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Summary 

A likelihood ratio test is one technique for 

detecting a shift in the mean of a sequence of independent 

* normal random variables. If the time of the possible 

change is unknown, the asymptotic null distribution of the 
* 

test statistic is extreme value, rather than the usual 

chi-square distribution. The asymptotic distribution is 

derived here under the null hypothesis of no change. 
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1. Introduction 

This discussion 

change in the mean 

examines the problem of testing for a 

of a sequence of independent normal 

variates, where the time of a possible change is 

unknown. The asymptotic distribution of the likelihood 

ratio statistic is derived. Shaban (1980) presents a 

bibliography of related problems. 

Let Ylr Y,, . . . . Y L1 be independent normal random 
I L L" 

* 2 variables with means pi and equal variance u . 

* ential question under consideration is to test 

for all i; against Hl: pi = ~1 for i 5 v and Ui 

> v is unknown. Calculation of the likelihood 

tistic X for this problem is straight-forward 

The infer- 

Ho: "i = ~ 

= u 2 for i 

ratio sta- 

and can be 

found in Hawkins (1977). Using a recursive integral equa- . 

tion, Hawkins produces a table of fractiles for the like- 

lihood ratio statistic. Arguing heuristically, he asserts 

that (-2 log ,)112 converges to an extreme value distribu- 

tion. Unfortunately the heuristic argument does not yield 

the correct normalizing constants for the distribution. 

The asymptotic result presented here resolves this 

question. 
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2. The Asymptotic Distribution 

Let Yl, . . . . YN be as in the previous section and 

consider the testing problem presented. First examine the 

case where u 2 is known and, without loss of generality, 

let a2 = 1. Define 

N 
so= c (Yi-e)2 

i-l 

sp = z iv1 fY i - p,,2 + c 
is:+, (' i 

- p,j2 
= 

* 

where 

5i = (l/N) : Y. 
i=l ' 

V 

F, 
= (l/v) c Y. 

i=l l 

I;2 
= [l/(N - ~11 !f Y 

i=v+l i 

Note that So is the residual sum of squares under Ho 

and sl(v) is the residual sum of squares under Hl given 

V. Then the likelihood ratio statistic X can be written 

as 
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(2.1) -2 log X = So - inf 
lLv<N 

SIW 

When u 2 unknown, the likelihood ratio statistic is 

x = inf [ sO -N/2 

llv<N S,(d 

For u 2 known the asymptotic null distribution of -2 log X 

is given by: 

* Theorem 2.1: Let -2 log 1 be as in equation (2.1) and 

suppose Ho is true. Then 

( -2 lCXJ A)v2 < (2 log lq N)V2 +- lsq log N 
2(2 leg log NI I.0 

6 

+ 

(2 lcqwlcq N)1'2 
] = exp[ $21 

Proof: Several lemmas are needed to establish the theo- 

rem. 

Lemma 2.2: For the testing problem under consideration: 

v 

2 

-2 log A = max 1 

lLv<N (' - v/N) (v/N) 
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. 

where yi = 'i - ,. 

Proof of lemma: Follows directly from (2.1). 

The next lemma will utilize the properties of the 

Ornstein-Uhlenbeck process and Brownian bridge. 

Definition 2.3: A continuous stochastic process U(t) is 

called an Ornstein-Uhlenbeck process if U(t) is station- 

ary, Markov and Gaussian with E[U(t)] = 0 and Cov [U(t), 

U(s)1 =exp(- t- I s/) for any real t and s. 
. 

Definition 2.4: 

a [O,l] is called 

where B(t) is a 

Lemma 2.5: Let 

* 
WN = 

A continuous Gaussian process Be(t) on 

a Brownian bridqe if Be(t) = B(t) - tB(1) 

standard Brownian motion on [O,l]. 

y1* . . . . yN be defined as above and let 

sup, IU(s) I 
SE s 

N 

where U(s) is an Ornstein-Uhlenbeck process and SN+ is a 

set defined below. Then Wi has the same distribution as 

(-2 log IP2 

Proof of lemma: 

The result will be established by comparing (-2 log 

AY2 to a Brownian bridge, which is related to the 

Ornstein-Uhlenbeck process by a simple transformation. 

The definition of S+ 
N 

will be constructed in the process. 
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First note 

V V N 
1 yi = C e. - (v/N) C e. 

i=l i=l l i=l ' 

where ei - i.i.d. N(O,l), i=l, . . . . N. Since ei is 

Gaussian, (N -l/2 py 
1 if v = 1, . . . . N-1) and CBO(t), tcTN} 

have the same joint distribution where 

TN = 
N-l 

. . . . 
N 

Similarly, the two sets of random variables {[(l - t) (t)1112 

BO(t), teTN) and {[(l - v/N)(v/N)]~‘~ N’1’2 rVYi, v=l, 

. . . . N-11 have the same joint distribution. 

