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ABSTRACT

Three ARIMA forecast extension procedures for Census
Bureau X-11 concurrent seasonal adjustment were
empirically tested. Forecasts were obtained from fitted
seasonal ARIMA models augmented with regression terms
for outliers, trading day effects, and Easter effects.
Revisions between initial and final seasonally adjusted
values were computed. Ranked ANOVAs were used on
various revision measures to determine the statistical
significance of the differences between the extension
procedures. The main conclusion was that extending the
series with enough forecasts to apply a symmetric filter
reduced the revisions over not extending the series and
using asymmetric filters. This result held whether the
model used was one carefully fit by the analyst or was a
simple default model. Extension of the series with only one
year of forecasts was also examined.
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Introduction

Seasonal adjustment is the decomposition of a time series
into seasonal and non-seasonal components. The additive
decomposition is

Z, =N, + 8,

where Z, is the unadjusted series and N, and S, are
respectively the non-seasonal and seasonal components.
The multiplicative decomposition, more commonly used
with economic time series, is

Z,=N, S,
or in terms of logs,
logZ, = logN, + log$,

Only multiplicative seasonal adjustment was used in this
study.

In many circumstances all of the data currently available
is used to compute the decomposition, in which case the
seasonal adjustment is referred to as concurrent (McKenzie,
1984). Prior to the introduction of concurrent seasonal
adjustment, the projected factor method was generally used.
When using the older method, the seasonal factors S, were
projected and subsequently-divided into the new observed
Z, values as they were collected. Thus only the data which
had been available when the seasonal factors were projected
was used to compute the decomposition. Only concurrent

seasonal adjustment is used in this study.

Users of seasonally adjusted data are often most interested
in adjustment of the data at the most recent time point. For
a given seasonal adjustment procedure, the "final” seasonal
adjustment, based upon use of a symmetric moving average
filter, is generally considered the best. But this final
adjustment can only be made where there is enough data
beyond the time period in question to adjust with the
symmetric filter. Since obviously there are no available data
beyond the most recent time point, initial adjustments are
calculated and revised using asymmetric filters until enough
future data are collected to produce a final adjustment using
a symmetric filter. For Census X-11 this effectively means
waiting three years for a final adjustment when a 3x5
seasonal moving average filter is used, and five years when
a 3x9 filter is used. (Young 1968). Census X-11 uses a set
of asymmetric end filters that depend on the particular final
seasonal filter (3x5, 3x9, etc.) and on the amount of data
available beyond the time point to be adjusted. These are
discussed in Shiskin, Young, and Musgrave (1967) and
Wallis (1983). The difference between the initial adjustment
of an observation and the final adjustment is called the total
revision. For the remainder of this paper the word revision
refers to this total revision.

Data users would like the difference between the initial
seasonally adjusted values and the final adjusted values (ie.,
the total revision) to be small. One summary measure of the
magnitude of this difference is the mean square of the
revisions. Geweke (1978) and Pierce (1980) show that the
weighted moving average seasonal adjustment procedure
which applies the symmetric filter to the series extended by
optimal (minimum mean squared error) forecasts minimizes
the mean squared revisions. This suggests that revisions
using the Census X-11 procedure could be decreased by
extending the unadjusted series with enough forecasts so that
a final symmetric filter could be applied to the most recent
observation. In this paper we will refer to the process of
extending the unadjusted series far enough to use the final
symmetric filter as full forecasting, regardless of the method
used to extend the series. In practice we need, but do not
know, the true covariance structure of the series to produce
optimal forecasts, so we must estimate it (say via a model)
from the data itself. Thus, we may only approximate the
optimal forecasts.

In this study we use seasonal ARIMA models augmented
with regression variables for trading day effects, Easter
holiday effects (Bell and Hillmer, 1983) and outliers (Bell,
1984). Having identified and estimated such a model for a
given time series, one can use the model to extend the series
with enough forecasts so that the final symmetric filter can
be applied. We call this procedure X-11-Forecast. The



anticipated reduction in the magnitude of revisions for the
X-11-Forecast procedure over X-11 may not be realized for
several reasons. We may mis-identify the ARIMA structure
of the data, or the data may not be well approximated by an
ARIMA structure. Also, Geweke and Pierce’s theoretical
result applies only to linear filters, and there are
non-linearities in the Census X-11 multiplicative adjustment
procedure (Young 1968, Wallis 1983).

