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Record linkage, or computer matching, is needed for the creation and maintenance of name and
address lists that support operations for and evaluations of a Year 2000 Census.  This paper describes
three advances.  The first is an enhanced method of string comparison for dealing with typographical
variations and scanning errors.  It improves upon string comparators in computer science.  The
second is a linear assignment algorithm that can use only 0.002 as much storage as existing
algorithms in operations research, requires at most an additional 0.03 increase in time, and has less
of a tendency to make erroneous matching assignments than existing sparse-array algorithms because
of how it deals with most arcs.  The third is an expectation-maximization algorithm for estimating
parameters in latent class, loglinear models of the type arising in record linkage.  The associated
theory and software are the only known means of dealing with general interaction patterns and allow
weak use of a priori information via a generalization to the MCECM algorithm of Meng and Rubin.
Models assuming that interactions are conditionally independent given the class are typically
considered in biostatistics and social science.

   Record linkage, or computer matching, is a means of creating, updating, and unduplicating lists
that may be used in surveys.  It serves as a means of linking individual records via name and address
information from differing administrative files.  If the files are linked using proper mathematical
models, then the files can be analyzed using statistical methods such as regression and loglinear
models (Scheuren and Winkler 1993).
   Modern record linkage represents a collection of methods from three different disciplines:
computer science, statistics, and operations research.  While the foundations are from statistics,
beginning with the seminal work of Newcombe (Newcombe et al. 1959, also Newcombe 1988) and
Fellegi and Sunter (1969), the means of implementing the methods have primarily involved
computer science.  Record linkage begins with highly evolved software for parsing and standardizing
names and addresses that are used in the matching.  Name standardization identifies components
such as first names, last names (surnames), titles, and middle initials.  Address standardization
locates components such as house numbers, street names, PO Boxes, and rural routes.  With good
standardization, effective comparison of corresponding components of information and the advanced
methods described in this paper become possible.  Methods from the three disciplines are needed for
dealing with the three different types of problems arising in record linkage.
   Because pairs of strings often exhibit typographical variation (e.g., Smith versus Smoth), the first
need of record linkage is for effective string comparator functions that deal with typographical
variations.  While approximate string comparison has been a subject of research in computer science
for many years (see survey article by Hall and Dowling 1980), the most effective ideas in the record
linkage context were introduced by Jaro (1976, 1989; see also Winkler 1985, 1990).  Budzinsky
(1991), in an extensive review of twenty string comparison methods, concluded that the original Jaro
method and the extended method due to Winkler (1990) worked second best and best, respectively.
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Statistics Canada (Nuyens 1993) subsequently added string comparators based on Jaro and Winkler
logic to CANLINK, Statistics Canada's matching system.  This paper describes two new
enhancements to the string comparators used at the Census Bureau.  The first, due to McLaughlin
(1993), adds logic for dealing with scanning errors (e.g., 'I' verus '1') and certain common keypunch
errors (e.g., 'V' versus 'B').  The second due to Lynch and Winkler (1994) makes adjustments for
pairs of long strings having a high proportion of characters in common. 
   The second need of record linkage is for effective means of estimating matching parameters and
error rates.  In addition to proving the theoretical optimality of the decision rule of Newcombe,
Fellegi and Sunter (1969) showed how matching parameters could be estimated directly from
available data.  Their estimation methods admit closed-form solutions only if there are three
matching variables and a conditional independence assumption is made.  With more variables, the
Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) can be used.  If
conditional independence is not assumed (i.e., interactions between agreements of variables such as
house number, last name, and street name are allowed), then general computational algorithms
(Winkler 1989) can be used.  The general algorithm is an example of the MCECM algorithm of
Meng and Rubin (1993).  An enhancement to the basic algorithm (Winkler 1993) allows weak use
of a priori information via convex constraints that restrict the solutions to subportions of the
parameter space.  The enhancement generalizes the MCECM algorithm. 
   The third need of record linkage is for a means of forcing 1-1 matching.  Jaro (1989) introduced
a linear sum assignment procedure (lsap) due to Burkard and Derigs (1980) as a highly effective
means of eliminating many pairs that ordinarily might be clerically reviewed.  With a household data
source containing multiple individuals in a household, it effectively keeps the four pairs associated
with father-father, mother-mother, son-son, and daughter-daughter pairs while eliminating the
remaining twelve pairs associated with the household.  An enhanced algorithm that uses less storage
(Rowe 1987) was used during the 1990 Decennial Census (Winkler and Thibaudeau 1991).  This
paper describes a new algorithm (Winkler 1994a) that can use 0.002 as much storage as the Rowe
algorithm and can eliminate some subtly erroneous matches that often occur in pairs of general
administrative lists having only moderate overlap.  In comparison with sparse-array algorithms, the
new algorithm can use only 1/6 as much storage, is more than ten times as fast, and does not induce
error because of the manner in which it deals with non-assigned arcs.
   The next three sections describe the string comparator, the parameter-estimation algorithm, and
the assignment algorithm, respectively.  Each section contains examples and results that give insight
into the differing methods.  As the paper progresses, it increasingly indicates how the different
methods affect each other but does not go as far as showing how overall matching efficacy is
improved.  The results of section 5 provide empirical examples of how matching efficacy is
improved for three, small pairs of high quality lists.  Section 5 also presents a new method for
estimating error rates and compares it to the method of Belin and Rubin (1994).  The discussion in
section 6 describes additional uses of the new methods, some of their limitations, and future
research.  The final section consists of a summary and conclusion.

