
 
 

1

 MASKING MICRODATA FILES 
 
 Jay J. Kim and William E. Winkler, Bureau of the Census 
 
 

ABSTRACT 
 
  Government agencies collect many types of data, but due to confidentiality 
restrictions, use of the microdata is often limited to sworn agents working on 
secure computer systems at those agencies.  These restrictions can severely affect 
public policy decisions made at one agency that has access to nonconfidential 
summary statistics only.  This necessitates creation of microdata which not only 
meets the confidentiality requirements but also has sufficient utility. This paper 
describes a general methodology for producing public-use data files that preserves 
confidentiality and allows many analytical uses.  The methodology masks 
quantitative data using an additive-noise approach and then, when necessary, 
employs a reidentification/swapping methodology to assure confidentiality.  One 
of the major advantages of this masking scheme is that it also allows obtaining 
precise subpopulation estimates, which is not possible with other known masking 
schemes. In addition, if controlled distortion is applied, then a prespecified subset 
of subpopulation estimates from the masked file could be nearly identical to those 
from the unmasked file.  This paper provides the theoretical underpinning of the 
masking methodology and the results of its actual application using examples. 
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 1.  INTRODUCTION 
   While many types of data are collected by government agencies, use of the 
microdata files is often limited to sworn agents working on secure computer 
systems at those agencies.  The confidentiality restrictions can severely affect 
public policy decisions made at one agency that has access to nonconfidential 
summary statistics but not to the microdata that are collected at two or more other 
agencies.  The application of this paper is in producing a public-use data base that 
contains much data from the March Supplement to the Current Population Survey 
(CPS) and income data from the Internal Revenue Service (IRS) 1040 Form.  The 
data are for use by the Department of Health and Human Services (HHS) in 
setting policy regarding earned income credit and other benefits.  The microdata is 
masked in such a manner that both Bureau of the Census and IRS confidentiality 
restrictions are met.  No masked IRS quantitative data can alone be used in 
reidentifications.   
   The main methodology is an additive-noise approach (Kim 1986) for masking 
multivariate normal data that preserves confidentiality and can preserve many 
essential characteristics of the data such as means, variances, and correlations.  
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The CPS and IRS data of the application are known to be approximately 
multivariate normal.  While the methodology has been extended to general data 
distributions (Sullivan and Fuller 1989, 1990; also Little 1993), the extension 
involves transforming general data to multivariate normal, masking, and then 
transforming the masked data back to the original scale.  As we begin with 
multivariate normal data, we need not be concerned with the two additional 
transformation steps of the more general Sullivan-Fuller methods.  We do note 
that the set of general software that we developed for arbitrary multivariate normal 
data could be extended to the general data by inclusion of software performing the 
two Sullivan-Fuller transforms. 
   The secondary methodology of this paper is a sophisticated 
reidentification/swapping technology that is based on existing record linkage 
concepts (Winkler 1994, 1995).  The matching software uses the masked CPS and 
IRS quantitative data along with other variables such as age, race, sex, and State 
to produce reidentifications with the original merged file of unmasked CPS and 
IRS data.  Since we know true matching status, we can minimize the number of 
pairs of records in which quantitative data is swapped.  While swapping can help 
preserve confidentiality, it can reduce the analytic usefulness of the file (Little 
1993).  By minimizing swapping and preserving means and covariances on 
specified subdomains, we assure the analytical usefulness of the final file as we 
show later.  
   The outline of this paper is as follows.  In the second section of this paper we 
describe the data files and the methodologies for additive-noise masking, 
reidentification/swapping, and controlled-distortion.  The third section provides 
results.  In the fourth section, we describe how the methods of this paper can be 
used to verify the analytic validity of public-use files that are produced, discuss 
some of the limitations of the masking methodology, and provide an overview of 
the general software we developed.  The final section consists of summary and 
conclusions. 
 2.  DATA AND METHODS 
   This section describes the data, the masking methodology, the 
reidentification/swapping methodology, and the controlled-distortion 
methodology. 
2.1.  Data to be Masked 
   The original unmasked file of 59,315 records is obtained by matching IRS 
income data to a file of the 1991 March CPS data.  The fields from the matched 
file originating in the IRS file are as follows: 

I)  Total income; 
ii)  Adjusted gross income; 
iii)  Wage and salary income; 
iv)  Taxable interest income; 
v) Dividend income; 
vi) Rental income; 
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vii) Nontaxable interest income; 
viii) Social security income; 
ix) Return type; 
x) Number of child exemptions; 
xi) Number of total exemptions; 
xii) Aged exemption flag; 
xiii) Schedule D flag; 
xiv) Schedule E flag; 
xv) Schedule C flag; and 
xvi) Schedule F flag. 

