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1. Introduction 

Consider a female population disaggregated by single 

years of age. Suppose we have available a forecast that is 

thought to be unbiased for the logarithm of the population 

vector. The problem we consider is, what is the contribution 

of the different vital processes to the forecast error of 

different ages? Alho and Spencer (1991) provided approximate 

propagation of error formulas needed in such an analysis. The 

. 
derivation assumed that certain covariance terms would be so 

small that they could be neglected. A related issue is, 
e 

therefore, how accurate are these approximate formulas in 

different circumstances? 

In the general case forecast accuracy depends not only on 

the methods used to forecast vital rates, but also on how 

variable (or "volatile") they are (cf. Alho, 1991, Fig. 1, p. 

524). In particular, since mortality, migration and fertility 

all influence the uncertainty of births and surviving births, 

it is critical to have an idea of the relative uncertainty of 

these processes (cf. Keilman, 1990, pp. 85-104). In addition, 

the propagation of error calculations are potentially 

influenced by the age-structure of the jump-off population and 

the trend in forecast births (cf., Smith, 1987). For example, 

a large error in the size of a child bearing age group has a 

large impact on the error of births when the cohort is in ages 

20-30 in which fertility is high, but has less of an impact 

when the cohort is in ages 40-50 in which fertility is low. 

A key element in any propagation of error calculations is 
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the handling of "births to births". In other words, when the 

cohorts born after the jump-off year will begin to have 

children of their own, the uncertainty of fertility influences 

the uncertainty of births in two ways: (1) uncertainty of 

fertility at current forecast year has a direct impact, (2) 

the uncertainty of births 16 or more years earlier influences 

the uncertainty in the number of women in child bearing ages 

and will, thus, have an indirect influence. 

Because of these factors, a two-pronged approach to the 

problem will be adopted. First, we will define the simplest 

possible setup that still retains the "births to births" 

dynamics. The key simplification is to assume that the errors 

due to different vital processes have a uniform impact (in a 

log-scale) for all ages. Although unexciting as an error 

structure of a forecast, this setup permits an analytical 

treatment of the propagation of error. Up to three generations 

of births will be considered. A program written in (Turbo) C 

that implements the calculations is presented in Appendix I. 

In particular, we note the impact of stable population growth, 

in which the population grows or declines exponentially, but 

does not change its age structure. Second, the actual U.S. 

female population will be considered. Slightly simplified 

versions of the vector ARIMA forecasts developed by Bell and 

Monsell (1991) are used to derive the moments of the 

prediction errors. A (Turbo) C program implementing these 

calculations is in Appendix II. In both cases both the 

contributions of the different sources of error and the 

accuracy of the propagation of error formulas of Alho and 
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Spencer (1991) will be considered. 

2. Linear Growth 

Following the notation of Alho and Spencer (1991) we 

define V(t) = (V(O,t),...,V(s,t))T, where 

V(j,t) = size female population age j time t. 

. 
Age j refers to an age-group of females who have had their jth 

birthday, but who have not had their (j+l)st birthday. When j 

= s, we take V(s,t) to be the size of the female population in 

the last age s. 

Define an (s+l)x(s+l) matrix R(t) = (R(i,j,t)), i,j = 

0 I.'., s, with R(0,15,t),..., R(0,44,t) the age-specific 

fertility rates of year t, and R(l,O,t),...,R(s,s-l,t) the 

age-specific survival probabilities from age 0 to age 1, from 

age 1 to age 2, etc., during year t. In addition, define 

R(s,s,t) as the average survival probability in the last age- 

group. All other elements in matrices R(t) are zero. 

The linear growth model specifies that 

V(t+l) = R(t)V(t). 

This model describes a closed female population (i.e., there 

is no migration). By replacing the life table survival rates 

by the so-called census survival rates, migration can also be 

incorporated. 
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Suppose that the jump-off population V(0) is strictly 

positive, or V(j,O) > 0 for j = O,...,s, and that the age- 

specific fertility rates and survival rates are strictly 

positive. Define, 

v(j,t) = log{V(j,t) 1, 

f(j,t) = log{R(O,j,t) ), 

r(j,t) = log(R(j+l,j,t)), 

r(s,t) = log(R(s,s,t) ). 

Under the linear growth model, * 

V(t) = R(t-1) .** R(O)V(O) . 

The following formulas are among those derived in Alho and 

Spencer (1991, formulas (2-l)-(2.7)). Consider the survivors 

of the jump-off population. For 15 t L j F s-l we have 

t-1 
v(j,t) = v(j-t,O) + Z r(j-t+k,k). 

k=O 

A somewhat more complex formula is required for the last age j 

= s (Alho and Spencer, 1991). However, no new issues arise 

from the consideration of the last age, so we will ignore it 

in the sequel. Consider the births. Note that it takes fifteen 

years for those born to be in the age 15, and one more year to 

have children. Therefore, the first forecast year for which 

there are "births to forecast births" is t = 17. Before that, 



we have for t = 1,...,16, 

44 t-2 
v(O,t) = log{ I: exp[v(k-t+l,O) + I: r(k-t+l+n,n) + f(k,t-l)]]. 

k=15 n=O 

Surviving the first sixteen birth cohorts we have 

j-l 
v(j,t) = v(O,t-j) + Z r(n,t-j+n) 

n=O 

for max(0, t-16) 5 j < t. 
* 

For the "second generation of births", or for the years t 

= 17,..., 32, we have that 

44 t-2 
v(O,t) = log{ E exp[v(k-t+l,O) + Z r(k-t+l+n,n) + f(k,t-1)] 

k=t-1 n=O 

t-2 k-l 
+ I: exp[v(O,t-l-k) + x r(n,t-l-k+n) + f(k,t-1) I). 
k=15 n=O 

The first sum over k corresponds to births due to the 

survivors of the jump-off population. The latter sum over k 

corresponds to "births to births". The same formula works for 

t > 32 as well, if we use the convention that the first sum 

over k is taken to be zero for t 2 32, and the upper limit of 

the second sum is kept at 44 for t > 46. 

Surviving the birth cohorts born during the years t = 

17, . . ., 32, we apply the above formula for max{O, t-32) s j ( 

t-16. 
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A probabilistic version of the linear growth model is 

obtained when we define a(j,t) as the true (random) value with 

the unbiased forecast E[a(j,t)l = v(j,t). The true vital rates 

f(j,t) and r(j,t) will be similarly related to their forecasts 

f(j,t) and r(j,t). All formulas given above will remain valid 

when we replace v, f, and r, by 8, f, and f. 

3. Assumptions Concerning the Components of Error 

We assume that the errors come from four sources: jump- 

off population, mortality, migration, and fertility. Although 

these sources may, in some circumstances, be to some extent 

correlated, it appears both on theoretical and empirical 

grounds that the assumption of independence is quite 

reasonable (cf., Alho and Spencer, 1991; Lee and Tuljapurkar, 

1991). Independence will be assumed throughout. 

We will now present models and assumptions that will be 

used in the subsequent analyses. We first review the existing 

literature on what is known about the error structure of each 

source, and then determine the simplest realistic model that 

can be used in our analytical work. The simple models 

typically assume that errors for a component are perfectly 

correlated over age and they have a constant coefficient of 

variation. As such they will permit an approximate comparison 

of the relative contribution of the four sources to the 

forecast error. In the numerical analyses, a more refined set 

of assumptions will be used. 



3.1. Jump-off Population 

Errors in the jump-off, or starting, population of a 

forecast derive from the imperfections of censuses (or-a 

population register, as the case may be); errors in the 

registration of births, deaths, and migration; and 

classification errors that put individuals into wrong 

age/sex/region etc. categories. An example of this type of 

uncertainty is the error of the dual system estimator and the 

estimators based on the so-called demographic analysis that 

are used to adjust U.S. censuses for undercount (cf., Mulry 

and Spencer, 1991). Although some element of forecasting may 

be involved in the specification of a jump-off population, for 

example when preliminary statistical tabulations are used, the 

error basically derives from the uncertainty of the basic 

demographic data. As such the errors in the jump-off 

population might be expected to be smaller than the forecast 

errors of the vital rates. However, for very short term 

forecasts of the survivors of the jump-off population the 

jump-off error can, in some ages, dominate. 

In Alho and Spencer (1985, p. 310) a simple specification 

that was based on the estimated accuracy of the 1980 census 

was developed. It assumed that the V(j,O)'s are perfectly 

correlated with age, V(j,O) = v(j,O) + e, with 

e,, - N(0, 6,,2) . 

(Note that the subscript of e,, and aJo2 refers to "jump-off 
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population" and not to age j.) Based on the uncertainty of the 

amount of illegal immigration it was estimated that the value 

(3 JO = 0.00325 might adequately represent the uncertainty of the 

census. This means that a 95% confidence interval for 

population size would have been ~0.65% of the point forecast. 

Note that this specification assumes that the coefficient of 

variation of any population aggregate, from single years of 

age to the total population, has a constant coefficient of 

variation of 0.00325. Other considerations, such as the number 

of homeless, might imply a larger standard deviation. 

3.2. Mortality 

Alho and Spencer (1990a, 1990b) have analyzed the 

mortality forecasts of the U.S. Office of the Actuary. The so- 

called random line model that assumes that forecast errors are 

perfectly correlated over time, and a more realistic Brownian 

motion model in which the forecast errors behave like Brownian 

motion (or random walk in discrete time), were studied and 

estimated. 

Bell and Monsell (1991) and Lee and Carter (1990) have 

used principal component techniques to analyze age-specific 

mortality in the United States. [This technique finds an 

orthonormal basis for the linear space spanned by the data 

matrix, consisting of the eigenvectors of the crossproduct 

matrix. Time series analysis is used to model the change in 

the coordinates, or the principal components, when observed 

time-series data are represented in the new basis]. Bell and 
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Monsell used a full set of principal components and built a 

vector AFUMA model for the five most important ones. From the 

point of view of variance calculations it is noteworthy that 

in their 1991 paper Bell and Monsell differenced the first 

three coordinate series. Later they have differenced the first 

five. In both cases first order autoregressive models were 

built for the series. The differenced series will eventually 

dominate the error variance, because their variance grows at 

least linearly, whereas the variance of the remaining 

stationary error components has an upper bound. Lee and Carter 

(1990) identified a random walk model with a drift for the e 

first principal component, so their error variance of the same 

order of magnitude as that of Bell and Monsell. 

All the analyses mentioned above suggest that a 

nonstationary model is necessary for describing the forecast 

error. At least for the purpose of our analytical setup, the 

simplest of such models, namely random walk appears also to be 

sufficient in the sense of giving the empirically observed 

order of magnitude for forecast error. More precisely, we will 

assume that 

a(j,t) = r(j,t) + e,(t), 

where 

t-1 
e,(t) = x E,Ak), 

k=O 

with 

I 

e,(k) - NtO, OP2) i.i.d. for k = O,l, . . . 
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Based on Alho and Spencer (1990a, Table 3, p. 616) a 

reasonable range of values for CJ,, can be derived as follows. 