2.  APPROXIMATE STRING COMPARISON
   Dealing with typographical error can be vitally important in a record linkage context.  If
comparisons of pairs of strings are only done in an exact character-by-character manner, then many
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matches may be lost.  An extreme example is the Post Enumeration Survey (PES) (Winkler and
Thibaudeau 1991, also Jaro 1989) in which, among true matches, almost 20 percent of last names
and 25 percent of first names disagreed character-by-character.  If matching had been performed on
a character-by-character basis, then more than 30 percent of matches would have been missed by
computer algorithms that were intended to delineate matches automatically.  In such a situation,
required manual review and (possibly) matching error would have greatly increased.
   Jaro (1976, also 1989) introduced a string comparator that accounts for insertions, deletions, and
transpositions.  In a small study, Winkler (1985) showed that the Jaro comparator worked better than
some others from  computer science.  In a large study, Budzinsky (1991) concluded that the
comparators due to Jaro and Winkler (1990) were the best among twenty in the computer science
literature.  The basic Jaro algorithm is: (1) compute the string lengths, (2) find the number of
common characters in the two strings, and (3) find the number of transpositions.  The definition of
common is that the agreeing character must be within 1/2 the length of the shorter string.  The
definition of transposition is that the character from one string is out of order with the correponding
common character from the other string.  The string comparator value (rescaled for consistency with
the practice in computer science) is:

    jaro(s1,s2) = 1/3( #common/str_len1 + #common/str_len2 +

                  0.5 #transpositions/#common), (2.1)

where s1 and s2 are the strings with lengths str_len1 and str_len2, respectively.
   The new string comparator algorithm begins with the basic Jaro algorithm and then proceeds to
three additional loops corresponding to the enhancements.  Each enhancement makes use of
information that is obtained from the loops prior to it.
   The first enhancement due to McLaughlin (1993) assigns value 0.3 to each disagreeing but similar
character.  Each exact agreement gets value 1.0 and all exact agreements are located prior to
searching for similar characters.  Similar characters might occur because of scanning errors ('1'
versus 'l') or keypunch ('V' versus 'B').  The number of common characters (#common) in equation
(2.1) gets increased by 0.3 for each similar character, is denoted by #similar, and #similar is
substituted for #common in the first two components of equation (2.1).
   The second enhancement due to Winkler (1990) gives increased value to agreement on the
beginning characters of a string.  It was based on ideas from a very large empirical study by Pollock
and Zamora (1984) for the Chemical Abstracts Service.  The study showed that the fewest errors
typically occur at the beginning of a string and the error rates by character position increase
monotonically as the position moves to the right.  The enhancement basically consisted of adjusting
the string comparator value upward by a fixed amount if the first four characters agreed; by lesser
amounts if the first three, two, or one characters agreed.  The string comparator examined by
Budzkinsky (1991) consisted of the Jaro comparator with only the Winkler enhancement.
   The final enhancement due to Lynch and Winkler (1994) adjusts the string comparator value if the
strings are longer than six characters and more than half the characters beyond the first four agree.
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The final enhancement was based on detailed comparisons between versions of the comparator.  The
comparisons involved tens of thousands of pairs of last names, first names, and street names that did
not agree on a character-by-character basis but were associated with truly matching records.
   Table 2.1 illustrates the effect of the new enhanced comparators on last names, first names, and
street names, respectively.  If each string in a pair is less than four characters, then the Jaro and
Winkler comparators return the value zero.  The Jaro and Winkler comparator values are 

Table 2.1.  Comparison of String Comparators Using Last Names,
            First Names, and Street Names
   
        Two strings               String comparator values 
                                Jaro    Wink    McLa    Lynch
                                                             
  SHACKLEFORD    SHACKELFORD    0.970   0.982   0.982   0.989 
  DUNNINGHAM     CUNNIGHAM      0.896   0.896   0.896   0.931 
  NICHLESON      NICHULSON      0.926   0.956   0.969   0.977 
  JONES          JOHNSON        0.790   0.832   0.860   0.874 
  MASSEY         MASSIE         0.889   0.933   0.953   0.953 
  ABROMS         ABRAMS         0.889   0.922   0.946   0.952 
  HARDIN         MARTINEZ       0.722   0.722   0.722   0.774 
  ITMAN          SMITH          0.467   0.467   0.507   0.507 

  JERALDINE      GERALDINE      0.926   0.926   0.948   0.966 
  MARHTA         MARTHA         0.944   0.961   0.961   0.971 
  MICHELLE       MICHAEL        0.869   0.921   0.938   0.944 
  JULIES         JULIUS         0.889   0.933   0.953   0.953 
  TANYA          TONYA          0.867   0.880   0.916   0.933 
  DWAYNE         DUANE          0.822   0.840   0.873   0.896 
  SEAN           SUSAN          0.783   0.805   0.845   0.845 
  JON            JOHN           0.917   0.933   0.933   0.933 
  JON            JAN            0.000   0.000   0.860   0.860 

  BROOKHAVEN     BRROKHAVEN     0.933   0.947   0.947   0.964 
  BROOK HALLOW   BROOK HLLW     0.944   0.967   0.967   0.977 
  DECATUR        DECATIR        0.905   0.943   0.960   0.965 
  FITZRUREITER   FITZENREITER   0.856   0.913   0.923   0.945 
  HIGBEE         HIGHEE         0.889   0.922   0.922   0.932 
  HIGBEE         HIGVEE         0.889   0.922   0.946   0.952 
  LACURA         LOCURA         0.889   0.900   0.930   0.947 
  IOWA           IONA           0.833   0.867   0.867   0.867 
  1ST            IST            0.000   0.000   0.844   0.844  

 

produced by the loop from the main production software (e.g., Winkler and Thibaudeau 1991) which
is only entered if the two strings do not agree character-by-character.  The return value of zero is
justified because if each of the strings has three or less characters, then they necessarily disagree on
at least one.  
   In record linkage situations, the string comparator value is used in adjusting the matching weight
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associated with the comparison downward from the agreement weight toward the disagreement
weight.  The weighting methodology is described in the next section.  Using crude statistical
modeling techniques, Winkler (1990) developed downweighting functions for last names, first
names, street names, and some numerical comparisons that generalized the original downweighting
function introduced by Jaro.

