phase Shift

b v i
eT, = arg(_.g.} 5 arg(-.—z—} H arg{-zv‘} . (3. 87)
% V1 !

This is similar to transmission loss.

(2) Differential Phase Shift
sz fv2 fi2
A = arg|—i = argj—| = argi—. (3.88)
i i i
bZ v,
This is similar to incremental attenuation.
(3) Substitution Phase Shift, Including Insertion Phase Shift

fb fV £

bg = arg T”Z'; arg T—g ; arg 7~2 . (3.89)
i, i, i
A 2 z
This is similar to substitution loss or to insertion loss.
Further discussion of this topic, including equations for various phase shifts

of 2-ports is presented later in section 7.2.

3.11. Cascading 2-Ports

In the analysis of measuring systems, it is often necessary to determine the
properties of a 2-port composed of a number of cascade-connected 2-ports. Consider
the following problem. Given the scattering coefficients of each of two individual
2-ports, determine the scattering coefficients of the composite 2-port which results
when these 2-ports are cascade-connected. This problem may be reduced to three steps:
(1) conversion of the scattering matrices of each unit to cascading matrices, (2)
multiplication in sequence of these cascading matrices, and (3) conversion of the
resulting cascading matrix to the scattering matrix of the composite waveguide junc-
tion.

To illustrate and provide the basis for these procedures, consider the cascade

connection of two 2-norts as shown in figure 3-15.

i
1 1
, i S
a,—-i‘ Ay ———4; 0
M 1 N ]
f-—b. B «——4—=B; bp—sy
]
l

! !
i i

Figure 3-15. Cascade connection of two 2-ports.
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The scattering matrices of M and N are

m m n n
o = [ 11 121 and n = [ 11 121. (3.90)
M1 M22 N1 M22
The corresponding cascading matrices relate the wave amplitudes as follows:
[bl C M Myg| [A2) " Az)
- - »
a;) My Myl By By
and
B 3 N N 4 ra a
[ 1l _ "1 12 2| _ NI zJ (5.91)
A Na1 Npal by b,
The joining equations are
AZ = Bl and A1 = BZ‘ (3.92)
Thus,
b a a
2 2
2 b, by

where R is the cascading matrix

between the scattering matrix S

and

For the example

In terms of the

(

of the composite waveguide junction. The relationship

and the cascading matrix is as follows:

(5,,5,,-S..5.,) S..)
r - L |P127217711%22) Pl (3.98)
Szt S22 1
(T (Tq1T9o"T1,To-))
s o 1 ff1z UriTezMaz¥an) | (3.95)
Taal “Ta1
above,
p o | M1 ™MiaNgy) (Mg NygtiyoNp,) (5.96)
(My N1 1*MpaNpq) My Ny 5 #M5N52)
scattering coefficients,
N . ) 1
Tyq = [Omgpmyy-mymy) (g, Ryq "Ry Ry, - Mygmy,] o
2121
= [ 1- - ] 1
Typ = [myp(I-mypnyq) - mypmyqngy
: 21021 (3.97)
Ta1 = mgp(Imypnyg) = MpgPiaipyd ~ — and
21721
Ty = (1-myyngq) :
Ma1021
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Using eq. (3.95), we obtain the scattering coefficient of the composite waveguide

junction in terms of those of the two cascaded units as follows:

m, ,m n
s oo s m2f21M11
11 1T
22™11
Y V)
Si2 = —————
1 - nyymy,
3 (3.98)
m,.n
Sy, = —2121 4
- myomg
n n m
S.. = p.. + 12721722
22 22 7 T -
ny11M22

3.12. Cascading Coefficients
The cascading coefficients are of special interest not only inkanalysis of cascaded
2-ports, but are also the coefficients of the equation for the transformation of

reflection coefficient by a 2-port. Rewriting eq. (3.10) we obtain

_T1fy t Ty
r, = —A— ==, (3.99)
T21TL * T2
Inspection of eq. (3.94) reveals that the following equation holds
11722 12721 T g (3.100)
21

