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ABSTRACT 

A Mp’b towbQY and St8 GCO8ietty are grounded in the 
nathcmatlcal theory of cellular structures on continuous 
8urfaces. WC 8ay that the ~p.8 geometry, the actual 
physical positioning of the features on a surface, 2s a 
$csllzstion of the map'8 topology, which refer8 to the 
relative positioning of the features. A 8ingle topology 
has many geometric reallzatlons, my two of uhSch are 
related by some "rubber-rhcetlng transfotrrrt Ion." Any 
computerized lmplementatlon of the geometry of a up, 
ho ever, requires a discrete approxlmatlon of the point 
data of the lrap and a rounding of geometric positioning 
of those points. me implicit or explicit roundlng 
requfkcd will re-po8ltlon the points, which IM~ in turn 
change the topology and give rise to topological 
incon8lstenclcs or topological uncertaintier. 

In this paper we review the Rethemeticel aode of a Rap 

as a continuous 8urfacc with cell decomposltlon, md we 
examine a discrete-location/linear rrubmodel which 
correctly models the computer'8 approximation to the 
continuous rurfacc rpodel. We describe the submodel, Its 
relation to the larger tiel, 8peclal limitations of the 

. --8ubmode1, and rrpeclal useful properties of the 8ubmodel. 
In particular, we derive useful measures of 8tablllty of 
realizations of the 8uMaodcl. 

Because linear features in the submodel are straight line 
8egment8, the 8tablllty of the topology (or the 
robustness of the geometry) of a particular 
discrete-location/linear rrcrp realization turns out to be 
8lmply the upper bound distance that eny line-8egment 
endpoint MY IK)VC in any direction and 8tlll not change 
the topological 8tructurc of the map. Looked at in the 
more general context, robustness Is a geometric measure 
of the closeness of features on a map. Robustness 18 
l l8o a measure of the closeness of other maps having a 
one-to-one correspondence of point features, but having 
different topol.?glc8. This paper describes how to 
compute the geometric robustnes8 of a particular 
geometric reallzatlon of a oap and how to larprove the 
topological l tablllty. It also examines changes in : 
rrtablllty that occur under various rsp update routine8 
and transformat ion procedures. It proposes mean8 of 
modifying or restrlctlng those routines and procedures to 
preserve 8tablllty or to recover l tablllty when it is 
dlmlnlshed by those procedures. 



A standard or usual M$hematicti tic1 for a MP is the 
two-dlrcnrlonal manifold or surface with l finite 
cdlular decomposltlon. A tuo-dimen8lonal ranlfold is a 
ContinUoUB, inffnitCly l UbdfVfdCb18 l pcrce such that l VCW 
non-boundary point has a neighborhood that looks like a 
small disk in the plane, and every boundary ~ln;ttl~;~ 
neighborhood that lY88WDblCB a half disk. 
decomposition of a Uyllfold is a partition of the space 
into WtUally disjoint l UbBCtB, each of which 18 
topolaglcally cqulvalcnt to a point, an open interval, or 
an open disk (possibly with holes*). me partltlonlng 
SUbSetS arc called CC118; Md those CC118 which ConBfBt 
of a .sing1c point are called O-cells; those which arc 
topologlcally cqulvalcnt to an open interval are 1-cells; 
and the two-dimensional disks arc called 2-CCiiB. 
P8rtitiOnfng Beans that every point in the lrsp sheet 
belongs to exactly one of the cells in the finite 
collect ion. In other words, the union of the cells 
*xhausts the space; and the cells themselves arc 
pnlrwlse disjoint. In order to guarantee that the cells 
do not overlap and that they fit together properly, the 
cells*are defined in such a way that their boundaries do 
not belong to the cells themselves, but instead arc made 
up of cells of lesser dlmenslon. The cells rust fit 
together with a plane-like smoothness and fill up the 
space. The rules for f lttlng together constitute the 
basis for the tOpOlOgiCa1 edits. ThoSC tic8 UC (1)’ 
~omblnatorla~ (l.c. describe f lnltc relations among 
finite l ctB), and hence arc Mchine-verifiable and (2) 
form a WDletQ set of a%ioms for the theory of cellular 
l truCtUrcB on l UrfaCCB. 