3.  PARAMETER-ESTIMATION VIA THE EM ALGORITHM
   The record linkage process attempts to classify pairs in a product space  A × B from two files A
and B into M, the set of true matches, and U, the set of true nonmatches.  Fellegi and Sunter (1969),
making rigorous concepts introduced by Newcombe (1959), considered ratios of probabilities of the
form:

      R =  P( � � � | M) / P( � � � | U)          (3.1)

where � is an arbitrary agreement pattern in a comparison space �.  For instance, � might consist of
eight patterns representing simple agreement or not on the largest name component, street name, and
street number.  Alternatively, each � � � might additionally account for the relative frequency with
which specific values of name components such as "Smith", "Zabrinsky", "AAA", and "Capitol"
occur.
   The decision rule is given by:

      If  R  >  UPPER, then designate pair as a link.

      If  LOWER � R � UPPER, then designate pair as a possible

        link and hold for clerical review.  (3.2)

      If  R < LOWER, then designate pair as a nonlink.

   The cutoff thresholds UPPER and LOWER are determined by a priori error bounds on false
matches and false nonmatches.  The three components of Rule (3.2) agree with intuition.  If � � �
consists primarily of agreements, then it is intuitive that  � � �  would be more likely to occur among
matches than nonmatches and ratio (3.1) would be large.  On the other hand, if � � � consists
primarily of disagreements, then ratio (3.1) would be small.
   Fellegi and Sunter (1969, Theorem) showed that the decision rule is optimal in the sense that for
any pair of fixed upper bounds on the rates of false matches and false nonmatches, the clerical
review region is minimized over all decision rules on the same comparison space �.  The theory
holds on any subset such as pairs agreeing on a postal code, on street name, or on part of the name
field.  Ratio R or any monotonely increasing transformation of it (such as given by a logarithm) is
defined as a matching weight or total agreement weight.  In actual applications, the optimality of the
decision rule (3.2) is heavily dependent on the accuracy of the estimates of the probabilities given
in (3.1).  The probabilities in (3.1) are called matching parameters or matching weights.
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   Fellegi and Sunter (1969, pp. 1194-1197) were the first to observe that certain parameters needed
for the decision rule (3.2) could be obtained directly from observed data if certain simplifying
assumptions were made.  For each agreement pattern � � �, they considered 

    P(�) = P(� | M) P(M) + P(� | U) P(U)  (3.3)

and noted that the proportion of pairs having representation � � � could be computed directly from
available data.  If � � � consists of a simple agree/disagree (zero/one) pattern associated with three
variables satisfying the conditional independence assumption so that there exist vector constants
(marginal probabilities) m � (m , m , ���, m ) and u � (u , u , ���, u ) such that, for all ���,1  2   K     1  2   K 

                      K     �           (1-� ) i           i

      P(� | M) =  �  m    (1-m )         i    i 

                    i=1

and (3.4)

                      K    �          (1-� ) i          i

      P(� | U) =  �  u    (1-u ) .         i    i 

                    i=1

then Fellegi and Sunter provide the seven solutions for the seven distinct equations associated with
(3.4).
   If � � � represents more than three variables, then it is possible to apply general equation-solving
techniques such as "the method of moments" (e.g., Hogg and Craig 1973, pp. 205-206).  Because
the "method of moments" has shown numerical instability in some record linkage applications (Jaro
1989, p. 417) and with general mixture distributions (Titterington et al. 1988, p. 71), maximum-
likelihood-based methods such as the Expectation-Maximization (EM) algorithm (Dempster et al.
1977; also Meng and Rubin 1993) may be used.
   The EM algorithm for the independence model described above has been used in a variety of
record linkage situations.  With each, it converged rapidly to unique limiting solutions over different
starting points (Thibaudeau 1989; Winkler 1989, 1992).  The major difficulty with the parameter-
estimation techniques (EM or an alternative such as method of moments) is that they may yield
solutions that partition the set of pairs into two sets that differ substantially from the desired sets of
true matches and true nonmatches.
   The basic application of the EM algorithm has been generalized in three ways.  The first way
involved algorithms (Thibaudeau 1989, Winkler 1989) that did not require conditional
independence.  Interactions between agreements on fields such as first name, last name, and house
number were allowed.  The second way assumed that there were three latent classes instead of two
(Winkler 1992).  It was stimulated by work (Smith and Newcombe 1975) showing that conditional
independence does not hold because agreement on household variables (among others) are intuitively
correlated.  The three classes are (1) matches within households, (2) nonmatches (e.g., husband-wife)
within households, and (3) nonmatches outside of households.  When EM fitting using 2-class
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algorithms are used, a set of pairs often divides into pairs agreeing on household information.
Agreement on household variables such as last name, house number, street name, and phone
overwhelm individual identifiers such as first name, age, and sex.  The third way allowed convex
constraints (Winkler 1992, 1993, 1994b) that restrict (predispose) solutions to subportions of the
parameter space.  For instance, a convex constraint might take the form:

    P(agree first, agree last | match) � a,  (3.5)

for some 0 < a < 1.  The EM algorithm with convex constraints (Winkler 1993) generalizes the
MCECM algorithm of Meng and Rubin (1993).  Convex restrictions can be based on a priori
knowledge of subspace regions in which modes of the likelihood yield good matching performance.
In a variety of situations, having decision rules based on weights obtained from modelling
interactions (with or without convex constraints) can yield accurate decision rules and reasonably
accurate estimates of error rates (Winkler 1993, Armstrong and Mayda 1993).  In contrast to other
methods such as scoring or Newton-Raphson, the EM algorithm converges slowly but is very stable
numerically (Meng and Rubin 1993).
   The effects of the string comparator values and methods for adjusting weights downward from the
agreement weight toward the disagreement weight are intimately tied in with the weighting methods.
The basic idea of the string comparator and associated downward adjustments is to account for the
partial agreement on individual fields.  In the independent case, the effects of the string comparator
values are much more easily understood.  Details of the downward adjustment mechanism in the
independent case are given in Winkler (1990).  The string comparator value associated with each
field is used in adjusting the weight associated with that field downward.  The adjustment on each
field is assumed to be independent of any other field.  If the resultant weight associated with the field
is negative, then the field is assumed to disagree in the string-comparator sense; otherwise, it agrees.
If there are K fields, then there are 2  agreement patterns and the total agreement weight associatedK

with all fields is just the sum of the K string-comparator-adjusted individual-field agreement
weights.  
   The effects of the string comparator values in the interaction case are more difficult to model and
interpret because (partial) agreement in one field can no longer be assumed independent of (partial)
agreement on another.  During matching in the interaction (dependent) case, the agreement patterns
are computed in the same manner (i.e., independently) as in the independent case.  The reason for
doing this is that the generalized weights divide the sets of pairs into different classes that are based
on the independent patterns.  Because the general weights agree much more closely with the truth,
downward adjustments due to observed typographical variations in individual fields are only 1/3
what they were in the original independent case.  The factor 1/3 was obtained via ad hoc means.  As
in the independent case, the downward adjustments are based on the estimated marginal probabilities
associated with individual fields.  The downward adjustments, however, are applied to the general
weights.  Empirically, using 1/3 the previous downward adjustment works better in all situations in
which it has been used.  The available data do not allow semi-rigorous modelling as in the
independent case (Winkler 1990) because there are too many parameters. 
   The main theorem of Fellegi and Sunter is known to hold on any set of pairs.  In practice, it is often
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necessary to restrict results to subsets of pairs from the entire product space.  In some applications,
only pairs agreeing on a postal code such as U.S. ZIP code and first character of surname are
considered.  The restriction is referred to as blocking.  It can reduce computation because the number
of pairs is lowered by a factor of 150 with only minor (less than 5 percent) loss of true matches.  By
forcing 1-1 matching, the number of pairs can also be reduced.  With data of the type considered in
this paper and the best method of 1-1 forcing, the number of pairs can be further reduced by a factor
of 9 with no additional loss of true matches beyond those lost via blocking.  Methods of 1-1 forcing
implicitly (or explicitly) can affect the weights that are used in the decision rules.  The use of
blocking and methods of forcing 1-1 matching can make accurate estimation of error rates much
more difficult.

4.  ASSIGNMENT
   Jaro introduced a linear sum assignment procedure (lsap) to force 1-1 matching because he
observed that greedy algorithms often made erroneous assignments.  A greedy algorithm is one in
which a record is always associated with the corresponding available record having the highest
agreement weight.  Subsequent records are only compared with available remaining records that have
not been assigned.  In the following, the two households are assumed to be the same, individuals
have substantial identifying information, and the ordering is as shown.

            HouseH1     HouseH2
            husband     
            wife        wife
            daughter    daughter
            son         son

   A greedy algorithm erroneously assigns husband1-wife2, wife1-daughter2, and daughter1-son2
whereas the lsap makes the correct assignment because it takes the highest sum of three matching
weights.  The original lsap algorithm of Burkard and Derigs (1980, pp. 1-11) used by Jaro (1989)
could only be applied to square arrays.  In some applications in which a small file representing a
small geographic subregion (100 records) is matched against a large region representing an entire
U.S. Postal ZIP code (20,000 records), using the typical Operations Research (OR) procedure of
creating a large square array could increase storage requirements by a factor of 50 or more.  To solve
the initial storage difficulty, Rowe (1987) developed algorithms for rectangular arrays that were used
in PES matching (Winkler and Thibaudeau 1991).  Thus, the array of the above example would have
dimension 50 × 20000 instead of 20000 × 20000.  With square arrays, the Rowe algorithm makes
identical assignments to the Burkard-Derigs algorithm.
   Two difficulties arise when the Rowe algorithm is applied to general administrative lists.  The first
again involves size.  With general lists, it is often necessary to compare all records agreeing on first
character of surname and ZIP code.  If the ZIP code has 60,000 individuals, then the largest array
associated with agreement on first character of surname and ZIP might have dimension 5000 × 5000
which consists of 25 million numbers necessitating 100 megabytes of storage.  Although it is
possible to reduce array size by only considering pairs agreeing on ZIP and surname or a code of
surname such as SOUNDEX, in some areas (say, involving Orientals or Hispanics) as many as 15
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percent of matches would be lost.
   The way the storage problem is solved is to develop an algorithm (Winkler 1994a) that only stores
the highest five weights above a threshold associated with each record from each file and to keep
track of the positions (rows and columns) in the original full array.  All other pairs are given a default
weight which is described later.  The algorithm proceeds in the same graph-theoretic manner as the
Burkard-Derigs-Rowe algorithm in that it uses Dijkstra's shortest augmenting path algorithm.
Details differ significantly because of the mechanisms necessary for tracking the stored (compressed)
array.  Storage is reduced from 5000 × 5000 to 5000 × 10 because only the highest five weights and
their associated column positions from the original array are stored.  Based on substantial testing,
computation increases only 3 percent.  With most weights being replaced by defaults, much of the
computation of maxima within rows or columns is eliminated.  The reason overall computation
increases is that extensive loops for tracking positions in arrays are needed for the small subset of
stored weights.
   The second difficulty involves how the weights associated with spurious agreements on fields such
as first name and street name can affect the overall assignment of pairs.  The choice of the default
weight can solve this difficulty.  The difficulty shows up as much as 0.005 of the time with original
PES lists.  The proportion is small because the PES has substantial overlap with Census lists and
spurious agreements are not much of a problem.  With general administrative lists the problem can
occur much more often because the moderate overlap of the pairs of lists makes spurious agreements
among nonmatches a greater problem.  The following example illustrates the situation.  All pairs are
assumed to agree on a geographic identifier and first character of last name.  Agreement and
disagreement weights are added to get the total weight that is in the array used in the assignment
procedure.  Two records are taken from each file.  reci_fj refers to record i from file j.  The first
record from the first file has sex miskeyed.

