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ABSTRACT 

Projection of individual age-specific fertility rates is a forecasting 

problem of high dimension. We solve this dimensionality problem by using a 

scaled and shifted gamma curve to approximate the age-specific rates and 

fgrecasting the curve parameters using a multivariate time series model. 

The resulting time series forecasts of parameters are then used to project 

fertility curves, and hence individual age-specific fertility rates. This 

reduces the dimensionality of the forecasting problem and also guarantees 

that long run projections of age-specific fertility rates will exhibit a 

smooth shape across age similar to historical data. For short-term 

projections it is also important to forecast the age-specific deviations 

from the fitted curves, which can be done by simple methods. 

The paper applies this approach to age-specific fertility data for U.S. 

white women from 1921-1984. The resulting forecasts are examined, and the 

multivariate time series model is used to investigate possible relations 

between the fitted curve's parameters expressed as the total fertility rate, 

the mean age of childbearing, and the standard deviation of age at 

childbearing. Also, the application of the general approach in a recent set 

of Census Bureau population projections is discussed. 

Key Words: Fertility Projection, Multivariate Time Series, Non-linear Least 

Squares 
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MULTIVARIATE TIME SERIES PROJECTIONS 

OF PARAMETERIZED AGE-SPECIFIC 

FERTILITY RATFS 

1. Introduction 

Fertility projections are a vital part of any system for predicting the 

size and structure of a population. Demographers traditionally use the 

cohort-component method of population projections (Shryock and Siegel, 

1976). This method projects fertility by multiplying age-specific birth 
. - 

rates by the population of females in each age group, yielding a forecast of 

the total number of births. In this approach, the size and age composition 

of the female population of childbearing ages has a major impact on the 

projected number of births. Since most of the mothers for the first twenty- 

five years of the projection period are already alive at the time the 

projection is made, the size and age composition of the female population is 

the most predictable element in short-term fertility projections. 

Initially, demographers were satisfied simply to hold the age-specific 

fertility rates constant and let the number of future births vary only with 

the changes in the size and age composition of the population of women of 

child-bearing ages (Whelpton, 1947). While this method worked fairly well 

for mortality rates, age-specific fertility rates were often too volatile 

for such a method. 

Over time, the projection method employed by the U.S. Bureau of the 

Census evolved into a three part process. First, assumptions are made as to 

the ultimate age-specific fertility rates at the end of the projection 

period. Second, an interpolation method is devised to get from the last 

year of actual data to the ultimate year of projections. Third, the 
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projections are adjusted to allow for short-term variations in period 

fertility. Alternative (high and low) fertility levels are set judgmentally 

at the beginning and end (ultimate) of the projection period, and 

interpolations are made between these to produce alternative fertility 

projections. 

This demographic method relies heavily on substantive judgment in 

setting realistic assumptions of future fertility schedules. Those 

assumptions and the methods employed have varied from projection to 

. - 
projection. In Figure 1, we show the approach used in a previous Census 

iureau projection (U.S. Bureau of the Census, 1984). This method emphasized 

a cohort approach to fertility in the ultimate and intermediate stages but a 

period:approach in the short term, third stage. 

There has been considerable controversy over whether cohort or period 

analysis of fertility is best. Period-based methods of forecasting 

fertility were largely replaced by cohort methods in the 1960's when 

projections were heavily based on birth expectations surveys of women in 

various stages of their childbearing years. Recent emphasis on the effects 

of economic conditions that simultaneously affect the fertility of women at 

all childbearing ages argues for a period approach. Promising efforts have 

also been made that are aimed at combining both period and cohort analysis, 

eg. Willekens' (1984) age-period-cohort model. 

Without entering the period versus cohort controversy directly, we have 

chosen to perform our analysis on a period basis for essentially practical 

reasons. The use of age-specific data on a cohort basis creates massive 

incomplete data problems for time series analysis, since a cohort fertility 

record is not complete for some 30 years after the first births to the 



cohort are observed. Moreover, while fertility rates on a period basis 

follow a smooth curve over age, this is not true of rates on a cohort basis 

(See Figure 2). Our goal in this analysis is to improve the short-term 

fertility forecasts of the U.S. Bureau of the Census national population 

projections. Period fertility analysis emphasizes the short-term period 

trends in fertility that affect all ages simultaneously. Cohort fertility 

appears more important in the intermediate and long term. Thus, in this 

paper our main emphasis will be on projecting age-specific fertility on a 

. -period basis. 

1.1 Time Series Forecasts of Fertility 

The period approach fits well with the statistical time series 

forecasting tradition. Time series analysis has developed its own 

approaches to forecasting fertility independently. These methods are 

usually applied on a period basis and are particularly suited for analyzing 

short-term variations and providing information about future variability. 

These are exactly the characteristics needed in projecting several series of 

fertility rates for the first five to ten years of a projection. 

In this paper, we shall follow the time series tradition in developing 

a method to forecast age-specific fertility rates. Multiplying these 

forecasts by forecasts of the size of the age-specific female population 

would then yield fertility forecasts deriving from both the time series and 

demographic cohort-component traditions. In this way, the advantages of the 

demographic tradition in taking account of the predictability of the size 

and age composition of the female population can be combined with the more 

statistically rigorous time series techniques of modeling the short-term 



variability of the age-specific fertility rates. The advantages of 

combining the major traditions of population projections have been outlined 

by Long (1984) and Land (1986). In actual projections, we have also 

combined short term time series forecasts of period age-specific fertility 

rates with long term demographic projections of completed cohort fertility 

rates determined through judgmental analysis of birth expectation surveys 

and other information. 

Several authors have applied time series methods by themselves, using 

autoregressive integrated moving average (ARIMA) methods to forecast total 

kirths (Dodd, 1980; McDonald, 1981; and Saboia, 1977). While these efforts 

yielded some insights into the use of time series methods on fertility, the 

forecasts ignored the advantage of using cohort-component methods (Long, 

1981). This omission was partially remedied by Lee (1974,1975), who applied 

time series methods to the total fertility rate (TFR), the sum of all age- 

specific rates that occur in a given year. TFR measures the overall level 

of fertility within a standardized age structure. Carter and Lee (1986) 

also used a standardized age structure in analyzing an "index of fertility" 

constructed from time series of births and marriages. If, however, the age 

pattern of fertility changes, it can only be captured by a method that 

accounts for fertility by single years of age. 

The main difficulty faced in using time series methods to forecast age- 

specific fertility is the dimensionality of the problem. We shall use data 

for women at ages 14 and under, single years of age from 15 through 44, and 

45 and over, yielding 32 time series to be modeled and forecast. This is a 

large number of series even for univariate modeling - if this were done, 

quite likely one would consider only a few simple models. The system is far 
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too large for general multivariate models - a general AR(l) model would have 

32x32-1024 autoregressive parameters. One could attempt to use a 

multivariate model with a very simplified structure. The CAFUMA model of 

deBeer (1985) can be viewed as one example. It essentially lets the 

fertility rate at a given age for a given cohort depend on the rates at 

prior ages for the same cohort and on the rates at the same age for prior 

cohorts. The model is restricted to be the same for all cohort-age 

combinations. This restriction was.necessary in deBeer's application with 

limited time series data, but using the same model at all ages seems overly 

restrictive with age-specific time series of reasonable length such as we 
I 

have. 

Another problem we must face is possible inconsistency of the 32 

forecasted age-specific fertility series. One would expect that future 

fertility rates would be smooth functions of age with a shape similar to 

that observed historically. One potential problem with using separate 

univariate time series models to forecast the 32 age-specific rates is that 

the forecasts at various ages may follow inconsistent trends so that the 

resulting distribution of fertility across age in the forecast years may not 

make sense. Some constraints on the univariate models may be necessary to 

avoid this. 