A procedure similar to X-11-Forecast has been studied
by Dagum (1975) and implemented in a seasonal adjustment
package, X-11-ARIMA. But there are several differences
between the procedures. In X-11-ARIMA the series is
extended by only one year of ARIMA forecasts, so that the
final symmetric filter is not used to adjust the current
observation point. The X-11-Forecast procedure responds
to Geweke and Pierce’s result by extending the series
enough to apply the final symmetric filter. X-11-Forecast
uses exact likelihood estimation for moving average
parameters (Findley, et al., 1988), whereas X-11-ARIMA
uses conditional estimation. In contrast to X-11-ARIMA, X-
11-Forecast can include regression variables in both
modelling and forecasting. Using Census-X-11’s concurrent
seasonal adjustment method, this study extends the work of
Otto (WP85) by comparing revisions and final adjustment
values obtained using X-11-Forecast to revisions and final
adjustment values obtained using X-11 for actual observed
time series.

Methods

Forty time series from three Census Bureau economic
statistics Divisions (Business, Construction, and Industry)
were analyzed. Table 1 lists for each series a brief
description of the series, the dates for the period used in the
study, and the regression terms and ARIMA model used.
Revisions were obtained from three forecast extension
procedures (procedure F, procedure 1, and procedure A) and
compared to revisions obtained without forecast extension
(procedure X). The three extension procedures were: (1)
extending the series with a full 3 or 5 year forecast horizon
using a user defined model (procedure F); (2) extending the
series with one year of forecasts using a user defined model
{(procedure 1); and (3) extending the series with a full 3 or
5 year forecast horizon using an airline model (0 1 1)(0 1
1)12 as a simple default model (procedure A).

There are two aspects to this study: First, does
extending the series, either with enough forecasts to use the
X-11 symmetric filter or with some intermediate number of
forecasts (one year as is done in X-11 ARIMA) yield lower
revisions than not forecasting? Second, how well does the
optimal model need to be approximated to decrease
revisions? Is a carefully identified user defined model
needed, or is some simple default model, possibly from an
automatic modelling procedure, adequate? We chose a very
simple default model, the airline model. If this does a
reasonable job of approximating the optimal model then a
richer set of default models should do even better. To
summarize: Procedure F is our best approximation to the
theory. Procedure 1 shows the effect of an intermediate
number of forecasts and Procedure A uses a less careful

approximation of the optimal model. Note that the default
airline model is also the most common user defined model.
(Table 1)

The revisions for all the treatments were obtained as
follows: 1) an experimental period was defined; 2)
regression models with ARIMA time series error structures
were identified for the full series; 3) the full series were
adjusted for outliers and calendar effects; 4) initial and final
adjusted values were obtained for time points in the
experimental period, for all procedures; 5) Revision
measures were calculated; and finally 6) ANOVA’s and
ranked ANOVA’s were done on the revision measures and
differences between the final adjustments. Further details
concerning these steps follow.

1) Each series was divided into a beginning period of 9
years (which we felt was the smallest time span we would
need to identify a seasonal ARIMA model), an experimental
period, and an ending period long enough for final
seasonally adjusted values to be calculated for each time
point in the experimental period. The end period length was
chosen according to the seasonal filter used to adjust the
series: 3 years for a 3x5 seasonal filter and 5 years for a 3x9
filter.

2) ARIMA models were identified, estimated, and
checked, using the Box and Jenkins (1976) approach. Final
models are shown in Table 1. We used a version of Census
X-12 to estimate regression models with seasonal ARIMA
time series error structures using exact likelihood estimation
for the moving average parameters (Findley, et al., 1988).
Regression variables were included in the model for
statistically significant trading day, Easter holiday (Bell &
Hillmer 1983), and outlier effects (Bell 1984). We used
model-based outlier identification and modeling procedure
tests for extreme points (additive outliers) and for permanent
shifts in the mean of the series (level shift outliers). We
used the whole series to identify the ARIMA model, the
outliers, and the calendar effects.

3) The estimated calendar and outlier effects were
removed from the original series. The previously identified
ARIMA models were then re-estimated without the
regression variables prior to forecasting. The resulting
adjusted data Z, and associated ARIMA models were used
for all subsequent analysis. The X-11 outlier procedure was
used at its default sigma-limit setting when the seasonal
adjustments were calculated for the adjusted data (X-11 finds
considerably more outliers than the model-based approach).

4) Initial and final concurrent season adjustments for each
of the four procedures were obtained for each time point t in
the experimental period. For the no forecasting procedure,
procedure X, we computed initial seasonal adjustments for
each time point t as follows: a) X-11 was tun on the
subseries consisting of all time points from time point 1 to
time point t (including the beginning period of 9 years);
b) the seasonal factor for time point t was obtained and
divided into z, the regression adjusted series, to produce an
initial seasonal adjustment n™). We computed final
seasonal adjustments n®’ for each time point t in the
experimental period by applying X-11 to the full series.



