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1. INTRODUCTION 

The Population Division of the Bureau of the Census periodically 

publishes projections of the number of households and families. In 1979 the 

Population Division issued the report f’Projections of the Number of Households 

and Families: 1979 to 1995” (Series P-25, No. 8051, and this year (1986) they 

released “Projections of the Number of Households and Families: 1986 to 2000” 

(Series P-25, No. 986). In this paper we describe the time series methodology 

used in the 1986 projections, evaluate the resulting and some alternative 

projections, and contrast this approach with the approach used in 1979. 

The data available consist of 130 series, divided into 10 age groups 

witMn 13 categories. The categories, and a description of the data are found 

in Table A.I. Annual data from 1959 through 1985 are used. 

In 1979, a regression approach was used for projecting the proportions 

for 1995. In some cases, the natural logarithm of the proportion (Ln(pt)) was 

taken before performing the regression to prevent projections from going below 

zero. In other cases, the natural logarithm of one minus the proportion 

(Ln(l-pt)) was taken to prevent projections from going above one. The 1995 

projection was then connected to the actual 1978 value by a straight line. In 

this way projections for 1979 to 1994 were produced. Project ions of these 

proportions were then combined with Census Bureau population projections to 

produce projections of the number of households in the various categories. 

Publication number 805, series P-25, contains a detailed discussion of the 

categories and procedure. 

As noted above, in some cases the Ln(pt) transformation was used, while 

in others Ln(l-pt) was used. We considered use of a single transformation to 

prevent projected proportions from going below 0 or above 1. This is 
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discussed in Section 2. The logistic transformation, Ln[(pt)/(l -pt)], was a 

natural one to examine; other transformations were also considered. 

Section 3 discusses alternative forecasting methods, which were examined 

on a subset of the 130 series. These methods include ordinary and robust 

linear regression of the logistically transformed data on time. There was 

indication of the presence of outliers in some of the series. 

In Section 4 ARIMA time series models are studied. Several alternative 

models are considered, but it is determined that insufficient historical data 

are available to allow effective statistical evaluation of these models. In 

the interest of simplicity and intuitive appeal, it is proposed to use two 

mod&s-- the (0,l ,O> with constant and the (0,2,1)--in conjunction. Section 4 

describes these models and their use. 

Section 5 of the paper presents an evaluation of the alternative methods 

of household headship projections, using results from the 130 series. We 

conclude in Section 6 with a discussion of possible future avenues of 

research. 

2. TRANSFORMATIONS 

2 .l Alternative Transformations 

A sample of twenty-one household headship rate series was examined in an 

attempt to determine what transformation, if any, of the original series of 

proportions was most appropriate for use in modeling and forecasting. The 

sample series are listed in Table A.2, and graphically displayed-in Figure 

A.1. The transformations considered were 

Pt 
= original data (no transformation) 

rt 
= arcsin ($1 

Yt 
= LnCpt/(l-pt)l (logistic) . 
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As noted earlier, the logistic transformation was considered as a natural 

alternative to the procedure previously used. The arcsin transformation was 

considered because it is effectively “in between” the logistic and no 

transformation, as can be seen in Figure B.1 . 

As far as statistical modeling of the data is concerned, the relevant 

question is which transformation does the most to stabilize the variance and 

make the data most nearly normally distributed. Stability of variance would 

not be expected of pt, rt, or yt, since these series generally appear 

nonstationary. However, we might expect their first differences 

Vpt, Vrt, or Vyt , where Vpt= (p,- p,-,I, and Vrt and Vyt are similarly 

defined, to have stable variance. These series are still possibly 

autocorrelated, though the extent of this is difficult to determine due to the 

limited amount of data available. As a check, Table B.1 lists r, (Vy,), the 

lag-l sample autocorrelation coefficient of Vyt, for the sample of 21 series 

examined . It should be kept in mind that there is likely to be considerable 

error in these estimates since there are only 26 observations on each Vyt. 

To assess the effects of transformations we examined time series plots, 

histograms, and normal probability plots of Vpt, Vrt, and Vyt. The time series 

plots and histograms were of little use, mainly because of the limited amount 

of data available. The normal probability plots were found to be somewhat 

useful for assessing distributional shape. Figure B.l shows the arcsin and 

logistic transformations to be approximately linear for pt in [: .25, .751, so 

that they will affect distributional shape only for series with some values 

outside this range. 

As pt is limited to CO,1 I, we might expect Vpt to have a short upper tail 

in a series where the proportions are above .75, since we could not expect 

many large, positive Vpt’s in such a series. One would hope the arcsin or 
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logistic transformation would “stretch-out” a short upper tail in Opt. The 

behavior of the lower tail of Vpt is unclear in such a case. The reverse of 

these statements would apply to a series where the proportions are below 

.25. The normal probability plots were examined for each of the 21 sample 

series to determine whether the transformations had the desired effect. Table 

B.l gives our impression of these plots. 

