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1. INTRODUCTION 

In Wolter (1985) the problem of estimating variances when 

the data are contaminated by measurement (or response) errors was 

considered for linear estimators. Under a simple additive error 

model it was shown that design-unbiased variance estimators are 

in general biased as estimators of total variance and that in 

certain circumstances this bias can be important. It was also 

shown that with additional conditions a random group variance 

estimator can shift the bias entirely to the sampling error 

component, generally with an accompanying reduction in the total 

uariance. 

Jhis paper builds on the work in Wolter, extending and 

generalizing it in several ways. It is first shown that by 

viewing the variance estimator as a general quadratic function of 

the responses, an estimator can always be obtained with bias 

independent of the response error. Unfortunately, the residual 

terms in the bias can be large. However, with additional 

conditions that are more general than those considered in 

conjunction with the random group estimator in Wolter, a variance 

estimator is obtained which removes the bias due to response 

error and also yields a total bias that is typically reasonably 

small. 

The key results just described are presented in Section 2. 

In Section 3 it is shown that the results on the random group 

variance estimator in the presence of measurement errors 

presented in Wolter are a special case of the results in Section 

2 and that there are important situations where only the more 

general results are applicable. In Section 4 the random group 

estimator results are extended to the jackknife and balanced 

half-sample methods of estimating variances. Finally, in Section 

5, the extension of this work to nonlinear estimators is 

considered. It is demonstrated, by example, that the asymptotic 

results in terms of sample size that hold for sampling variance 
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do not in general hold for total variance in the presence of 

measurement errors. In particular, it is shown that this 

difficulty occurs with the Taylor series method, even when a 

variance estimator exists for the Taylor series approximation 

with bias (as an estimator of the variance of the approximation) 

independent of the response error. Situations for which such an 

estimator of variance is asymptotically unbiased are also 

illustrated. 

2. PRINCIPAL RESULTS 

. To establish a framework for the work to be presented in 

this paper, we first review the notation and terminology employed 

in Appendix 0 of Wolter (1985). It is assumed that the response, 

say yi 9 in a population of size N is adequately described by the 

additive error model, 

Yi= vi + ei, i=l ,***, N. (2.1) 

The errors ei are assumed to be (0, 0:) random variables and the 

means pi are taken to be the "true values." 

We assume it is desired to estimate some parameter 0 of the 

finite population with an estimator & of the form 

;, = !i 
i=l 

wi ti Yi , 

where the Wi are fixed weights attached to the units in the 

population, the ti are indicator random variables, 

ti = 1 ific s 

= 0 if i 4 5, 

and s denotes the sample. 

(2.2) 

We let Ed and Vard denote the expectation and Variance 

operators with respect to the sampling design; E and VUJL are 
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these operators with respect to the distribution, say 5, of the 

measurement (or response) errors; and finally unsubscripted E and 

Var denote the total expectation and variance. 

It is established in Wolter that 

N N 
Var(6) = 1 wi2u?ni(l - "i) + F2i wiwjUiPj("ij - ninj) 

i=l 

N 
+ c + 1 1 w.w.n..u. 
i=l 

1 J 1J lj’ 
(2.3) 

where vi denotes the probability that the i-th unit is drawn into 

the sample, nij the probability that both the i-th and j-th units 

are drawn into the sample, and (I.. = E(cicj). The sum of the 
1J 

first two terms of (2.3) is the sampling variance, Vard E(i), and 

the sum of the remaining two terms is the response variance, 

Ed Vu&). 

It is also established in Wolter that if 

is an estimator with the same functional form as 6 with means Pi 

replacing the responses Yi, and v(E) is a design unbiased 

estimator of the design-variance of z, and the variance 

estimator v,(e) of Var(6) is obtained by replacing the vi in 

v(z) by the responses Yi, then 

N 
r - c Wfll:af - ENI 1 J 1 J Ij' w.w.7r.n.a. 

i=l i#j 

(2.4) 

With srs wor and nps sampling as illustrations, it is shown that 

this bias can be important in some situations. For example, 

for nps sampling with i = i, the Horvitz-Thompson estimator of 

the population total, Bias [v,(e)] is independent of the sample 
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size and generally of order N2 as a function of the population 

size. Additional assumptions are then presented for which a 

random group variance estimator of Var(i) is obtained with bias 

arising solely from the sampling distribution, not the 

E-distribution , and which for many common situations has a 

substantially smaller total bias than in (2.4). The basis of 

these assumptions is that the correlated component of response 

error arises strictly from the effect of interviewers. The 

specific assumptions follow: 

(a) There are k random groups of equal size and identical 

distributions. . 