For the Brownian bridge there exists an Ornstein- 

Uhlenbech process U(s) on the real line satisfying 

BOW = [t (1-t)1’/2 U(( 1/2)log(&)) 

Let 

sN = I S1 s = l/2 log (&I, n = I, . . . . N-1) 
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Then WN = sup [(1-t)tl-1’2 lB"(t) 1 has the same distribu- 

tion as sup tETN )U(s) 1. 
sss 

N 

Define Si by 

+ 
sN 

= {s+ 1 s+ =: S + 1/2 logIN-1), stSNf 

. 

Then sup pm 1 and sup have the same distribu- 
SE: SN SOS 

tion. Therefore (-2 log X)1'2 has the same 

* distribution as Wi = sup IUls) 1. 
sg SN 

Lemma 2.6: Let U(s) be an Ornstein-Uhlenbeck process 

defined for s > 0. 
= 

Then 
. 

1imP (u(S)1 < (2 lag leg N)1’2 + 'log '=I 'Oq N 
N+ - O<s%q(N) 2(2 lq lq N)V2 

+ 
(2lq 1~ NIV2 

] =exp [.s] 

Proof of Lemma: 

Using some results from Darling and Erdos (1956), the 

lemma follows easily. Let 



T(a) = supttlU(r) < a, 0 2 T 2 t) 

In other words T(a) is the time at which U(t) first 

crosses a. 

Darling and Erdos (1956) show that 

lim P 
(2n)1'2 

T(a) > a 
= e--z ea2/2Z 

a + - 1 
* And if 

( 2R )1’2 ea2/2 2 = log N 
a II 

then, as N * 0, 

a = (2 log log N)1’2 + la3 103 la N cr;l (J2z) 

2(2 lq lq N) 
l/2 - 

(211~ lq NIV2 

Combining these facts yield 
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lim P sup U(s) < a = T(a) > log N 
N* = O<s<log(N) 

I 
3 

0-z = e 0-w -e 
= exp - [ 1 y2 

where w = - log (II 1'22) . Using the above expression for a 

produces: 

lU(S)I < (2 leg loz~ N)V2 + ioq log lW N 
2(2 iog iq NIV2 

+ 

(2 leg ;q N)"2 

The next lemma requires some additional notation: 

I 
N-l 

sK 
= l/2 log K - 

N-K 

N(a) = an integer such that U(SK) ( a, K < N(a) 

U(SK) > a for K = N(a) 
= 

K(a) is the integer such that Syta)-1 < T(a) 2 SKta) * 

(Recall T(a) is the time U(t) first crosses a). 
L(a) = SK(a) - SK(a! i - 1 



u(a) = (2n)1/2 ea2/2 

a 
Lemma 2.7: 

There exists a(N) a function of N such that 

lim 
N+ 0 (2 iogahg N)i’2 = ’ 

and log N(a) / T(a) * 1 as N + a. 

Proof of lemma: 

* The lemma will be established by showing that P[K(a) 

i N(a) < K(a+6)]+ 1 as N * -, where E is a suitable func- =: 

tion of N. The lemma will follow from this expression. 

Two results from Darling and Erdos (1956) are used: 

1. lim PIT(a) > v(a)y] = coy 
a+- 

2. I ( T a+e) - T(a) I + 0, as N - - where E = l/a2. 

Note that N (a) > K(a) by definition, so it suffices 
Z 

to show 

(2.6) P[N(a) < K(a+B)j * 1 
= 

as E + 0, a + =. 2 Let E = l/a . 

To establish (2.6)‘ calculate: 



P(a) 
q =P N(a) > K(a+E) 1 T(a) > - 

a 

For K > 2 note (N-K+l)/(N-1) < K/(K-1) and (N-1)/(+ 
= 

K) < K. 
= 

Hence: 

L(a) = SK(a) - ‘K(a) - 1 

= -l/2 log '"(;JK;r;" 
I J 

- l/2 log 
I 

(K(a)-1) (N-1) 
N-K(a) + 1 J 

g log K(a) - log(K(a) - 1) 

2 
2 K(a) 

Also 

T(a) 6 ‘K(a) 

= l/2 log K(a) 
N-l 

N-K(a) 

=> l/K(a) < eBTta) 
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So for T(a) > u(a)/a this implies 

L(a) $ 2 exp 

= 2 exp 

= $(a) 

[ 
- (2n)‘/2/a ea2/2J 

The event N (a) > K (a + 6) implies that U (t) having 
= 

a reached a + B, has decreased below a in a time span less 
than +(a). Recalling that the Ornstein-Uhlenbeck process 

is stationary: 

Q 2 P[U(*(a)) < a 1 U(0) = a+c] 

The conditional distribution of U(S(a)) given U(0) = 

a + E is normal with mean (a + C) e 
-*(a) and variance 

l,e-21da) < 2-+(a). Therefore 
s 

q < (2uC2)-1'2 exp(-C2/2) = 

where 
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= ja+c) e-Y(E) > (a+&) e -*v(a) 
E 

o(a) = 
(2v(a))1’2 

E 
' 2($(a)J1'2 

for a > a0 

Since L = l/a, c/($(a)) l/2 * -, implying q + 0. 