The approach we shall adopt emphasizes the advantages of the ARIMA 

models for short-term fertility forecasting while at the same time 

addressing the dimensionality and consistency problems. We divide the task 

into three parts. First, each of the historical annual sets of 32 age- 

specific fertility rates is fit with a curve that can be represented by a 

few (eg., four) parameters. Second, the resulting time series of parameters 



are modeled using multivariate time series models and the models are used 

to forecast the parameters for future years. Third, for each of the future 

years-the forecasted parameters are used to generate a model curve of 32 

forecasted age-specific fertility rates. The forecasted age-specific rates 

would then be incorporated into the cohort-component model by multiplying 

them by the forecasted female population by age for the corresponding year. 

Rogers (1986) suggests much the same approach, although for his application 

to Swedish fertility he does not perform time series analysis of the curve 

parameters. 

The advantages of this method are that it reduces the dimension of the 
* 

forecasting problem from 32 to the number of curve parameters (in our case . 

4), and the use of the curves forces even long-term fertility rate 

projections to exhibit the same smooth distribution across age as historical 

data. There is one drawback to the method. In its basic form it forecasts 

not the future rates themselves, but the curves that will be fit to these 

rates, thus assuming that the error in using the curve to approximate the 

rates is negligible for forecast purposes. While this is certainly true for 

long-term projections, it is not true in the short-term (l-5 years ahead). 

We deal with this by using simple methods to forecast the deviations of the 

curve from the rates at each age (the age-specific biases). This greatly 

improves the accuracy of short-term forecasts, while still accomplishing the 

goals of dimensionality reduction (since most of the attention can be 

focused on modeling and forecasting the curve parameters) and producing 

consistent long-term projections. 
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1.2 Fertilitv Curves 

Hoem, et. al (1981) investigated the fit of .a variety of cumes to 

Danish age-specific fertility rates. They obtained the best fit with the 

Coale-Trussell (1973) function and Gamma density, both of which fit about 

equally well. (They actually got still better fits with a cubic spline, but 

this involved 10 parameters, too many for our purposes). The Coale-Trussell 

function is somewhat complicated, involving tables of two age-specific 

functions and the integral of what Rogers (1986) calls a double exponential 

function. Rogers (1986) suggests direct use of the double exponential 

function as a simpler alternative. We shall use the Gamma curve, scaled and 

*shifted, because of its simplicity and good fit relative to other curves 

that have been considered. (We found the double exponential curve to give 

comparable fits.) The gamma curve parameters can be easily transformed into 

the TFR, mean age of childbearing, and standard deviation of the age of 

childbearing - terms readily recognizable by fertility researchers. This 

interpretability in demographic terms becomes useful later when we combine 

the short term ARIMA forecasts with long-term (ultimate) judgmental 

forecasts that are defined in similar terms. 

The basic approach of fitting a parametric curve to fertility rates and 

forecasting the curve parameters can certainly be used with curves other 

than the Gamma. The choice among curves with a reasonable fit is not 

critical for forecasting purposes, since no parametric curve is likely to be 

immune from the bias problem in short-term forecasting mentioned earlier. 

Note that we are not proposing the Gamma curve here as a "model" for 

fertility in the sense of using it to provide statistical estimates of age- 

specific fertility rates for populations in which only summary fertility 

7 
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data are available. Our data contain complete age-specific detail and are 

obtained from the essentially complete reporting of births in the Vital 

Statistics Registration System so there is no sampling error. We use the 

Gamma curve merely as a device for approximating the age-specific fertility 

rates to reduce the dimensionality of the forecasting problem. 

2. Anproximatine Period Fertilitv Rates with Gamma Curves 

The historical fertility data base we use here consists of age- 

. - 
specific fertility rates to United States white women from 1921 through 1984 

(yeuser, 1976 and more recent unpublished data). These are recorded for 

women of ages 14 and under, single ages of 15 through 44, and 45 and over, 

yielding an initial data matrix of 64 observations on 32 concurrent time 

series. Figure 2a shows the period fertility rates for three different 

years (1927, 1957, and 1977). Even though total fertility was markedly 

different in these years, the three sets of rates have a similar smooth 

shape over age. Figure 2b shows age-specific fertility rates for the 1902, 

1932, and 1952 birth cohorts, which reach age 25 (one of the peak 

childbearing ages) in the years 1927, 1957, and 1977 respectively. In 

addition to illustrating the incomplete data problems when analyzing data on 

a cohort basis, Figure 2b shows fertility rates for different cohorts do not 

follow the same smooth shape across age. The problems are most pronounced 

in recent cohorts, of which the 1952 cohort provides an example. 

To approximate the fertility rates each year, we fit a shifted Gamma 

probability density function to the scaled age-specific rates, using the 

parametric form: 



1 
Ti - ( i-Ao) o-'exp(-(i-A,)/B) ilA 

r(a)Ba 
0 

where 

(2.1) 

r(a) = .$ ua-lexp(-u)du 

This density has probability starting at the point Ao, expected value A0 + 

aS, and variance ap2. Since the Gamma curve integrates to one, in fitting 

. - it we rescale the age-specific fertility rates so that they sum to unity in 

each year. Let Fit denote the fertility rate per woman of age i in year t, 
I 

and define the total fertility rate (TFR) in year t as: 

45 
TFRt - C 

i-14 
Fit (2.2) 

and compute the "relative" fertility rate to women age i in year t as: 

R 
it = Fit/TFRt' 

i - 14, 15, . . . . 45; t = 1921, . . . . 1984. 

R 
it 

is the proportion of births in year t that occur to mothers of age i. 

Now let 7it denote the height, at age i > Aot, of a shifted Gamma curve 

with parameters Aot, at and pt. We fit the curve to the Rit in each year t 

by minimizing the sum of weighted squared errors: 

45 
WSSEt = ' [Wi(Rit-rit)I 

2 

i-14 
(2.3) 
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where w i is the weight for age i. The parameter values for a and p are 

determined through a derivative-based nonlinear least squares procedure 

operating conditional on values of Ao. Values for the starting point of the 

curve, A 
0' 

are obtained from a one-dimensional search constrained to the 

region 0 I A o I 14. In practice, the values yit are computed at ages 14.5, 

15.5, . ..) 45.5 since fertility is recorded at the mother's last birthday. 

Since a main reason for forecasting fertility rates is to forecast 

total births, we use the weights w. 
1 
.to give more emphasis in (2.3) to ages 

. - 
with high fertility. In recent years most births (80-85 percent) are to 

yomen aged 18 through 32. We thus used the simple weighting scheme wi - 4 

for i = 18 through 32, wi = 1 otherwise. Sensitivity analysis, examining 

the re‘sponse of the Gamma curve parameters to changes in the w. structure, 
1 

showed that the exact weight used for ages 18 through 32 had much less 

impact than the fact that ages 18 through 32 were singled out for special 

treatment. For example, both a1g82 and /31,,, change only one unit in their 

third significant digits when weights of 2 through 6 are used. 

Our weighting scheme disagrees with the one used by Rogers (1986), who 

suggests a Chi-squared goodness of fit criterion. Although not stated 

explicitly, Rogers apparently minimized X(Oi-Ei)2/0i, where 0 
i 
and E 

i 

denote, respectively, the observed rate and the curve value at age i; in our 

case these are our Rit and rit. This approach gives more weipht to the ages 

with the lowest fertility rates (smallest Oi). Different individuals are, 

of course, free to choose different weights reflecting their own "loss 

functions". We feel the weighting scheme we used accomplished our goal of 

giving enough weight to ages with high fertility to help the curves yield 

reasonable approximations to total births, while not ignoring the other ages 
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to the extent that the fit at these ages was completely unreasonable. 

The results of the curve fits are summarized in Figure 3, which traces 

the parameter values over time. Apart from the years affected by World War 

II, examination shows remarkable stability in the curve fits through 1968. 