   The file also has a match code and a variety of identifiers and data from the 
public-use CPS file.  Because CPS quantitative data are already masked, we do 
not need to mask them.  We do need to assure that the IRS quantitative data is 
sufficiently well masked so that it cannot easily be used in reidentifications, either 
by itself or when used with identifiers such as age, race, and sex that are not 
masked in the CPS file.  Because the CPS file consists of a 1/1600 sample of the 
population, it is easier to minimize the chance of reidentification.  We primarily 
need be concerned with higher income individuals or those with distinct 
characteristics that might be easily identified even when sampling rates are low.   
2.2.  Masking Methodology 
   Masking is via an additive noise approach (Kim 1986, see also Sullivan and 
Fuller 1989, Sullivan and Fuller 1990, and Little 1993).  Adding random noise 
with the same correlation structure as the original unmasked data is currently the 
only method (Little 1993) that preserves correlations.  Appendix A.3 allows us to 
determine means and covariances on arbitrary subdomains.  Theoretical details are 
in Appendixes A.1, A.2, A.3, and A.4.  Masking is done according to the 
following steps: 
i)   Calculate the variance/covariance for income types iii) through viii) in  
subsection 2.1.  This results in a 6H6 variance/covariance matrix. 
ii)  Take cH100 percent of the above variance/covariance and generate random 
numbers using subroutine RNMVN in International Mathematical and Statistical 
Library (IMSL).  Note that RNMVN requires the users to provide the 
variance/covariance which the generated random numbers should have.  
   This process produces 59,315H6 matrix of random numbers.  The expected 
value of the generated random numbers for each of the 6 arrays is 0. 
iii) Add the random numbers generated in ii) to the income fields in section 2.1.   
Note that both the raw income data in section 2.1 [income types iii) through  viii)] 
and the noise in step ii) of this section are of matrix 59,315H6.  Thus  the addition 
is elementwise over the matrices. 
iv)  Sum up incomes for each individual for income types iii) through viii) in 
section 2.1 and calculate the difference between the sum and the total income, and 
the difference between the sum and the adjusted gross income. 
v)  Sum up noise inoculated incomes of types iii) through viii) for each individual. 
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 Add to the sum of the perturbed incomes the difference between the sum of raw 
incomes and the total income calculated in step iv) above.  
   This gives the masked total income.  Masked adjusted gross income is produced 
similarly. 
   Six income variables are masked directly and the remaining two are masked in a 
manner that preserves sums.  If top-coding is required for the incomes at, say, 
200,000 (or -200,000), it can be done after the above five steps.  In some 
situations, data providers censor outliers prior to masking because outliers (even 
when masked) are particularly easy to reidentify.  In our approach, we specifically 
assume that data are not censored because censoring reduces the analytic validity 
of the masked file.  A masked file is analytically valid if, for a (set of) 
analysis(es), it will give approximately the same numbers and yield the same 
conclusions as the unmasked (original true) file.  The subdomain adjustment 
formulas (Appendix A.3) assure that subdomain analyses with the masked data 
are analytically valid because means and covariances are preserved.  When we 
refer to accuracy as being good, we mean that estimates in the masked or 
masked/swapped data are quite consistent with estimates in the unmasked data.  It 
is straightforward to make modifications to deal with censored data.  
   As the users might want to tabulate the counts of individuals depending on the 
recipiency status of various IRS income and the noise inoculation completely 
changed the zeros and non-zeros both alike, we add flags indicating whether each 
amount of unmasked income was zero or not.  This allows them to analyze the 
data for recipient group and nonrecipient group, separately. 
   Even after masking, it may be possible to reidentify a certain proportion of 
records in the masked file with the original, corresponding records in the 
unmasked file.  While the 1/1600 sample assures that most mid-to-low income 
individuals cannot be reidentified in the entire population using information from 
the public-use file, some individuals with high incomes or unusual combinations 
of age, sex, race and income characteristics might be reidentified.  Specifically, if 
we can reidentify a mid-income record across masked and unmasked sample files 
and there are 2000 individuals in the population with essentially the same 
characteristics as those that were used in the reidentification, then there is only a 1 
in 2000 chance of a reidentification.  In other words, it is not possible to reidentify 
such a mid-income individual in the entire population via information in the 
public-use file.  However, it may still be possible to reidentify individuals with 
high incomes or with unusual characteristics.  To minimize the chance of 
reidentification, we need to employ additional procedures in a manner that does 
not eliminate the analytical usefulness of the public-use file.  Such minimization 
may be possible because we are the data providers and have knowledge of the 
exact truth of reidentifications between unmasked and masked sample files.   
2.3.  Reidentification/Swapping Methodology 
   To determine how much reidentification is possible, we proceed in two stages.  
First, we match the merged raw data file against the masked file using record 
linkage software (Winkler 1994).  Based on the reidentification rate, we next swap 
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quantitative data according to a proportion that minimizes the chance of 
reidentification. 
   During the first stage, we use blocking variables such as age, race, sex, and State 
code and matching variables such as the IRS income and CPS quantitative 