There are significant outliers in the differenced data no matter what 

transformation is used. More than one positive outlier typically obscured 

other features of the distribution’s upper tail, and analogously for negative 
. 

outliers and the lower tail. Thus, it was sometimes difficult to judge if, 

aparrt from the outliers, the distribution had a short upper or lower tail. 

Despite this qualification, and the fact that the range of some series 

was inside [ .25, .75] so the choice of transformation didn’t matter, the 

general impression was that there was some tendency for Vpt to have a short 

upper tail (except possibly for outliers) for a pt series where the 

proportions are above 0.75, and a short lower tail for a pt series where the 

proportions are below 0.25. The logistic seemed to correct for this better 

than the arcsin transformat ion. There was no evidence that one would be worse 

off using the logistic transformation, and doing so has the advantage of 

keeping projections within CO,1 1, as shown in section 2.2. Projections using 

the arcsin transformation will also remain within LO,1 1, but can be shown to 

eventually reach, and then reflect back off either the 0 or 1 boundary due to 

the periodic nature of the sine function. The fact that we are not sure of 

the extent of autocorrelation in the differenced series, and what effect this 

has on the normal probability plots, may be an important qualification in this 

evaluation of different transformations. However, considerably more data are 

required before we can remedy this. 
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2.2 Treatment of 0 or 1 Values With the Logistic Transformation 

The approach using the logistic transformation for projections is to 

first project yt, and then transform the projections to projections for pt via 

the inverse of the logistic transformation : 

Pt 
= exp(yt)/[l+exp(yt)l . 

The logistic is a l-to-l transformation of (0,l) to (-a,->; thus, its inverse 

is a 1 -to-l transformation from (--,a,) to (0 ,I ). This guarantees that use of 

the logistic will force projected proportions to be in (0 ,I 1. 

Minor problems arise in dealing with series containing values that are 

exactly 0 or 1 . Two simple approaches are to treat such values as missing 

data, or to modify these values of 0 or 1 to values slightly above 0 or 

slightly below 1, respectively, before transforming. None of the twenty-one 

series in the sample had a value which was 0 or 1, but two of the remaining 

109 series contained 0 values. For the regression models discussed later, it 

was simple to treat the 0 values as missing data. However, missing data 

create computational difficulties for time series modeling. Thus, for the 

time series modeling discussed in section 4, we tried replacing the 0 values 

by .005, which was approximately one half of the minimum of each series, 

ignoring the 0 values. 

For the series MSIGQl4 (male secondary individuals living in guest 

quarters, ages 14-17 > , the zero values were all concentrated at the beginning 

of the data. For this series, using replacement values had a strong effect 01 

the estimation procedure. The first six data points, which contained the 0 

values, were omitted to avoid this situation. The result was an estimated 



7 

model that was thought to be much more reasonable. For the second series, 

MSIGQ18 (male secondary individuals living in guest quarters, ages 18-19), the 

0 values were evenly spread throughout the series, and the replacement values 

seemed to cause no difficulties with the time series modeling. 

3. SOME POSSIBLE MODIFICATIONS TO THE METHOD USED IN 1978 

The method for projecting the proportions used in 19'78 by the Population 

Division was basically as follows: 

. 

1. Using 15 years of data (1964-19781, the following model was fit: 

* Ln(pt) = a0 + alt + et, t = 1, . . . . 15 

pt = proportion in year t 

If the estimate ofeta= error term 
1 > 0, the following alternate model was fit: 

Ln(l-pt) = a0 + a,t + et 

If a, is still > 0, the model with the smaller value of a, was used. 

2. The fitted model was used to project Ln(pt) or Ln(l-pt), and thus pt., 

for 1995. The 1978 pt value was connected to the 1995 pt projection 

with a straight line to obtain projections for 1979-1994. 

The method above was used to obtain a series of projections called series 

B. Three other series, derived from series B, were also published. Census 

Bureau publication number 805, series P-25 discusses the different series 

published in 1979. 
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3.1 Use of the Logistic Transformation 

As a first step in developing alternatives to the projection methodology 

used in 1978, it was natural to consider if some simple changes could be made 

to the 1978 method, while still retaining the basic element of linear 

regression on time. The first such change considered was the logistic 

transformation discussed in Section 2, which provides a simple means of 

constraining projections of the individual rates to (0,l). A revision of the 

1978 method that uses the logistic transformation follows these steps: 

1 . logistic transformation of each series pt to yt = Ln(pt/(l -p,)); 

a 2. fitting the linear model yt = a0 + a, t + et; 

3. extrapolating with the fitted model to get a target value, 
A A A 

= a 
Yt* 0 

+ a t*, 
1 

at some future time point t* (e.g., t* = the year 

2000 1; 
,8 

4. linearly interpolating between the last data point, y,, and yt* to get 

projections of yt for the intervening years; 
A 

; back to in+, 
A 

5. transforming Y,,~ ,*-a, tK ,***,P t* 
.T 

via p 
t 

= exp(jt) / (1 +exp(j,)), to get the projections of pt. 