  Table 4.1.  Weights and Data Used in Assignment Examples
                                                            
               last     first     hsnm   stnm    age    sex 
   agr_wgt     +4.0     +4.0      +2.0   +0.5    +3.0   +0.5
   dis_wgt     -4.0     -4.0      -3.0   -1.0    -3.0   -4.0

   rec1_f1     robert   schenck   450    main    40     F 
   rec2_f1     sally    schenck   450    main    40     F

   rec1_f2     sally    scheck    450    main    40     F
   rec2_f2     sally    smith     667    main    32     F   

   The array of total agreement weights is given by Array1.  The rows are determined by the records
from the first file and the columns are determined by the records from the second file.  To obtain
entry a , the first records from the respective files are compared.  To obtain the total disagreement11

weight a , agreement and disagreement weights are added according to whether the corresponding11

fields in the record pair agree or disagree.  The �13.0 weight in row 1 and column 2 occurs because
of (spurious) agreement on street name and sex only.   
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       Array1  = [ a  ] =     6.0     -13.0ij

                             14.0      -5.0

   In this situation, a  + a  = a  + a .  Either 1-1 assignment is optimal.  Because of the ordering,11  22  12  21

the lsap most likely would yield the erroneous assignment  rec1_f1  <--> rec1_f2  and  rec2_f1  <-->
rec2_f2.  With the new assignment algorithm, only the largest weights above a threshold are stored.
If the threshold is -8.0, then the array is

       Array2  = [ b  ] =     6.0      -8.0ij

                             14.0      -5.0

   In this situation, the new algorithm would correctly make the assignment rec1_f1  <--> rec2_f2
and  rec2_f1  <--> rec1_f2.  The reason that existing sparse-array algorithms do not work is because
they implicitly assign a large negative number to arcs that are not included in the graph.

       Array3  = [ c  ] =     6.0    -999.0ij

                             14.0      -5.0

   Using a sparse-array algorithm, the wrong assignment would always be made.  With a number of
large test decks for which true matching status is known, the original lsap, new assignment
procedure, and sparse-array procedure resulted in induced error rates of 0.005, 0.000, 0.030,
respectively.  With pairs of lists having only moderate overlap or when different weighting methods
that do not assume conditional independence (as in the above example) are used, then induced error
rates with original lsap and sparse-array procedures can be much higher.  In those situations,
combinations of spurious agreements are more likely to occur and alternate weighting strategies may
cause more error when they are combined with the original lsap.
   The new assignment algorithm can reduce unnecessary erroneous assignments with general
weights because some are set to �999.0 and �990.0 by the general EM program.  Negative weights
of large absolute value can explicitly induce error just as the sparse-array algorithms implicitly
induce error.  These default negative weights are designed to eliminate overflow and divide by zeros
that result as certain of the estimated probabilities converge to zero.  If an estimated conditional
probability associated with an agreement pattern is equal to zero to 30 decimal places, then it is set
equal to zero.  In subsequent loops, the zero estimates necessarily remain at zero. 
   The weight �999.0 is a default that occurs for an agreement pattern that has estimated probability
given a match equal to zero and positive probability given a nonmatch.  With the general EM
algorithm, estimated probabilities can converge arbitrarily close to zero; with the independent EM
algorithm, all estimated probabilities must be positive.  The weight -990.0 is a default that occurs
when both the probability given a match and the probability given a nonmatch are zero.  It is only
associated with agreement patterns for which there are no observed pairs having the agreement
pattern. 
   Algorithms that force 1-1 matching are most effective when individual files contain few duplicates.



11

If files contain duplicates, then such duplicates are best dealt with via special software loops (e.g.,
Jaro 1992, Porter 1994).

5.  RESULTS
   Results are presented in two parts.  The first section provides an overall comparison of matching
methods that utilize various combinations of the new and old string comparators, the new and old
assignment algorithms, and the generalized interaction weighting methods and independent
weighting methods.  The second provides results that show how accurately error rates can be
estimated using the best matching methods from the first section.  Error rates are compared with
rates obtained via a method of Belin and Rubin (1994) that is known to work well in a narrow range
of situations (Winkler and Thibaudeau 1991, Scheuren and Winkler 1993).
5.1.  Overall Comparison of Matching Methods
   For comparison purposes, results are produced using three pairs of files having known matching
status.  The baseline matching is done under 3-class, latent class models with interactions and under
independence, respectively.  The 3-class models are essentially the same ones used in Winkler (1992,
1993).  The interactions are (1) 8-way between last name, first name, house number, street name,
phone, age, relationship to head of household, and marital status, (2) 4-way between first name,
house number, phone, and sex, and (3) 2-way between last name and race.  The weights associated
with interaction models are referred to as generalized weights and other weights obtained via
independence models are referred to as independent weights.  Results are reported for error rates of
0.002, 0.005, 0.01, and 0.02, respectively.  Link, Nonlink, and Clerical (or Possible Link) are the
computer designations, respectively.  Match and Nonmatch are the true statuses, respectively.  The
baseline results (designated by base) are produced using the existing lsap algorithm and the previous
string comparator (see e.g., Winkler 1990) but use the newer, 3-class EM procedures for parameter
estimation (Winkler 1992, 1993).  The results with the new string comparator (designated s_c) are
produced with the existing string comparator replaced by the new one.  The results with the new
assignment algorithm (designated as) use both the new string comparator and the new assignment
algorithm.  For comparison, results produced using the previous string comparator but with the new
assignment algorithm (designated by os_l) are also given.
   Matching efficacy improves if more pairs can be designated as links and nonlinks at fixed error
rate levels.  In Tables 5.1-3, computer-designated links and clerical pairs are subdivided into (true)
matches and nonmatches.  Only the subset of pairs produced via 1-1 assignments are considered.
In producing the tables, pairs are sorted by decreasing weights.  The weights vary according to the
different model assumptions and string comparators used.  The number of pairs above different
thresholds (i.e., UPPER of section 3) at different link error rates (0.002, 0.005, 0.01, and 0.02) are
presented.  False match error rates above 2 percent are not considered because the sets of pairs above
the cutoff threshold UPPER contain virtually all of the true matches from the entire set of pairs when
error rates rise to slightly less than 2 percent.  In each line under the Interaction and Independent
columns, the proportion of nonmatches (among the sum of all pairs in the Link and Clerical
columns) is 2 percent.
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 Table 5.1  Matching Results At Different Error Rates 
            1st Pair of Files with 4539 and 4859 records 
            38795 Pairs Agreeing on Block and First Char Last
                                                         