Average value for So,, is between 0.2 and 0.4 in ages 25-90 for 

cause specific mortality. Errors in causes were found to be 

close to independent with heart diseases, cancer, and vascular 

diseases typically claiming well over a half of mortality. 

This suggests that the logarithm of their sum, age-specific 

. 

mortality, should have one half the standard deviation of the 

logarithms of the components, or it should range from 0.1 to 

0.2. This yields values for 0, in the range of 0.02 to 0.04. 

How do these estimates translate into errors of the survival 
* 

probabilities? 

Since exp(f(j,t)) is the one year probability of 

survival, then -r(j,t) must be the mortality rate. Above, we 

have considered (approximately) the model F(j,t) = r(j,t)(l + 

e,(t)) = r(j,t) + r(j,t)e,(t). It follows that by defining 

e,tj,t) = r(j,t)e,(t), we get the desired representation r(j,t) 

= r(j,t) + es(j,t). (Note that the subscript "S" refers to 

"survival" here rather than last age s.) Even though es(j,t) 

clearly depends on j, for our analytical framework we will 

replace all such factors by their average value, e,(j,t) = 

e,(t) . In analogy, we define the annual increments E,(k), 

t-1 
e,(t) = r, E,(k), 

k=O 

with 

e,(k) - N(0, <T,~) i.i.d. for k = O,l,... 
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It remains to specify a range for OS. Age-standardized death 

rates for females in the United States have been recently in 

the range of 0.006. Multiplying the o,, values above by this 

gives an approximate range of 0.0001 - 0.0002 for 0,. (This 

shows that the uncertainty of the jump-off population can, 

indeed, be dominant in some short term forecasts.) These 

. 

estimates do not take into account the fact that mortality 

varies with age, so that it is about l/10 of the standardized 

mortality rate in ages lo-20 and over ten times the 

standardized rate in ages 70+. It follows that in applying the 

model for mortality to young ages we may want to consider 
I 

values as low as l/10 of the range given above, and for old 

ages we may want to use ten times as large values as the range 

given. 

3.3. Migration 

The uncertainty of migration forecasts appears to be less 

well studied than that of the other vital processes. Although 

migration is regulated through legislation in most, if not 

all, countries, both the presence of illegal immigration, 

undocumented out-migration, and unpredictable changes in 

regulations make migration hard to predict. Abrupt changes 

from year to year are possible. 

For the analytical framework we hypothesize that 

migration has an unpredictable effect of the same relative 

magnitude from year to year. We can incorporate this into our 

model by assuming that any secular trends in migration are 
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absorbed into the forecasts r(j,t) and by adding an error 

component to reflect the uncertainty of the forecast. We 

assume that 

f(j,t) = r(j,t) + e,(t) + eM(t)I 

where 

eM (t) - NtO, oM2) i.i.d. for t = 0,1,2,... 

* 
are independent of the e,(t)'s. This implies that the effect of 

* migration is perfectly correlated over ages. The magnitude of 

the annual deviations was considered in Alho and Spencer 

(1985, p. 312). An analogous, but slightly simpler (and less 

realistic) calculation can be given as follows. U.S. Bureau of 

the Census (1982) assumed that the high low range for the 

annual net migration was 0.25-O-75 million. Assuming that half 

of the migrants are women, this translates into a range of 

0.125-O-375 million. Assuming a female population of 125 

million, this translates into a range of 0.001-0.003 out of 

the total population. Suppose the width of the interval, 

0.002, can be interpreted as a 67% prediction interval, then 

we get that q,, = 0.001. Obviously, somewhat smaller and larger 

values could be entertained. 

3.4 Fertility 

The uncertainty of fertility has been extensively 

studied. Alho and Spencer (1985) and Alho (1984, 1991) have 
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considered the adequacy of the official high-low intervals as 

prediction intervals and proposed alternatives. Lee (1974) and 

Carter and Lee (1986) have considered ARIMA type techniques 

for modeling fertility. Bozik and Bell (1987) and Thompson et 

al. (1989) have used principal components and vector ARIMA 

models to forecast fertility. McDonald (1979, 1981) considered 

econometric approaches. For our purposes it is important that 

all authors agree on one thing, namely that the birth and 

fertility series are nonstationary. 

For the study of the accuracy of relatively short term 

forecasts, we believe that the random walk model for forecast 
e 

error is again the simplest realistic model. In analogy of the 

model for mortality we will assume that 

f(j,t) = f(j,t) + e,(t), 

where 

t-1 
eF(t) = C &F(k), 

k=O 

with 

E, tk) - NtO, aF2) i.i.d. for k = O,l, . . . 

Based on Alho and Spencer (1985, Table 3, p. 313) a reasonable 

range of values for 0, is from 0.05 to 0.10. We see a dramatic 

difference as compared to all the previous sources of error. 

Even the lower limit, which we view as an unrealistically low 

value in the sense that it would have produced too narrow 

confidence intervals in the past, implies more uncertainty 
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than any of the previous sources of error. 

4. Analytical Treatment 

We will now summarize the assumptions used for the 

analytical treatment and evaluate the contributions of 

different sources of error in four stages. First, we evaluate 

the survivors of the jump-off population; second, the first 

generation of births during the forecast period, and their 

survivors; third, the second generation of births, i.e., those 
e 

born in forecast years t = 17,. ..,32, and their survivors; and 

fourth, the third generation of births during the years t = 

33,..., 48. Forecast horizons exceeding 48 years (for births) 

will not be considered. 

Based on the preliminary discussion of Section 3, the 

forecast errors are specified as follows. 

(i) Jump-off population: V(j,O) = v(j,O) + e, with e, - 

NtO, CF,02) . 

(ii) Mortality and migration: P(j,t) = rtj,t) + e,(t) + e,(t), 

where e,(t) and e,(t) are independent, with e,(t) - N(0, 

oM2) i.i.d. for t = 0,1,2,..., and e,(t) = e,(O) +...+ 

E,(t-1) with E,(k) - N(0, os2) i.i.d. for k = O,l,... 

(iii) Fertility: f(j,t) = f(j,t) + e,(t), where e,(t) = E,(O) + 

. . . + &,(t-1) with EF(k) - N(0, q2) i.i.d. for k = O,l,... 

Assumptions (i) - (iii) leave one minor issue concerning 

future births unresolved. The births during the forecast year 
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. 

t - 1 that contribute to V(O,t) should be subject to migration 

and mortality during the year t - 1 in two ways. First, 

migration and mortality affect the number of women in child 

bearing ages during the fraction of the year before they give 

birth. Second, the children in age 0 are subject to migration 

and mortality before year t is reached. Both effects can 

easily be accounted for in the point forecast by adjusting the 

fertility rates. However, for the uncertainty analysis some 

additional convention is needed. Under our simplified 

assumptions that assume perfect correlation over time the 

simplest convention seems to be to add this uncertainty factor 
* 

into fertility, and take 

f(j,t) = f(j,t) + e,(t) + e,(t) + e,(t). 

This will be assumed below. 

A major analytical advantage in the setup we have defined 

is that the jump-off population, mortality, and migration have 

the same impact on the uncertainty of all ages in a given 

forecast year. To formulate this result more precisely let us 

define 

t-1 
Q(t) = ,Eo (e,(k) + e,(k)). 

In other words, Q(t) is the error component due to mortality 

and migration that we use to get from jump-off to forecast 

year t. Since, 
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t-1 t-l k-l 
E e,(k) = Z C E,(j) 

k=O k=O j=O 

t-1 
= z (t - k)&,(k) I 

k=O 

we have that 

t-1 
Var( I; e,(k)) = aS2 k k2 = QS2h(t), 

k=O k=l 

. 

where we have written 

e 

h(t) = (2t + 1) (t + l)t/6, 

for short. It follows that 

Var(Q(t)) = toM2 + h(t)q2. 

Lemma 1. The error component due to jump-off, migration, 

and mortality in any tt(j,t), j = O,...,s; t = 1,2,..., is e,, + 

Q(t), with the variance 

Var (eJo + Q(t)) = oJo2 + MM2 + h(t)q2. 

Proof. The variance formula follows from the independence 

Of eJO and Q(t). It remains to show that the same uncertainty 

factor works for all ages. Consider the survivors of the jump- 

off population. The claim follows directly from the formula of 
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vtj,t), when 1 5 t 5 j 5 s-l (we omit here the additional 

detail of the last age). Consider the first generation of 

births, i.e., births during the forecast years 1 L t ( 16, and 

their survival. Let max{O, t-161 L j < t, and consider-B(j,t). 

These individuals are survivors of V(O,t-j). The jump-off, 

mortality, migration component of the mothers who gave birth 

to these children is e, + Q(t-j-1). We add to this the factor 

due to migration and mortality during the year of birth, e,(t- 

j-l) + e,(t-j-l), and the subsequent factors after birth, 
. 

(e,(t-j) + e,(t-j)) +.. .+ (e,(t-1) + e,(t-1)) . The sum is e, + 

* Q(t). The result follows by induction on birth generations. 

4.1. Survivors from the Jump-off Population 

First, consider the survivors of the cohorts present at 

jump-off. Specializing Lemma 1 to j 2 t 2 1, yields 

Var(v(j,t)) = (3,' + ts2 + os2h(t). Figure 1 indicates the 

relative importance of the jump-off error (solid line), error 

due to migration (dashed line), and error due to mortality 

(dotted line). The graph depicts the standard deviation due to 

each of these sources when the following parameter values are 

assumed: 0, = 0.00325, 0, = 0.001, and 05, = 0.0001. The top 

curve depicts the standard deviation of B(j,t) that combines 

all these sources (dash-dotted line). Note that under our 

assumptions these curves do not depend on age j. We see that 

the uncertainty of survival (or mortality) dominates after 

about twenty years, so that after about thirty forecast years 

the contribution of the other factors could almost be ignored. 
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During the first 10 years, however, the uncertainty of the 

jump-off population is the most important, and even the 

uncertainty of migration is more important (with these 

parameter values) than that of mortality. 