Although total fertility varies considerably over this period, the Gamma 

parameters remain relatively stable. The 197Os, however, show a marked 

change in this pattern; all three parameters shift rapidly to new levels. 

This shift in the pattern of relative fertility is evident in Figure 4, 

where we show the Gamma curve fits for two years. In the early part of our 

data base, there is more fertility to older women; in later years, fertility 
* 

is concentrated to women in their twenties and the overall curve is more 

symmetric in shape. Note also that the Gamma curve fits much better in the 

more recent year, an important consideration since forecasts reflect 

behavior nearest to the forecast origin. 

Some comments on the behavior of Aot in Figure 3 are in order. Through 

1968, the weighted sum of squares (2.3) was minimized by setting A0 to its 

upper limit of 14 (with a few exceptions including years affected by WWII). 

This upper limit was imposed so that the Gamma curve would yield an ordinate 

at age 14. In more recent years, as at and /3, shifted to make the curve 

more nearly symmetric, A Ot declined and eventually (2.3) became rather 

insensitive to values of A 
0 

from 0 through negative numbers large in 

magnitude. To simplify the least squares problem, a lower limit of 0 was 

used for A0 with little sacrifice in the quality of the fit. 

In modeling the Gamma system over time, we first transform the a and /5J 

parameters. Since the Gamma density (2.1) has expected value A0 + ap and 

variance ap2, we form the new series: 
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mCBt - AOt + at& and SDACBt = B,+t)l'* (2.4) 

These are, respectively, the mean age of childbearing and the standard 

deviation of age at childbearing, computed from the Gamma density. These 

time series, in contrast to the a and ,8 parameters, have more stable traces 

over time: as indicated by Figures 5 and 6 the abrupt shifts in level 

displayed in Figure 3 are not evident in the traces of ,MACB and SDACB. 

These series also have meaningful demographic interpretations. 

w 

3. Time Series Modeling of Curve Parameters 
* 

For modeling purposes we transform TFRt, MACBt, and SDACBt by taking 

logarithms to get Tt - Rn(TFR,), Mt - Ln(MACBt), and St = Rn(SDACBt). We 

model and forecast T t, Mt, and St, and exponentiate the forecasts to get 

forecasts of TFRt, MACBt, and SDACBt. A major reason for transforming TFR 

is to prevent forecasts, or forecast limits, from going below 0, which is a 

lower limit TFR cannot reach. (A stricter lower limit than 0 can be used if 

it is believed TFR will never fall below some other level.) Taking 

logarithms does not materially affect the modeling of MACB and SDACB since 

the transformation is nearly linear over the range of those series. 

However, transforming MACB and SDACB along with TFR helps interpretation of 

the models used, since any additive relations between T, M, and S can be 

interpreted as multiplicative relations between TFR, MACB, and SDACB. 

Note that the endpoint, Aot, has almost a "two-point" (either 0 or 14) 

distribution (Figure 3), and these are the limits imposed on the parameter 

during the least squares fit. We treat Aot as deterministic since its graph 

shows it would be ill-suited to modeling, and forecast Aot simply by 

projecting it at its most recent level of 0. 
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3.1 Univariate Models 

The plots of TFR, MACB, and SDACB (Figures 5-7) all show unusual 

behavior for the years 1942 through 1947 due to the effect on fertility of 

World War II. To account for these effects we use indicator variables for 

the years 1942 through 1947. This leads us to consider univariate time 

series models for all three series of the form: 

. - 
Yt 

= /31142t + -0. + BoI47t + [B(B)/4(B)S(B)lat 

where 142t, . . . . 147, are the war-year indicator variables; p,, . . . . j3, are 

parameters; B(B), 4(B), and 6(B) are the moving-average, autoregressive, and 

differkncing operators in the backshift operator B; y, is the particular 

series being modeled, and at is a sequence of i.i.d. N(O,a*) random 

variables (white noise). 

The ARIMA structure is identified following the scheme suggested by 

Bell and Hillmer (1983) for models of this type. The differencing order is 

tentatively identified as one for all three series by noting that the sample 

ACF (autocorrelation function) of the original data fails to damp out, while 

that of the differenced data does. The war-year effects are removed by 

regressing each differenced series on the differenced indicator variables. 

Examining sample ACFs and PACFs (partial ACF) for the three series suggests 

an AR(3) model for VTt, and AR(l) or AR(2) models for VMt and VSt (V = 1-B 

denotes first difference). Conditional least squares estimates for the AR 

model parameters are given in Table 1. T-statistics for the last AR 

parameter in all 3 models are about 2; so that these might be dropped. The 

AR(2) parameter for Tt is estimated near 0, but we keep it in the model 
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Table 1 

parameter Estimates from Univariate Models 

Series 
Bl B2 B3 B4 B5 '6 % 42 43 

VTt .066 .061 -.047 -.120 .025 .098 .54 -.Ol .24 

(2.6) (1.6) (-1.1) (-2.9) (.7) (4.0) (4.3) (-.l) (1.9) 

V"t -.0042 .OlO .029 .037 .020 .0032 .49 .22 

w - (-1.5) (2.5) (6.0) (7.7) (5.0) (1.2) (3.9) (1.7) 

vJt -.027 .003 .046 .055 -.004 -.OlO .55 .24 

(-4.3) (.3) (4.2) (5.0) (-.5) (-1.6) (4.3) (1.8) 

2 4 
u x 10 

8.603 

.514 

Note: The numbers in parentheses below the parameter estimates are T-ratios. 
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Table 2 

Multivariate Model Identification Exhibits 

Simplified Cross-Correlation Matrices, Lags l-8 

. - 

* 

LAG 5 LAG 6 LAG 7 

NOTE: + indicates a T-ratio 2 2, - indicates a T-ratio 5 -2, 
l indicates -2 < T < 2. 

LAG 4 

+ l l 

[ 1 . . . 

. . . 

LAG 8 . - - 
[ 1 . . - . . . 
and 

Stepwise Autoregressive Fits 

AR Lag: 1 2 3 4 5 6 

I'j I x 1013: 2.61 2.01 1.71 1.32 1.22 1.08 

x2 test: 59.9 11.4 6.6 9.6 2.7 3.8 

AIC: -1633.5 -1630.4 -1621.7 -1618.4 -1604.9 -1593.8 

NOTES: The asymptotic x2 test statistic of a. 
J 

- 0 in an AR(j) fit is - 

3j>Jn<l~.l/l~. I>, 

iIih59-degrees o: freLd:m 

starting from lCol = 9.47 x 10-13. 

, the 5% critical value is 16.9. 

AIC denotes the Akaike Information Criterion, computed here as 

57 1nl$l + 2(9j) for the lag j fit. Akaike (1973) suggests 

picking the AR model for which this criterion is minimized. 
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since we keep the AR(3) parameter. While we could use these models to 

forecast Tt, Mt, and St individually, we instead use them to guide 

identification of a multivariate model that allows for the possibility of 

relationships between the variables. 

3.2 Multivariate Models 

To begin, the war-year effects estimated via the univariate models are 
h h 

subtracted from the series (taking Tt - Bl142, - l 0. - B6147,, etc.), and 
* - 

the resulting series are first differenced. Henceforth, let Tt, Mt, and St 

c&note the war-year adjusted series, let Y 
t 
= (Tt,Mt,St)', and let the 

differenced vector series be VYt. Sample cross-correlation matrices for VYt 

and results from stepwise autoregressive fits (Tiao and Box, 1981) are given 

in Table 2. An AR model appears more appropriate than an MA model, since 

the stepwise AR tests truncate while the cross-correlation matrices do not. 