Referring to eq. (3.18), it is seen that the reciprocity condition on the cascading

coefficients is

N

_ _ 701
T11%22 T Frafar T (3.101)
02
The lossless condition on these coefficients are as follows:
Irpal = Irgqls Irggl = drg,ls
Z.
01,
Iry9790 = Typtppl = — and (3.102)
202

912 * 0pq9 T Oy * by * 2w,

where n is an integer and ¢pq is the argument of rpq'
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In terms of the cascading coefficients, the efficiency n, can be written

™

1 - |t |2
nyg = 2L - L ~. (3.103)
Zog  rapTy * xpp1% - lrypTy + 1,

3.13. Transformation of Reflection Coefficients
A 2-port with arm 2 terminated in a load having a reflection coefficient FL
has an input (arm-1) reflection coefficient of
(512521 = 51152207y, * Syp _ 2T, *+ P
1-S

T

1% . (3.104)
ZZFL cFL + d

The reflection coefficient FL is said to be transformed to a reflection coefficient
Iy by the 2-port. An equation of the form of eq. (3.104) is called a linear frac-
tional transformation. Many properties of the linear fractional transformation from

the theory of complex variables!!

can be applied to the theory of waveguide junctionms.
A few of the simpler properties will be reviewed and applications to some types of

microwave measurements will become apparent.

a. Simpler Transformations

It is helpful in visualizing transformations of a complex quantity T, to another

L
complex quantity Fl to draw the two complex planes, and plot corresponding points.

Thus we might have the following transformations illustrated in figure 3-16.

T, -PLANE T, -PLANE
. s 512507
]12 21 145,
S92
UNIT
CIRCLE

Figufe 3-16. Transformation of three points from
T -plane to I'; -plane.

S.,S
1. ry = tatb. S11 - ~L22l  po- -1l
-c +d 1+ S22
= b . . =
2. ry = -- 8113 r, = 0.

'!There is a wealth of literature on this subject and only a few examples are listed
(Deschamps, 1953), (Storer, et al., 1953, and (Mathis, 1954).
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512521,
3
1-5

5. Ty = =St

;= +l. (3.105)
22

A well-known property of the linear fractional transformation is that circles
in the FL—plane transform to circles (different ones) in the Fl-plane. Since three
distinct points determine a circle, one can draw the Fl-circle corresponding to a
given PL-circle by transforming just three distinct points of the ry-circle. In
figure 3.16 the real axis in the Ty -plane (a circle of infinite radius) has been

transformed into a circle in the Tl-plane.

b. The Sliding Termination
A termination sliding inside a uniform, lossless waveguide will cause the
reflection coefficient T, at a fixed terminal surface in the waveguide to vary in

phase, but not in magnitude. Thus a circular locus of I'; is produced, with its

L
center on the origin.

The corresponding circular locus of Pl can be found by applying eq. (3.104),
but it is simpler to use the following form of eq. (3.10):

S..8
~ 12521
Iy - Sy = 1 X (3.106)
& " 52
[yl

The variation of r);L by sliding the termination changes only one term. Proceeding
one step at a time, we can determine the corresponding variation of rl as shown in
figure 3-17.

Vo

rfl':l- Iszal

i
i +lszl

Vit ¥y ~¥,
i

Figure 3-17. Steps in the transformation of a T -circle to a
{I'y —Syy)-circle.
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From figure 2—-17 it is evident that the radius of the (Fl - Sll)—circle, and

1"
the T;-circle of figure 3-18 is R1|512521[, or

also of
|S..,S,.T
R =R =1 1 + L 1S5, = —22 21 L (3.107)
1 1 7 12”21 - z
1 1 1-[s,,T.|
+ |S,,] — - |5, ] 22°L
|I‘ | 22 ” l 22
L L
The distance from the origin to the center of the (Fl - Sll)-circle is
S1,5,15,,T2]
oL "o 1 _ l 12°21°22 L' _
fcyl = 1S155,11 [’y - Tl R [S,,TL 1 (3.108)
—— + |S,,] 22'L
IF [ 22
L
The ]."vl—circle is shown in figure 3-18.
T, Locus
C‘|
Vit YoV

Cy

sII

Figure 3-18. The T; -circle corresponding to a
I'L -circle centered on the origin.

c. Significance of the Radius of the I‘l—Circle

Under certain conditions, the radius R1 of the Fl—circle equals the efficiency

[nZ]a - of the waveguide junction. These conditions are
1
1. |ryl = 1 (a sliding short circuit).
2. ZOlszl = 202512 (the reciprocity uOudbiLiUn).