Note that Figure 1 can be also used to gauge the relative 

importance of the three error sources under alternative 

parameter values. The JO, M, and S-curves depicted are 

proportional to the o-values used. Recall, in particular, that 

the uncertainty of survival can be as little as l/10 of the 

. 
value used in Figure 1 for young ages. Therefore, when 

considering the survival in, say, ages l-10 at jump-off, the 
* 

true curve would be initially about l/10 of the curve 

depicted. It would start to increase at an accelerating rate 

in later forecast years because of the rapid increase in 

mortality. However, it would stay clearly below the curve 

depicted in the whole range depicted. Similarly, consider 

those in, say, age 50 at jump-off. Their true curve would 

start slightly below the curve depicted, but it would increase 

faster and quickly exceed the curve depicted. We see that in 

all cases the uncertainty of survival will eventually exceed 

the uncertainty of the other two sources, and the uncertainty 

of migration will eventually exceed that of the jump-off 

population. During the first twenty forecast years all sources 

appear to be important with any reasonable parameter 

combinations. 
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4.2. The First Generation of Births and Their Survival 

Consider the first 16 forecast years, when there are 

still no "births to births". We call these the first 

generation of births. Define B(j,t) as the forecast number of 

births to women in age 15 s j s 44 that are in age 0 at t, or 

vto,tj = B(15,t) +...+ B(44,t). As in Alho and Spencer (1991) 

we use a Taylor-series development to calculate the 

covariances of the births. For V(O,t) we get, in particular, 

that 
* 

44 
vto,tj = v(O,t) + V(O,t)-l II B(j,t) [log(B(j,t)) - 

j=15 

The between births the year and in year 

u, 1. t u 1. is 

Cov(VtO,t) = 

44 
V(O,t)-lV(O,u)-l c B(j,t)B(k,u) LOJo tor2 + 1. 

j=15 

Using the of the and e,(t) and the 

es(t) = +.. .+ we get 

t-1 u-1 

Cov(Q(t),Q(u) 1 = toM2 + Cov( x (t-m)&,(m), Z (u-n) E, tn) 1 
m=O n=O 
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t-1 
= to$ + I2 (t-k) (u-k&*. 

k=O 

The sum on the right hand side can be written as q2(u -I- t + 1) 

(t + l)t/6. It follows that for 1 5 t 5 u L 16 we have that 

Cov(v(O,t) ,V(O,u)) = crJ02 + tq2 + Gs2tu + t + 1) (t + l)t/6). 

In particular, the variances are 

Var(V(o,t)) = tGF2 + oJ02 + toM2 + o,2h(t) - 

This permits the comparison of the contribution that the 

jump-off population, mortality, and migration on the one hand, 

and fertility on the other, make to the uncertainty of the 

births. The top curve of Figure 1 shows how the standard 

deviation due to the first three components (oJo2 + toM2 + 

os2h(t)) varies as a function of the forecast year. In 

particular, we see that the curve exceeds the value 0.02 at 

forecast year t = 46, approximately. However, this is less 

than half of the value of t1'2q at t = 1, when 0, = 0.05, a low 

value. Similarly, at t = 16, Var(V(j,t-1)) = 0.005 and t1'2q = 

0.2, so Var(V(j,t-1)) 1'2/t1'2q < 0.03. This shows that the 

effect of the uncertainty in the jump-off population, 

mortality, and migration is to multiply the widths of 

prediction intervals for births by a number between 1 and (1 + 

o.032)"2 = 1.0005, as compared to intervals that would take 

into account the uncertainty of fertility alone. This 

conclusion holds, a fortiori, because the value of (7, used in 
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Figure 1 that is appropriate for average mortality iS about 

ten times as large as the value appropriate for the youngest 

ages. Obviously, for the purpose of analyzing the uncertainty 

of births during the first sixteen forecast years it is not 

necessary to take into account any other factors besides 

fertility. 

Consider the surviving births from the years 1 L t 5 16. 

Or consider ages j such that max{O, t-16) 5 j 5 t. By Lemma 1 

. 

we know that the variance due to jump-off, mortality, and 

migration is simply oJo2 + to,* + Q,*h(t). Since the age group j 

at forecast year t are survivors of V(O,t-j), the variance due 
I 

to fertility must be (t - j)q'. Or we have that for max{O, t- 

16) 5 j LIZ 

Var(a(j,t)) = (t - j)cT,* + o,,' + 0,' + %*h(t). 

It is of particular interest to see how the role of 

fertility that dominates the uncertainty of births, changes as 

the birth cohorts age. When t - j = 1 (births during the first 

forecast year), the role of fertility is at its minimum. We 

see from Figure 1 that the square root of the remaining terms 

does not even reach on half of o, = 0.05 during the first 48 

forecast years. For larger values of t the uncertainty of the 

other factors has even less influence. 

4.3. The Second Generation of Births and Their Survival 

During forecast years t = 17,..., 32 the births generated 
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during the first sixteen forecast years contribute new births. 

However, no "third generation" births are yet possible. By 

Lemma 1, the contribution of jump-off population, mortality, 

and migration to the uncertainty of V(O,t) is e,, + Q(tj. The 

direct contribution of fertility is ef(t). The indirect 

contribution (via the size of the child bearing ages) is 

t-2 
I(t) = V(O,t)-1 x B(k,t)e,(t-l-k) . 

k=15 

Consider two types of covariances. First, take 1 1. t F 16 

e < u 5 32. We have that 

Cov(U(O,t), O(O,u) 1 = 

Cov (e, + Q(t) + e,(t), e,, + e,(u) + Q (~1 + 1 (U) ) = 

qJo* + to,* + os2(u + t + 1) (t + l)t/6 + to,' + Cov(e,(t), I(u)) . 

The last covariance term can be written as 

u-2 
cov (e, (t 1 , I(u)) = v(O,t)-' X B(k,t)Cov(e,(t), e,(u-1-k)) I 

k=15 

where Cov(e,(t), e,(u-l-k)) = a,*min{t, u-l-k). 

Second, take17&t(uL32. Then the covariance formula 

becomes 

C0v(U(O,t), U(O,u)) = 
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Cov (e, + Q(t)+ e,(t) + I(t), e,, + Q(u) + e,(u) + 1 (u) 1 = 

%* + to,* + q*(u + t + 1) (t + l)t/6 + tq* + 

Cov(e,(t), I(u) 1 + Cov(e,(u), I(t) 1 + Cov(I(t), I(u) 1. 

Here, 

u-2 
. Cov (e, (t) , I(u)) = v(o,u)-l x B(k,u)q*(u-l-k), 

k=15 

t-2 
Cov (e, (u) , I(t)) = V(O,t)-l x B(k,t&*(t-l-k), 

k=15 

Cov(I(t), I(u)) = 

t-2 u-2 
v(O,t)-lv(o,U)-l Is x B(k,t)B(j,u)q*min{t-l-k, u-l-j}. 

k=15 j=15 

In particular, when 17 5 t 5 32 the variances are 

Var(U(O,t)) = oJo2 + to"* + 0,*(2t + 1) (t + l)t/6 + to,* + 

t-2 
2*V(O,t)-l E B(k,t)o,*(t-l-k) + 

k=15 

t-2 t-2 
V(O,t)-* x E B(k,t)B(j,t)q*min(t-l-k, t-l-j}. 

k=15 j=l5 
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It is evident that the role of the uncertainty in the jump-off 

population, mortality, and migration is, if possible, even 

less important for the second generation of births than for 

the first generation. 

. 

An interesting new issue arises when t = 17,..., 32, 

however. The direct component of uncertainty that is due to 

current fertility is to,*. The two remaining terms involving Of2 

arise because of the indirect component that operates through 

the size of the child bearing ages. The first one is due to 

the covariance of the direct and indirect components (= 

= 2-Cov(e,(t), 1 (t) 1, and the second is the variance of the 

indirect component (= Var(I(T))). What are the numerical 

magnitudes of the direct and indirect components? For 

concreteness, let us assume that the age distribution of the 

mothers, B(k,t)/V(O,t), k = 15,..., 44, is proportional to the 

net-maternity function (see Section 4.5) of the United States 

in the year 1985. 

The absolute and relative contributions of the three 

terms are given in Table 1 (in the units cr,*). We see that the 

direct contribution to error variance declines from over 98% 

during the forecast years t = 17-20 to about 90% at forecast 

year t = 24 and to about 68% by forecast year t = 32. This 

means that a prediction interval for t = 32 that would 

completely ignore the indirect effect would be based on a 

standard deviation that is 0.68l'* = 0.82 times the correct 

value. In other words the widths of the intervals would be 

approximately 18% too narrow. Note that this result does not 

depend on the exact value of o,, as long as its order of 
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magnitude relative to the other sources of error is the one 

assumed. 

When one follows the chart born at jump-off year V(O,O) 

and the first birth cohort V(O,l), one notices a dramatic 

increase in the variance of the forecast error that is due to 

fertility. However, no similar jump occurs when one compares 

the cohort V(O,16) and V(O,17). Table 1 shows that the 

increase in variance is mainly determined by Var(e,(t)), and 

the terms Cov(e,(t), I(t)) and Var(I(t)) (that are additional 

as compared to forecast years t = l,..., 16) are initially 

quite small. 

Table 1 permits also a ready comparison of the role of 

fertility versus the other sources of uncertainty among the 

survivors of the second generation of births. Consider the 

births during the forecast year t = 25, for example. The 

standard deviation due to fertility alone (but including both 

the direct and indirect components) would be (25*0.052/0.88)"2 

= 0.267. The uncertainty of the other three components does 

not reach one tenth of this during the first 48 forecast 

years. 

4.4. The Third Generation of Births 

Consider finally forecast years t = 33,..., 48. The 

interest centers on the relative magnitudes of the direct and 

indirect components of fertility to the uncertainty of births. 

Transparent analytical expressions for the second moments are 

fairly complicated in this case. However, relatively simple 
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recursive formulas can be derived that permit a numerical 

evaluation. A program written in (Turbo) C that implements 

these calculations for forecast years t = l,..., 48, is given 

in Appendix I. 

The direct contribution of fertility is e,(t), as always. 

The indirect contribution is 

min{44,t-2) 
I' (t) = v(O,t)-l c, B(k,t)q(t-l-k), 

k=15 

where q(t-l-k) is the factor of uncertainty in a(O,t-1-k) that 

derives from fertility alone. When t - 1 - k 1. 16, then 'q(t-l- 

k) = e,(t-l-k) . When, t - 1 - k > 16, then q(t-l-k) = e,(t-l-k) 

+ I(t-l-k), where I is as defined in Section 4.3. 

In Section 4.3. we have calculated the covariances of the 

factors q(t-l-k) when t - 1 - k 1. 32, so Var(I'(t)) can be 

calculated recursively. The covariance remains to be 

evaluated. For t - 1 - k ( 16 we have that 

Cov(q(t-l-k), e,(t)) = q*(t - 1 - k) . 