While the overall statistics suggest an AR(l) model, we found in the 

AR(3) fit that the (1,l) element (corresponding to Tt) of the third AR 

parameter matrix is significant. This is not surprising given that the 

univariate model for VTt is AR(3). No other parameter estimates in the 

second- and third-order matrices of the AR(3) fit exceed twice their 

standard errors, including the (2,2) and (3,3) elements of the second matrix 

corresponding to parameters in the univariate AR(2) models for VMt and VSt. 

Rather than use a full AR(3) model with its 27 parameters (not counting 

variances and covariances of the residuals) we consider a model of the 

following form: 

T - @p$-l + @pt-* + @p,-3 + at 
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with 

a1 = and (3.1) 

where x indicates a parameter to be estimated, l an element fixed at 0 (and 

hence not a parameter to be estimated), and at = (alt,a2t,a3t)' is a vector 

white noise series with covariance matrix C. This model was estimated by 

. - 
conditional likelihood with the following results: 

I* - .03 with standard error .13, i3(l,l) - .32 with standard error 

.12, and 

;: - lo-4 x 8.190 -.040 .094 
- .639 .133 .509 

Diagnostic checks reveal no obvious inadequacies with the above 

multivariate model, with the exception of some outliers in the residuals of 

Tt and M, (which will not materially affect the forecasts). A discussion of 

this and some alternative models considered is contained in the Appendix. 

Thus, we shall use the above model for forecasting the gamma curve 

parameters, and in so doing do not need to explicitly account for the war- 

year variables since they are all zero over the forecast horizon. 
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3.3 Relations Among the Curve Parameters 

An important feature of this model is that it allows us to examine 

relations between the total fertility rate and the mean and standard 

deviation of age at childbearing. One of the primary questions addressed in 

setting ultimate fertility assumptions is whether the level of fertility 

affects the distribution by age. In previous Census Bureau projections 

these assumptions were made independently, albeit with some speculation 

about the possible relations. In the current set of projections, we wanted 
. - 

to be able to examine empirical evidence on the relations, and use this in 

Qur long-term as well as short-term fertility projections. 

The model (3.1) allows for effects of the variables Tt, Mt, and St on 

each other through the off-diagonal elements of al (dynamic effects) and $. 

The t-statistics corresponding to il, and the residual correlation matrix, ;:, 
h 

corresponding to $, are the following: 

h 

Q1: 

-3.8 1.9 
1.4 2.3 
-2.0 .7 

(3.2) 

The off-diagonal elements of (Pl are at most marginally significant, 

suggesting there are no strong dynamic relationships involved. As a more 

formal check on this we fit a model with Ol restricted to be diagonal; this 

amounts to fitting three univariate models jointly. The residual covariance 

matrix for this model was 

8.659 

- lo-4 x -.115 .107 -.656 .151 .566 1 . 
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An asymptotic xi - test of the restrictions on 9 1 (6 degrees of freedom for 
h h 

the 6 off-diagonal elements) is obtained using -m Jnl$l/l$,l (see Hannan 1970, 

pp. 339-341). The choice of the O(n) multiplier m is not obvious; we followed 

Rao (1965, chapter 8) and used m - (51+2) - .5(3+2+1) = 50, where 3 is the 

dimension (number of equations), 2 is the number of parameters constrained in 

each equation, and 51 is the residual degrees of freedom in each equation of 

the full model (64 observations, less 4 lost to differencing and AR order, 

less 6 war-year and 3 AR(l) parameters estimated, but ignoring the estimation 
. 

of the lag 2 and 3 parameters in the Tt equation). This yields -m J!nl$l/l$21 = 

l-5.8, which is about the 98.5 percentile of the xi distribution, also 

suggesting that dynamic relationships are marginally significant but not 

strong. 

We also could consider using models of transfer function form for Tt, 

Mt' 
and S 

t' 
This is appropriate if the al matrix is lower triangular, 

possibly after reordering of the variables in Yt = (Tt,Mt,St)' (Tiao and Box 

1981, pp. 802-803). The t-statistics for Ol in (3.2) do not suggest any 

obvious transfer function structure, though they do not argue strongly 

against any such structures either. We experimented with some transfer 

function models and, not surprisingly, found dynamic effects at most 

marginally significant. If we accept the hypothesis of no dynamic effects 

then we can use a simple transfer function model where variables depend on 

each other only at the current time, and the variables can be entered in any 

order. Modeling variables in the order Tt -+ Mt + St yields a univariate 

ARIMA(3,1,0) model for Tt (as given previously) and the following models for 

Mt and St (standard errors of parameter estimates in parentheses): 
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Mt - 
-.014O Tt + a2t/(l-.53B-.20B2)(1-B) 

(.0134) (.13) (.13) 

(3.3) 

st - 
-.061 Tt + 1.18 Mt + a3J(l-.44B-.29B*)(l-B) 

(.025) (.24) (.13) (.12) 

We see the only strong contemporaneous relationship is that between Mt and 

stJ 
with that between Tt and St being marginally significant. This provides 

w 
- a significance check on what we would also infer from the correlation matrix 

i in (3.2). 
* 

Rogers (1986), in the absence of time series data on his curve 

parameters, suggests a regression approach to projecting the curve 

parameters. In our case this approach would develop projections of Tt 

independently (either by judgment or using models), regress Mt and St on Tt, 
\ 

and use the regression relations to develop Mt and St projections from the 

Tt projections. The weak relations of Tt to Mt and St in (3.3) show this 

would be a poor approach in the case of the gamma curve. Since TFR refers 

to the overall level of fertility and MACB and SDACB to the shape of the 

curve, the weak relations in (3.3) suggest the shape of the fertility curve 

depends little on the level. Thus, we would expect the approach Rogers 

(1986) suggests would not work well with other curves applied to our data, 

and would recommend caution in applying it to other fertility data sets. 

4. Forecast Results 

We use the multivariate model (3.1) to forecast Tt, Mt, and St because 

the dynamic relationships in the model are (marginally) statistically 

significant. Since these relationships are not strong, use of univariate 
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(diagonal al) or transfer function models to forecast Tt, M 
t' 

and S 
t 
would 

not produce greatly different results. To use (3.1) in forecasting we 

incorporate the differencing into the AR operator and rewrite it as 

yt - yy,-l + n*yt_* + n3y,_3 + n4y,-4 + at (4.1) 

=1 
- I + a1 II* = 02-a1 l-I3 = a3-a2 II4 - -a3. 

. - 
Forecasts 2(a) of Yn+R 

= (Tn+l'Mn+L'Sn+J? 
>' from any origin n are computed 

recursively for 1 - l,*,... from 
I 

‘m(J) = rIIYn(B-1) f II,+*) + l13GJJ-3) + T14jn(B-4) 

where Y,(j) - Y 
n+j 

for j I 0. The variance matrix of the R-step ahead 

forecast error, Yn+a - Z(m), is given by 

(4.2) 

(4.3) 

where the $j matrices are obtained by equating coefficients of BJ in 

(I+$lB+$2B2+*** )(I-IIIB-I12B2-I13B3-I14B4) = I. The diagonal elements, vii(R) 

i = 1,2,3, of V(1) are the variances of the forecast errors for the series 

T,,M,, and St, and can be used to produce forecast intervals for these 

series assuming normality. For example, in(a) ? k(vll(1))1'2 provides a 67% 

(k-11, or 95% (k-2), etc. forecast interval for Tn+R. Exponentiating the 

point forecasts and interval limits for Tt, Mt, and St yields point and 

interval forecasts for TFR,, MACBt, and SDACB . 
t 

In applying these results 
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we substitute the estimates of @ 1' a*’ @3' and $ given following (3.1) into 

(4.2) and (4.3). 

