Suspended Patch Antennas With Electromagnetically Coupled Inverted Microstrip Feed for Circular Polarization

Raine N. Simons
Dynacs Engineering Company, Inc., Brook Park, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized data bases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076
Suspension Patch Antennas With Electromagnetically Coupled Inverted Microstrip Feed for Circular Polarization

Rainee N. Simons
Dynacs Engineering Company, Inc., Brook Park, Ohio

Prepared for the
2000 International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting
sponsored by the Institute of Electrical and Electronics Engineers
Salt Lake City, Utah, July 16–21, 2000

Prepared under Contract NAS3–98008

National Aeronautics and Space Administration
Glenn Research Center
Acknowledgments

This work was performed under the task High Performance Printed Antennas and funded by the Cross Enterprise Technology Development Program (CETDP) in code SM.
SUSPENDED PATCH ANTENNAS WITH ELECTROMAGNETICALLY COUPLED INVERTED MICROSTRIP FEED FOR CIRCULAR POLARIZATION

Rainee N. Simons
Dynacs Engineering Company, Inc.
2001 Aerospace Parkway
Brook Park, Ohio 44142
Tel (216) 433-3462 Fax (216) 433-8705
E-mail: Rainee.N.Simons@grc.nasa.gov

Abstract: The paper demonstrates a suspended nearly square patch antenna with offset feed and a square patch antenna with truncated corners for circular polarization. The antennas are excited by an electromagnetically coupled inverted microstrip feed. In addition a new transition between conventional microstrip and inverted microstrip is proposed. The measured results include the axial ratio and the impedance bandwidth of the antennas.

I. INTRODUCTION

Future space borne microwave/millimeter-wave systems such as radars, radiometers and communication systems will require printed antennas which have high gain, high efficiency, low profile, light weight and low cost. Printed antenna arrays with conventional microstrip corporate feed suffer from excessive conductor loss at millimeter-wave frequencies [1], [2]. The high conductor loss reduces the gain and the efficiency of the array. In addition, the thick dielectric substrate required for bandwidth contributes substantially to the mass to the array [3]. The conductor loss can be reduced by constructing the feed network using low loss transmission media such as, inverted microstrip [1], [2], suspended microstrip [4] and suspended substrate stripline [5]. Since, the dielectric substrate in these transmission media is very thin there is considerable saving in mass also. A suspended patch antenna excited by an electromagnetically coupled inverted microstrip feed at S-Band frequency has been demonstrated in [6]. In this paper first, a suspended nearly square patch antennas with offset feed, second, a suspended square patch antenna with corners truncated for circular polarization is demonstrated. Both antennas are electromagnetically coupled to inverted microstrip feed and operate at K-Band frequencies. The advantages of the above feeding technique include significantly lower attenuation and easier fabrication due to wider strip width for a given characteristic impedance (Z_0) [7]. Third, a novel transition from conventional microstrip to inverted microstrip is demonstrated. This transition will allow fast and inexpensive characterization of the above antennas at millimeter-wave frequencies using coplanar waveguide (CPW) RF probes. The measured results include the axial ratio and the impedance bandwidth of the antennas.

II. ANTENNA CONSTRUCTION

A schematic of a suspended nearly square patch antenna electromagnetically coupled to an inverted microstrip offset feed for circular polarization is shown in Figure 1. The inverted microstrip line consists of a thin dielectric substrate (RT/duroid 5880, $\varepsilon_r = 2.22$) of thickness h (0.01 inch) separated from a ground plane by an air gap of height g (0.01 inch). The strip conductor of width
$W_1 (= 0.045$ inch for $Z_0 = 50 \, \Omega$) is situated on the lower surface of the dielectric substrate facing the ground plane. The length and width of the patch are L_1 and L_2 respectively. The feed offset and the overlap between the patch and the feed are indicated as d and S respectively in Figure 1. Next, a suspended square patch antenna ($L \times L$) with two corners truncated (ΔL) is shown in Figure 2. The feed is symmetrically located and the overlap between the patch and the feed is S.