A submodel of a nathematlcal model places l ddltonal 
constraints on the node1 components, in our case the 
cells; and thereby, it reduces the number of lcgltlmatc 
instances of the wdel that must be considered. 

The l-cells in the usual topological manifold code1 are 
arcs or Smooth CLEVCB. In practice, l-cells are stored 
and displayed as polygonal lines, or polyllnes. he' 
practice is based upon rrechanlcal and aathematlcal 
constraints. ?bchineB draw straight lines IK)rc easily 
than curved lines; and pleccul8c linear approxlmatlons 
are satisfactory l pproxlfnatlon8 from a visual as well as 
a theoretical viewpoint. *Plcccwl8e lineara 18 more 
suitable computationally for algorithm development; and 
plcccwl8c linear can be l s close as desired, certainly 
within Mchine precision constraints. For our sub~nodcl, 
we allow only polylin88 for our l-CCllB. 
* Some authors requfre tbrt tbe 248118 be sfcply- 

connected (no boler). Tbfr l xporftfon doe8 not. In fed, 
tbc structure of non-rfDply-connected 8urfrce8 wftb 
well-bcbwed rfngulrrftfer ct tbe boundrry f8 well known 
rnd fr fhb brrfr for our undcrrtrndfng of our elemant8ry 
24fcenrfonrl building blocktr, the punctured 2-cellr. 

. -. 

. 

. 

. . . 

: * * 



. . 

mC o-CC118 in the u8ti towlwfcti mod81 MY trkC MY 

real CoordiMtC ,VtiUCB On l SUrfaCe that has infinite 
dlvl8lbllfty. fn MY inplcmntation, however, rschlne 
precision will force the valuc8 into some finite grid. 
For our 8ubmod81, the O-CC118 and the polyllnc interior 
VCrtiCCB mt )UVC COOtdiMtC8 in l OCC finite grid. 

Our cubmodel puts con8ldcrablc restrictions on the 
O-CC118 W%d a-CCllB; and me right ask if our Subnode IS 
as good (18 the general topological manifold for 
representing ups. In a very faPOZYtMt sense, it 18 
better for representing digital maps: Every computer 
implCmentatiOn of a digital rap is an instance or 
realization of our w&model: and many of the dlfflcultles 
arising from machine prcclrlon constraints, Such (IS 
topological uncertainty under transformation, can be 
better understood in the context of our flnltc-grld/ 
polyllne (or discrete-location/linear) rubmodel. 

While our O-cells can come from only a finite set (in MY 
particular instance, where the grid is given cxpllcltly 
Qr implicitly), the points on our l-cells are lnflnlte in 
number. We keep track only of the vector ends of the 
segments rraklng up the polyllncs; but our Mthematfcal 
wdeL rcqulres that all of the points on a line segment 
be locatable, even though they cannot be cxpllcltly 
stored. 

Every instance of our 8ubodel is also M instance of the 
IK)rc general topological Mnlfold rodel; hence, we ray 
use special propctiies of the submodel structure or use 
general properties of the larger model as needs arise. 
We examine topologicti stability in both contexts. 

8TABILITX 

tlnwus Mformat 1Qllr 
mathematical notion of continuous deformation 18 just 

a formal representation of the lntultlve concept. For a 
BUrfaCc or MnifOld, 6, in a space, K, a -tin- 
dcformstlon over time T is sllaply a continuous rapt 

@r Ir[O,T] -> K 

l atiBfyfnQ *(8,0) - 8, which says intuitively that, at 
tine zero, 8vcry point is in its original position. 

rot each lntemcdlatc value of t in [O,T], we have the 
image of the ongoing deformation of 8 at time t given 
bug 

"4(88(t)). 
. 