Figures 5-7 show point and 67% interval forecasts from origin 1984 for 

TFR, MACB, and SDACB, and point forecasts from 1980 for MACB and SDACB. For 

the latter, model (3.1) was refit using only data through 1980. (The point 

forecasts from 1980 for TFR are not shown because they would almost coincide 

on the graph with the 1981, . . . . 1984 data and 1984 forecasts.) These 

forecasts are determined primarily by the last two years of data; (3.1) is 

almost an AR(l) model in the first difference, so only the (1,l) elements- of 

II8 and Ii4 in (4.2) are nonzero. This results in very flat point forecasts 

from 1980 since the change from 1979 to 1980 is small for all three series. 

The sharp increase in MACB and SDACB from 1980 through 1984 produces MACB 

and SDACB forecasts from 1984 that increase before leveling off. The long- 

term point forecasts all level off due to the first differencing and absence 

of a constant term in (3.1). This behavior is convenient for long-term 

forecasting, since it facilitates comparison with traditional long-term 

judgmental forecasts made by specifying an ultimate level for the series 

being forecast, as discussed in section 1. Models with a constant term or 

other degrees of differencing would exhibit different long-run forecast 

behavior. 

The forecast intervals in Figures 5-7 show there is considerable 

uncertainty associated with long-term forecasts for all three series. We 

shall focus on TFR. Figure 7 for TFR indicates what demographers refer to 

as the replacement level of TFR, which is currently approximately 2.1 in the 

United States. If TFR remains constant at this level, with no change to 

mortality and relative fertility rates and zero net migration, then 
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population size remains approximately constant (fluctuates above and below a 

constant level). Figure 7 shows the TFR for white women in the U.S. dropped 

below replacement level for the first time in 1972, and has remained well 

below replacement level since. While the point forecasts for TFR in Figure 

7 stay below 2.1, however, the forecast limits show considerable uncertainty 

in how long TFR will remain below replacement level. The upper 67% limit 

exceeds 2.1 as early as 1992; an upper 95% limit reaches 2.1 in 1988. Weep 

in mind we are forecasting from 1984 here.) 

. - 
The forecasts of TFR, MACB, and SDACB, along with the forecast of A0 as 

0, can be used to produce forecasted scaled and shifted gamma curves. These 
I 

are forecasts of the curves that will be fit to the future data when it 

becomes available. To forecast the actual age-specific fertility rates we 

also want to forecast the deviations of the rates from the curve. We do so 

as follows. The relative fertility rates, Rit, are defined following (2.2). 

Let 7it be the ordinate of a gamma curve approximation to Rit, and define 

the "bias" for age i, year t as 

b 
it * Rit - 7it 

i = 14, . . . . 45 (4.4) 

We use the relation 

F 
it 

- TFRt(7it+bit) (4.5) 

to produce "bias adjusted" forecasts. 

We briefly examined ACF's for the 32 bias time series (one for each 

age) and found all series appeared to need first differencing. For most of 
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the bias series autocorrelation remaining after a first difference is 

applied is not strong. The minor exceptions tend to be at the very low or 

very high ages, which are the least important in determining births. For 

simplicity, we use the random walk model Vb 
it = 

E 
it 

with E 
it 

white noise for 

all the bias series. The forecast of bi n+a is then just 
9 

iin - b 
in (4.6) 

that is, the biases are all forecast to remain constant at their values in 

the forecast origin year. 
* 

Forecasts of A0 n+R, MACBn+L, and SDACBn+R yield 
, 

forecasts of ri n+R; these are then combined as in (4.5) with-the forecast 
9 

of TFR: 
n+a 

and bias forecasts from (4.6) to yield forecasts of the age- 

specific rates, ; i ,n(a) ' This was done from both the 1980 and 1984 forecast 

origins. 

In Figure 8a,b,c,d we show fertility rate data and fitted gamma curves 

for the years 1981 through 1984 compared to forecasts of the data and gamma 

curves from 1980. We use these to illustrate the roles of the gamma curve 

and bias forecasts in forecasting the fertility rates, F 
i,n+R' 

Consider 

first the fitted (solid line) and forecasted (dotted line) gamma curves in 

Figures 8a - 8d. The forecasted curves appear quite accurate for 1981 and 

1982, less so for 1983 and 1984. From Figures 5 and 6 we see the MACB and 

SDACB forecasts undershoot the actual values by amounts that increase 

steadily from 1981 through 1984. This results in forecasted curves that 

peak too early and are too narrow by amounts that increase from 1981 through 

1984, as can be seen in Figures 8a - 8d. In Table 3 we give TFR forecasts, 

actual values, forecast errors, and forecast standard errors from the model 
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Table 3 

TFR Forecasts (from 1980), Data, and Errors 
for 1981-1984 

Forecast 
Year 1 Forecast' Actual % Error2 % Standard Error3 

1981 1.715 1.723 -.46% 2.9% 

1982 1.720 1.730 . -.58% 5.5% 

. 1983 1.725 . 1.701 +1.41% 8.0% 

1984 1.720 1.710 + .58% 10.8% 
a 

1 
h h 

Computed as exp(Tlg80(J)) for R = 1, . . . . 4 with Tlg80 (1) the forecasts 

computed from (4.2) with model parameters estimated using data through 

1980. 

2 
Computed as lOO(Forecast - Actual)/Actual. 

3 
Computed as 100(exp(vll(l) l/*)-l) for R - 1, . . . . 4 with vll(R) the first 

diagonal element in (4.3), using the model parameters estimated with data 

through 1980. 
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(the latter two in percents) for 1981 - 1984. We see the TFR forecasts for 

1981-1984 were quite accurate. The errors in the MACB and SDACB forecasts 

causing the forecasted curves to be too peaked are partially offset in 1981 

and 1982 for ages around the peak (say, ages 20-30) by TFR forecasts that 

are slightly low, and these errors are accentuated some in 1983 and 1984 for 

ages around the peak by TF'R forecasts that are slightly high. The result of 

this is that the forecasted curves show noticeably more error at the peak 

ages in 1983 and 1984 than in 1981 and 1982. 

While the forecasted gamma curves for 1981 and 1982 are quite close to 

tie fitted gamma curves, they are not satisfactory as forecasts of the 

actual rates, F 
it' 

Forecasting the biases to remain constant at their 1980 

values'for all ages (n = 1980 in (4.6)), and adjusting the forecasted curves 

using (4.5) effects a noticeable improvement in forecasts of the age 

specific rates. The bias-adjusted forecasts are almost uniformly better 

across age than the raw gamma curve forecasts for 1981 and 1982. With the 

larger error in the curve forecasts for 1983 and 1984 the bias adjustment is 

less important. It still makes some improvement, particularly at the very 

young ages. 

The accuracy of the gamma curve forecasts for 1981-1984 depended to a 

large extent on the quite accurate TFR forecasts for those years. From Table 

3 we see that the historical data suggests much larger errors in TFR 

forecasts could be expected (unless one interprets the flatness of the TFR 

graph in recent years as an indication that the variability in this series 

has decreased). Considering the magnitude of the forecast errors that can 

occur for TFR, one sees that while the bias forecasts will be useful and 

important in the short-term (especially l-2 years ahead), they will generally 
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not be important for medium- to long-term forecasts (certainly beyond 10 

years ahead), except possibly at a very few ages with low fertility. 

5. Imnlementation in Census Bureau Population Proiections 

In its latest set of national population projections, the Census Bureau 

projected fertility by combining short-term results from time series methods 

similar to those of this paper with long-term results based on demographic 

judgments (age-specific fertility data through 1984 was used). The time 

series methods used differed from the presentation here in that transfer 

function instead of multivariate time series models were used (primarily to 

facilitate outlier detection and modification), k(TFR-1) was modeled 

instead of Rn(TFR) (to prevent TFR forecasts and forecast limits from going 

below l), and an adjustment was made to the 1985 and 1986 TFR forecasts 

using preliminary information on total births for those years. The models 

actually used and the adjustment for 1985 and 1986 total births are 

described in the Appendix. The slightly different time series methods were 

presented here to simplify exposition. In what follows we describe how 

demographic judgment was used in conjunction with time series model results, 

and compare results for the Census Bureau projections with the results from 

the time series model (3.1) presented here. 