For t - 1 - k > 16 we get 

Cov(q(t-l-k), e,(t)) = Cov(e,(t-l-k) + I(t-l-k), e,(t)) 

= a,*tt - 1 - k) + cOV(I (t-l-k), e,(t) )I 

where 
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t-3-k 
Cov(I(t-l-k), e,(t)) = V(O,t-1-k)-1 C B(j,t-1-k)G,*(t-l-k) . 

j=15 

'A simplifying assumption to be used below is that the age 

distribution of the mothers is the same as the distribution of 

age-specific fertility in the U.S. in 1985. This is a 

reasonable assumption, unless the point forecast indicates 

highly nonstationary population growth. 

Table 2 presents the relative contributions of the 

. 
current fertility e,(t), the indirect component I' (t), and 

their covariance to the uncertainty in births during forecast 
* 

years t = 33,..., 48. We see that both Var(I'(t)) and 

2-Cov(e,(t), 1'(t)) increase their relative share of the error. 

These indirect sources grow faster than the uncertainty of the 

current fertility, which grows linearly with the forecast 

year. They exceed the contribution of the current fertility 

after forecast year t = 41. At the same time the total error 

due to fertility grows from 0.126 at t = 33 to 0.282 at t = 

48. Obviously, in long term forecasting the role of indirect 

terms cannot be neglected. 

4.5. The Impact of Stable Growth 

Population growth can impact the propagation of error 

calculations. In our simplified setup this is visible in the 

formulas for the second or third generations of birth that 

depend on the age-distribution of mothers. Since the age- 

distribution depends, not only on fertility, but also on past 
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birth series, it is clear that population growth can 

potentially have an impact. However, it is somewhat reassuring 

to note that in cases of practical importance the impact is 

likely to be fairly small. The easiest way to see this-is to 

consider stable growth. 

Suppose the jump-off population has a stable age- 

distribution (Keyfitz, 1977, pp. 172-173). Consider a point 

forecast that specifies no change in fertility and mortality 

rates over time, and assumes zero net migration by age. It 

follows that the point forecast leaves the age-distribution of 

the population unchanged. The total population size (and the 
* 

size of each age group) grows or declines exponentially, 

depending on whether the births exceed the deaths, or vice 

versa. This makes the assessment of the effect of the growth 

rate relatively simple. 

Let p(j) be the probability of surviving to age j, write 

f(j,t) = f(j), j = 15,..., 44, for short, and let p be the 

growth rate. Then, the stable age-distribution is proportional 

to p(j)e-pj, j = O,..., s, for all t. Therefore, the age- 

distribution of the mothers is proportional to f(j)p(j)e-pj, j 

= 15,..., 44, where f (j)p(j) is the net maternity function. 

Or, 

44 
B(j,t)/V(O,t) = f(j)p(j)e-pj/ Z f(k)p(k)e-pk. 

k=15 

Qualitatively, the effect of growth is straight forward. An 

increase in p increases the importance of low ages. A decrease 

in p increases the importance of high ages. Table 3 has 
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numerical estimates of the magnitudes of these effects for 

growth rates ranging from p = 0.02 to -0.02 when the 1985 U.S. 

net maternity is used for the age-distribution of the mothers. 

We see that the proportion of variance due to the indirect 

sources, out of the total contribution to uncertainty by 

fertility, ranges from 8.1% (p = 0.02) to 6.0% (p = -0.02) at 

forecast year t = 25, and from 24.0% (p = 0.02) to 20.3% (p 

= -0.02) at t = 32. 

4.6. Accuracy of Approximate Formulas 

The above calculations provide one framework for 

assessing the accuracy of the approximate propagation of error 

calculations proposed by Alho and Spencer (1991). Those 

formulas account for all sources of error (within the accuracy 

of Taylor-series approximation) for birth forecasts of years t 

= 1 I***, 16. After that various covariance terms are omitted 

with the effect that once the covariance structure of past 

births has been calculated, then in the calculation of later 

births we do not go back to trace the history of a birth 

cohort beyond their mothers birth. 

For example, when considering the variance of births 

during the forecast years t = 17,..., 32, the variance 

calculation excludes the term 2*Cov(e,(t), I(t)) but includes 

the term Var(e,(t)), which represents current fertility, and 

the term Var(I(t)), which represents the uncertainty of in the 

number of mothers. The relative magnitudes of these terms can 

be determined from Table 1. We see that the omitted term 
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represents less than 11% of the variance until forecast year t 

= 25. After that it increases to 25.3% at forecast year t = 

32. The omission of this covariance term means that the width 

of the prediction interval is (1 - 0.253)l'* = 0.864 times the 

correct value at t = 32. Or the interval is nearly 14% too 

narrow. Table 3 implies that positive population growth tends 

to increase the error slightly. Population decline has the 

opposite effect. 

Table 2 shows the development during forecast years t = 

33,..., 48. The approximate formulas exclude the covariance 

terms P,. We see that by the year t = 48, the variance of the 

forecast error will be underestimated by 40%. This implies 

that prediction intervals based on the approximate formulas 

will be (1 - . 0 397)112 = 0.78 times the width of the correct 

intervals. Or the intervals will be 22% too narrow. 

One way to make the approximate formulas more accurate 

would be to apply proportional adjustment factors based on 

calculations such as these. Alternatively, it is possible to 

program the exact formulas for forecast years t > 16. Alho and 

Spencer (1991) provide exact formulas for t = 17,..., 32. 

5. Numerical Evaluation of Actual Forecasts 

The simple analytical model given above probably captures 

the broad features of realistic error propagation. However, it 

obviously does not utilize the best possible time-series model 

for forecasting the vital rates. For example, once we have 

differenced the (logs of the) fertility rates, it is natural 
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to investigate the autocorrelation structure of the 

differenced series and to attempt to identify an ARMA model 

for it, rather than to simply assume that the differenced 

series is an uncorrelated stationary sequence. More generally, 

we may model the various time-series jointly using vector ARMA 

techniques. One would expect that the utilization of such 

techniques would decrease the estimate of error variance for 

short term forecasts, but one would not expect large 

differences as compared to the simpler model in long term 

forecasting, when the advantage provided by the 

autocorrelatedness has worn off. e 

The concrete models considered here are those of Bell and 

Monsell (1991). We first describe the fertility and mortality 

models used and then present the numerical results. 

5.1. Fertility Model 

Define the total fertility rate of the year t as 

W(t) = R(0,15,t) +...+ R(0,44,t), 

with w(t) = log(W(t)), and let the fraction of fertility due 

to age j during year t be 

Q(j,t) = R(O, j,t) /W(t), j = 15 I --'I 44, 

with q(j,t) = log(Q(j,t)). Then, R(O,j,t) = Q(j,t)W(t), and 
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f(j,t) = q(j,t) + w(t). 

Bell and Monsell analyzed the processes q(j,t) using principal 

components methods (actually they used ages 14-46, but we will 

combine the contributions of ages 14 and 15 to age 15, and the 

contributions of ages 44-46 to age 44). It was found that four 

principal components and the total fertility rate provided a 

fairly good representation for the time-series. 

In other words, writing U = (ul,...,uq), where uj's are 

. 
the eigenvectors, p, = (pit, . . ..Pdt)* for the coordinates (or the 

pricipal components), and q(t) is the vector of q(j,t)'s, they 
* 

considered the representations 

4(t) = U& + e,, 

where e,' s are independent error vectors with Cov(e,) = &. 

Defining U =[l, VI, where 1 is a vector of all ones, & = 

(w(t) , P,') T, and f(t) a vector of f(j,t)'s, we can write 

f (t) = Up, + e, 

for the vector of the log-fertility rates. 

The components of the coordinate vector p, were jointly 

modeled. It was found that differencing the vector once was 

necessary to reduce the vector series to stationarity. Then, a 

vector ARMA model was fitted to the differenced vector VP,. It 

turned out that a reasonable approximation to the (slightly 

more complex) best fitting model was obtained by an AR(l) 
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model 

VP, = @m-l + Et, 

. 

where @ is a diagonal coefficient matrix, Q = diag(0.673, 

0.383, 0.716, 0.598, 0.707), and q's are independent with 

COV(E,) = &. In other words, each of the component series was 

modelled by a univariate AR(l) model with the parameter given 

on the diagonal of Cp. This Markovian model is particularly 

simple from the point of view of propagation of error 

a calculations. 

Assuming that we have observations for t 2 0, then the 

point forecast for the year t > 0 is simply VP, = @VP,. The 

covariance of the forecast error is 

t-1 
cov cvp, - vp,, = I2 aqw. 

k=O 

More generally, the error covariance for the coordinates p, and 

P t+k, k 1 0, iS Of the form 

‘Ov( (Et - pt) @,+k - Pt+kjT) = ji 6; @) & (t+:-‘@) 

h=O 

= $(t,t+k) . 

It follows that in analogy with Bell and Monsell (1991, p. 15) 

the forecast error z(t) - f(t) = e,(t) has the covariance 
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0x7 (e, (t) , e,(t+k)) = UCB(t,t+k)UT + 6(k)&,, 

where k 2 0, and 6(k) = 1 for k = 0, and 8(k) = 0 for k > 0. 

5.2. Mortality Model 

Bell and Monsell (1991) used principal components to 

model mortality much the same way they analyzed fertility. In 

the case of mortality the ages 0, 1, 2, 3, 4, 5-9, lo-14,..., 

80-84, 85+ were considered. Define the log-mortality rate of 

age j during year t as y(j,t) = log(-r(j,t)). Let y(t) be the 

vector of the y(j,t)‘s for j = 0, l,..., s, where s is the 

highest age to be considered (s 2 85). Let Z be the matrix 

that has the five most important eigenvectors of the sums of 

squares and products matrix of the grouped mortality data, 

expanded in such a way that the columns of Z have one 

component for each age j = 0, l,..., s. (In other words, rows 

were added to Z so that, for example, the rows 6-10 of Z are 

equal to the component corresponding to the age-group 5-9.) 

Let & be the vector of coordinates in the representation of 

y(t) in terms of U for the year t. Then, the model considered 

can be written as y(t) = Zp, + e,, where the e,'s are 

independent error vectors with a covariance matrix estimated 

from the data. Note that since y(t) has component for each 

age, some of the components, such as the components 6-10, are 

perfectly correlated. Again, a reasonable approximation to the 

best fitting model was obtained by taking an AR(l) model for 

the first differences of each of the coordinates. Or, we have 
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VP, = @m-l + Et, with Q = diag(0.649, 0.331, -0.106, -0.140, 

-0.183). It follows that the forecast error for y(t) has the 

same form as the forecast error for f(t) in Section 5.1. (with 

U replaced by Z). 

Despite the many similarities, the analysis of mortality 

is in one respect more complicated than that of fertility. The 

use of the log-transform had the effect that fertility rates 

were transformed precisely to the form in which they are 

needed, say, in the formulas of page 5 above (the f(k,t-1)'s). 