variables.  Blocking is a record linkage term that means that we only consider 
pairs that agree exactly on the blocking variables.  The quantitative matching 
variables need not agree exactly.  String comparators and other advanced metrics 
are used in computing distances between records in a manner that is compatible 
with the main decision rule.  The matching decision rule is based on an 
information-theoretic extension of the likelihood ratio test (Fellegi and Sunter 
1969) that assigns scores to each pair based on a function of their associated 
likelihood ratios.  Likely reidentifications, called matches, are given higher scores, 
and other pairs, called nonmatches, are given lower scores.  To best separate the 
pairs into matches and nonmatches, we use a version of the EM algorithm for 
latent classes (Winkler 1994) that determines the best set of matching parameters 
under certain model assumptions which are not seriously violated in this particular 
situation.  To force 1-1 matching efficiently, we apply an assignment algorithm 
due to (Winkler 1994).  When a few matching pairs in a block can be reasonably 
identified, many other pairs can be easily identified via the assignment algorithm. 
 The assignment algorithm has the effect of drastically improving matching 
efficacy, particularly in reidentification experiments of the type given in this 
paper.   
   During the second stage, we first collapse cells (age H race H sex) to assure that 
there are sufficient candidates for swapping.  The collapsing strategy is similar to 
those used in sampling and nonresponse imputation.  Within collapsed cells we 
randomly swap quantitative data according to a proportion that we specify.  Since 
we know true matching status, we can minimize the swapping proportion because 
we know exactly which pairs are reidentifications.  We note that the specific set of 
reidentifications varies with each different seed value used at the masking stage.  
Swapping preserves means and correlations in the subdomains on which it was 
done and in unions of those subdomains.  On arbitrary subdomains, however, 
collapsing and the amount of swapping can adversely affect the analytic validity 
of the files.  If swapping is done such that each record that is swapped is only 
swapped with another record in that subdomain, then we say that we have 
controlled that subdomain.  Means and correlations among swapped variables 
within controlled subdomains are necessarily the same.  We cannot hope for 
confidentiality while providing analytic validity in arbitrary subdomains above a 
certain size.  If we were to provide such analytic validity in subdomains above a 
certain size, then we would necessarily be able to reidentify every record in the 
file. 
   We say that a specified record has disclosure risk of x percent if the estimated 
probability of the match being correct is x percent.  Belin and Rubin (1995) have 
given a method of estimating the probability of a match being correct that requires 
a training set and does not work with the data of this paper.  An alternative 
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method of Winkler (1994), which requires an ad hoc intervention and no training 
set, is used to estimate disclosure risk.   
2.4.  Controlled Distortion 
   In this section, we introduce a third procedure, called controlled distortion, 
provide a justification for using it, and relate it to the noise addition and swapping 
procedures of the two previous sections.  Addition of noise has the advantages 
that we know the distribution of the noise that is added to each record and that we 
can deduce the nonmasked means and variances in arbitrary subdomains via a 
procedure in Appendix A.3.  The main disadvantage of noise addition is that 
individual records with quantitative data that is significantly different from other 
records are easily identifiable (ei).  An ei-record is one whose masked data can 
still be used to match it against the correctly corresponding unmasked data record. 
 The first way of dealing with ei-records is data swapping.  Within a subdomain 
defined by records agreeing on characteristics such as age range, sex, and race, we 
can swap all (or an arbitrary subset) of an ei-record’s quantitative data with the 
corresponding quantitative data from another record in the subdomain.  The 
swapping can be against a random record or against the second best match.  The 
best match is the ei-record.  Swapping has the advantage that it is straightforward 
in concept.  If only a small proportion of records is swapped, then means and 
correlations may not be seriously distorted.   
   The disadvantage of swapping is that means and correlations are only preserved 
for the subdomains in which swapping is done.  For arbitrary subdomains, means 
and correlations for masked data may exhibit large deviations from the means and 
correlations for unmasked data.  We can partially address the large-deviation 
problem as follows.  During the first swapping pass, identify the ei-records whose 
second best matches are not close and do not swap them.  Enlarge the subdomains 
to assure that each remaining, unswapped ei-record can be matched against a 
record whose quantitative data is much closer.  Perform swapping in the larger 
subdomains.  The advantage of the two-pass procedure is that it will (nearly) 
preserve means across arbitrary subdomains.  The deviations of correlations, 
however, may not be as well preserved. 
   Controlled distortion is a procedure on a subdomain A where we change the 
values in one record arbitrarily and also perform a series of complementary 
changes so that means and covariances are preserved in the subdomain.  In 
Appendix A.5, we show that valid controlled distortion procedures exist provided 
that the subdomain contains at least L2 records where L is the number of variables 
for which we preserve means and covariances.  The advantage of controlled 
distortion is that ei-records can be distorted in an arbitrary manner specified by the 
data provider and can assure confidentiality.  Controlled distortion has the same 
disadvantage as swapping because means and correlations cannot be preserved 
across arbitrary subdomains.   
 