In the official Census Bureau projections, traditional judgmental 

methods were used to set the ultimate fertility level and mean age of 

childbearing for women completing their fertility after the year 2020. 

These values were then compared with values for past cohorts to produce an 

acceptable pattern of age-distribution of fertility. These results became 

the ultimate distribution of cohort fertility shown in Figure 9. Ultimate 
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fertility forecasts can be obtained from the time series model (3.1) used 

since the forecasts of all quantities needed (TFR, MACB, SDACB, and the age- 

specific biases) achieve ultimate levels. (See Figures 5-7 and recall that 

the biases are forecast at their 1984 values.) The results for the age- 

distribution of fertility (the relative fertility rates) are roughly 

comparable for the two approaches as shown in Figure 9, with the Census 

Bureau rates having a somewhat narrower and later peak (reflecting a 

somewhat lower SDACB and higher MACB). 
- . 

The official projections used bias adjusted forecasts from time series 

transfer function models for the first six years of the forecast period for 

the age-specific fertility rates for ages 14-39. However, the time series 

models-forecasted increases in MACB and SDACB that produced forecasted 

increases in fertility to women age 40 and over that, while small in 

absolute magnitude, were large in percentage terms. Census Bureau 

demographers felt they could not accept such rapid rises in fertility at 

these ages for the projections to have face validity, so the rates at these 

ages were forecast to remain constant at current levels. The results of 

this adjustment were inconsequential for the total birth and population 

projections since the fertility rates above 40 are so small. (The magnitude 

of the difference this makes at ages 40 and over is reflected in Figure 9.) 

Therefore differences between the Census projections and model (3.1) 

forecasts for the years 1985 through 1990 are due almost entirely to the 

differences in the use of time series models mentioned earlier, especially 

to the adjustment of the 1985 and 1986 TFR forecasts for preliminary data on 

total births. The effects of this adjustment can be seen in the 1984-1986 

TFR numbers in Table 4. The Census Bureau projections then interpolated 
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Table 4 

Projected Total Fertility Rates and Empirical Mean and Standard Deviation of Age 
at Childbearing of White Women from Census Bureau Population 
Projections and Forecasts from Model (3.1): 1984 to 2020 

AGE OF CHILDBEARING 

TOTAL FERTILITY RATE MEAN STANDARD DEVIATION 
Year Census Model (3.1) Census Model (3.1) Census Model (3.1) 

1984 

1985 

-1986 . 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

2000 

2010 

2020 

Notes: 

1.710 1.710 26.51 26.51 

1.746 1.719 26.60 26.58 

1.747 1.714 26.66 26.63 

1.749 1.715 26.70 26.66 

1.769 1.717 26.73 26.69 

1.778 1.717 26.75 26.71 

1.781 1.717 26.78 26.72 

1.778 1.718 26.75 26.73 

1.778 1.718 26.76 26.74 

1.778 1.718 26.77 26.74 

1.779 1.718 26.78 26.74 

1.779 1.718 26.79 26.75 

1.780 1.718 26.83 26.75 

1.791 1.718 26.89 26.76 

1.800 1.718 26.92 26.76 

5.52 

5.56 

5.58 

5.58 

5.58 

5.59 

5.60 

5.56 

5.56 

5.55 

5.55 

5.55 

5.54 

5.53 

5.54 

5.52 

5.58 

5.63 

5.67 

5.69 

5.71 

5.73 

5.74 

5.74 

5.75 

5.75 

5.76 

5.76 

5.76 

5.76 

The figures for 1984, the last year of complete data, are shown for 
comparison. The Census TFR projections for 1985 and 1986 were adjusted 
for preliminary data on total births for those years (see Appendix). 
The mean and standard deviation of the age of childbearing are computed 
empirically from the projected fertility distribution by age in each 
year. The forecasts from model (3.1) are "bias adjusted" as described 
in the text. 

Sources: U.S. Bureau of the Census, Projections of the Population for the 
United States by Age, Sex, and Race: 1987-2080 (P-25, No. 1018) 
and unpublished data. 

* 
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Table 5 

High, Middle, and Low Series of Census Total Fertility Rate 
Projections Compared to Model (3.1) Forecasts with 67% 

Forecast Intervals 

Year 

Census Model (3.1) 

Low Middle High Lower Upper 
Series Series Series Limit Forecast Limit 

1984 

1985 
* - 

1986 

I.887 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

2000 

2010 

2020 

1.718 

1.716 

1.708 

1.689 

1.671 

1.662 

1.652 

1.642 

1.632 

1.583 

1.514 

1.500 

1.710 

1.746 

1.747 

1.749 

1.769 

1.778 

1.781 

1.778 

1.778 

1.778 

1.779 

1.779 

1.780 

1.791 

1.800 

1.780 

1.826 

1.855 

1.885 

1.901 

1.916 

1.931 

1.946 

1.961 

2.035 

2.159 

2.200 

1.670 

1.626 

1.591 

1.554 

1.513 

1.473 

1.434 

1.396 

1.359 

1.324 

1.290 

1.140 

0.924 

0.780 

1.710 

1.719 

1.714 

1.715 

1.717 

1.717 

1.717 

1.718 

1.718 

1.718 

1.718 

1.718 

1.718 

1.718 

1.718 

1.769 

1.806 

1.847 

1.898 

1.949 

2.001 

2.056 

2.113 

2.170 

2.229 

2.288 

2.588 

3.192 

3.784 

Notes: The figures for 1984, the last year of complete data, are shown for 
comparison. The Census TFR projections for 1985 and 1986 were adjusted 
for preliminary data on total births for those years (see Appendix). 
These are treated like actual data, which is why there are no low or 
high series Census projections for those years. The model (3.1) 
forecasts and limits are "bias adjusted" as described in the text. 

Sources: U.S. Bureau of the Census, Projections of the Population of the 
United States by Age, Sex, and Race: 1988-2080, Current Population 
Reports, Series P-25, No. 1018 and unpublished data. 
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between the 1990 projections and the judgmentally determined ultimate values 

to get age-specific rates for the intermediate years. The total fertility 

rate and mean age of childbearing of the resulting forecasts are shown in 

columns 2 and 4 of Table 4. The TFR forecasts are within one-tenth of a 

child of the forecasts using model (3.1) shown in column 3 of Table 4, and 

the mean age and standard deviation projections in columns 4 and 6 do not 

differ greatly from the corresponding forecasts from model 3.1 in columns 5 

and 7. (The mean age and standard deviation in Table 4 are computed 

empirically from the projected age-specific relative fertility rates (g,,) 
45 h 45 h 

according to EMACB = C 
2 .5 

k=!.4 
gkt(k+.5) and ESDACB = [kC14gkt(k+.5-EMACB) J . 

Th,e results in columns 5 and 7 differ from the forecasted gamma curve MACB 

and SDACB because of the "bias adjustment", and also because the gamma curve 
h 

is continuous whereas the gkt are discrete.) 