Continuous deformations need not preserve topological 
properties of 6 at each stage t. In other words, the 
lnter~edlatc image, #(St{t)), may be topologlcally 
different from 1. (It My even shrink to a single point 
if * is a contraction!) If 8 has a cell structure, then 
that cell structure MY induce the same, a different, or 
no cell structure on the lntercedlate image, @(6x(t)). 
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. ‘WC UMt to 8xaminC dcfo~tiOn8 thst “&lKbBt 81Wt!lYB” 

prCBCrv8 80118 Cell Structure On I (for all but finitely 
t’ ‘Ilsny VtiWB 'of t in (O,T]). Then we will be rblc to 
? recognize when a deforrstlon hss changed the cell 

l truCtWC . 

WC ti80 U& to bC &lC to diBtinQui8h 8lkall dcfoNtion8 - 
froa large deformations by looking at the dfBtMCC8 2 
through which the deformations l~vc points. m18 18 -_, 
l ccoInplf8hcd by llllrltlng the raxlnum pcrth length rlloucd -1 

in our deformations, btherC path length for each point l L - 
.ln S is the length of the arcs 

The class of all continuou8 dCfONtfOn8 of our -ifold 
is lruch too large to use for our study of stability. 
Norcover, this large class contains many exotic rclps 
under which our cell structures become lmmedlatcly - 
unstable for all t > 0. In order to study 8tablllty, we 
examine famlllcs of deformation8 which do not move 
points too far and which move neighboring points in 
rinllar directions across similar diBtanCC8. These 
deformat ions will be defined by their action on a finite 
set & points and extended in a piecewise linear wuwer 
to the whole space. 

ollr goal in this Short wr 18 to Study Stability, not ' 
to develop a theory of interesting deformations. 60 
without further elaborating on the theory behind the 
class of deformations described above, we simply point 
out that the deformations are defined for all instMcc8 ’ 
of the larger continuous code1 and hence for all 
instances of the submodel. However, the lntermcdlatc 

: --image, @(Wtl), of the deformation of M instance of 
the flnlte-grld/polyllne l ubmodcl will not always be M 
instance of that submodel. Ncvcrthele88, this 
intermediate image will always be M instance of the 
polyllne submodel bccau8e of the pieCewiSe-1fnCar Nturc . 
of the allowable deformations! 

p4 

Figure 1. Illustrations of five intermediate dcfomctlons - * 
of polyllne rrap portions 



. 'Notlcc in Ilgurc 1 that the lntcrrcdlatc dcfomtl0ns 0n 
the left l VMtWlly ChUbQC the CC11 $tr&J&wc &en the 

. lines double Over On thcasc~vc8. As thy point pi IK)Vc8 
.to the right it gets closer to the linear feature p,p,, 
Which it8Clf i8 8ilbUltMWUBly BOVhQ to a left, 

The inltlai polygon, however, bCColRC8 WrC Stab18 if it 
18 dcfO& M Shown On the right. In the right-hand 
deform&ion, the fCCtUrC8 love tOwCrd M cqulllbrlua 

I . po8ltlon in which they arc in some sense "a8 fm fn . 
one another as poBBfbl8." me -k8ta shape that they 

: could attain in this l fmplC example 18 a regular 
pentagon. The "good" dcforaatlon on the right is 
achieved by Bending the vcrtlccs in just the opposite 
direction8 as in the "bad" deforrnatlon on the left. 

The tti deformations deplctcd in Figure 1 ln some sense 
cfabody the basic ideas concerning stability: 

(1) Stability is threatened when point features mve 
toward nearby or nearest non-adjacent line 8cgment 
features (and My then poBBib&y Cl088 over them!) 

(2) Stability is improved when point features love away 
from-nearby or nearest non-adjacent line segment 
features. 

In the general situation of the O-cells, l-cells, and 
2-cells of a map, however, the features are 8urrounded 
by other features; and Irovcment is constrained in all 
directions: 

Figure 2. Ccl18 in rorc complex rrap example. 