When these conditions are satisfied,

7. 18,12

- 0z 71z’ .
Ry s T T [nz]al=0- (3.109)
01 22
The component of attenuation associated with dissipation [AZ]D is related to the
radius of the Pl—circle as follows:
[A,1p = 10 log)j— (3.110)
Ry

Note that the attenuation component [AZ]n corresponds to energy flowing into

arm 2 and out of arm 1, while the T -circle corresponds to energy flbwing in the

1
Opposite direction.
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A similar result is obtained if the sliding short-circuit is in arm 1, and R2
is the radius of the TI,-circle, as follows:

1
(Al = 10 10g10—E~- (3.111)
2

d. Displacement of Center from Origin
The center of the Fl-circle is displaced from the origin by the vector repre-
! : .
senting the complex quantity C; = S,  + C;, where |Ci| is given by eq. (3.108) and o
is directed at the angle wlZ + w21 - wZZ as shown in figure 3-18.
It is apparent that the Fl—circle will be concentric with the origin if the

waveguide junction is non-reflecting (Sll = 8,, = 0). We have then

(€15 =s,,m0 = O 20d [Rylg o5 g = 15155170l (3.112)
Also, for a non-reflecting waveguide junction, for which reciprocity holds, and
Irl = 1,
[Alg _g .o = 10 log), ——t—r. (3.11%)
11722 [Rlg _g =0
11 722

In this case it maukes> no difference which is the direction of energy fiuw ihrough
the waveguide junction.

The possibility of other conditions for which the Fl-circle might be concentric

1
with the origin exists. For example, if Cl and S11 are equal and opposite,

Ypp ¥ Vp2 = ¥y * ¥y 2 (20 - D,
and

s s

12821
1- s

s 227
15111 . (3.114)

22T 1°

e. Locus of r; for T; Real
If rL is ‘restricted to real values, the locus of rl is a circle. This condition
may be closely approximated in practice by varying the bias current of a barretter in

a microwave power mount,'? for example.

'2This téchnique is based upon a method originated by Kerns (1949b). See also, Beatty
and Reggia (1955).
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Referring to eq. (3.106) we again proceed step-by-step to obtain the circular

jocus of Ty as shown in figure 3-19.
1
T " S22
€ L. g
I-PLANE I T~ V22
I !
s T emy
. — e 22 ! ‘I"’zz |/ 155,] siny,,
=
1555l sin v,y
T, LOCUS
L-s

T
z+ ‘P'2+‘l’2.

[ h
]

M

K

\/( 1125210
[Sz2lsin ¥

Figure 3-19. Steps in the transformation of real T to a I, -circle.

It can be seen from inspection of figure 3-19 that

15125711
Ry = et
2[8,,| sin 120

and that the center of the TI'.-circle is located at

[ B ]

- J(n/2+P12+¢P21)
1= Sll + Rle .

f. Other Pl-Circles

It is possible to obtain a circular locus of Ty by means other than those

(3.115)

(3.116)

mentioned. For example, a non-reflecting generator and variable phase shifter could

be connected so as to vary the phase of a,, while a fixed non-reflecting generator

operating at the same frequency is connected to arm 1. In this case,

2

_~-UNIT CIRCLE UNIT CIRCLE <
T} Locus
T, L

(@) [} (c}

1

+

n
(3]

Figure 3-20. Possible I} -circles obtained by varying phase of a,.

Depending upon the ratio of lazl to Ia1|, we could have the loci for Iy

figure 3-20.
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Similarly,

b a
2 22 21 ‘ (3.118)

and corresponding circular loci may be obtained for Ty.