(b) Interviewer assignments are completely nested within 
* 

random groups. 

(c) Interviewers have a common effect on the 

c-distribution , i.e., 

E(ei) = 0 ; 

E(eiej) = Uij if units i and j are enumerated by the 

same interviewer; 

= 0 if units i and j are interviewed by 

different interviewers; 

and these moments do not depend on which interviewer enumerates 

the i-th and j-th units. 

In this section more general additional assumptions than 

(a)-(c) are considered, together with a general class of variance 

estimators that includes the random group estimator. It is shown 

that for appropriate choice of a variance estimator from this 
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class, the bias arises solely from the sampling distribution and 

is typically reasonably small. However, to motivate the need for 

the additional assumptions, we first, under the simple 

assumptions that lead to (2.3) and (2.4), consider the following 

class of estimators of Var(6): 

v(i) = 1 a w2Y2 + 1 1 b..w.w.Y.Y., 
ies i i i ifjcs 1J 1 J 1 J 

(2:5) 

where the ai and bij are fixed coefficients associated with the 

i-th sample unit and the (i,j)-th pair respectively. Then, since 

. E(Y:) = uf + a; (2.6) 

and 

* E(Yi Yj) = pi ~j + aij, 

it follows that 

N N 

ECv(hl = E(E,b’(h = E( C aiw:Y:ni + C C bijwiwjYiYjrij) 
i=l i #j 

a w2p2n 
N 

= 
i=l 

i i i i + 1 1 b..w.~.~.~.n.. 
i#j 1J 1 J 1 J 1J 

N N 

+ 1 
i=l 

aiW:rioi f 1 1 b 
i#j 

ijWiwjnijUij, 

which together with (2.3) yield 

Bias [v(i)] = w2u27i (a 
i=l 

iii i- 1 + “i) 

N 

+ i,l WiWjUivj(b ij”ij - “ij + ninj) 

(2.7) 

N 

+ c 
2 

i=l 
Wflli(ai - 1) Ui 
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N 

+ccww 
ifj 

i j”ij(bij - 1) ~ij. U-8) 

In general, it is not possible to make the entire bias expression 

(2.8) equal zero. However, either the first or the third term, 

and either the second or the fourth term can be removed from this 

expression by the appropriate choice of ai and bije That is, the 

first and third term in (2.8) would drop out with ai = 1 - vi and 

a. while the second and the fourth would be 
1 

= 1 respectively, 

removed with b.. = (T.. - rinj)/n.. and b.. = 1 respectively. 
1J 1J ‘J ‘J 

In particular, with ai = 1 - xi and bij = (nij - ni+j)/lij, (2.8) 

reduces to (2.4), while with ai = 1, bij = 1, 

* 
Bias [v(i)] = 1 w.w.p.u.7r.n. 

i=l 151513 

N 
2 

= ( 1 W.p.r.) , 
i=l 1 ’ ’ 

(2.9) 

which is independent of the response variance. Unfortunately, 

despite the fact that the response variance component of the bias 

has been removed in (2.9), this expression is typically quite 

large. To illustrate, for the nps sampling example considered 

earlier, w. = l/ni and consequently, 
1 

Bias [v(i)] = ( F *i)2, 
i=l 

which typically is of order N2, as it was in (2.4). Furthermore, 

(2.9) is not directly a function of the sampling error. In 

particular, a small sampling variance, as would occur if the 

sample size was fixed and the quantities wiui did not vary much, 

would not generally imply that (2.9) is small. 