 3.  RESULTS 
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  In this section we begin with results for the files in which masking and no 
swapping have taken place.  This allows us to show how the additive-noise 
approach yields files having means and covariances nearly identical to the 
original, unmasked file on many subdomains.  We then present results for the files 
in which both masking and swapping have been performed.  We conclude with 
results on disclosure risk in the files. 
3.1.  Utility of the Full Sample Data 
   Since the model building requires mean and variance/covariance or correlation 

of the variables involved, statistics were calculated for six variables in the raw and 

masked data.  The means of the raw and masked data are almost identical (Table 

1). 

 

 Table 1.  Means of Raw and Masked Data 
                                  
  Type            Raw      Masked 
 
  Wage         23,799      23,784 
  Tax Int       1,825       1,823 
  Div             587         587 
  Rent          1,190       1,187 
  Ntax Int        342         342 
  Soc Sec         947         948 
 
 
Table 2.  Correlation for Raw and Masked Data 
                        Raw  Masked 
  Wage vs Dividend      .18     .18 
  Wage vs Tax Int       .12     .12 
  Dividend vs SS        .12     .12 
  Tax Int vs Rent       .08     .08 
  Dividend vs Rent      .04     .04 
  Ntax Int vs SS        .04     .04 
 
 
   Table 2 shows that all correlations are the same to two decimal places.  As 
indicated earlier, total and adjusted gross income were masked indirectly by 
summing up masked components of the total and adjusted gross income except 
the difference between the sum of the unmasked data and total or adjusted gross 
income.   

The means of the total and adjusted gross income from the masked data are 
virtually identical as those from the unmasked data.  They differ by less than 
0.0007.  This can be expected since the noise was added to all components has 
zero expected value and the sample size is quite large.  Similarly, the variance of 
the total and adjusted gross income from the masked data are virtually identical to 
those from the unmasked data.  
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3.2.  Subdomain Estimation - before Swapping or When Swapping Was 
       Controlled for Subdomain 
   In this subsection we examine subdomain estimation which is of special interest 
to data users.  Appropriate subdomain estimation formulas for the masked data are 
given in Appendix A.3.  Subdomain means are not affected by the masking.  Only 
a minor adjustment is needed to the variance/covariance according to the formula 
shown in the appendix because the amount of noise added is low (in terms of the 
variance/covariance).  The adjustment also has almost no effect on the correlation. 
   To determine how well the subdomain adjustment formulas work, we compute 
estimates for those persons whose "return type" is 4, (unmarried head of 
household return).  Generally, the estimates of means from the masked data are 
excellent.  For five items, they are virtually identical with those from the 
unmasked data.  However, the estimate of mean nontaxable interest (61) from the 
masked data is more than 10 percent off from the mean (70) of the unmasked data. 
 Tables 3 shows correlations between the income variables for the unmasked and 
masked data, respectively. 
 
Table 3.  Correlation for Raw and Masked Data for Return Type = 4 
 
                          Raw     Masked 
   Wage vs Dividend      .027       .029 
   Wage vs Tax Int       .108       .105 
   Dividend vs SS        .155       .154 
   Tax Int vs Rent       .172       .171 
   Dividend vs Rent      .040       .039 
   Ntax Int vs SS        .056       .052 
 
 
   Estimated correlations of the masked data on this subdomain are generally good, 
agreeing with the unmasked data to two decimal places.  While we do not show it 
here, the same statistics were estimated from the masked data for other 
subdomains: Return type=1 (single return) and Schedule C=1 (Schedule C was 
filed in the tax return).  Similar close agreements were found. 
   Thus far we have observed the behavior of subdomain estimates when the 
subdomain is formed by a variable which is not masked.  What happens when the 
subgroup is formed by a masked variable itself?  By adding noise, in effect we 
expand the range of values the variable can take.  If we use the same cutoff to 
form a subgroup for both the unmasked and masked data, there is no guarantee 
that the same elements will be in the same group in both data sets.  To check on 
the performance of statistics when the subdomain is formed based on the masked 
variable, wage and salary, shortened to wage, is chosen to be used as a 
classification variable.  The subdomain consisted of records having wage less than 
15,000.  The subdomain in the unmasked file had 28,268 records and the 
comparable subdomain in the masked file had 28 more records.  Means were  
virtually identical.  Correlations were virtually identical, differing only in the third 
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decimal place.   
3.3.  Subdomain Estimation - When Swapping Was Not Controlled on the 
Subdomain 
   Our swapping procedure involved swapping only the eight IRS income fields 
and three CPS income fields such as wage (it will be called CPS Wage), adjusted 
gross income (it will be called CPS Agi) and aggregated sum of rent (net rent), 
dividend and interest (it will be called CPS Prop).  This swapping procedure will 
not generally preserve means and covariances on arbitrary subdomains such as the 
subdomain determined by those records corresponding to a person having filled 
out a Schedule C return.  Table 4 compares means for two swapping rates, 5% and 
20% with the raw and unmasked data. 
 