Time series methods were also used to aid in developing high and low 

fertility variants of the projections. This was done by setting TFR 

projections at upper and lower 67% limits through 1990 from a model for 

Rn(TFR-1) analogous to that for Rn(TFR) in Table 1 for the high and low 

fertility projections respectively. By 2020, the lower forecast limit for 

the total fertility rate in model (3.1) reaches .78 while the upper limit 

reaches 3.78 (see Table 5). This range of three children is far wider than 

the traditional one child range between high and low projections in 

judgmental demographic projections of U.S. fertility. This large range is 

indicative of the large amount of uncertainty inherent in forecasts that are 

based only on the historical time series and do not take into account the 

substantive knowledge available to demographers. Even though the forecasts 

in this instance do not differ greatly from the middle fertility series 
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projected by demographic methods, demographers would be unlikely to accept 

the wide range between high and low fertility produced by time series models 

in the middle to long-run. This is primarily because demographers contend 

that the large swings in fertility during the baby boom and bust of 1945 

through 1974 were generated by a fertility process that is not likely to be 

repeated. The recent stability in fertility rates since 1974 has been cited 

to support this argument. Consequently, in the Census Bureau projections the 

high and low fertility variants from the time series model through 1990 were 

interpolated to values in 2020 of 2~2 and 1.5 respectively (Table 5). 

J* Conclusions 

The approach to fertility forecasting set out here accomplishes the 

goals-of reducing the dimensionality of the forecasting problem, and 

providing short-term forecasts of reasonable accuracy and long-term 

forecasts that capture the smooth shape across age of historical data. It 

allows the forecaster to concentrate efforts on modeling and predicting 

demographically meaningful quantities (TFR, and MACB and SDACB for the gamma 

curve), since the gamma curves capture much of what is going on in the data. 

The deviations of the fitted curves from the age-specific rates can be 

forecast by simple means and the forecasted curves adjusted accordingly. 

These "bias adjustments" are important for short-term forecast accuracy, 

much less important for medium to long-term forecasting. 

In recent Census Bureau projections (U.S. Bureau of the Census, 1988) 

short-term forecasts (through 1990) from a time series model similar to that 

presented here were combined with long-term projections from the judgmental 

approach described at the beginning of this paper. Long-term forecasts by 
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any method are likely to contain a substantial amount of error, and so are 

perhaps best guided by judgment and substantive theory rather than by 

atheoretical time series forecasts. Hence, the Census Bureau projections 

used the forecasted, bias-adjusted gamma curves for the first few years of 

the projection period and then interpolated between these and assumed 

ultimate levels determined by demographic theory. 

In future research, an alternative to simply interpolating between 

' short-term time series and long-term judgmental forecasts may be explored. 

Thompson and Miller (1986) present a method for producing forecasts that 

. - 
reach a specified future "target" by adding an intervention component into 

the forecast function and solving for the forecast intervals using Bayesian 
I 

methods. In the meantime, the approach used in this paper allows both 

middle:and alternative (high and low) fertility projections to be based on 

both historical time series data and demographic judgment. 
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APPENDIX: ADJUSTMENTS FOR PRELIMINARY DATA 

AND ALTERNATIVE MODELS 

Adjustment for 1985 and 1986 Preliminarv Data 

There is about a two year lag between the times when age-specific birth 

statistics are collected and released by the National Center for Health 

Statistics. Our model used fertility data through 1984, but we performed 

our analysis in mid 1987. Certain 1985-86 information (the total number of 

white births and age-specific population counts) was known when we produced 

'our 1984.origin forecasts. This was taken advantage of in the Census Bureau 

projections presented, but was not done with the multivariate time series 
I 

model (3.1) in this paper to simplify the exposition. Here we discuss how 

this adjustment of the Census Bureau projections was done. 

First, we forecasted TFRlg85, MACBlg85 and SDACBlg85 to obtain alg85 

and p,,,, forecasts. From these we computed the relative fertility rate 
h 

forecasts (7i,1g85; i = 14 to 45). Multiplying these by Thlgs5 yields the 

h 
set (F 

. 
i,1985' ' 

= 14 to 45). These age-specific fertility rates were then 

multiplied by the known age-specific population counts, and summed to arrive 

at a forecast of total white births for 1985. Our forecast was slightly 

lower than the actual, so we adjusted TFRlg85 upwards, by the ratio of 

actual to forecasted total births. 
, 

Repeating the process, we generated forecasts for 1986 (using the 

adjusted TFR forecast for 1985) and in similar fashion adjusted TFRlg86. 

The forecasts of TFR extend from origin 1984, but the forecast limits extend 

from origin 1986, since we behaved as if the adjusted forecasts of TFR for 

1985 and 1986 were the actual TFR values. The original TFR forecasts for 
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1985 and 1986 were 1.720 and 1.708; the adjustments brought these to 1.746 

and 1.747 (note Tables 4 and 5). 

Alternative Models 

We experimented with several variations on our model (3.1) for 

forecasting. There is little evidence, such as clearly significant or 

insignificant test statistics, for discriminating among most of these 

alternatives, and most have only minor effects on the forecasts. Two 

changes that had a major impact were including constant terms in the models 

. - and taking second differences of the time series. Most of the discussion 

here is taken from Thompson, et. al. (1987), and thus uses data only through 

0 

I 

1983, and without the revisions to the 1980-83 data. While we did not red 

all the analyses discussed here with the new data, the results would be 

unlikely to differ appreciably. The differences in results for those mode 

that were fit both to the earlier and revised data were very slight. 

1s 

Letting the (2,2) and (3,3) elements of G2 be nonzero produced an 

improvement in the residual autocorrelations for Mt and St, but t-statistics 

for these parameters were only 1.2 and 1.7, respectively, and the impact on 

the forecasts was slight. 

Outliers were investigated with both the univariate and transfer 

function models using a program by Bell (1983), which implements a 

modification of a procedure suggested by Chang (1982). The procedure checks 

for both AO's (additive outliers -- affecting only one time point, such as 

the war-year variables) and LS's (level shifts -- where the series moves to 

and stays at a new level). Outliers were found in the early 1970's for all 

three series, and the mid 1960's for Tt and Mt. The reasons for this are 
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easy to see from Figures 5-7. TFR drops rapidly, resulting in a LS for 

1965, and AO's for 1971 and 1972 followed by a LS in 1973 for Tt. MACB 

moves less dramatically, but for Mt we still found a LS in 1966, and an A0 

in 1971 followed by a LS in 1972. SDACB is better-behaved, with only an A0 

in 1971 for St. Other outliers found were an A0 in 1933 and a LS in 1979 

for Tt, and an A0 in 1950 for Mt. 

Despite the statistical significance of the outlier terms their impact 

on the forecasts was very slight. They do inflate the residual variance 

estimates, and would thus affect forecast intervals. We proceeded here with 

the multivariate model (3.1) without outlier terms since we presented 

fqecast intervals only for TFR, and only as an exercise in portraying 

uncertainty in projections. 

The model (3.1) and those above do not include constant terms. Since 

all these models contain a first difference, a constant term in such a model 

would be a slope, with the forecasts eventually following a straight line 

with this slope as the forecast lead increases. Estimates of constant terms 

can be thought of as average slopes over the length of the series. Constant 

terms were tried in transfer function models for Tt, Mt, and St (similar to 

(3.3), but with outlier terms), with resulting t-statistics of -.3, -1.3, 

and -2.1. While only St offers much evidence for a constant term, it is 

worth at least considering constant terms seriously since they have a large 

impact on the forecasts, causing TFR forecasts to drop slightly, and causing 

long-term MACB and SDACB forecasts to drop dramatically. Models with 

constant terms were not chosen partly because the statistical evidence for 

them was not strong, and partly because the resulting forecasts were thought 

to be less reasonable than those from models without constant terms. 
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Using a second difference, V*, also has a dramatic effect on the 

forecasts. These models are relevant since the AR operators for all three 

series have a root not far from one. For example, the model for VTt given 

in Table 1 can be factored as 

(1 - .55B + .03B* -.25B3) - (1 - .86B)(l + .32B + .28B*) 

and the first factor is not far from V - 1-B. A unit root test (Dickey, 

Bell, and Miller 1984) for using V2T t was insignificant at the 10% level. 