The difficulty, illustrated by (2.4) and (2.9), in 

attempting to obtain a variance estimator with bias that is both 

independent of the response error and reasonably small can be 

viewed as algebraically arising from the fact that under the 
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conditions that lead to (2.3), no more than two of the four terms 

in (2.8) can be removed. The additional assumptions (a)-(c) 

allow more control of the bias of the variance estimator, 

accounting for the results on the bias of the random group 

estimator in Wolter. We now proceed to consider the following 

more general additional conditions, which will allow for similar 

reductions in the bias of the variance estimator. It is assumed 

that each ordered pair of sample units (i,j), i#j, falls into one 

of two sets, U and C. As is illustrated below, a pair need not 

be in the same set for all samples or even for a particular 

sample. In fact, the only assumptions in this regard are that 

* (i,j) and (j,i) are in the same set and that 

a ..*> 0, where a 
‘J ij 

= P((i,j)cUli,j are in sample). 

The other assumptions are that for each (i,j), 

E(ei I(i ,j )EU) = E(e,J(i,j)Ec) = 0, 

E(eiejl(i,j)cU) = 0. 

We also let 

. 

'ij 
= E(eiej I(i,j)eC) 

and note that (2.3) still holds, where now 

'ij 
= ~lj(l - Ctij). 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Before explaining how these conditions enable us to obtain 

variance estimators with generally smaller biases, we illustrate 

the rather abstract formulation of these conditions by 

considering the situation where the assumptions (a)-(c) hold. 

Then conditions (2.10).(2.12) also hold if C and U are taken to 

be the sample pairs in the same random group and different random 

groups respectively. In Section 3 we will discuss further 
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examples where the conditions (2.10)-(2.12) are met. 

We now consider the following modification of the variance 

estimator (2.5), for which the coefficients corresponding to the 

pair (i,j) depend on whether (i,j)eU or C. Let 

Y(i) = 1 aiw:Y: + 1 b.. 
iEs U ,j M-J 

IJlwiwjyiyj 

+ 1 (i j)ECbij2WiWjyiyj' 
, 

(2.15) 

where the ai, bijl and bij2 are all constants. Then, using the 

rela%ions (2.15), (2.6), (2.14), 

E(Yi Yj I( i ,j WU = pi ~j 3 

which follows from (2.11) and (2.12), and 

E(YiYjl(i,jJEC) = ~i~j + ~ij, 

which follows from (2.11) and (2.13), we obtain 

EcV*(hl = E(E,Cv'ce,], = 

N 

+ C 1 bijlWiWj 
ifj 

E(YiYj I(i,j)sU)a..n.. 
1J 1J 

N 

+ C C bij2WiWj 
i #j 

E(YiYj((i,j)oC)(l - aij)mij 

N 
= 
i=l 

aiW:u:ni+ 1 1 WiWj~ivj[bijlaij+ bij2(l-aij)]mij 
i#j 

N N 

+ c 
i=l 

ai wfmi o:+ 1 1 bij2Wi Wj”iijUij. 

i #j 

(2.16) 
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Finally, (2.16) and (2.3) yield 

Bias [v~(;)] = w2u2, (a 
i=l 

iii i - 1 + Ti) 

+ C C Wi Wj~i~jCb.. iJlaij”ij 
+ b.. 

i #j lJ2(l -aU 
)Tij - Tij + yjl 

N 
+ 1 W?lT-(ai 

N 

i=l ’ ’ 
- l)ui +ccww i jnij (bij2 - l)Uij* (2.17) 

i#j 

The additional set of coefficients in (2.17) in comparison with 

-(2.8) is what allows for greater control over the bias of the 

variance estimator. For example, the second and fourth terms of 

(2.17) can now both be made to drop out with ' 
* 

b ijl = 
1 - = , bij2 = 1 . 

'ij "ij 

If additionally, ai = 1 - mi, then the first term will drop out 

and 

Bias [v*(i)] = 2 2 2 

i=l 
Wini Ui) 

while if ai = 1, then 

Bias [v'(i)] = 
iT, i i i' 

W2p2n2 

(2.18) 

(2.19) 

In the latter case, the portion of the bias arising from the 

response variance is eliminated. Furthermore, if the pi are 

nonnegative, (2.19) cannot exceed (2.9), and in the nps example 

considered previously, the bias would now be of order N, instead 

of N2. However, (2.19) still suffers from the fact that like 

(2.9, a small sampling variance does not necessary result in a 

small bias. In the remainder of this section it will be 

demonstrated how this drawback can be overcome by a different 

choice of coefficents while still eliminating the portion of the 

bias arising from the response variance. The results obtained 
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will directly generalize the results of Wolter, as will be 

explained in Section 3. 