Setting y=l/a and using the result of Darling and 

Erdos (1956) we see that P [T(a) > v(a)/a] + 1 as N * -=. 

Hence P [K(a)<N(a)<K(a+c)] + 1. Further, note that the 

* result of Darling and Erdos implies that T(a) * -, as a * 

=+. 

Now consider for a * - the equation: 
* 

u(a) z = log N + z 

The solution is 

a = (2 kg icg N)1’2 + 1m ‘02 1a y,2 - ‘Oat 
PV2Z) 

2t2 1~ la;~ N) (2loz~ 1~ NIV2 

+o 

, i 

i 

(2 1Og kg N)v2) 

=> P [T(a) > log N] + e-' as N+- 
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.I. 

=> T(a) 
= log N + OP(l) 

Now recall 

'K(a)-1 
2 T(a) 2 S K(a) 

N+l 
=> (K(a)-1) N-K(a)+l = < e2T(a) < K(a) - ' = NyK(a) 

* 

For large N, (N-l)/(N-K(a)) G N/(N-K(a)). SO 
* . 

e ZT(a) N 
6 K(a) N-K(a) 

= > K(a) < eZTta)/ 1 + e2i(a) = 

Similarly 

K(a) 5 e 
2Tta) 

.2T(a) 
/(I+ N 3+1 

So for large N 

K(a) = e 
2T 

2T(a) 
)/ (1 + e N 11-6 op<i 
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Substituting for T(a) implies that I N(a) - K(a)1 = 

Gpw. Recalling 

sK = l/2 log KN-K 1 

N-l 

we obtain 

'K(a) = log K(a) + Op(l) 

And T(a) + 61 = SKta) for 0 I, 61 < .l, implying T(a) = log 

* K(a) - 61 + Op(l), for large N. Hence 

loq K(a) ~ 
T(a)+6i+0p(l) 

as N.+ - 

Recalling expression (2.6) we obtain, for 0 < 62 < 1: = 

P [K(a) s N(a) i K(a+f)] * 1 

> P 
loq K(a) I 

T(a)+61+Op(l) (T(a)+sl+Op(l)) $ 1Og N(a) ', T(a+;;9+gN$)(l) 
2 P 

(T(a+E)+S2+Op(l)) 1 + 1 
=> P 

“1 
-T(a)+ 

op 
T(a) 2 

lot NW ( T;;-+;) + .A, + %? 1 + 1 
T(a) = , L aI T(a) J 



Recall the result of Darling and Erdos (1956), namely 

that lT(a+e) - T(a)1 ! 0. This implies T(a+E)/T(a) -pl 

and therefore 

log N(a) ,p 1 
T(a) 

as N-c - 

The preceeding 

2.1, which states 

lemmas enable us to establish Theorem 

+ 
(2 lqwlq NIV2 ]=- [=fG] 

To see this, consider: 

= lb!i P N(a) > N 
N’ Q) I 

= lim P [T(a) > kg N] 
N* - 

= lim P U(s) < a 
N’- O<%J N 1 



-2 =e 

where 

a = (2 kg log N) 1/2 + loa ku ~CQ N a (A2Z) 

32 log lq N) 
m - (2tq kx~ N)V2 

+o 1 

(2 lq lq N)v2 
* 

Substituting w = -log(n l/2 z) and recalling 

SUP -li2 f112 1; yi 1 = (-2 log 1)1'2 
v 1 

and 

lim P SUP IU(SJl < a '= ea2' 
N+= ots<log N 1 

yields the desired result. 

For c2 unknown the same asymptotic distribution holds 

under HO, as demonstrated by: 

Theorem 2.7: 
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Let yl, . . . . YN * i.i.d. N(P, u2) and let 

-N/2 
a = min 

lLv<N 

Then 

lim P (-2 leg X) l/2 

N* - 
921~331cgN)~~. '=?doqlqN 2 

2(2 lq lq NIV 

Proof of theorem: 

Essentially -2 log X can be written as the sum of two 

terms, one of which behaves asymptotically like -2 log X 

when u 2 is known. The other term in Op ((log log N)/N) 

and can be ignored. 

Note: 

-2 log A = sup 
lsv<N 

- N log (S/So) 

= sup v [ :"';;I + s:pN 0 (s:;1]2 



-2 
Note So= NaH 2 

0 
is consistent for Q , implying 

The result now follows from Theorem 2.1. 
. 
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