Table 4.  Means before And after Swapping for Schedule C Users, n = 7,819 
 
               Raw   Masked  5% Swap 20% Swap 
  Wage      24,715   24,677   25,338   26,891 
  Rent       2,820    2,822    2,779    2,746 
  Tax Int    2,178    2,174    2,171    2,145 
  Dividend     783      779      773      755 
  Ntax Int     393      391      366      346 
  Soc Sec      790      790      803      822 
 

The table shows that I) subdomains estimates using raw and masked data agree 
closely; ii) subdomain estimates on the 5-percent swapping file still agree closely 
with raw and masked data estimates; and iii) 20-percent swapping differ by a 
greater amount from the raw and masked data estimates than 5-percent estimates. 

The next table shows some selected correlations. 
 
Table 5.  Correlations before and after Swapping for Schedule C Users, n = 7,819 
 
                                  Swap Rate   
Fields             Raw   Masked    5%    20%       
Wage, Dividend   .6361   .6352   .6143   .6217 
Wage, Tax Int    .1903   .1900   .2425   .2413 
Dividend, SS     .1535   .1547   .1528   .1346 
Tax Int, Rent    .1984   .1978   .1967   .2167 
Dividend, Rent   .1291   .1285   .1265   .1304 
Ntax Int, SS     .1057   .1062   .1181   .0957 
 
 

Swapping has some impact on the correlations but still yields correlations that 
are good.  Accuracy is better with 5-percent swapping than with 20-percent 
swapping. 
3.4.  Reidentifcation and Confidentiality 
   We investigated the masked file and the masked/swapped file.  The risk of 
disclosure for the masked file is somewhat high.  As much as 0.8% of the records 



 
 

10

have a probability of disclosure above 20%; the remaining 99% have a disclosure 
risk of less than 0.02%.  The disclosure risk for all records in the masked/swapped 
file is below 0.1%.   
 
 4. DISCUSSION 
   The discussion covers how representative the masking procedures are, their 
ability to produce analytically valid files, and some of their limitations.  The 
section also provides an overview of our general computer software for masking 
arbitrary multivariate normal files. 
4.1.  Representativeness of Results 
   The masking/swapping procedures were repeated with two additional seed 
numbers for the random noise-generation routine.  The correspondences of means 
and correlations between unmasked and masked/swapped files were consistent 
with those given in this paper.  We note the actual set of reidentification/swaps 
varies with the seed numbers because reidentifications depend on how close 
individual masked data records are to corresponding unmasked data records.  The 
closeness is dependent on the random noise which varies with the seeds. 
4.2.  Analytic Validity of Public-Use Files 
   Swapping can distort the correlations, particularly on subdomains.  We suggest 
releasing two copies (one for each seed used in the random number generator) of 
the masked/swapped files.  If users cannot reproduce a statistical analysis using 
data from one copy that was done on the other copy, then they can be assured that 
the public-use file will not support the attempted analysis.  In that case, there are 
two recourses.  The first is for the data providers to supply two more copies of the 
public-use file that have been masked and swapped in a manner that supports the 
originally attempted analysis.  If that is not possible, then the only second recourse 
is to have the statistical analysis performed on the original, unmasked data. 
4.3.  Limitations 
   When a masked/swapped continuous variable is used for categorization, the 
number of observations in categories may not be close to those from the 
unmasked data.  This is because the categorization implicitly corresponds to 
subdomains in which swapping may not be controlled.  The summary statistics for 
categories between unmasked and masked/swapped data can be consistent if the 
sizes of the categories are large.  If the subdomain of interest is of small size, then 
we should be careful about using statistics for the subdomain. 
4.4.  Software 
   The current version of the computer software can be used for masking and 
swapping general multivariate normal files.  The first program (in SAS) produces 
an output file consisting of the variance/covariance matrix for the raw data.  The 
second program (in FORTRAN) calls the IMSL routine RNMVN to produce 
random multivariate noise with the same variance/covariance as the raw data.  The 
third combines raw data and noise to produce the masked file.  The fourth 
program (in C) does swapping.  All software is portable provided the IMSL 
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routine RNMVN is available. If RMNVN is not available, then similar types of 
multivariate normal noise can be generated using SAS or various public-domain 
random number generation packages. 
 