To obtain the appropriate coefficients, first note that in 

order to eliminate the response variance portion of the bias it 

is required that for all i, j, 

a 
i 

= 1 and b 
ij2 = 1, (2.20) 

but this does not restrict the bijl. To obtain the appropriate 

values for the bijl, we first let n denote the sample size and 

,"1* "2 the number of pairs (i,j) in U and C respectively. For 

now, we consider the case where n, n1 and n2 are the same for all 

possible samples. For example, this would hold if the correlated 

cornpoTent of response error arises strictly from the effect of 

interviewers; the number of interviews each interviewer conducts 

is fixed, although not necessarily the same for all interviewers; 

and C and U are the sample pairs interviewed by the same 

interviewer and different interviewers respectively. Now, if in 

addition to n being fixed the quantities w.~. are the same for 

all i, then clearly vardE(6) = 0. For ~~(6; :o be unbiased when 

these conditions and (2.20) hold, it suffices for (2.15) to be 0 

with the Yi replaced by vi since Bias [v'(e*)] is independent of 

the response error. However, this is equivalent to 

n+C b 
(i,j)eU ijl 

+n 
2 

= 0; 

this relation is satisfied if for all (i,j) 

n+n 
b 2 l-- n2 

w= - “1 = “1’ 
(2.21) 

where the last equality follows since n2 = n(n - 1) - nl. The 

special case of ~~(6) for which (2.20) and (2.21) hold is denoted 

vc*(6), that is 
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+ 1 (1-C) W.W.Y.Y. t 1 W.W.Y.Y.. (2.22) 
U JMJ 

1 J 1 J (i,j)Ec ’ J ’ J 

Thus v "(6) is an unbiased estimater of Var(6) if n, nI, n2 are 

fixed and the quantities wi~i are the same for all i in the 

population. Consequently, if the wipi do vary, but th,: 

variability is sufficiently small, then the bias of v (i) is 

small, as desired. Furthermore, if n, n1 or n2 vary, 

but (n t n2)/nI is fixed, then (2.21) is still fixed and hence 

,v'*(i) is defined. An example of vcO (0) with variable n will be 

presented in Section 3. 

From (2.17), (2.20) and (2.21) it follows that in general 

N 222 
Bias [V”(G)] =izlWiUi”i 

N 2 
- 11 W.W.~.p.(~a..m.. - 

1 J 1 J “1 1J 1J 
ni7rj). (2.23) 

i #j 

An important special case of (2.22) occurs when n, nI and n2 

are fixed and the a ij are the same for all pairs (i,j); as for 

example if C is the set of all pairs interviewed by the same 

interviewer and each interviewer interviews the same number of 

sample cases, which are randomly distributed among the 

interviewers. In this case, for all (i,j), 

“1 
aij' n(n-1)' 

and (2.23) reduces to 

Bias cv*%)l =ixl Wijqlri ! 
2 2 2 

N 
- 1 1 w.w.p.p.+ 1 TiTj). (2.24) 

W 
1 J 1 J n-l ij - 
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An application of (2.24) will be presented in the next section. 

3. COMPARISON WITH RESULTS IN WOLTER (1985) 

It will be demonstrated here that the key results in Wolter 

(1985), in particular Theorem 0.4, on the use of a random group 

estimator in the presence of measurement errors, can be 

considered a particular case of the results at the end of the 

previous section. It will also be illustrated that the results 

in this paper can be applied in some important situations where 

the results in Wolter are not applicable. w 

In Wolter, under assumptions (a)-(c), the random group 

varia*nce estimator 

vR($8) = k’l(k - 1)-l 

= 2-lko2(k - 1)-l 1'1 (6 
afB 

a 
- 66)2 

is considered, where 

e, = kw.t 
i=l 

i i(a)Yi 

(3.1) 

U-2) 

and 

ti(a) = 
1 if the i-th unit is included in a-th random group 

= 0 otherwise. (3.3) 

It is shown there, as Theorem 0.4, that with these assumptions, 

Bias [vR,(~)I =i~,Wf~~~f - {i] Wi Wj~i pj (kv j(i'ij - Wixj), (3.4) 

where ujli is the conditional probability that unit j is included 

in random group B, given that unit i is included in random 
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group a (a # B) and that both i and j are in the parent sample. 