The process for the procedure F was the same as that for
the procedure X outlined above except that at each time
point t: a) before each X-11 run the ARIMA model was
re-estimated using the current span of data (time points 1
through t) and enough forecasts were generated to use the
full symmetric seasonal filter to obtain the initial
adjustments, n/"%; b) X-11 was applied to the series
extended by the forecasts. The final adjustments, n/%,
were obtained using a forecast extended series.

The process for procedure 1 was the same as for
procedure F except that the series was extended by only one
year of ARIMA forecasts to obtain n** and n¥, Finally,
the process for the procedure A was the same as for
procedure F except that the airline model was used as the
ARIMA model to generate the forecasts.

5) We calculated four different types of total revisions,
where total revision is defined as the difference between the
initial seasonal adjustment and the final adjustment. The
four types of revisions calculated were series-level,
log-level, month-to-month change, and year-to-year change.

An analysis of revisions does not make sense unless the
revisions go to the same final value. We chose n,? as the
final estimate for revisions since the X procedure is
currently used by the Census Bureau and we wished to
avoid favoring any of the forecast extension procedures by
using their final estimates. This decision biases our results
toward procedure X whenever the finals are not equal.

The series-level revision is the difference between the
initial seasonal adjustment at a given time point using the
k™ procedure and the final adjustment using the X
procedure.  The series-level revisions for the four
procedures are therefore:

r® = nf . g0
r® = . p®s
r® = pA . &

’.‘(1'7 = n’(F.i) - ntﬂfl)

For all the series in this study, the variance increases
directly with the mean, so the logs of the series are modeled
and a multiplicative X-11 seasonal adjustment is done.
When the log transform of the time series is modeled then
the revisions of the log-levels are a more sensible revision
to examine. Therefore the log level revisions

r:o‘ =lIn (n,(i)) —ln(n,(x’f )),

were calculated for each procedure.

Since month-to-month changes are the values the public
most often studies, we included the revisions of the
month-to-month changes in our study. The month-to-month
changes are the ratio of the current seasonally adjusted
value over last month’s adjusted value and the total revision
is the difference between the initial change and the final
change at each time point. Total revisions in the
month-to-month changes,
were computed for all four procedures. Note that there is
no revision value for the first time point in the experimental

7 = ! w0, -0 D)

period of the series because there is no month-to-month
change for the first time point.

Year-to-year changes are also often studied, although such
changes can be misleading when used to indicate trends.
(Findley, et al., 1990) The year-to-year changes are the ratio
of the current seasonally adjusted value over last years
seasonally adjusted value and again the total revision is the
difference between the initial change and the final change at
each time point. For each procedure, revisions in the year
to year changes,

year

1 = 12 0y -0 w2,

were calculated. There is no year-to-year revision for the
first year of the experimental period. Since year-to-year
changes appear to be inherently more stable than month-to-
month changes (Findley, et al., 1990), we expected the three
forecast extension procedures to affect them less.

Next, for each of the four types of revisions we calculated
three revision measures: mean square revisions, maximum
absolute revisions, and absolute revisions. The absolute
revisions were calculated for each time point in the
experimental period of each series. In contrast the mean
square and maximum absolute revisions are summary
statistics calculated for the entire experimental period for
each series.

Since all the series were log transformed, the theory
suggests that the mean square of the log-level revisions will
be minimized by the F procedure. To determine if mean
squares are empirically minimized for any of the types of
revisions, mean square revisions were computed as follows:

Y n

te(" ) nexp

where the mean of the sum of squared revisions is taken
separately for each method and series over the number nexp
of time points in the experimental period for the given
series.

One approach to final method selection is to choose the
method that minimizes the maximum absolute revision. The
maximum absolute revision is defined as follows:

max
t e(axpemnemal ) l r P |
period
where the maximum is taken over all the time points for
each method applied to each series.
Lastly, the absolute revisions themselves were analyzed so
that revisions could be compared at each time point. For



each time point in the experimental period for each seties
and method combination the absolute revisions are defined
as follows:

A

6) ANOVA’s were done to test the differences in
revision measures between the three forecast extension
procedures. The hypotheses we were trying to test were: 1)
Does extending a series using a full forecast horizon or
some smaller number of forecasts yield smaller revisions,
and 2) Must a user specified model be identified? That is,
is there an appreciable difference in revisions between the
simple default model and a custom fit model?

To test the first hypothesis, we looked at the differences
between the X and F, X and 1, and 1 and F treatments.
We expected procedure F to have the smallest revisions,
followed procedure 1. To test the second hypothesis, we
looked at the X and F, X and A, and A and F treatment
differences. We expected the F method to have the smallest
revisions, the X method to have the largest revisions, and
the A method to have revisions intermediate between the
other two methods.