. 
However, the use of the log-transform for mortality means that 

the sums of r(j,t)'s on page 5 become nonlinear functions of 
* 

the forecast values. It follows that the propagation of error 

calculations for v(j,t)'s with even j > t (these are the 

survivors from the jump-off population) requires the use of a 

Taylor-series expansion. 

From the point of view of the propagation of error 

calculations it would be much preferable to analyze the 

mortality rates as such, despite the fact that this may lead 

to negative estimates in the very youngest or the very oldest 

ages. These ages are not important in the analysis of the 

accuracy of the forecasts. One reason for preferring log- 

mortality rates is that it may permit simpler forecasting 

models, an issue we have not considered in this paper at all. 

5.3. Results 

5.3.1. Survival from Jump-Off 

Appendix II contains a program written in (Turbo) C that 
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was used to calculate the relative forecast error for forecast 

years t = l,..., 48. The uncertainty of survival was the only 

component included in the calculation. We will comment on the 

effect of the uncertainty of the jump-off population and 

migration at the end. 

Figure 2 has a plot of the standard deviation of the 

relative error for the age-groups that were in ages 0, 10,. - .I 

40 at jump-off, when they are survived 48 years. For 

comparison purposes it also includes the corresponding (solid) 
. 

curve c&h(t) I'* for the simple analytical model that was 

I displayed in Figure 1 already. As in Figure 1, a standard 

deviation of, say, 0.05 means that with probability 95% the 

forecast error is not more than +lO% of the point forecast of 

the number of survivors. 

Figure 2 indicates that the estimates of uncertainty 

increase with the increasing age at jump-off. The reason is 

that the uncertainty of survival is approximately proportional 

to the level of mortality. Therefore, in younger ages (say, l- 

50) much less uncertainty accrues over the forecast years than 

in older ages. 

We see also that the estimates are, in many ages, 

initially smaller than those based on the simple analytical 

model with 0, = 0.0001. However, the older age-group depicted, 

i.e., those who survive from ages 20, 30, and 40 at jump-off 

to ages 68, 78, and 88 at forecast year t = 48, have forecast 
I 

errors that become much larger than one would anticipate based 

on Figure 1. The difference can be large. The cohort of 40 

year olds at jump-off have a relative error of 0.000048 at t = 
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1 but it increases to 0.299 at t = 48, whereas the respective 

values expected based on the analytical model are 0.0001 and 

0.0195. (For the cohort of 50 year olds at jump-off the 

relative error reaches the value 0.56 at t = 48.) 

In view of the discussion of Figure 1, differences of 

this magnitude are not surprising, when one recalls that 

mortality in, say, ages 70-74 is 100 times higher than 

mortality in ages 10-14. Hence, the level of uncertainty can 

vary much more from age to age than one would expect based on 
. 

the analytical model. One should also recall that the solid 

curve depicted in Figure 2 is based on a relatively low level 
I 

of error (0, = 0.0001) compared to observed data. Doubling the 

level of uncertainty might be quite reasonable. This would, 

nevertheless, leave the conclusions above qualitatively the 

same. 

A comparison between the shapes of the SD curves for the 

cohorts and the one based on the analytical formula is also 

interesting. Asymptotically, h(tJ1/' behaves like t3'* so the 

curve increases faster than linearly, a fact that can easily 

be seen in Figure 1. The curves for the most cohorts start out 

slower than the analytical formula, but increase faster, when 

the cohorts advance to older ages with sharply higher levels 

of uncertainty (cf. Figure 4 of Alho and Spencer, 1990, p. 

615). However, for the very youngest cohort (age = 0 at jump- 

off) the uncertainty is initially even higher than that 

predicted by the analytical formula, but by the tenth forecast 

year it falls below all other curves. This is an anomalous 

case. 
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We conclude by two remarks relating to the other sources 

of uncertainty. First, consider the effect of the uncertainty 

in the jump-off population and migration that was not 

explicitly considered above. Assume, as we did in our 

analytical models, that in relative terms those effects are 

. 

the same in all ages. Recall that the relative error of 

migration reached approximately the level SD = 0.003 at t = 

30 and the jump-off had SD = 0.004. These error levels would 

dominate many cohorts through the 20-30 first forecast years. 

It is useful to note that this conclusion holds, a fortiori, 

I if one considers how the assumption of age-independence should 

be relaxed. Presumably, the uncertainty of the jump-off 

population is the greatest in those ages in which the 

undercount is the largest. These would typically be ages with 

very low mortality, such as ages 20-30. Similarly, the 

uncertainty of migration would be expected to be the largest 

in ages in which the volume of migration is the greatest. 

These would be the early working years (again 20-30) and the 

early retirement ages (60-70). At least the first of these 

uncertainty "humps" is located in an age with low mortality. 

Both factors would increase the uncertainty due to migration 

and jump-off relative to the uncertainty of survival. 

Secondly, we have seen that fertility overwhelmingly 

dominates the uncertainty of future birth cohorts under the 

analytical model. We expect it to do the same, when the level 

of uncertainty in survival in the youngest ages is estimated 

to be much less. 
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5.3.2. Births 

Figure 3 has a plot of the standard deviation of the 

error in log-births that is caused by the uncertainty of 

period fertility for forecast years t = l,..., 32. In other 

words, this the direct component of uncertainty that does not 

include the uncertainty in the numbers of women in child 

bearing ages. The solid curve has the level of error 

calculated based on the principal components regression 
. 

approach of Bell and Monsell, the dashed line has the curve 

c&t"* for 0, = 0.05 and the dotted line has the same curve for I 

OF = 0.10. These are the parameter values considered reasonable 

for the analytical model. 

We see that the principal components model gives 

qualitatively very similar results as the analytical model. 

The major difference is that the error expected based on the 

principal components model increases initially much faster 

than the two analytical curves. Apparently, this is due to the 

fact that the analytical models assume independent increments 

for the error, whereas the AR(l) model estimated for the 

principal components assumes positively correlated increments. 

As anticipated based on the analytical models, it is 

clear that for the purpose of analyzing the uncertainty of 

births, only the uncertainty in birth rates (both in its 

direct and indirect forms) needs to be considered. For 

example, at forecast year t = 1 the relative error in the 

pricipal component approach is 0.03, a value that is reached 

by the highest error curve of Figure 2 at t = 27. The 
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contribution of survival and migration in younger ages is 

quite insignificant. 

. 

The second issue to be studied was the indirect 

contribution of fertility through "births to births" during 

forecast years t = 17,..., 32. As shown in Table 1, this 

contribution exceeded 30% at t = 32 in the analytical model. 

As Table 4 demonstrates, the indirect contribution appears to 

be somewhat smaller in the principal components approach. For 

example, at t = 32 the indirect sources contribute 

approximately 25% of the variance. One might conjecture that 

I: 
the difference is due to the more highly nonstationary model 

used in the principal components approach. 

Figure 4 has a plot of the relative error under the 

principal components model (solid curve) and the analytical 

model (dashed curve). We see again that the level of error is 

higher in the former model. Note also how both curves start to 

increase faster after t = 17, when the indirect component of 

uncertainty due to "births to births" starts to gain 

importance. 

6. Discussion 

We have analyzed several aspects of how different vital 

processes influence the error of population forecasts. The 

most important observation has been that the uncertainty of 

fertility is so high compared to the uncertainty of other 

vital processes that for the purpose of analyzing the 

uncertainty of birth forecasts the other sources can be 
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completely ignored. The conclusion was the same in both the 

analytical model and the forecasting model based on principal 

components. 

Secondly, it turned out that for the purpose of analyzing 

the survivors of the jump-off population, the uncertainty of 

the jump-off population and that of migration are equally 

important as the uncertainty of mortality for forecast periods 

of about 15 years. These sources of error have been studied 

much less than fertility and mortality, presumably because of 

data problems. However, it is clear that in short term 

forecasting they cannot be ignored. 

Thirdly, the simple analytical model appeared to give 

qualitatively the correct picture of the order of magnitude of 

various sources of error. Nevertheless, it could not (as it 

was not designed to) capture the variation in the forecast 

error among the survivors of the jump-off population by age. 

These variations depended on the fact that mortality varies by 

orders of magnitude in different ages and, hence, also the 

level of error in mortality forecasts. 

Finally, we considered the accuracy of the approximate 

propagation of error formulas of Alho and Spencer (1991). The 

fact that the uncertainty of fertility dominated the other 

sources means that the approximations saying that we can 

consider the covariance of childrens' survival and their 

mothers, survival prior to the childrens' birth zero seems 

well justified. On the other hand, the assumption that current 

fertility is uncorrelated with the fertility that produced the 

current mothers becomes increasingly unacceptable when the 
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forecast period exceeds, say, 25-30 years. Fortunately, that 

covariance is relatively easy to program (at least when one 

compares it to the programming of the covariances between the 

mortalities), so the idea of Alho and Spencer (1991) of 

implementing a stochastic forecast as a database, which uses 

as one input a previously calculated covariance matrix of the 

errors of the birth forecasts, appears quite feasible based on 

these investigations. 
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Table 1. The values of the direct component of uncertainty in 

births t = Var(e,(t) )oF-*, the covariance of the direct 

component and the indirect component C = 2.Cov(e,(t), I(t))GT,-*, 

and the variance of the indirect component V = Var(I(t))a,-* 

(all in the units oF2) for t = 17,..., 32. 

t % C 3 0 V % 

17 99.8 0.03 0.2 0.00 0.0 
18 99.5 0.09 0.5 0.00 0.0 
19 98.9 0.20 1.1 0.00 0.0 

. 20 98.0 0.40 2.0 0.01 0.1 
21 96.7 0.69 3.2 0.04 0.2 
22 95.0 1.09 4.7 0.08 0.3 
23 92.9 I 1.61 6.5 0.14 0.6 
24 90.6 2.24 8.5 0.24 0.9 
25 88.0 3.00 10.6 0.39 1.4 
26 85.3 3.89 12.8 0.59 1.9 
27 82.4 4.90 15.0 0.84 2.6 
28 79.5 6.05 17.2 1.17 3.3 
29 76.6 7.31 19.3 1.57 4.1 
30 73.7 8.69 21.3 2.04 5.0 
31 70.8 10.17 23.2 2.59 5.9 
32 68.1 11.76 25.3 3.22 6.8 
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Table 2. The proportions of the covariance of the direct and 

indirect components of uncertainty 2.Cov(e,(t), If (t)) (= pc) 

and of the variance of the indirect component Var(I'(t)) (= P") 

in percent out of the total uncertainty caused by fertility 

for t = 33,..., 48. 

t PC P" 

33 26.7 7.8 
34 28.1 8.7 
35 29.5 9.5 
36 30.8 10.4 
37 31.9 11.2 
38 32.9 11.9 
39 33.9 12.6 

I 40 34.7 13.2 
41 35.5 13.8 
42 36.3 14.4 
43 37.0 14.9 
44 37.6 15.5 
45 38.2 16.0 
46 38.8 16.5 
47 39.3 17.0 
48 39.8 17.5 
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Table 3. The proportions of the covariance of the direct and 

indirect components of uncertainty 2-Cov(eF(t)f I(t)) (= PC) 

and of the variance of the indirect component Var(I(t)) (= P") 

in percent out of the total uncertainty caused by fertility 

for t = 17, 25, 32, when the rate of stable growth is p = 

0.02, 0.01. 0.00, -0.01, -0.02. 

t = 17 t = 25 t = 32 

P PC P” PC P” PC P” 
. 