 5.  SUMMARY AND CONCLUSIONS 
   We demonstrated a methodology for producing a confidential, analytically valid, 
public-use file that contains eight income fields from the 1990 IRS Tax Return 
file and the remaining data from the 1991 CPS public-use file.  The file was 
produced in two stages.  The first stage consisted of adding random noise with the 
same correlation structure as the original, unmasked data.  The second stage 
involved reidentifying and swapping records via a record linkage approach. 
   Whereas the masked file is analytically valid with means and correlations (even 
in many subdomains) that are very close (3 decimal places) to means and 
variances in unmasked files, the risk of disclosure for the masked file is somewhat 
high.  As much as 0.8% of the records have a probability of disclosure above 20% 
because they have unusual combinations of characteristics that make it relatively 
straightforward to distinguish from other recrods.  The remaining 99% have a 
disclosure risk of less than 0.02%.  The reidentification/swapping procedure 
reduced the disclosure risk in the masked/swapped file to below 0.1% while 
preserving means and covariances in a specified set of subdomains.  For the entire 
domain, means and correlations from the masked/swapped file were typically 
within 3 decimal places from the corresponding means and correlations in the 
unmasked file.  Deviations in many subdomains were higher; sometimes deviating 
in the second decimal place.    
 
 REFERENCES 
 
Belin, T. R., and Rubin, D. B. (1995), "A Method for Calibrating False-Match 
  Rates in Record Linkage," Journal of the American Statistical Association, 90, 
  694-707. 
Fellegi, I. P., and Sunter, A. B. (1969), "A Theory for Record Linkage," Journal 
   of  the American Statistical Association, 64, 1183-1210. 
Kim, J. J. (1986), "A Method for Limiting Disclosure in Microdata Based on 
  Random Noise and Transformation," American Statistical Association, 
  Proceedings of the Section on Survey Research Methods, 303-308. 
Kim, J. J. (1990), "Subdomain Estimation for the Masked Data," American 
  Statistical Association, Proceedings of the Section on Survey Research  Methods, 
  456-461. 
Little, R. J. A., (1993), "Statistical Analysis of Masked Data," Journal of Official 
   Statistics, 9, 407-426. 
Sullivan, G., and Fuller, W. A. (1989), "The Use of Measurement Error to Avoid 
  Disclosure,"  American Statistical Association, Proceedings of the Section on 
  Survey Research Methods, 802-807. 



 
 

12

Sullivan, G., and Fuller, W. A. (1990), "Construction of Masking Error for 
  Categorical Variables," American Statistical Association, Proceedings of the 
  Section on Survey Research Methods, 435-439. 
Winkler, W. E. (1994), "Advanced Methods for Record Linkage, American 
  Statistical Association, Proceedings of the Section on Survey Research  Methods, 
  467-472. 
Winkler, W. E. (1995), "Matching and Record Linkage," in B. G. Cox (ed.) 
  Business Survey Methods, New York: J. Wiley, 355-384. 



 
 

13

 
APPENDIX A.1.  NOISE INOCULATION 

Let xij be the unmasked jth income value of the ith person, I=1,,,59,315 and 
j=3,,,,8.  Also let eij be the noise added to xij and yij = xij + eij, I=1,,,59,315 and 
j=3,,,,8. 

Let X be the matrix having xij as elements, I=1,2,,,,59,315 and j=3,4,,,8.  
Similarly, E = {eij} and Y = {yij}.  Let Var(X) = S .   Then we are using Exp(E) = 
0 and Var(E) = cS , where 0 is a 59,315x6 matrix having all 0 elements.  Thus 
E(Y) = E(X) and Var(Y) = (1+c)S .  The variance of unmasked variables can be 
recovered by {1/(1+c)}Var(Y).    

Let xi. = 
8

ij
j=3

xS , I=1,2,,,59,315  and diffij = xij - xi., I=1,2,,,59,315 and j=1,2.  The 

masked total and adjusted income can be expressed as follows. 

yi1 = 
8

ij
j=3

yS  + diffi1, I=1,2,,,,,59,315 

and 

yi2 = 
8

ij
j=3

yS  + diffi2, I=1,2,,,,,59,315. 

 
APPENDIX A.2. DERIVATION OF VARIANCE/COVARIANCE 

Since unmasked income and noise are independent, Var(y) = (1+c) 2s  for each 

component income, where 2s  is the variance of x.  Total income can be 
reexpressed for deriving variance and covariance. 

yi1 = xi1 + 
8

ij
j=3

eS .  

Thus Var(y1) = Var(x1) + Var(
8

j
j=3

eS ), where y1 and x1 are masked and unmasked 

total income (first IRS income variable on the file), and je  is the noise added to 

the jth income disregarding subscript for person number, which can be reexpressed 
as follows: 

Var(y1) = Var(x1) + 
8

j
j=3

cVar( )xÊ . 