                 Interaction             Independent     
  Link
 Error        Link      Clerical       Link     Clerical 
  Rate     match/nonm  match/nonm  match/nonm  match/nonm
                                                         

 0.002
    base       3266/ 7      83/61       3172/ 6    242/64
    s_c        2995/ 6     320/62       3176/ 6    236/64
    as         3034/ 6     334/63       3176/ 6    234/64
    os_l       3299/ 7      93/63       3174/ 6    242/64   
 0.005  
    base       3312/17      37/51       3363/17     51/53
    s_c        3239/17      76/51       3357/17     55/53
    as         3282/17      86/52       3357/17     53/53
    os_l       3354/17      38/52       3364/17     52/53
 0.010  
    base       3338/34      11/34       3401/34     13/36
    s_c        3287/34      28/34       3396/34     16/36
    as         3352/34      16/35       3396/34     14/36
    os_l       3380/34      13/35       3402/34     14/36
 0.020  
    base       3349/68       0/ 0       3414/70      0/ 0
    s_c        3315/68       0/ 0       3411/70      0/ 0
    as         3368/69       0/ 0       3410/70      0/ 0
    os_l       3393/69       0/ 0       3416/70      0/ 0

   The results generally show that the combination of generalized weighting with the new assignment
algorithm performs slightly better than the baseline with independent weighting.  In all of the best
situations, error levels are very low.  The new string comparator produces worse results than the
previous one (see e.g., Winkler 1990) and the new assignment algorithm (when combined with the
new string comparator) performs slightly worse (between 0.1 and 0.01 percent) than the existing
string comparator and lsap algorithm.  In all situations (new or old string comparator, generalized
or independent weighting), the new assignment algorithm slightly improves matching efficacy.
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 Table 5.2  Matching Results At Different Error Rates
            2nd Pair of Files with 5022 and 5212 records 
            37327 Pairs Agreeing on Block and First Char Last   
                                                         
                 Interaction             Independent     
  Link
 Error        Link      Clerical       Link     Clerical 
  Rate     match/nonm  match/nonm  match/nonm  match/nonm
                                                         

 0.002
    base       3415/ 7     102/65       3475/ 7     63/65
    s_c        3308/ 7     182/64       3414/ 7    127/65
    as         3326/ 7     184/65       3414/ 7    127/65
    os_l       3430/ 7     107/65       3477/ 7     63/65
 0.005                       
    base       3493/18      24/54       3503/18     35/54
    s_c        3349/17      41/54       3493/18     48/54
    as         3484/18      26/54       3493/18     48/54
    os_l       3511/18      26/54       3505/18     36/54
 0.010                       
    base       3501/35      16/37       3525/36     13/36
    s_c        3478/35      12/38       3526/36     15/36
    as         3498/35      12/37       3526/36     15/36
    os_l       3519/36      18/36       3527/36     14/36
  0.020                      
    base       3517/72       0/ 0       3538/72      0/ 0
    s_c        3490/71       0/ 0       3541/72      0/ 0
    as         3510/72       0/ 0       3541/72      0/ 0
    os_l       3537/72       0/ 0       3541/72      0/ 0
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 Table 5.3  Matching Results At Different Error Rates
            3rd Pair of Files with 15048 and 12072 Records 
            116305 Pairs Agreeing on Block and First Char Last

                                                         
                 Interaction             Independent     
  Link
 Error        Link      Clerical       Link     Clerical 
  Rate     match/nonm  match/nonm  match/nonm  match/nonm
                                                         

 0.002
    base       9519/19     287/181      9696/19    155/182
    s_c        9462/19     338/181      9434/19    407/182
    as         9418/19     410/182      9436/19    406/182
    os_l       9695/19     151/182      9692/19    157/182
 0.005 
    base       9760/49      46/151      9792/49     59/152
    s_c        9747/49      53/151      9781/49     60/152
    as         9776/49      52/152      9783/49     57/152
    os_l       9809/50      37/151      9791/49     58/152
 0.010
    base       9784/99      22/101      9833/99     18/102
    s_c        9774/99      16/101      9822/99     19/102
    as         9803/99      25/102      9823/99     17/102
    os_l       9828/99      18/102      9831/99     18/102
 0.020
    base       9806/200      0/ 0       9851/201     0/  0
    s_c        9800/200      0/ 0       9841/201     0/  0
    as         9828/201      0/ 0       9842/201     0/  0
    os_l       9846/201      0/ 0       9849/201     0/  0

5.2.  Estimation of Error Rates
   This section provides results that show how the best matching methods of the previous section can
be used in estimating error rates.  The basic idea is to begin with probabilities obtained for non-1-1
matching and adjust them to account (partially) for the effect of 1-1 assignment.  All matching
methods use the previously existing string comparator and the new assignment algorithm.  Results
are shown for generalized weights (Figures 1-6) and independent weights (Figures 7-12) for the same
three pairs of files used in the previous section.  Error rate estimates are obtained via the following
steps:

1.  For each agreement pattern, observe the number of pairs obtained under 1-1
matching.
2.  If the weight is above 3 or below -3 (using the natural log of ratio (3.1)), then use
non-1-1 probability estimates to obtain expected numbers of matches and
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nonmatches (rounded to integers).
3.  If the weight is between 3 and -3 and the pairs do not agree simultaneously on last
name, house number and street name, use the same procedure as in 2 to get expected
integer counts.  If the pairs do not agree simultaneously on the three fields, then make
a special adjustment to the expected counts that places an a priori upper bound on the
proportion of nonmatches.
4.  Use the expected integer values to obtain new estimated error rates.

   The cumulations of probabilities used to get error rate estimates are via the weights used in
matching.  The reason that non-1-1 probabilities are used is that they yield accurate decision rules
with the generalized weights (see also Winkler 1993).  The true set of interactions is well
approximated by the set of interactions in the model.  Weights obtained under the independence
model are known to yield highly inaccurate estimates of error rates in non-1-1 situations (Winkler
1989, 1992, 1993).  The reason that 1-1 counts cannot be used directly in obtaining error rate
estimates is covered in the discussion.
   The results show that reasonably accurate estimates of the true underlying probability distributions
(and thus error rates) can be obtained for matches (Figures 1-3) and nonmatches (Figures 4-6) under
the generalized interaction model and for matches (Figures 7-9) and nonmatches (Figures 10-12)
under the independence model.  Truth is plotted against itself (45 degree line).  If the estimates
(jagged curve) are below the 45 degree line, they represent underestimates; if above, overestimates.
Only estimated rates of 10 percent or less are displayed because at higher error rates the estimates
tend to be relatively closer to the truth.  Error rates higher than 10 percent are not likely to be
tolerated in practical situations.  Estimates with the generalized interaction weights are slightly more
accurate than with independence weights.  This is expected because non-1-1 error rate estimates with
generalized weights are accurate (e.g., Winkler 1993) and very few (less than 2%) of true matches
are lost when 1-1 matching is forced.  Thus, the shapes of the curves of matches in non-1-1 and 1-1
situations are approximately the same.  While the non-1-1 counts with independence weights are far
from those needed for accurate estimation, it may seem suprising that the error rate estimates under
the independence model are as accurate as they are.  A variety of authors (Newcombe 1988, Jaro
1989, Winkler and Thibaudeau 1991) have obtained good matching results when independent
weights are combined with methods of forcing 1-1 matching. 
   For comparison purposes, error rate estimates using the methods of this paper are compared with
the method of Belin and Rubin (1994) via Figures 13-15 for independent weights and the
distributions of nonmatches.  With the independent weights of this paper, Belin-Rubin estimates are
roughly as accurate as the independence estimates of this paper.  To obtain the estimates in
producing the figures, I modified Belin's software to yield estimates in a form that is consistent with
the method of this paper.  The current Belin-Rubin method is not intended to yield estimates for the
distribution of matches and would not converge (even upon recalibration) with generalized weights.