In the example inS91gure 2, the mint p1 is now further 
constralncd by the additional features l rowK¶ it. That 
point is no longer free to move to the left to fill out 
the pentagon unless the points on the left of it move 
further to the left. There are two l pproaCh88 that one 
My take with the general sltuatlon: and they correspond 
rerely to assessing how good or bad the 81tuatlon 18, or 
to describing how to improve the situation. me easier 
first approach we will call Weasurlng robustness.a 
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!tOBUSMEBS 

#?obl8tnC88 Of l 8tatiBtiCti 88tiMtOr 18 l alty of . 
permanence md rcllablllty under varying conditions. WC 
borrOW the I'bOtiOn fm the UCQ Of 8tati$ticS, yd WC 

rp~ly it to our gnetrlc rcallzatlons of ulr map Qta. 
fn BtatiBtiCB, M l BtfMtOr 18 ZObUBt if it can wlthatand 
rclatlvcl~ large perturbations in the 8tatlstlcal data. ; 
For our rppllcatlon, a gc~metrlc rcalltatlon of l 2 
spcciflc cell configuration will be Bald to be a m -3 
tcallzam if it can tolerate considerable perturbation -- 
Of feature ~BltiOnB Without Changing the cell l trUCtUEC. 

If WC ask how "bnd" 18 the particular configuration, ti 
*erg is it Worst," WC My WMt t0 find OnC fCCtUr8 
and the rinimum dirtMce we ray perturb that feature 
(toward the nearest non-adjacent feature) to change cell 
structure. (Equivalently, we CM ask for the least upper 
bound of distances that we CM Imove all of the features 
l fmtitMcOU81y and St111 not Change the cell StmCtUrC.) 
If we ask how "good" can we make the up, we are 
asking the more difficult question of how to move all of 
the features slmultMcously to a "best" or in some sense 
"'IK)bt Btab1C" #DOBitiOn. That second problem appears to 
be much llorc formidable than the first, and rather like 
the classic unsolved n-body problem. Ye can, lndecd, - 
treat the problem as a force problem, and achieve 
interesting stability results. First, we will examine 
the easier problem of determining how unstable a feature 
configuration is and where the lnstablllty is worst by 
locating nearest non-adjacent feature pairs. 

-The following result regarding line segments is the key 
attribute that make8 the finite-grld/llnear submodel 
superior for studying lnstablllty. 

(1) The rlnlmum distance between two non-lntcrcsccting 
closed line segments $8 always attalncd by a pair of 
points, at least one of which is M end-point of one of . 
the line l ~CntB. 

ml8 fact is caslly seen and easily proved; howcvcr, the 
very important ramlflcatlon of the fact 18 that computing 
distances between fCatUrC8 in a pO1y1inC Bubmode1 boi18 
down t0 COmpUtinQ pOfnt-tO-linC-•Cgment diBtMCC8, which 
arc easy to compute. 

If our topological data is stored in a TIGER-like file 
that Wullds nclghborhoodsw in O(Y ) time, where 8 is 
the number of cells in the nclg&orhood of a f6ature f, B 
then the following algorithm will detect the nearest pair 
of features in O(t(82)) time where 8 is the POlylinC 
vertex count in each P-cell, and the sum is over all 
2-CCiiB. The algorithm will also find the nearest segment 
to every point feature (O-cell or polyllne vertex), Md 
may be rodlflcd to yield nearest segment-to-scgaent 
di8tMcc8 using the fact (1) stated above. 
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thm for comoutm rdurtnw mcas~ 
me rlnfmum di8tMCe between a pair of features and the 
mlnlmunr dl8tancc from oath VCrtCX to l neighboring 
non-adjacent scgmcnt uy bc computed as follow: 

I?di%m 0-~8118, bCC118, 2-CCiiB, WlylinC VCeCX ud 
polyllnc l CgMnt idcntiflcr8, and coordinates for ' 
0-CC118 Ubd WlylfnC VCrtfCCB. : 

OUTPUT: ~0888t~fr(a,b,C)~ WhCrC 
a is a O-cell or a polyllne vertex ldcntlflcr; - 

'b is a polyllnc segment ldentlf1cr; and 
c is the di8tMCC bctwecn them. 