. - 
The autoregressive operators in Table 1 for VMt and VSt factor into 

(&-.77B)(1+.28B) and (l-.84B)(1+.29B), respectively. If the transfer 

function models for Tt, Mt, and St were modified to include second 

differences, this effectively sets to one the AR roots near unity. When 

this was done, examining residual autocorrelations suggested adding first- 

order moving average terms to the models for Mt and St to compensate for 

changing the AR roots to one, leading to ARIMA (0,2,1) models. 

Forecasts from the second difference models also follow a straight line 

as the forecast lead increases; in this case the slope of the line is 

determined primarily from the most recent data. The results were TFR 

forecasts that declined faster than those from the model with one difference 

and a constant term (there are no constant terms in the second difference 

models), and MACB and SDACB forecasts that rose rapidly, at about the rate of 

the last three or four data points for each series. Though the statistical 

evidence against the second difference models is not strong, the longer-term 

forecasts from these models, particularly for Mt and St, were judged 

unreasonable. Thus, the second difference models were not pursued further. 
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Actual Models Used in Census Bureau Proiections 

The actual models used for the projections described in U.S. Bureau of 

the Census (1988) were of transfer function form, similar to (3.3) except 

for the following. First, ln(TFRt-1) instead of Tt - Rn(TFRt) was modeled 

with a univariate ARIMA (3,1,0) model, though Tt was used as an input 

variable in the models for Mt and St as in (3.3). Second, the outlier terms 

described above were included in the model (as well as the war-year 

indicator variables). Third, the ARIMA structure for Mt and St was (l,l,O), 

since the AR(2) terms did not appear. necessary when outliers were allowed 

for. The resulting fitted models, omitting the outlier and war year effects 

for simplicity, were as follows: 
a 

Rn(TFRt-1) - alt/(l-.42B + .09B* - .51B3)(l-B) 

(. 11) (.13) C.12) 

Mt 
- -.0270Tt + a2J(l-.78B)(l-B) 

(.Oll) C.08) 

St - 
-.0273Tt + 1.571Mt + a3J(l-.53B)(l-B) 

(.023) (23) ( * 12) 

^2 
a1 

- .03915 

^2 
a2 

- .0630 x lO-4 

^2 
a3 - 

.3458 x lO-4 

The inclusion of outlier terms results in changes in parameter estimates, 

though this does not greatly affect the forecasts. The variance estimates 
k 

are not comparable to any given previously, since in the first equation 

ln(TFRt-1) is used instead of Tt - Rn(TFRt), and in the second and third 

equations Mt and St depend, respectively, on Tt and on (Tt,Mt) at the 
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current time. The above fitted models could be used directly in 

forecasting, ignoring the war-year and outlier variables, since the 

forecasts actually turn out to be the same whether or not the war-year and 

outlier variables are included. (This is because autoregressive models were 

used, and the war-year and outlier variables are all zero near the end of 

the series and over the forecast horizon.) 

. - 
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Figure I : The fertility table used by Census. All the table entrlcq 
below the “Calendar Year 1982” diagonal were unobserved. After 
supplying an assumed 1959 cohort, Sector 1 was completed by 
interpolation. An assumed 1985 cohort allowed completion of Sectors 
and 3 by interpolation. Constant rates were assumed throughout. 
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Figure 2a. Period age-specific fertility rates for three yearsI U.S. 
white women. Total fertility differs in these years/ and the age- 
specific pattern shifts, but the rates for all three years have a 
similar smooth shape across age that is well-approximated by a scaled 
and shifted garmna density. The largest deviations from this shape 
occur in the early years of data (1927, for example), which are the 
least important for forecasting. The rates are plotted at the mother's 
age at last birthday plus .5. 
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Figure 2b. Cohort age-specific fertility rates for three cohorts, 
U.S. white women. Since we are only using data for 1921-1984, the 1902 
cohort is incomplete at ages 14-19, and the 1952 cohort is incomplete at 
ages 3345. In contrast to period rates , cohort rates do not follow such 
similar smooth shapes across age. Large deviations from a co-n smooth 
shape occur in recent cohorts , which are the most important for forecast- 
ing. The fertility rates for recent cohorts are relatively flat from 
ages 19-30, as illustrated by the 1952 cohort. 
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figure 3. Parameters of gamma curves fitted to relative fertility rates 
of U.S. white women, 1921-1984. Except for years affected by World War II 
(1942-471, the parameters remain relatively stable through, 1970, after 
which they shift rapidly to new levels. In fitting the gamma curves values 
of the endpoint parameter Aot were constrained to the interval CO, 141 
(see text). 
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Figure 4. Two fitted relative fertility curves. We exhibit the fitted 
curves from 1927 and 1977, which have, respectively, the smallest and 
largest a values. The three adjustable parameters (A , a and 8) allow 
the Gamma curves to summarize a variety of age-specif ? c fertility pat- 
terns. The observed fertilities in these years are also shown; in 
general, the fitted curves provide good overall summaries of the data. 
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Figure 5. MACB data with point forecasts from 1980 and point and 67% 
interval forecasts from 1984. Forecasting for M = Ln(MACB ) uses 
model (3.1) with estimated parameters, and then e ponentiate 2 5 to provide 
point forecasts and interval limits for MACBt. Model parameters are 
estimated using data up through the forecast origin years (1980 and 
1984). 
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Figure 6. SDACB data with point forecasts from 1980 and point and 67% 
interval forecasts from 1984. Forecasting for St = kn(SDACB ) uses 
model (3.1) with estimated parameters, and then exponentiat s to provide k 
point forecasts and interval limits for SDACB . Model parameters are 
estimated using data up through the forecast bigin years (1980 and 
1984). 
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Figure 7. TFR data with point and 67% interval forecasts from 1984. 
Forecasting for T = 

t 
an(TFR ) uses model (3.1) with estimated parameters, 

and then exponent ates to p ovide point forecasts and interval limits for F 
TFR Notice the asymmetry of the resulting forecast intervals. Forecasts 
fro&‘1980 are not shown since they would almost coincide with 1981-1984 
data and the 1984 point forecasts. Also shown for reference is a line at 
2.1, the "replacement level" for TFR (see text). 
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. - Figures 8a - 8d. Actual (X) and forecasted (0) fertility rates, 
and fitted (0) and forecasted (--I gamma curves, 1981-1984. The 
curve parameters are forecasted from 1980 using model (3.1) 

*estimated with data through 1980. The forecasted parameters pro- 
duce forecasted (scaled and shifted) gamma curves (dotted lines) 
which may be compared to the fitted (scaled and shifted) gamma 
curves (solid line) which are obtained when the data for a given 
year become available. The forecasted curves are then "bias 
adjusted" (see text) to produce forecasts of age-specific fer- 
tility rates (0) which may be compared to the actual fertility 
rates (XI. The graphs show the importance of bias adjusting the 
forecasted gamma curves in producing short-term, age-specific, 
fertility rate forecasts. 
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Figure 9. Ultimate fertility distribution -- Census projections and 
forecasts from model (3.1). The graph compares the ultimate fertility 
distribution (relative fertility rates) from the U.S. Bureau of the 
Census (1988) projections, which was determined judgmentally as des- 
cribed in the text, with the ultimate fertility distribution obtained 
from the bias adjusted gamma curve resulting from the ultimate forecasts 
of the curve parameters from model (3.1) (though TFR is not needed here). 
The Census projections show a slightly higher ultimate MACB and slightly 
lower ultimate SDACB than those resulting from the model (see Table 31, 
corresponding here to the Census projections having a slightly later 
and narrower peak. Notice also that the Census projections for ages 
40 and over are lower than the model forecasts. The Census projections 
hold these relative rates at their 1984 values to avoid projecting 
(as the model does) an increase in fertility at these ages that is 
large in percentage terms though small in absolute magnitude. 