Begguse of the substantial heteroscedasticity of the data,
the analyses were done on the ranks of the revision
measures rather than on the revision measures themselves.
Also, we blocked on series for all the analyses and we
blocked on time nested within series for the analysis of the
absolute revisions. Unfortunately the rank transformation
and the blocking do not solve the problem of autocorrelation
of the revisions over time for the analyses of the absolute
revisions. Since blocking was performed on each time point
within series, autocorrelation explainable by relationships
between mean revisions at different time points was
accounted for but any other form of correlation was not and
could corrupt results. However, we think the results are so
strong that the lack of independence is not a crucial
problem.

The model for the ANOVA’s of the ranked mean square
revisions and the ranked maximum absolute revisions was,
rank (R, ) =pu + S, + T, + £, where rank (R,,,) is the
rank of the revision measure for the s* series and the m™
method and m ranges over the treatments X, 1, A,or F. u
is the overall mean, S, is the series mean which is our
blocking factor, T,, is the method effect, and e,, is the
error. The analyses of the absolute revisions included a
nested blocking effect of time within series, T, (S, ), where
the time index ¢ runs from 1 to the number of points in the
experimental period of series S,, The model was
rank (R,,,) = p + S, +1(S,) + T, + £, The percentage
differences are taken from analyses of the original data but
the tests of significance are taken from the above analyses
of the ranked data.

Results

We are interested in testing two hypotheses: 1) which
forecast horizon will minimize the revisions, and 2) how
well do we need to approximate the optimal model to obtain
lower revisions than X-11 without forecast extension. As

shown in Table 2 all the overall differences in methods are
significant, but to test our two hypotheses we are interested
in only certain comparisons.

To test the first hypothesis on the length of the forecast
horizon we consider which of the X,1, and F methods
minimizes the revisions. We do this with the planned paired
comparisons X-F, X-1, and 1-F. As shown in Table 2 for
the X-F and X-1 comparisons, extending the series with
forecasts causes a decrease in the revisions which is
significant at the .001 level for all measures, except that the
1 procedure shows no improvement for mean square year-to-
year and absolute year-to-year changes. The average for all
series of the decrease in revisions for the F procedure over
the X procedure was 15.1% for log-level absolute revisions,
14.9% for absolute revisions, 0.28% for year-to-year
changes, and 0.21% for month-to-month changes. Although
the average decrease was quite small for year-to-year and
month-to-month changes, in contrast the decreases in
maximum absolute revisions were 9.81% and 5.44%
respectively. The maximum absolute revisions in month-to-
month changes were smaller for procedure F for 38 of the
40 series. The same measure applied to year-to-year
changes was smaller for F for 34 of the 40 series.

Procedure F had significantly lower revisions than
procedure 1 for all measures except the absolute revisions of
the levels and of the month-to-month changes. On average,
80% of the improvement in absolute revisions occurred by
extending the series one year and 20% by extending the
series beyond one year to the full forecast horizon. A
careful study of the summary measures for each series for
procedure X, procedure F, and procedure 1 showed that
procedure X consistently produced the worst results of the
three procedures for a large majority of the series.

To test the second hypothesis concerning how much care
needs to be taken to identify an ARIMA model for the series
we determined which of the X, A, and F methods minimized
the revisions. For this we performed the comparisons X-A
and A-F. As shown in Table 2 there are significantly
smaller revisions, at the .001 level, using forecasts from the
default model (method A) compared to not forecasting
{method X), for all measures for all types of revisions.
Concerning the A-F comparison, it is surprising that in none
of the measures is there a significant difference between
using the default model (method A) and the user defined
model (method F).

Conclusions

We conclude that revisions are significantly smaller when
a time series is extended with enough forecasts to use a final
symmetric filter compared to when the series is not extended
or is extended by only one year. We recommend extending
the series to the full forecast horizon as was done with
procedure F and procedure A. When this full forecasting
approach was used, we found that revisions achieved using
a very simple automatic modelling procedure were not
significantly less than those achieved using individually
fitted ARIMA models.
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Table 1