. 

NCCrCBt-88gra8nt-t~~(b,d): where 
I assumes every O-cell or a polyllne vertex ldentlflcr; 
b is the nearest polyllne segment*8 ldentlfler; and 
d is the di8tMCe bctwccn them. 

. 

Inltfclltt Closcrt-pmir(c,b,c) to my polyline vertex, 
*my polylinc l cgHnt, md their dlrtance. 

FDReveryO-cellorl-cellfDO 

Collect ln a bffer all of the features Vat lie ln 
the 8~~StdOSOdMighbOlFbOOd#fOf f 

IFf iBa0-Ce&-#) 

Initialize Nearest-segment-to-f to my 
#bOfW&~C~tB~t~ c#put8diStCMt 

CDR etch non-adjscent polyllne segment fn Mf DO 

Compute dirtmce to r&nt md @ate 

Closest-pair (c, b, c) md Nearest-segccnt-to-f, 
if necessuy. 

rDR each interior polyllne vertex v of f DO 

Initialize Nearest-segment-to-v to my 

%WHd$8Cent l mJlt &nd CoIpote dirtmnce 

I#( etch non-cdjmt. polyllne rment In Mf DO 

Compute dlrtance to regmcnt md wdatc 

Closest-psir(c,b,c) md Nearest-segment-to-v, 

if necessary. 

For most rap inputs with polygons having relatively few 
COmPOnent8, the buffering step of collecting all features 
of Mf Bay be done in an array for faster processing. 



Figure 3. Smallest closed neighborhood of pa. 

RECOVERING STABILITY 

Because the above algorithm examines every non-adjacent 
segment in the smallest closed neighborhood of every 
point feature (O-cell or Anterior polyllne vertex), WC 
may modify the rlgorlthm to have it compute a net 
“force” of all of those non-adjacent segments on each 
point- feature instead of having It merely locate the 
nearest segment, by asking the following changer 

Replacer 

Compute distance to segment and update 
Closest-palr(a,b,c) ad Nearest-ssgmcnt-to-f (or v), 
if necessary. 

.- Compute the force on point feature due to segment 
and add to net-force-on-f (or v). 

6ln& the non-adjacent segments of the smallest closed 
neighborhood surround the point feature md %n some 
sense Isolate the point from effects of other segments, 
it makes sense to use this force model. As with the 
n-body problem, WC can compute a force on each of out 
vertices in our initial configuration. We may model the 
forces on l vertex to be inversely proxmrtional to the 
dlstancc of points on neighboring non-adjacent scgnents. 

L 

Figure 4. Forces sxertsd on r point by l line ssgllrent. 

. 
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. "We may 6ua the forces by a rtralghtfomard vector 
integration. The result will be a vector whose 
magnitude md direction provide (I best lnltlrl direction 
and speed to move our vertex in order to improve 
Stability. A6 with the n-body problem, coaputlng Snltlal 
forces i6 not difficult. The hard part 16 determininG 
the movement of the system, urd, in our case, finding 
the want- aqullibrlura pOSitiOn. We may simulate the . 
moverant by iterative llnsar rpproxiartions; 
pa?hapS S~~iSi~lY, that -roach looks prOm161~. 

and, 

m8 USUd drawbacks t0 iterative methods are Cost Md 
convergence. 6ome experimentation 1s required to learn 
more about convergence, but our finite grid submodcl . promises to be extremely useful in establishing a bound 
for tolerances to replace "exact or total 6tablllty.a 

Cost also remains managable. Because the force 
computation is local, depending only on the smallest 
closed neighborhood, I , WC can achieve, for all size 
‘asps having l pproxlm&tcly the same local neighborhood 
conflguratlon6, a linear (in the number of point 
features) force computation algorithm. This possibility 
raked an iterative approach to stability Improvement 
seem reasonable for large maps as well as for small 
lraps. WC plan to do more experimenting with iterative 
approaches to stability improvement. 
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