0.02 0.2 0.0 11.9 1.7 26.3 7.6 
0.01 0.2 0.0 11.2 1.5 25.7 7.2 

e 0.00 0.2 0.0 10.6 1.4 25.0 6.8 
-0.01 0.1 0.0 9.9 1.2 24.3 6.5 
-0.02 0.1 0.0 9.3 1.1 23.6 6.1 
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Table 4. The relative contributions (%) of the uncertainty of 

past births (= V) and twice the covariance between the past 

births and current fertility (= C) to the variance of the log- 

births during forecast years t = 17,..., 32. 

t V C 

17 0.0 0.0 
18 0.0 0.1 
19 0.0 0.3 
20 0.0 0.7 
21 0.0 1.3 
22 0.1 2.2 
23 0.2 3.3 
24 0.2 4.7 
25 0.5 6.3 
26 0.8 8.1 
27 1.1 10.1 

I 28 1.6 12.2 
29 2.1 14.3 
30 2.9 16.5 
31 3.6 18.6 
32 4.5 20.7 
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APPENDIX I 

/* This program calculates the covariances of births under 
the simple propagation of error model described in 
Alho: The contribution of different sources of error 
to the accuracy of population forecasts 
*/ 

#include <stdio.h> 
#include <alloc.h> 
#include <math-h> 
#define C(x,y) *(c+((x-1)*48)+y-1) 
#define A(x,y) * (a+( (x-l) *48)+y-1) 
#define B(x,y) * (b+( (x-l) *48)+y-1) 
#define H(x,y) *(h+((x-1)*48)+y-1) 

float col(int il, int i2, float sll, float sl); 
float co2(int il, int i2, float s[l, float sl); 
float co3(int il, int i2, float s[l, float sl); 
float co4(int il, int i2, float s[l); 

I float co5(int il, int i2, float s[l); 

float *a, *b, *c, *h; 

main0 
{ 
float sjo, sm, ss, sf, rl, dd[30], *d, wu, wt, ros; 
int t, u, k, j, m; 
FILE *fpl, "fp2; 
d=dd-1; 
sjo=pow(O.O0325,2); 
sm=pow(0.001,2); 
ss=pow(0.0005,2); 
sf=pow(0.05,2); 

/*allocate space for the matrices: 
C has the full covariances, 
A has the total contribution of fertility, 
B has the covariance terms omitted in the approxiamte 

formulas, 
H has the direct contribution of current fertility */ 

if ((c = (float *) malloc(sizeof(float)*48*48)) == NULL) 
printf("c allocate error\n"); 
if ((a = (float *) malloc(sizeof(float)*48*48)) == NULL) 
printf("a allocate error\n"); 
if ((b = (float *) malloc(sizeof(float)*48*48)) == NULL) 

printf("a allocate error\n"); 
if ((h = (float *) malloc(sizeof(float)*48*48)) == NULL) 
printf("h allocate error\n"); 

/* open the output file */ 
fp2=fopen("tulos", "w"); 

/* read the distribution of net maternity */ 
fpl=fopen("dist.dat","r"); 
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for(u=l; u <= 30; u++) 
I 
fscanf(fpl,"%f", &rl); 
d[u]=rl; 
1 

fclose(fp1); 

/* calculate covariances */ 
for(u=l; u <= 48; u++) 

{ 
for(t=l; t <= u; t++) 

{ 
C(t,u) = t*sf+sjo+t*sm+(u+t+l)*(t+l)*t*ss/6.0; 
A(t,u) = t*sf; 
B(t,u) = 0.0; 
H(t,u) = t*sf; 
if (u > 16 c& u <= 32) 

{ 
ros = col(t, u, d, sf); 
A(t,u) += ros; 
C(t,u) += ros; 
B(t,u) += ros; 
if (t > 16) 

t 
ros = col(u, t, d, sf); 
A(t,u) += ros; 
C(t,u) += ros; 
B(t,u) += ros; 
ros = co2(t, u, d, sf); 
A(t,u) += ros; 
C(t,u) += ros; 
1 

1 
if (u > 32) 

I 
if (t <= 32) 

I 
ros = co3(t, u, d, sf); 
C(t,u) += ros; 
A(t,u) += ros; 
B(t,u) += ros; 
if (t > 16) 

{ 
ros = col(u, t, d, sf); 
C(t,u) += ros; 
A(t,u) += ros; 
ros = co4(t, u, d); 
C(t,u) += ros; 
A(t,u) += ros; 
B(t,u) += ros; 
1 

I 
if (t > 32) 

ros = co3(t, u, d, sf); 
ros += co3(u, t, d, sf); 
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B(t,u) += ros; 
ros += co5(t, u, d); 
A(t,u) += ros; 
C(t,u) += ros; 
1 

1 /* end of t */ 

. 

fprintf(fp2, "%6f ", C(u,u)); 
fprintf(fp2, "%6f 'I, A(u,u) ); 
fprintf(fp2, "%6f "I H(u,u)); 
fprintf(fp2, "%6f II, B(u,u)); 
fprintf(fp2, "%6f ItI H(u,u)/A(u,u)); 
fprintf(fp2, "%6f 'I, B(u,u)/A(u,u)); 
fprintf(fp2, "%6f\n", 

I /* end of u */ 
l- (H (u, u) +B (u, u) ) /A (u, u) 1 ; 

1 /* end of main */ 

/* co1 calculates cov(ef(il), I(i2)) for 16 < i2 <= 48 
and il <= 48, at least */ 

* float col(int il, int i2, float s[], float sl) 
I 
int kl, wl, ml; 
float sto; 
sto=o; 
wl = (44 < i2-2) ? 44 . i2-2; 
for (kl=15; kl <= wl; il++) 

f 
ml = (il < i2-l-kl) ? il : i2-l-kl; 
sto += s[kl-14]*ml*sl; 
1 

return sto; 
1 

/* co2 calculates cov(I(il), I(i2)) for 16 < il, i2 <= 32, at 
least */ 
float co2(int il, int i2, float s[l, float sl) 
{ 
int kl, k2, wl, w2, ml; 
float sto; 
sto=o; 
wl = (44 < il-2) ? 44 : il-2; 
w2 = (44 < i2-2) ? 44 * i2-2; 
for (kl=15; kl <= wl; ];l++) 

for (k2=15; k2 <= w2; k2++) 
{ 
ml = (il-l-k1 < i2-l-k2) ? il-l-k1 : i2-l-k2; 
sto += s[kl-14]*s[k2-14l*ml*sl; 
1 

return sto; 
1 

/* co3 calculates cov(ef(il), I'(i2)) for il <= 48 and i2 > 
32, at least */ 
float co3(int il, int i2, float s[l, float sl) 
I 
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int kl, wl, ml; 
float sto, sto2; 
sto=o; 
wl = (44 < i2-2) ? 44 : i2-2; 
for (kl=15; kl <= wl; kl++) 

1 

ml = (il < i2-l-kl) ? il : i2-l-kl; 
sto2 = (i2-l-k1 <= 16) ? ml*sl : ml*sl + col(i1, i2-l-kl, s, ~1); 
sto += s[kl-14]*sto2; 
1 

return sto; 
I 

/* co4 calculates cov(I(il), 
at least */ 

I'(i2)) for 16 < il <= 32 and i2 > 32, 

float co4(int il, int i2, float s[]) 

I) t 
int kl, k2, wl, w2, ml, m2; 
float sto; 
sto=o; 

* w2 = (44 < i2-2) ? 44 : i2-2; 
for (k2=1; k2 <= w2; k2++) 

{ 
wl = (44 < il-2) ? 44 : il-2; 
for (kl=15; kl <= wl; kl++) 

{ 
if (i2-l-k2 < il-1-kl) 

t 
ml = i2-l-k2; 
m2 = il-1-kl; 

. 
1 

else 
{ 
ml = il-1-kl; 
m2 = il-l-k2; 
1 

sto += s[kl-14]*s[k2-14]*A(ml,m2); 
I 

1 
return sto; 
1 

/* co5 calculates cov(I'(il), I'(i2)) for 32 < il, i2 <= 48, at least 
*/ 
float co5(int il, int i2, float s[]) 
{ 
int kl, k2, wl, w2, ml, m2; 
float sto; 
sto = 0; 
wl = (44 < il-2) ? 44 : il-2; 
w2 = (44 < i2-2) ? 44 : i2-2; 
for (kl=15; kl <= wl; kl++) 

for (k2=15; k2 <= w2; k2++) 
C 
if (i2-l-k2 < il-1-kl) 
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l 
ml = i2-l-k2; 
m2 = il-l-k2; 
I 

else 
I 
ml = il-1-kl; 
m2 = i2-l-k2; 
1 

sto += s[kl-14l*s[k2-14]*A(ml,m2); 
1 

return sto; 
1 
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Appendix II 

/* Compile with memory model 'large, */ 

/* This program calculates a point forecast of the survivors 
of the jump-off population and a point forecast of ally 
mortality rates, both by single years of age. 
After that it calculates the variance of the forecast error 
for the survivors of the jump-off population. 