Description of Series and Models

Business RETAIL INVENTORIES
Series

GENERAL MERCHANDISE
TOTAL APPAREL

TOTAL NONDURABLE GOODS

Business RETAIL SALES
HOUSEHOLD APPLIANCES
AUTO AND HOME SUPPLY
DEPT STORES W/0 LEASED DEPTS
FURNITURE STORES

GAS STATIONS

GROCERY STORES
HARDWARE

LIQUOR STORES

MEN'S STORES

SHOE STORES

VARIETY STORES
WOMEN'S APPAREL

Business WHOLESALE SALES
ELECTRICAL GOODS
FURNITURE

GROCERIES

HARDWARE

SPORTING GOODS

Construct®h TOTAL U.S. HOUSING STARTS

TOTAL
HOUSING WITH 2 TO 4 UNITS
HOUSING WITH 5 OR MORE UNITS

Dates ARIMA-+Regression Model*

Construction SINGLE FAMILY HOUSING STARTS

MID-WEST
NORTH-EAST
SOUTH
WEST

Construction TOTAL HOUSING STARTS
MID-WEST

NORTH-EAST

SOUTH

WEST

Industry TOTAL INVENTORIES
COMMUNICATION EQUIPMENT
FATS AND OILS

BEVERAGES

FARM MACHINERY & EQUIPMENT
GLASS CONTAINERS

HOUSEHOLD APPLIANCES

TOTAL TELEVISION & RADIOS

Industry UNFILLED ORDERS
TOTAL TELEVISION & RADIO
NEWSPAPER, PERIODICAL & MAGAZINE

* Explanation of Regression Codes
D Trading Day

(o] Outlier(s)

E Easter holiday

MU  mean effect

SE fixed seasonal

76-83 (013)011),+TD+O
76-83 (010)011),,+TD+O
76-83 (010)(011),,+TD+O
67-89.10  (010)(011),,+TD+O
67-88 (210)011),,+TD+O
67-89.10  (011(011),+TD+E+0
67-88 (O11)(011),+TD+O
67-89.10  (OI[1S]Y011),,+TD+O
67-89.10  (310)(011),,+TD+E+O
67-88 (OI[134 D01 1)+ TD+O
67-88 (012)(011),+TD+O
67-88 (012)(011),,+TD+O
67.89.10  (O11)(011),+TD+E+0
67-88 (210)011),,+ TD+E+O
67-88 (012)(011),,+TD+E+O
678910 (011)(011),,+TD+0
67-88 (011)(011),,+TD+O
67-88 (O13)011),,+TD+O
67-88 (O11){011),,+TD+O
67-88 (012)(011),,+TD+0
64-88 (013)(011),+TD+O
64-88 A01YO11),+0

64-88 (103)(011),,+0

64-88 OI1Y011),,+0

64-88 012)(011),,+0

64-88 (101 +MU+SE+TD+O
64.88 (108 +MUHSE+O
64-88 (101)(011),,+TD+0
64.88 (101)(012),,+0

64.88 (102),,+MU+SE+0
64.88 (10{13])(011),,+0
68-88 (013)(011),,+0

64-88 (01[16])(011),,+0
64-88 (O1[14])011),,+0
62-88 O1[2]Y011),+0
62.88 (01}011),,+0

62-88 ([14]10)011),,+0
64-88 ((156]10)011),+0
64-88 (010)(011),,+0

64-88 (10{1346])(011),,+0

Table 2

Treatment Differences between different forecast

horizons and ARIMA models

Mean Square Revisions

F p X-F pX-A pA-F p X1

Level 4820 1070
Log-level 6110 1210
Month-to-

Month 5760 1160
Year-to-

Year 2030 6160

Maximum Absolute Revisions

F p X-Fp
Level 2410 760
Log-level 3020 820
Month-to-
Month 3430 910
Year-to-
Year 1840 670

Absolute Revisions
FpXFp
Level 8540 1400

Log-level 10610 1590
Month-to-

Month 5810 1140
Year-to-
Year 7880 1090

990 .7 4
1110 1.1 3
1130 4 7
910 3 8
X-Ap AF p
710 5 .6
830 .03.9
830 B8 4
600 7 5
X-A pAFp
1300 10 .3
1450 14 .1
1090 5 7
1000 .9 4

7.6
9.1

8.3

1.0

4.9
4.9

3.7

11.9
127

9.9

-8

p F1 p
0 3.1 .002
0 3.0 .003
0 3.3 .001
3800

p F1 p
0 27 .009
0 3.3 .001
0 44 0

0 3.0 .003
p F1 p

0 2.1 .03
0 3.2 .001
0 15 .14
4117 0

The first column, labeled F, is the F-statistic for the method effect;

the second column, labeled p, is the associated p-value.

remaining columns show alternately the t-statistic for the relevant
contrast (labeled X-F, X-A, etc.) followed by the associated p-value

p.

This paper reports the general results of research undertaken

by Census Bureau staff. The views expressed are attributable
to the author(s) and do not necessarily reflect those of the

Census Bureau.
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