Such loci may be used in measurements of scattering coefficients of non-
reciprocal and active 2-ports (Altschuler, 1962).

3.14. The Linear Fractional Transformation

Instead of the transformation of reflection coefficients by a 2-port as in
cq. (3.104), wc are sometimc‘s concerned with the transformation of a complex quantity
w to the Z-plane in which the coefficients and the variables w and Z can be assigned
any appropriate values to correspond to a given physical problem. We consider

7 - a *Dhb (3.119)

cw + d
where Z is the dependent, and w the independent complex variable, and a = Aeja,
b = Bejs, c = Cer, and d = Deja.
Two cases are of special intereﬁt, one in which the magnitude of w remains

constant and its phase ¥,» varies, and the other the converse, i.e. the phase by

remains constant, and |w| varies.

a. Constant |w|, Variable Uy
It is helpful to write eq. (3.119) in the following form

z =2 . (ad - be)/cd (3.120)
c (c/d)w + 1

and to let e = Eel® = (ad - bc)/cd.
One can proceed step-by-step, as was done in a previous section, and arrive at

the diagram of figure 3-21 to represent the transformation.

2-PLANE W~ PLANE

—~——Z-L0Cus

Figure 3-21. Transformation of a w-circle centered on the
origin to a Z-circle.
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The arrows on the circles correspond to increasing ¥, the phase angle of w.

The radius R of the Z-circle 1is
| cdew |
[d]2 - |cw|?’
ad the position C1 of the center of the circle is at
a
2
c, = & - ___Bifj____ e
1 2 2 '
c |d]2 - |ew|

b. Constant ¥, Variable Jw |

It is helpful to write eq. (3.119) in the following form.

1

-jv

7 = & . [(ad - bc)/c?le W
. =i
C ]+ @ee ¥

and to let p = pelP - (ad - bc)/c?.

Step-by-step procedures will yield the diagram of figure 3-22 to represent

the transformation.

Z-PLANE W-PLANE
T
7
o¢ A \ ®
g - I -
{ 1_’/1 (p Y 2 =
e /// Yy
© ~ $
-0
a -
\'E -

Figure 3-22. Transformation of a w-line thru the
origin to a Z-circle.

The arrows on the circles correspond to increasing |w].
Z-circle 1is
Ipl
2|d/c| sin(s - v - ¥,)

Ry

and the position C, of the center of the circle is

1

jlp-v -m/2)
_a ., W
C1 = = Rlc
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c. Invariance of Cross-Ratio

The following property of the linear transformation has measurement applica-
tions and is therefore of interest.

What is called the "cross ratio'" or "anharmonic ratio" is invariant under
a linear fractional transformation.'® This is illustrated in figure 3-23 and

eq. (3.126).

z-PLANE w-PLANE
(23"24)
3 4
-~
N"’)
N:\' 5
~— /‘5 ’\lv
AN PN ,'\
R S f
(27 ~22)

Figure 3-23. Fout points in the w-plane transformed into fousr other
points in the z-plane.

. = = . ) (3.126)

An application of this property is given in section 3.15j5.

'%See for example, Townsend (1915).
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3.15. 3-Ports or Waveguide Junctions Having Three Arms

a. Introduction

There are many physical forms which may be represented by a waveguide junction
having three arms, with a single mode propagating in each arm.

In some cases, a physical form having only two arms may be represented by a
3-poTt. For example, if one of the arms consists of cylindrical waveguide of cir-
cular cross-section, two orthogonal modes may propagate in this arm, and it may
pe represented by two arms, each having a single mode.

In other cases, a physical form having more than three arms may be represented
by a 3-port. For example, a four-arm junction such as a directional coupler with
one arm terminated and not available for connection, may be represented by a 3-port.
gimilarly,. if the frequency of operation is below the dominant mode cutoff frequency
for all but three of the arms, then it may be represented by a 3-port (assuming that

each of the three remaining arms has single mode propagation).

b. Realizability Conditions
The general condition for strict realizability as given in section 2.3c(2)(a)
applies, that is the Hermitian ma