U. S. DEPARTMENT OF COMMERCE

National Bureau of Standards Certificate of Analyses

STANDARD SAMPLE 62A MANGANESE BRONZE

Analyst *	Copper (electrolytic)	Zinc (sulfide-oxide)	Manganese (bismuthate method)	Iron	Aluminum	Tin	Nickel (dimethyl- glyoxime)	Lead (electrolytic)	
1	a 61. 51	33. 03	1. 50	ь 1. 02	° 0. 93	₫0. 85	0. 62	0. 50 e. 50	}
2	¹ 61. 50	33. 06	1. 49	⁸ 1. 04	^b . 92	¹. 83	. 62	. 52	
3	i 61. 50	33. 09	1. 52	^k 1. 04	¹. 91	m. 85	ⁿ . 61	e. 49	
4	^j 61. 56	33. 00	° 1. 52	р 1. 02	h. 95	a. 84	. 63	e. 52	
5	j 61. 4 5	33. 0,8	1. 51	я 1. 06	r. 91	a 83	. 60	s. 50	
6	f 61. 50	33. 07	1. 51	р 1. 04	t. 91	q. 83	. 61	. 50	
7	61. 54		1. 51	ч 1. 03	v. 92	w. 84	. 60	. 49	
Average	61. 51	33. 05	1. 51	1. 04	0. 92	0. 84	0. 61	0. 50	

a Five-gram sample dissolved in 110 ml. of diluted HNO₃ (1+4) and solution digested overnight. Impurities in the metastannic acid recovered by NH₄I satment (Caley and Burford, Ind. Eng. Chem., nal. Ed. 8, 114 (1936)), and added to the nitric acid nitrate. Two drops of 0.1N HCl added, solution diluted to 350 ml., and electrolyzed overnight, using a current density of 0.5 amp./dm².

b Weighed as Fe₂O₃.

b Weighed as FegO₃.
c Five-gram sample dissolved as in (a). Tin separated as metastannic acid. Copper and lead removed from the filtrate by electrolysis. Sulfuric acid and the metastannic acid and paper added to the electrolyte. Solution fumed, diluted, and electrolyzed in a mercury cathode cell. Electrolyte treated with NH₂S and filtered. Aluminum precipitated with NH₄OH and ignited to Al₂O₃.
d Five-gram sample dissolved in diluted HNO₂.

tated with NH₄OH and ignited to Al₂O₃.

d Five-gram sample dissolved in diluted HNO₃,
and stannic hydroxide precipitated with NH₄OH.
Solution filtered and precipitate digested in H₃SO₄HNO₃. Tin distilled with HBr-HCl, essentially
as directed in J. Research NBS 2195 (1938) RP1116.
Tin distillate diluted, chilled, and tin precipitated
with eupferron and ignited to SnO₂ in a porcelain
crucible.

A Determined on PhSO₂.

· Determined as PbSO4.

'Copper deposited in the presence of tin from an HNO3-HF solution.

 $^{\rm g}$ Reduced in a Jones reductor and titrated with $KMnO_4.$

KMnO₄.

^b Sample dissolved in HNO₃-H₂SO₄. Solution furned, diluted, and electrolyzed in a mercury cathode cell. Aluminum precipitated with NH₄OH and ignited to Al₂O₃.

ⁱ Copper and lead removed by electrolysis. Electrolyte evaporated to furnes of H₂SO₄, and diluted. Thir reduced with an iron coil, and SnCl₂ titrated with iodine.

ⁱ Copper lead and the life in the content of the cont

i Copper, lead, and the like, in the metastannic acid precipitate recovered by the NaOH-Na₂S method.

k Reduced with H₂S and titrated with KMnO₄.

I Four-gram sample dissolved in aqua regia. Copper, lead, and the like separated in NaoH-Na₂S solution and filtered. Filtrate diluted to 1,000 ml. and a 250-ml. aliquot portion acidified, digested, and filtered. Aluminum precipitated in the filtrate with 8-hydroxyquinoline. Aluminum quinolate dissolved in HCl and treated with a measured excess of a standard solution of KBrO₂. KI added and the excess KBrO₂ titrated with standard Na₂S₂O₃.

m Sample dissolved in aqua regia, treated with NH.OH and filtered. Pracipitate digasted in HgSO₄-HNO₃, solution fumed, and diluted. Tin reduced with iron wire and titrated with KIO₃.

ⁿ Nickel precipitated with dimethylglyoxime. Precipitate dissolved in HNO₃-H₂SO₄ and solution

fumed. Solution diluted, treated with an excess of NH₄OH₇, and nickel determined by electrolytic deposition.

• Titrated with sodium arsenite.

• Reduced with SnCl₂ and titrated with KMnO₄.

• As in (m) except tin reduced with lead, and SnCl₂ titrated with lodine.

• Copper and lead removed by electrolysis. Electrolyte further electrolyzed in a sulfuric acid solution in a mercury cathode cell. Resulting solution treated with H₈S and filtered. Aluminum precipitated with NH₄OH and ignited to Al₂O₃.

• Electrolytic deposit of lead peroxide dissolved in HCl, lead precipitated and weighed as PbCrO₄.

• Sample dissolved in HNO₂-HCl. H₂SO₄ added and solution fumed, diluted, and aluminum determined as in (h).

• As in (p) except iron titrated with K₂Cr₂O₇

 $^{\rm u}$ As in (p) except iron titrated with $\rm K_2Cr_2O_7$ solution using diphenylamine indicator.

v Aluminum and iron precipitated with NH40H. Precipitate ignited and weighed. Oxides fused with KHS04, iron reduced with SnCl2, and titrated with K2Cr207. Aluminum determined by dif-

"Five-gram sample dissolved in diluted HNO2 and 0.10 gram of sodium pyrophosphate added. Precipitate separated and digested in H₂SO₂-HNO₂. Solution diluted, tin reduced with Swedish iron and antimony, and SnCl₂ titrated with iodine.

*LIST OF ANALYSTS

- 1. William D. Mogerman, National Bureau of Standards, Washington, D. C.
- 2. J. B. Mosley and J. Long, The Ajax Metal Co., Philadelphia, Pa.
- A. B. Shapiro, H. Kramer & Co., Chicago, Ill.
 M. S. Gerhard, U. S. Navy Yard, Philadelphia, Pa.
- 5. B. L. Clarke, Bell Telephone Laboratories, Inc., New York,
- N. Y.
 6. T. Moffat and K. Neumann, Western Electric Co., Inc.,
- Kearny, N. J.

 7. C. A. Ray, Nassau Smelting and Refining Co., Inc., Tottenville, N. Y.

LYMAN J. BRIGGS, Director

Washington, March 10, 1942.