Covariance between total income and each component of the total income can be 
expressed as follows: 

Cov(y1,yj) = Cov(x1+
8

j
j=3

eS , xj+ej) = Cov(x1, xj) + Var(ej) + 
i j�

ÊCov(ei,ej) 

 
The variance of adjusted gross income and covariance between the adjusted 

gross income and each of the components of the adjusted gross income can be 
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derived similarly.  However, the covariance between total income and adjusted 
gross income is a little different from what we have seen. 

Cov(y1,y2) = Cov(x1+
8

j
j=3

eS , + x2+
8

j
j=3

eS ) = Cov(x1, x2) + Var(
8

j
j=3

eS ) = Cov(x1,x2) 

+ 
8

j
j=3

Var( )eS . 

 
The covariance between a masked variable and an unmasked variable is the 

same as that between two unmasked variables, i.e., 
Cov(yi,xj) = Cov(xi,xj). 

 
APPENDIX A.3.  SUBDOMAIN ESTIMATION 
  Let s stands for a subdomain, i.e., s

jx  and s
jy  are the unmasked (x) and masked 

variable (y) defined for subdomain s for variable j and 
s2

js  is the variance of s
jx . 

Since the noise is generated for the full data set (rather than for each subdomain), 

the relationship between s
jx  and s

jy  are as follows: 
s
jy  = s

jx  + je . 

Since E( je ) = 0,  E( s
jy ) = E( s

jx ). 

Also since Var( je ) = c 2
js  and Var( s

jy ) = Var( s
jx ) + cVar( jx ), 

Var( s
jx ) = 

s2
js  = Var( s

jy ) - c 2
js . 

Since Var( jy ) = (1+ c) 2
js  and 2

js  = Var( jy )/(1+ c) , to recover the variance 

of the unmasked variable from the masked data we can use 
 

s2
js  = Var( s

jy ) - 
c

1+ c
Var( y ).                                (1) 

Note the above formula for variance of a unmasked variable for a subdomain is a 
linear combination of variance of the masked variable for the subdomain and a 
fraction of variance of the masked variable for the full data set. 

The covariance between two masked variables for a subdomain, s
jy  and s

ky , can 

be derived similarly.  Note that 

Cov( s
jy , s

ky ) = E[( s
jx + je ),( s

kx + ke ) - E( s
jx + je )E( s

kx + ke ).       (2) 

Since we generate the random noise such that the noise independent of the 
unmasked variable and Cov( je , ke )=cCov( jx , kx ), equation (2) can be reduced 

to Cov( s
jx , s

kx ) + cCov( jx , kx ).   Thus, 

 

Cov( s
jx , s

kx ) = Cov( s
jy , s

ky ) - cCov( jx , kx ). 
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But as before, Cov( jx , kx ) = Cov( jy , ky )/(1+ c) .  Thus to recover the 

covariance between the unmasked variables from the masked data, we can use 

Cov( s
jx , s

kx ) = Cov( s
jy , s

ky ) - 
c

1+ c
Cov( jy , ky ).           (3) 

Note the semblance of equation (3) with equation (1). 
If one variable is masked but the other is not, then the covariance between the 

variables is the same as the covariance between two unmasked variables, i.e.,  
 

Cov( s
jx , s

ky ) = Cov( s
jx , s

kx ). 

 
This is because the noise is generated independent of the unmasked variable. 
 
APPENDIX A.4.  PARAMETER ESTIMATION FROM THE MASKED 
DATA 

As mentioned before E(Y) = E(X) and Var(Y) = (1+c)S .  Thus variance of 
unmasked variables can be recovered by dividing Var(Y) by (1+c).  The same 
holds true for the sample estimates, i.e., the estimated variance of unmasked 
variables can be recovered by dividing by (1+c) the estimated variance of masked 
variables.  However, correlation is not affected by the added noise.  Note in 
masking both variance and covariance are inflated by (1+c).    

As c is increased, deviation of estimates of the masked data could increase from 
those of the unmasked, which is affected by amplified deviation.   

There is no random number generator which can generate random numbers that 
produce the specified mean and variance because of the random variability of 
noise.  Thus if we calculate mean and variance after adding noise, it is mostly 

likely that sample mean y  will be different from x , and the variance of y will be 
different from (1+c) times the variance of x. 
 
APPENDIX A.5.  CONTROLLED DISTORTION 
   This appendix provides the proof that controlled distortion is valid (i.e., can be 
defined so that it preserves means and correlations).  We assume that the 
subdomain A contains L2 records.  We let (xi1, xi2  ..., xiL), I = 1, ..., L, and (yi1, yi2, 
..., yiL), I = 1, ..., L,  represent original data records and controlled-distorted data 
records, respectively. 