We demonstrate that v RG(e) is a special case of v "(i), and 

(3.4) is the corresponding special case of (2.23). Let C and U 

be the set of ordered pairs of sample units (i,j) for which i and 

j are in the same random group and different groups 

respectively. Then since the random groups are each of size n/k 

(where n is not assumed to be constant), it follows that 

“2 
= n(t - 1) 

and hence 

* “1 
= n(n - 1) - n2= 

n2ik-1). 

We substitute this last relation in (2.22) and (2.23), obtaining 

v’yi) = 1 w;y; - -J- 1 W.W.Y.Y. t 1 W.W.Y.Y. (3.5) 
ies k-'(i,j)EU ' J ' J (i,j)EC ' J ' J 

and 

Bias[vO@(i)l 
N 

- 1 1 WiWjui”j(~ a..n.. - 
i #j 

1J ‘J 
ninj). (3.6) 

Now, if the terms in (3.1) are expanded and collected, (3.1) 

reduces to (3.5). Furthermore, because the random groups are 

identically distributed, aij= (k-l) ujli' and thus (3.4) and 

(3.6) are equivalent. 

If in addition to conditions (a)-(c), n is fixed, then the 

conditions for (2.24) hold, and thus 

Bias [v,,(6)] 'i~,w~~:~~ - F:J lJiPjwiwj (5 "ij - mi'j)* 
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To illustate, example 0.6 of Wolter, for nps sampling, is a 

special case of this last relation for which n 
i 

= l/Wi, and hence 

Bias [vRG(e)] = 
N T.. 

1 1 UiVj(* * - '1. 
i #j ij 

Having established that the results in Section 2 generalize 

the results of Wolter, we now demonstrate that there are 

important situations where the former results but not the latter 

are applicable. Among the assumptions in Wolter is the rather 

stringent condition (c), which requires that the first and second 

moments on the E-distribution do not depend upon which 

-interviewer enumerates which units. In many circumstances this 

is an unrealistic assumption. In its place, in this paper are 

the 12s~ restrictive conditions (2.11) and (2.12). For example, 

if the interviewer assignments are of equal size, the sample 

units are randomly distributed among the interviewers, and C and 

U are the set of distinct sample pairs interviewed by the same 

and different interviewers respectively, then (2.11) holds even 

if E(ei) # 0 for each interviewer, as long as the expected value 

of this error is 0 averaged over all interviewers; while (2.12) 

is just a formal statement for the assumption that the correlated 

component arises strictly from the effect of interviewers. 

Consider also the case when the interviewer assignments are 

not of equal size. Then with C and U as above, (2.11) and (2.12) 

would still hold, but in general only if we added back the 

condition that E(ei) = 0 for each interviewer. (This is 

because P((i,j) c U) is no longer independent of which 

interviewer interviews the i-th unit.) However, there are still 
4. A 

advantages to using v (0) as opposed to vRG(e) in this case. If 

the random group estimator were to be used, it would be necessary 

to combine interviewer assignments in order to meet the 

requirement of equal sized random groups, and even then this 

condition might be only approximately met. Furthermore, because 
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interviewer assignments would be combined in the random group 

estimator, the precision of vRG(e) would generally be lower 

than v'*(G). 

4. RESULTS FOR OTHER VARIANCE ESTIMATION METHODS 

It is shown here that results analogous to those established 

in Wolter for the random group estimator also hold for the 

jackknife and balance half-sample estimators of variance. 

The jackknife estimators will be considered first. It will 

be proven that with the same assumptions considered in Wolter for 

the random group estimator, including conditions (a)-(c), the 

bias$xpression (3.4) still holds if vRG(e) is replaced by either 

of the two jackknife estimators presented in Section 4.2.1 of 

Wolter. This will be done by simply demonstrating that with 

these assumptions the jackknife estimators are identical to the 

random group estimator. 