Then, a point forecast for all fertility rates is 
calculated. These are used to obtain a forecast of female births. 
Mortality forecasts are used to survive the births through 
the forecast period. After that, a covariance matrix of 
the births is calculated. */ 

#include <stdio.h> 
#include <alloc.h> 
#include <math.h> 

#define P(X,Y) *(p+(x)*49+y) 
I #define M(x,y) *(m+(x)*49+y) 

#define U(x,y) "(U+(x)*5+y-1) 
#define Cl(x,y) *(cl+(x-1)*5+y-l) 
#define C2 (x, y) * (c2+ (x) *lol+y) 

#define PSI(x,y) *(psi+(x)*5+y-1) 
#define VAR(x,y) *(var+(x)*48+y-1) 

#define B(x,y) *(b+(x-1)*49+y-1) 
#define F(x,y) k(f+(x)*49+y-1) 
#define C3(x,y) "(c3+(x-1)*49+y-1) 
#define Ul(x,y) *(ul+(x)*5+y-l) 
#define PSIl(x,y) *(psil+(x)*5+y-1) 
#define C4(x,y) *(c4+(x-1)*6+y-1) 
#define C5(x,y) *(c5+(x+1)*34+y+l) 
#define V(x,y) "(v+(x+l)*5+y+l) 

float col(int il, int i2, int t2, int t3); 
float co2(int i3, int t4, int t5); 

f1oat *PI *mr "uf "cl, "C2, *C3, *c4, *c5, *psi, *var, *v; 
float *b, *f, *c3, *ul, *psil; 

float beta11 = {-30.0134, -0.74581, -0.13023, 0.11293, 0.08089); 
float dif[] = (-0.029049, 0.006372, 0.015485, 0.037090, 0.021413}; 
float phi[] = (0.649, 0.331, -0.106, -0.140, -0.183); 

float betal[l ={0.536084, -26.6611, -2.3922, 0.4342, -0.6754); 
float difl[] = (0.00480884, -0.146975, -0.117353, -0.063485, 
-0.052468); 
float phil[] = IO.673, 0.383, 0.716, 0.598, 0.707); 

main0 
1 
float rl, mort, fert, sto[22]; 
int i, j, k, h, t, per, jl, tl, kl, hl; 
FILE "fpl, *fp2, *fp3, "fp4, *fp5, *fp6, "fp7, *fp8, *fp9; 
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FILE *fplO, *fpll, *fpl2, "fp13; 

/* will the mortality analysis be done? 
set mort = 1, if yes, otherwise set mort = 0 */ 
mort = 0; 

/* will the fertility analysis be done? 
set fert = 1, if yes, otherwise set fert = 0 */ 
fert = 1; 

/* allocate space for the matrices: 
P has the forecast of the survivors from the jump-off pop. 
in columns 1,2,. ..and the jump-off pop. in column 0; 
M has the forecasts of the ASMR's for each age (~01s. 1,2,...) 
and the last observed vector in column 0; 
U has the first five eigenvectors for log-mortality; 
Cl has the covariance matrix of the first differences of the 
first five coordinates of log-mortality; 
C2 has the covariance matrix of the error due to lack of fit 
caused by not using all eigenvectors; 
PSI has the diagonal elements of the powers of the phi- 
matrices for mortality; 
VAR has the variances of the prediction errors for the log of 
the number of the survivors from the jump off population; 
F has the point forecasts of log(ASFR)'s for ages 15,...,44; 
B has the forecasts of births by age of mother; 
C3 has the covariance matrix of the log-births; 
Ul has the eigenvector matrix for log(TFR) and log of 
fertility distributions; 
PSI1 has the sums of the diagonal elements of the powers of 
phi-matrices for fertility; 
C4 has the covariance matrix of the first differences of the 
first five coordinates of log-fertility; 
C5 has the covariance matrix of the error due to lack of fit 
caused by not using all eigenvectors; 
V has some results stored in it;. 

*/ 

if ((p = (float *) malloc(sizeof(float)*lOl*49)) == NULL) 
printf("p allocate error\n"); 
if ((m = (float *) malloc(sizeof(float)*lOl*49)) == NULL) 
printf("m allocate error\n"); 
if ((u = (float *) malloc(sizeof(float)*lOl*6)) == NULL) 
printf("u allocate error\n"); 
if ((cl = (float *) malloc(sizeof(float)*6*6)) == NULL) 
printf("c1 allocate error\n"); 
if ((~2 = (float *) malloc(sizeof(float)*lOl*lOl)) == NULL) 
printf("c2 allocate error\n"); 
if ((psi = (float *) malloc(sizeof(float)*6*49)) == NULL) 
printf("psi allocate error\n"); 
if ((var = (float *) malloc(sizeof(float)*lOl*49)) == NULL) 
printf("var allocate error\n"); 

if((f = (float *) malloc(sizeof(float)*34*49)) == NULL) 
printf("f allocate error\n"); 
if((b = (float *) malloc(sizeof(float)*31*49)) == NULL) 
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printf("b allocate error\n"); 
if((c3 = (float *) malloc(sizeof(float)*49*49)) == NULL) 
printf("c3 allocate error\n"); 
if((u1 = (float *) malloc(sizeof(float)*6*34)) == NULL) 
printf("u1 allocate error\n"); 
if((psi1 = (float *) malloc(sizeof(float)*6*49)) == NULL) 
printf("psi1 allocate error\n"); 
if((c4 = (float *) malloc(sizeof(float)*6*6)) == NULL) 
printf("c4 allocate error\n"); 
if((c5 = (float *) malloc(sizeof(float)*34*34)) == NULL) 
printf("c5 allocate error\n"); 
if((v = (float *) malloc(sizeof(float)*6*34)) == NULL) 
printf("v allocate error\n"); 

/* open the output files */ 
fpl=fopen ("spop", '1~"); 
fp2=fopen("asmrs", "w"); 
fp8=fopen("sd", "w"); 
fp9=fopen ("cohort", "w"); 

I /* read in the jump-off population; 
produces P(x,O), x = Of...,100 */ 

fp3=fopen("wfpop88", "r"); 
for(i=O; i <= 100; i++) 

fscanf(fp3,"%f", &P(i,O)); 
fclose(fp3); 

/* read in the last observed values of the asmrs 
and expand them to all ages; 
produces M(x,O), x = Of...,100 */ 

fp4=fopen("mrate", "r"); 
for(i=O; i <= 4; i++) 

fscanf(fp4,"%g", CM(i,O)); 
for(i=5; i <= 20; ++i) 

1 
fscanf(fp4,"%g", &r-l); 
for(k=O; k <= 4; ++k) 

M((i-4)*5+k,O) = rl; 
1 

fscanf(fp4,"%g", &rl); 
for(k=O; k <= 15; k++) 

M(85+k,O) = rl; 
fclose(fp4); 

/* read in the eigenvectors and expand them to all ages; 
produces U(x,y), x = O,...,lOO, y = 1,...,5 */ 

fp5=fopen("morteigl.dat", "r"); 
for(i=O; i <= 4; i++) 

for(j=l; j <= 5; j++) 
fscanf(fp5,"%g", &U(i, j)); 

for(i=5; i <= 20; i+-t) 
for(j=l; j -C= 5; j++) 

t 
fscanf(fp5,"%g", Crl); 
for(k=O; k <= 4; k++) 

U((i-4)*5+k,j) = rl; 
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for(j=l; j <= 5; j++) 
{ 
fscanf(fp5,"%g", &rl); 
for(k=O; k <= 15; k++) 

U(SS+k,j) = rl; 
1 

fclose(fp5); 

/* read in the covariance matrix of largest koordinates; 
produces Cl(x,y), x = 1,...,5, y = 1,...,5 */ 

fp6=fopen("mortmlt.cov", "r"); 
for(i=l; i <= 5; i++) 

for(j=l; j <= 5; j++) 
fscanf(fp6,"%g", &Cl(i,j)); 

fclose(fp6); 

. /* read in and expand the covariance of the error caused by lack of 
fit; 

produces C2(x,y), x = O,...,lOO, y = Of...,100 */ 

I fp7=fopen("mortsig2.datw, "r"); 
for(i=O; i <= 21; i++) 

{ 
for(j=O; j <= 21; j++) 

fscanf(fp7, "%g", &sto[j]); 
if (i < 5) 

1 
for(j=O; j <= 4; j++) 

C2(i,j) = sto[j]; 
for(j=5; j <= 20; j++) 

for(k=O; k <= 4; k++) 
C2(i,(j-4)*5+k) = sto[j]; 
for(k=O; k <= 15; k++) 

C2(if85+k) = sto[21]; 
1 

else if (i < 21) 
for(h=O; h <= 4; h++) 
{ 
for(j=O; j <= 4; j++) 

C2((i-4)*5+h,j) = sto[j]; 
for(j=5; j <= 20; j++) 

for(k=O; k <= 4; k++) 
C2((i-4)*5+h,(j-4)*5+k) = sto[j]; 

for(k=O; k <= 15; k++) 
C2((i-4)*5+h,85+k) = sto[21]; 

1 
else 

for(h=O; h <= 15; h++) 
{ 
for(j=O; j <= 4; j++) 

C2(85+h,j) = sto[j]; 
for(j=5; j <= 20; j++) 

for(k=O; k <= 4; k++) 
C2(85+h,(j-4)*5+k) = sto[j]; 

for(k=O; k <= 15; k++) 
C2(85+h,85+k) = sto[21]; 
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I 
fclose(fp7); 

/* calculate the PSI matrix for mortality; 
produces PSI(x,y), x = 0,...,48, y = 1,...,5 */ 

for(j=l; j <= 5; j++) 
PSI(O,j) = 1.0; 

for(i=l; i <= 48; i++) 
for(j=l; j <= 5; j++) 

PSI(i,j) = PSI(i-1,j) + pow(phi[j-l],i); 

/* calculate forecasts for age-specific mortality; 
produces M(x,y), x = O,...,lOO, y = 1,...,48 
(note that M(x,O) was read in earlier) */ 

for(j=l; j <= 48; j++) 
1 
for(k=O; k < 5; k++) 

{ 
dif[k] = phi[k]*dif[k]; 
betalk] += dif[k]; 
1 

for(i=O; i <= 100; i++) 
i 
rl = 0; 
for(k=O; k < 5; k++) 

rl += beta[k]*U(i,k+l); 
Mti, j) = exp(r1); 
1 

1 

/* calculate the forecast of the survivors; 
produces P(x,y), x = O,...,lOO, y = 1,...,48 
(note that P(x,O) was read in earlier and P(x,y) = 0 for x < y) 

*/ 
for(j=l; j <= 48; j++) 

{ 
for(i=O; i <= 100; i++) 

if (i < j) 
P(i,j) = 0; 

else if (i < 100) 
P(i,j) = P(i-l,j-l)*exp(-M 

else 
P(100,j) = (P(99,j-l)+P(99 

1 

(i-l,j-1)); 

,j-l))*exp(-M(99,j-1)); 

/* print the mortality rates */ 
for(i=O; i <= 100; i++) 

1 
for(j=O; j <= 48; j++) 

fprintf(fp2,"%8.7f ", M(i,j)); 
fprintf(fp2,"\n"); 
1 

fclose(fp2); 

/* error variances for the log of the survivors of the jump-off; 
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/* 

produces VAR(x,y), x = O,...,lOO, y = 1,...,48 
(note that VAR(x,y) = 0 for x < y) */ 

the following calculations are executed only when we have set 
mort = 1, above */ 

if(mort == 1) 
{ 

for(i=O; i <= 100; i++) 
for(j=l; j <= 48; j++) 
VAR(i,j) = 0.0; 

printf("variances intialized\n"); 
for(i=l; i <= 100; i++) 