III. MICROSTRIP-TO-INVERTED MICROSTRIP TRANSITION

A back-to-back conventional microstrip-to-inverted microstrip transition is shown in Figure 3. In this transition the strip conductors of the microstrip and the inverted microstrip overlap and power is transferred through electromagnetic coupling. A pair of coplanar waveguide (CPW) pads are provided at the microstrip input and output ports for characterization using RF probes.

IV. EXPERIMENTAL RESULTS

The measured axial ratio of the suspended nearly square patch antenna with offset fed is shown in Figure 4. The 3 dB axial ratio bandwidth is about 1.59 percent. The measured return loss of the suspended square patch antenna with truncated corners is shown in Figure 5. The –10.0 dB return loss bandwidth is about 7.0 percent. Additional measurements including radiation patterns, return loss and axial ratio of the antennas and the insertion/return loss of the transition are in progress.

V. CONCLUSIONS

The paper demonstrates a suspended nearly square patch antenna with offset feed and a suspended square patch antenna truncated corners for circular polarization. The antennas are excited by an electromagnetically coupled inverted microstrip feed and operate at K-Band frequencies. The measured results include the axial ratio and the impedance bandwidth of the antennas.

References

Figure 1.—Schematic of a nearly square patch antenna electromagnetically coupled to an inverted microstrip line offset feed for circular polarization. Dimensions in inches are \(L_1 = 0.215, L_2 = 0.206, S = 0.049, d = 0.011 \).

Figure 2.—Schematic of a square patch antenna with corners removed and electromagnetically coupled to an inverted microstrip line feed for circular polarization. Dimensions in inches are \(L = 0.207, \Delta L = 0.04, S = 0.125 \).
Figure 3.—Schematic of a back-to-back conventional microstrip-to-inverted microstrip transition. \(W_m = 0.03 \) inches.

Figure 4.—Measured axial ratio of the nearly square patch antenna with offset feed.

Figure 5.—Measured return loss of the square patch antenna with corners removed.
<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>Suspended Patch Antennas With Electromagnetically Coupled Inverted Microstrip Feed for Circular Polarization</th>
</tr>
</thead>
</table>
| 5. FUNDING NUMBERS | WU–632–6E–51–00
 | NAS3–98008 |
| 6. AUTHOR(S) | Rainee N. Simons |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) | Dynacs Engineering Company, Inc.
 | 2001 Aerospace Parkway
 | Brook Park, Ohio 44142 |
| 8. PERFORMING ORGANIZATION REPORT NUMBER | E–12074 |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | National Aeronautics and Space Administration
 | John H. Glenn Research Center at Lewis Field
 | Cleveland, Ohio 44135–3191 |
| 10. SPONSORING/MONITORING AGENCY REPORT NUMBER | NASA CR—2000-210221 |
 | Project Manager, Dennis Vano, Systems Engineering Division, NASA Glenn Research Center, organization code 7830, (216) 433–2730. |
| 12a. DISTRIBUTION/AVAILABILITY STATEMENT | Unclassified - Unlimited
 | Subject Category: 33
 | Distribution: Nonstandard |
| 12b. DISTRIBUTION CODE | |
| 13. ABSTRACT (Maximum 200 words) | The paper demonstrates a suspended nearly square patch antenna with offset feed and a square patch antenna with truncated corners for circular polarization. The antennas are excited by an electromagnetically coupled inverted microstrip feed. In addition a new transition between conventional microstrip and inverted microstrip is proposed. The measured results include the axial ratio and the impedance bandwidth of the antennas. |
| 14. SUBJECT TERMS | Suspended substrate patch; Inverted microstrip; Array antenna;
 Circular polarization; Suspended substrate stripline |
| 15. NUMBER OF PAGES | 10 |
| 16. PRICE CODE | A02 |
| 17. SECURITY CLASSIFICATION OF REPORT | Unclassified |
| 18. SECURITY CLASSIFICATION OF THIS PAGE | Unclassified |
| 19. SECURITY CLASSIFICATION OF ABSTRACT | Unclassified |
| 20. LIMITATION OF ABSTRACT | Unclassified |