First, generally following the notation of Wolter, we 

proceed to define these jackknife estimators. Let G be as in 

(2.2). Corresponding to each group a, let eta) be the estimator 

of the same functional form as i but with the a-th group omitted 

and let 

ea= k; - (k-1); 
(a)' 

g = 
a=1 

iii/k . 

(Note that the notation ii is used here in place of 6 to 

distinguish this estimator from (3.2).) The two jackkanife 

estimators, v,(g), v,(6) are then 

',('I = $01) 



Now, 

-160 

'(a)= i$i i=l Witl(a)Yi' F 

where 

c 

ti(a) 
= 1 if i-th unit is in sample and not in 

the a-th group 

= 0 otherwise 

. 

Then, 

m LI. 

‘a 
= k; - Wl)+a)= i=l ~ kWiti(a)'i' ita, 

where b and t 
i (a) 

are as in (3.2) and (3.3) respectively. 

Furtheriore, 

k 

'i( 1 tj(a))Yi = y WitiYi = 6. 
i=l a=1 i=l 

(4.1) 

(4.2) 

It then immediately follows from (4.1) and (4.2) that 

vR&), v,(g) and v,(8) are identical. 

Turning now to balanced half-sample estimators, we first fix 

a situation for which a balanced half-sample variance estimator 

would be appropriate in the context of the work in this paper. 

Assume that a population is divided into L strata and from each 

stratum two clusters are selected rips. Furthermore, the sampling 

within the selected clusters is independent from cluster to 

cluster. It is also assumed that a characteristic 8 can be 

estimated by an estimator i of the form 
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where Yhij denotes the response for the j-th elementary unit in 

the i-th Cluster Of the h-th Stratum and whij, thij have similar 

interpretations. Finally, it is assumed that (2.1) holds with i 

replaced by hij, and that the analogous forms of (2.10) - (2.12) 

are satisfied with U the set of ordered pairs of elementary units 

in different clusters; as would hold, for example, if interviewer 

assignments are nested within clusters. 

We let now hill, 11 = 1,2 denote the selected clusters in the 

h-th stratum and 

i&g= 
M. 

2 LlwhiLjthiljYhilj' 
j=l 

take ;a, a=1 ,...,k to be a balanced set of half-sample estimators 

of the form 

where 

6hRa 
= 1 if cluster hi 

R 
is in the a-th half-sample 

= 0 otherwise, 

and finally consider the balanced half-sample variance estimator 

k 
v,(i) = 1 (6 

a=1 a 
- 6)2/k . (4.3) 

Then, as explained in Section 3 of Wolter, since i is linear and 

the G, are a balanced set, upon expansion of (4.3) the cross 

product terms cancel, and hence 

v,(i) = ; i (e,, - e,,)20 
h=l 
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Now 4-+i$,l - i(,2)2 can be viewed as a random group variance 

estimator, with 2 clusters and 2 random groups, of the variance 

of 

i=l j=l 
'hijthijYhij' 

It follows from example 0.7 of Wolter that 

Bias [i (ihI - 6h2)21 = 2[var(ghwr) - vu(i$,,,ps)19 

where 

Nh Gh = 1 
i=l 

thi 
j=l 

'hij"hij'hij)hi' 

* 

thi = 1 if the i-th cluster in the h-th stratum is in 

sample 

= 0 otherwise, 

"hij(hi 
is the conditional probability that unit hij is drawn 

into sample given that cluster hi is in sample, and Var(zhwr) 

and Var(G hnps) d 
enote the variances of zh assuming with and 

without replacement sampling, respectively. Consequently, 

Bias [v,(e)] = 2 i Cvar(ghwr) - 
h=l 

var(gh,,ps)l l 

Thus the bias of v,(e). with the conditions considered, is 

independent of the response error and is in the between cluster 

component of the sampling variance. Since i is linear, the bias 

would also be the same for the alternative balanced half-sample 

variance estimators defined in Section 3.4 of Wolter. 