Theorem A.5.  Let A be an arbitrary subdomain containing L2 records where L is 
the number of fields.  Then a valid controlled distortion procedure can be defined. 
  Proof.  The proof is via an inductive procedure that provides the algorithm 
needed for the computer software.  We first observe that it is sufficient to find y’s 
such that 
 
 3I=1

1M xij = 3I=1
1M yij , for j = 1, ..., L,   (1) 
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 3I=1
1M xik xjk = 3I=1

1M yik yjk, for Iúj = 1, ..., L,   (2) 
 
where we define M = L2.  The proof proceeds in steps.  At each step, we 
successively consider pairs of variables.  On the first step, we consider only the 
first two fields and the first two records.  For j > 2, we take   
 
  yij = xij  for I = 1 and 2 
 
and for I > 2, we take 
 
  yij = xij  for j > 2.   
 
Thus, the components of equations (1) and (2) associated with the first two fields 
and the first two records reduce to  
 
  x11 + x21 = y11 + y21, (3) 
 
  x12 + x22 = y12 + y22, and (4) 
 
  x11 x12 + x21 x22 = y11 y12 + y21 y22. (5) 
 
Equations (3) and (4) are the means and equation (5) is the covariance.  At the 
first step, we have no auxiliary restraints and we can distort x11 arbitrarily to y11 
where we assume that x11 > y11.  Then, by equation (3), x21 < y21.  Let x12 and x22 
be fixed.  The equations (4) and (5), are two equations in two unknowns y12 and 
y22 which we can solve.  For instance, 
 
 yi2 = (1/(y21 -1)) (x11 x12 + x21 x22 + yi1 x12 + yi1 x22) ..........................................  (6) 
 
We need the additional minor restriction that y21 ú 1.  Observe that the means of 
all variables and the covariances between the first and second variables are 
preserved by the above procedure, that we have used the first two records, and that 
the y terms associated with the first two fields in all records beyond the first two 
records agree with the original x terms.  We next wish to find complementary 
adjustments to the third field such that all means and the covariances between the 
first and second fields and the first and third fields are preserved.  
  We chose the next three records and consider the following equations: 
 
  y33 + y43 + y53 = c1,  (7) 
 
  y33 y31 + y43 y41 + y53 y51 = c2,  (8) 
 
  y33 y32 + y43 y42 + y53 y52 = c3,  (9) 
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where c1 = x33 + x43 + x53, c2 = x33 x31 + x43 x41 + x53 x51 + d2, c3 = x33 x32 + x43 x42 
+ x53 x52 + d3, d2 = x11 x13 + x21 x23 - y11 y13 + y21 y23, and d3 =  x12 x13 + x22 x23 - 
y12 y13 + y22 y23.  We fix all y terms associated with fields 1 and 2 and with the 
first two records.  Then equations (7), (8), and (9) are three equations in three 
unknowns which is uniquely solvable if the array [1 1 1, y31 y41 y51, y32 y42 y52] is 
nonsingular.  We note that the values in the array and the terms c1, c2, and c3 are 
constant.  If the array is not nonsingular or we wish additional flexibility in 
solving for the y terms associated with the third field for the newly added records, 
we can add more records.  This increases the number of unknowns while the 
number of restraints stays constant.  The terms d2 and d3 are adjustments for the 
effects of the new y terms associated with the first two records for the first two 
fields at the previous step of the induction.  At the end of the second step, we have 
used n2 records, means of all fields and the covariances among the first three 
fields are preserved, and the y terms corresponding to records beyond record n2 
agree with the x terms for the first three fields. 
   At step M-1, we have used nM-1 =def S fields, all means and the covariances 
among the first M-1 fields are preserved.  We take nM-1 additional records and 
consider the equations 
 
  yS,M + yS+1,M + ... + yS+M-1,M = cM,1,  (10) 
 
  yS,M yS,1 + yS+1,M yS+1,1 + ... + yS+M-1,M yS+M-1,M = cM,2,  (10+1) 
 
  yS,M yS,M-1 + yS+1,M yS+1,M-1 + ... + yS+M-1,M yS+M-1,M = cM,M-1,  (10+M-1) 
 
The constants cM,1, cM,2, ..., and cM-1,M contain adjustments for the first M-2 steps 
that assure that the covariances between field M and the first M-1 fields are 
preserved.  The coefficients in equations (10), (10+1), ..., and (10+M-1) are fixed 
because they are based on the values determined during previous steps in the 
induction.  Also, we can take more than the minimum M records to assure that a 
solution to equations (10), (10+1), ..., and (10+M-1) can be obtained or that we 
can choose among possible solutions.  Because the equations (10), (10+1), ..., and 
(10+M-1) can be solved, the induction is complete. þ 