6.  DISCUSSION
   This section provides discussion of the computing environment and software, the new string
comparator, the new assignment algorithm, and methods of error rate estimation.  
6.1.  Computation Considerations
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   The computational environment primarily consisted of a Sparcstation 2.  The EM software
(Winkler 1994d), written in FORTRAN, and all other software, written in C, compiles and runs on
other machines such as VAXes, IBM PCs, and DEC Alphas under Windows NT.  The software was
originally written on an IBM PC.  The new assignment algorithm and string comparator are in
current production software (Porter 1994) that is primarily intended for VAXes and UNIX
workstations.  The general EM program often requires between 5 and 20 CPU minutes for
convergence.  CPU time requirements of matching software are primarily dependent on the number
of pairs processed and the number of fields being used in weight computations.  Matching with two
files of 10,000 files, 120,000 pairs (based on blocking criteria), and ten fields being compared
requires approximately four minutes.  The string comparison loops consume between 25 and 35
percent on the CPU time needed for matching. 
   The current version of the general EM software (Winkler 1994d) incorporates three new
combinatorial routines that generalize combinatorial routines due to Armstrong (1992, see also
Armstrong and Mayda 1993).  Because the new general software allows modeling with an arbitrary
number of classes and an arbitrary number of states per variable, it should facilitate modeling in non-
record-linkage situations.  The previous software only allowed for two or three classes and two or
three value-states per variable which was appropriate for record linkage situations.  It is the only
latent-class software that does not assume conditional independence (Clogg 1994).  Use of the
combinatorial routines allows straightforward specification of the hierarchy of interaction effects and
facilitates modeling and testing.  While modeling is facilitated because interactions are much more
easily specified, developing models still involves much trial, error, and intuition just as it does with
ordinary loglinear models (Bishop, Fienberg, and Holland 1975).  Early versions of the software had
considerably more cumbersome methods for specifying the interactions.  
6.2.  String Comparator
   The new string comparator is primarily designed to assist on-line searches using last name, first
name, or street name.  In such situations, the new comparator is believed to be superior to the old
(Lynch and Winkler 1994).  The reason that the new comparator performs somewhat more poorly
in matching situations is that error rates with the existing methods are very low and the redundancy
of extra matching fields plays a more important role than single fields in isolation.  Because the new
string comparator often assigns slightly higher comparator values, a few isolated true nonmatches
can receive slightly higher weighting scores and observed false match rates can increase above those
obtained when the original string comparators were used.
   An extenuating circumstance is that the downweighting functions (Winkler 1990) have not been
remodeled using the new string comparator due to the loss of the software for modeling the
downweightings.  I presently do not believe new downweighting functions will have more than a
negligible effect on the finding of this paper that the new string comparator may slightly decrease
matching efficacy when the new assignment algorithm is not used. 
   Presently, since there are no suitable test decks for checking scanning errors (i.e., 'I' versus '1') and
some types of keypunch errors (i.e., adjacent keys 'V' versus 'B'), there has been no empirical testing
of whether the associated adjustment for these types of errors helps.  
   The advantage of the new string comparator code is in a set of switches that can turn on or off
various features.  For most matching applications, the new adjustments will be turned off via
switches that are in the existing source code.  The string comparator code, with all the new features
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activated, runs at most 40 percent slower than the previous string comparator.  With the new features
switched off, the speed is very close to the previous speed (Lynch and Winkler 1994).
6.3.  Assignment
   Other record linkage practitioners (e.g., Newcombe 1988, Jaro 1989) have observed strong
evidence empirically that methods of forcing 1-1 matching can improve matching efficacy.  This
paper shows that certain subsets of pairs in certain types of files are much more strongly affected by
the method of 1-1 forcing than others.
   Based on additional tests with the existing string comparator under the independence model and
the general interaction model, the new assignment algorithm always worked at least as well as the
lsap that was used previously.  Because the new assignment algorithm does not harm matching
efficacy and always uses drastically less storage, it will always be used for matching applications.
6.4.  Error Rate Estimation under the Belin-Rubin Model
   The method of Belin and Rubin (1994) was designed primarily for data situations similar to PES
matching.  In those situations, it performed very well (Winkler and Thibaudeau 1991).  Because of
the weighting adjustments that were used in PES matching, the shapes of curves of matches and
nonmatches were somewhat different than the corresponding shapes of the curves under the
independence model used in this paper.  The Belin-Rubin method is not designed to work with non-
1-1 matching, for situations in which the curves of matches and nonmatches are not very well
separated, or for cases in which the shapes of curves are very different from those on which Belin
and Rubin originally did their modeling.  
   The primary advantage of the Belin-Rubin method is in its conceptual simplicity and accuracy of
the estimates in those situations for which it was designed.  Belin and Rubin also obtain confidence
intervals via the SEM algorithm.  Because of the strong simplifying assumptions, the Belin-Rubin
method can be subject to bias as Belin and Rubin showed in a large simulation experiment.  I have
also observed some bias with independence model weights and data that is somewhat similar to the
data of this paper.
6.5.  Error Rate Estimation under the Model of this Paper
   Using non-1-1 matching, the general interaction model of this paper provided accurate decision
rules and estimates of error rates with the three pairs of data files of the results sections plus two
others.  Estimates were relatively more accurate than the 1-1 adjusted estimates of this paper.  An
example is covered in Winkler (1993).
   The reason that the generalized weighting model of this paper is useful is that it can be used in a
variety of non-1-1 matching situations and, with adjustments like the one of this paper, can be used
in 1-1 matching situations.  Because the error-rate-estimation procedure of this paper uses more
information, it also may be subject to less bias than the Belin-Rubin procedure.  The bias of the
error-rate-estimation procedures with a variety of different types of data is a topic of future research.
6.6.  Direct Estimation of Error Rates
   The Belin-Rubin method of estimating error rates is logical because, with reasonable a priori
assumptions on the shape of the curves of matches and nonmatches, they can provide estimates that
only use the curve of weights.  The curve is the one that is associated with 1-1 matching but has
weights that must be estimated a priori.  The next most logical estimation method is to use to the
table of counts of agreement patterns obtained via 1-1 matching directly because it may allow use
of more information and may not need to make a priori assumptions.  There are several reasons why
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such a direct use of the 1-1 counts is difficult.  First, with the data of this paper, the cell counts
associated with the patterns of 10 fields were nonzero for only 250 of 1024 cells.  For as many as
100 of the nonzero cells, the counts were 3 or less; typically, they were 1.  With the cells having
nonzero counts of 3 or less, there was no apparent consistency in the proportions of matches across
data files.  Second, while chi-square fits of the 1-1, independence model improved by a factor of
eight over the corresponding chi-square fits with the non-1-1, independence model, the chi-square
values were at least a factor of six too large.  The use of the asymptotic chi-square approximation
with this data is not reasonable.  Third, modeling of interaction effects is difficult because there
appears to be many less degrees of freedom with this data than traditional statistics would suggest.
For instance, with most pairs, agreement on last name appears to be almost perfectly correlated with
agreement on house number, street name, and phone number.  In other words, if there is agreement
or disagreement on one of these variables, there is simultaneous agreement or disagreement on all
the others.  The race variable also has no additional discriminating power.  Almost all distinguishing
power is obtained from last name (alone), first name, age, marital status, relationship, and sex.  At
present, I have not been able to obtain good matching results with parameters that are estimated via
models applied to the 1-1 counts.

7.  SUMMARY AND CONCLUSION
   This paper describes enhancements to a record linkage methodology that employ string
comparators for dealing with strings that do not agree character-by-character, an enhanced
methodology for dealing with differing, simultaneous agreements and disagreements between
matching variables associated with pairs of records, and a new assignment algorithm for forcing 1-1
matching.  Because of the interactions between the differing techniques, improving one method
without accounting for how the method interacts with the others can actually reduce matching
efficacy.  
   The results of this paper show that a sufficiently experienced practitioner can produce effective
matching results and reasonably accurate estimates of error rates.  I conclude that considerably more
research is needed before the techniques can be used by naive practitioners on a large variety of
administrative lists.  The difficulties have the flavor of early regression analysis for which the science
and art of dealing with outliers, colinearity, and other problems were not as developed as they are
today.  The techniques, however, can be applied by experience practitioners to a narrow range of
high-quality lists such as those for evaluating Census undercount that have known matching
characteristics.
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