I 
rl = 0; 
for(j=l; j <= 5; j++) 

for(k=l; k <= 5; k++) 
rl += U(i,j)*Cl(j,k)*U(i,k); 

VAR(i,l) = M(i-l,l)*M(i-1,l) *(rl + C2(i-l,i-1)); 
1 

* printf("initia1 values for recursion calculated\n"); 
for(i=l; i <= 99; i++) 

I 
per = (48 < 101-i) ? 48 : 101-i; 
for(t=2; t <= per; t++) 

{ 
jl=i+t-1; 
rl = 0; 
for(k=O; k <= t-l; k++) 
for(j=l; j <= 5; j++) 
for(h=l; h <= 5; h++) 
rl +=U(jl-l,j)*U(jl-l,h)*PSI(t-l-k,j)*PSI(t-l-k,h)*Cl(j,h); 

VAR(jl,t) = 
VAR(jl-l,t-l)+M(jl-l,t-l)*M(jl-l,t-l)*(rl+C2(jl-l,jl-l)); 

for(kl=O; kl <= t-l; kl++) 
I 
rl = 0; 
for(k=O; k <= kl; k++) 

for(j=l; j <= 5; j++) 
for(h=l; h <= 5; h++) 
rl +=U(jl-l,j)*U(jl-t+k,h)*PSI(t-l-k,j)*PSI(kl-k,h)*Cl(j,h); 
VAR(jl,t) += 2*M(jl-l,t-l)*M(jl-t+kl,kl)*rl; 

1) 
printf("age %u at jump-off handled\n", i); 
1 

/* print the standard deviations */ 
for(i=O; i <= 100; i++) 

t 
fp=t3t:(fp8,"\nage = %u\n", i); 

- . -J <= 48; j++) 
fprinkf(fp8, "%10.9f w, powWAR(i,j),O.5)); 

fprintf(fp8, "\n"); 
1 
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fclose(fp8); 

/* print the standard deviations for selected cohorts */ 
for(j=l; j <= 48; j++) 

I 
fprintf(fp9,"%3u ItI j); 
for(i=O; i <= 5; i++) 

fprintf(fp9,"%10.9f 'I, pow(VAR(lO*i+j,j),O.5)); 
fprintf(fp9, "\n"); 

1 
fclose(fp9); 

} /* end of the variance calculations relating to survival that are 
executed only when the condition mort = 1 is true */ 

/* the fertility calculations start here; 
they are executed only if the condition fert = 1 is true */ 

. 
if(fert == 1) 
I 

* /* open the input and output files */ 
fplO=fopen("ferteig.dat","r"); 
fpll=fopen("futfert","w"); 
fpl2=fopen("fertmlt.cov","r"); 
fp13=fopen("fertsig2.dat","r1'); 

/* read the first four eigenvectors into columns 2,...,5 of Ul and 
add 
a column of l's before them */ 
for(i=O; i <= 32; i++) 

I 
Ul(i,l) = 1.0; 
for(j=2; j <= 5; j++) 

fscanf(fpl0, "%g", &Ul(i,j) ); 
fscanf(fpl0, "%g", &rl); 
1 

fclose(fpl0); 

/* calculate the PSI-matrix for fertility; 
produces PSIl(x,y), x = 0,...,48, y = 1,...,5 */ 

for(j=l; j <= 5; j++) 
PSIl(O,j) = 1.0; 

for(i=l; i <= 48; i++) 
for(j=l; j <= 5; j++) 

PSIl(i,j) = PSIl(i-l,j) + pow(phil[j-l],i); 

/* calculate a forecast of the log of age-specific fertility; 
produces F(x,y), x = 1,...,30, y = 1,...,48; 
note that F(O,y) that corresponds to age = 14 and F(31,y) 
and F(32,y) are also non-zero; these numbers have been added 
to F(l,y) and F(30,y), respectively */ 

for(j=l; j <= 48; j++) 
I 
for(k=O; k < 5; k++) 

l 
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difl [kl = phil[k]*difl[k]; 
betal[kl += difl[k]; 
} 

for(i=O; i <= 32; i++) 
I 
rl = 0; 
for(k=O; k < 5; k++) 

rl += betal[k]*Ul(i,k+l); 
F(i,j) = rl; 
1 

1 

/* in the sequel we need a version of the eigenvectors that 
considers ages 15-44 only; hence we add contributions of 
ages 14 and 15 and ages 44-46 to ages 15 and 44 respectively */ 

for(j=2; j <= 5; j++) 
{ 
Ul(l,j) += Ul(O,j); 
Ul(30,j) += Ul(31,j) + Ul(32,j); 
I 

* /* calculate birth forecasts year by year and survive the 
births to the end of the forecast period; female births only! 
store the births into the matrix B(x,y), x = 1,...,30, y = 1,...,48; 
store the results on survivors into the matrix P(x,y) for x < y */ 
for(j=l; j <= 48; j++) 

I 
per = 48-j; 
rl = 0; 
for(i=l; i <= 30; i++) 

{ 
B(i,j) = 0.49*P(i,j-l)*exp(F(i,j)); 
rl += B(i,j); 
1 

P(O,j) = rl; 
for(k=l; k <= per; k++) 

P(k,j+k) = 
1 

P(k-l,j+k-l)*exp(-M(k-l,j+k-1)); 

/* print the population */ 
for(i=O; i <= 100; i++) 

t 
for(j=O; j <= 48; j++) 

fprintf(fp1, W%lO.lf '1, P(i,j)); 
fprintf(fpl,"\n"); 
I 

fc;ose(fpl); 

/* read in the covariance matrix of the betas into C4(x,y), 
x = l,... ,5, y = 1,...,5 */ 

for(i=l; i <= 5; i++) 
for(j=l; j <= 5; j++) 

fscanf(fpl2,"%g", &C4 (i,j) ); 

/* leave only the variance of log(tfr), 
zero */ 

set everything else to 
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/* 
for(i=l; i <= 5; i++) 

for(j=l; j <= 5; j++) 
C4(i,j) = (i*j == 1) ? 0.0025 : 0.0; 

*/ 

/* read in the covariance matrix of the error due to lack of fit 
into C5(x,y), x = -1,0,1,...,31, y = -1,0,1,...,31; the first 
two rows and columns and the last row and column will not be 
used in calculations */ 

for(i=-1; i <= 31; i++) 
for(j=-1; j <= 31; j++) 

fscanf(fpl3,"%g", CCS(i,j) ); 

. 

printf("start calculating covariance of log-births\n"); 
/* calculate the covariance matrix of the log-births; 

produces C3(x,y) for 1 <= x, y <= 16, and C3(x,x) 
for 16 < x <= 32, other elements od C3 are set to zero */ 

for(i=l; i <= 32; i++) 

* for(j=l; j <= 32; j++) 
C3(i,j) = 0.0; 

printf('C3 initialized\n"); 
for(i=l; i <= 32; i++) 

I 
per = (i <= 16) ? 16 : i; 
for(j=i; j <= per; j++) 

{ 
printf("iterate: i = %u and j = %u\n", i,j); 
rl = 0.0; 
for(k=l; k <= 30; k++) 

for(h=l; h <= 30; h++) 
rl += B(k,i)*B(h,j)*col(k,h,i,j); 

C3(i,j) = rl/(P(O,i)*P(O,j)); 
C3(j,i) = C3(i,j); 
1 

1 

/* add variance of past births to the diagonal of C3 for 
X = 17,. ..,32 and store it into V */ 

for(i=l; i <= 32; i++) 
for(j=l; j <= 5; j++) 

V(i,j) = 0.0; 

for(i=17; i <= 32; i++) 
I 
rl = 0.0; 
V(i,3) = C3(i,i); 
for(k=l; k <= i-16; k++) 

for(h=l; h <= i-16; h++) 
rl += B(k,i)*B(h,i)*C3(i-15-k,i-15-h); 

V(i,l) = rl/(P(O,i)*P(O,i)); 
C3(i,i) += V(i,l); 
1 

printf("\nvariances of past births added to C3\n start 
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covariances\n"); 
/* add twice the covariances between current fertility and 

past births to the diagonal of C3 for x = 17,...,32 and 
store the values into V */ 

for(i=17; i <= 32; i++) 
I 
printf("start year %u\n", i); 
rl = 0.0; 
for(k=l; k <= 32; k++) 

for(h=l; h <= i-16; h++) 
rl += B(k,i)*B(h,i)*co2(k,i,i-h-15); 

V(i,2) = 2*rl/(P(O,i)*P(O,i)); 
C3(i,i) += V(i,2); 
1 

/* print results */ 
for(i=l; i <= 32; i++) 

-I { 
printf("Year is %u, SD = %lO.gf\n", i, pow(C3(i,i),O.5)); 
fprintf(fpl1, "%u %10.8f It, i, pow(C3(i,i),O.5)); 

I rl = V(i,l); 
fprintf(fpl1, "%10.8f ", rl); 
rl = V(i,2); 
fprintf(fpl1, "%10.8f ", rl); 
rl = V(i,3); 
fprintf(fpl1, "%lO 8f\n'*, rl); 

computations */ ] /* end of fertility 
) /* end of main */ 

/* co1 calculates Cov ( ef(il,t2),ef(i2,t3)) for 
il,i2 = l,..., 30, t2, t3 > 0 */ 

float col(int il, int i2, int t2, int t3) 
{ 
int kl, k2 ,k3, al; 
float sto, *dl, *d2, d3[5], d4[5]; 
sto = (t2 == t3) ? C5(il,i2) : 0.0; 
al = (t2 <= t3) ? t2 : t3; 
dl=d3-1; 
d2=d4-1; 
for(kl=l; kl <= al; kl++) 

I 
for(k3=1; k3 <= 5; k3++) 

I 
dlLk31 = PSIl(t2-kl,k3)*Ul(il,k3); 
d2[k3] = PSIl(t3-kl,k3)*Ul(i2,k3); 
1 

for(k2=1; k2 <= 5; k2++) 
for(k3=1; k3 <= 5; k3++) 

sto += dl[k2]*d2[k3]*C4(k2,k3); 
1 

return sto; 
1 

/* co2 calculates the covariance between the current fertility 
and the uncertainty of the current mothers' own births, 



64 

i3 is the age of the mother, t4 is the current year, and 
t5 is the mother's birth year */ 

float co2(int i3, int t4, int t5) 
t 
int k5; 
float stol; 
stol = 0.0; 
for(k5=1; k5 <= 30; k5++) 

stol += B(k5,t5)*col(i3,kS,t4,t5); 
return stol/P(O,t5); 
1 
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