5. NONLINEAR ESTIMATORS 

In this section, variance estimation for nonlinear 

estimators of one or more random variables in the presence of 
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response errors is considered, where each random variable 

satisfies a model of the form (2.1). We will concentrate on the 

problem encountered when using a Taylor series approximation in 

the variance estimation, although similar difficulties would also 

occur with other variance estimation methods. 

We first examine the situation without the additional 

assumptions (2.11).(2.13). Since even for linear estimators the 

variance estimators employed without these addition assumptions 

yield bias expressions such as (2.4) that can be quite large, it 

should be obvious that the same bias problem would occur with a 

nonlinear estimator i if, for example, the following approach is 

used: A linear approximation, denoted f(G), to G is obtained, 

and br(G) is then estimated by v,[f(e)], where vc is as in 

Section 2. A specific example to illustrate this fact will now 

be presented anyway, since with a slight modification this 

example will later also serve to illustrate the difficulties that 

can arise even with the additional assumptions (2.11).(2.13). 

Assume srs wor and 

where for the i-th unit 

yi = pi + ci9 (5.1) 

. 4 

Xi = pi + &i, (5.2) 

with the quantities in (5.1) and (5.2) satisfying conditions 

analogous to (2.1). Then to estimate Var(i) by a linearization 

technique, the textbook variance estimator for srs wor would 

typically be used, where corresponding to the i-th sample unit 

the value 

--, t l y 
E(:)2 i E(i) i 

(5.3) 
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would ideally be used, although in practice this value is 

estimated by 

-.y j;2 '1 + * yi' (5.4) 

Now to simplify matters in this example it will be further 

assumed that pi = y; = 3 for all units and that the survey from 

which the sample values are obtained is conducted by one 

interviewer selected at random from a pool of interviewers for 

which ei z 1, ei E - 1 for l/2 the interviewers, while for the 

‘other half, ei E - 1, ei E 1. Then Var(i) = 9/16. However, 

irrespective of whether (5.3) or (5.4) is used in the variance 

estimation, the value would be the same for each sample unit, and 

hence the variance estimate would always be 0. Thus the bias of 

the variance estimator would be - 9/16, independently of sample 

size, and therefore of order 1. 

Although this example is rather artificial, it can be 

modified in a number of ways to make it more realistic, while 

still retaining the order 1 bias. For example, if it is merely 

assumed that the ui and the Ui both average 3, instead of being 3 

for each i, then the expected value of the variance estimator 

would still tend to 0 and Var(G) tend to 9/16 with increasing n. 

Again, the above example should not be surprising, given 

that the same bias difficulties arise for linear estimators. 

What is much more interesting is that an order 1 bias in the 

variance estimator as a function of n may still remain if this 

example is modified so that assumptions (2.11).(2.13) are 

satisfied and the appropriate random group variance estimator is 

used after linearization. To illustrate, maintain all the 

assumptions of the previous example, with the exception that the 

sample is now divided into two random groups and there are two 

interviewers chosen at random wr, each of whom is assigned one of 

the random groups to interview. (2.11).(2.13) would then hold 
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with U the set of sample pairs in different random groups. If 

either (5.3) or (5.4) is used to obtain a linear approximation 

f(h 
A 

= 2/9 independently of n, while 

Var(i) 

then E(vR,[fb)l) 

= 19/64, and thus the bias of the variance estimator is 

again of order 1. 

To see what additional type of conditions must be satisfied 

in order for the bias of the variance estimator to be less 

important, consider the previous example but with k random groups 

and k interviewers in place of 2 random groups and 2 

interviewers. Then Var(i) can be shown to be of order l/k while 

W the bias of v RG[f(e)] as an estimator of Var(i) is of order 1/k2, 

and thus if k is sufficiently large this bias will not be 

impzrtant. This illustrates that in order to develop rigorous 

conditions for which E(v,,[f(e)]) will converge to Var(i) for 

situations similiar to this example but with sampling variance 

allowed for, both n and k must be allowed to approach 0~ . Thus, 

variance estimators for nonlinear estimators with biases that are 

unimportant do appear to exist but only under carefully drawn 

conditions. 



-220 

REFERENCE 

Wolter, Kirk M. (1985), Introduction to Variance Estimation, 

New York: Springer-Verlag. 