Steps 4 and 5 represent another modification to the 1978 method which 

transformed the target value back to the pt scale, then performed a linear 

interpolation to get projections of pt for the intervening years (essentially 

interchanging steps 4 and 5 ). The drawback to linear interpolation in the pt 

scale is that a linear forecast function for pt must, if extended beyond t*, 

ultimately cross the 0 or 1 boundary (unless ^a1 = 0). In the scheme above, the 

forecast function is linear in the yt scale. This produces a curved forecast 
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function for pt that, if extended beyond t*, will be asymptotic to (i.e., 

approach but never reach) either the 0 or 1 boundary. 

3.2 Weighted Least Squares 

A second feature of the 1978 method studied was the use of weighted least 

squares in fitting the straight line. Weighted least squares estimates 

of a 
0 

and a 1 resulted from minimizing 

F wt(Ln(pt) - a0 - a, t) 
2 

t=1 

whem w, ,. . . ,wn are the weights, and for some series Ln(pt) was replaced by 

Ln(l -pt). Ordinary least squares estimation would use w, = . . . = w, = 1. In 

1978, the wt ‘s were chosen to be approximately proportional to the sample size 

of the Current Population Survey (CPS). In fact, the CPS sample size changed 

several times between 1964 and 1978 (the span of data used in 1978), but most 

changes were relatively minor except for an increase from 33,000 to 48,000 

households in 1970. This increase of approximately 50% led to the weights w, 

= . . . = w6 = 67 (for 1964 - 1969) and w7 = . . . = w15 = 100 (for 1970 - 1978). 

The assumptions appropriate for the use of weighted least squares are 

questionable for this data. The model underlying this use of weighted least 

squares is 

Ln(pt) = a0 + a,t + et, Var(eQa wi’ . 

The assumption of Var(et)o: wi’ comes from the usual result of variance being 

inversely proportional to sample size. Actually , if pt is viewed as the 

observed proportion resulting from nt i.i.d. Bernoulli trials with common 
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probability of success ?~t, then Var(pt) = rt(l-?rt)/nt 0: ~~(1 -T~)w~‘. Letting 

nt be the sample size at time t, we are then led to the weights used if we 

make the additional assumptions that the differential effects of IT~(~-T~) and 

the effects of the logarithmic transformation can be ignored. 

These last two assumptions could certainly be questioned. However, the 

real problem with model (1 ), and consequently with the weighted least squares 

procedure, stems from the assumption that apart from sampling error the 

proportions follow a straight line -- i.e., rt = ao+al t. If this were true, 

the graph of each series would be very nearly a straight line, with usually 
T 

only slight variations about the line due to the sampling error. Few, if any, 

of &he graphs show behavior approaching this. A more realistic model assumes 

that the true underlying proportions contain inherent stochastic variation ut 

over time, independent of the sampling variation. This can be written 

= a 
*t 0 

+at+u 
1 t’ 

and, ignoring the effects of the Ln transformation again, 

leads to the model 

Ln(pt) = a0 + a, t + ut +et (2) 

where the variance of the error term is now 

Var(ut + et) = Var(ut) + Var(et). 

Accepting the above arguments for Var(et) being proportional to nil, the 

error variance is not approximately proportional to n -1 
t 

unless Var(ut) is 

small relative to Var ( et). In fact, analysis of the data suggests Var(ut) is 

far greater than Var(et) in most cases. Thus, the dependence of Var(et) on 

sample size can effectively be ignored. Possible exceptions occur in some of 
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the lowest or highest age groups for which certain series are highly 

volatile. Even so, the volatility in these series may well be due to a high 

Var(ut) producing large fluctuations in the vt’s. 

Discarding model (I) in favor of model (2) removes the reason for using 

weighted least squares. A serious difficulty with the use of weighted or 

ordinary least squares on (2) is that ut is certainly correlated over time, 

and most probably is a nonstationary time series. We attempt to address this 

issue with time series models later. 

. 

3.3 Extent of Data Used 

* To this point our recommended modifications to the 1978 method are to (I ) 

use the logistic transformation, (2) do the linear interpolation in the 

transformed scale and then transform back, and (3) drop the use of weighted 

least squares. Another issue concerns how much data to use. In 1978, data 

from 1964 - 1978 was used, despite the availability of data back to 1959. 

Statistical principles generally argue for use of as much data as are 

available, as long as it all follows the same model. Our work has generally 

used all the available data, except for analyses making comparisons with the 

1978 projections. Unless there is some knowledge (theoretical or empirical) 

suggesting that early years of data are not comparable with later years, we 

would be leery of discarding data. Any problems arising from use of all the 

data most likely stem from inappropriateness of the model used. 

3.4 Treatment of Outliers 

A final issue to consider in regard to modifications to the 1978 method 

is the possible effect of outliers on the least squares fitting and resulting 

projections. This suggested the possibility of replacing least squares 
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regression with a robust fitting scheme. This was done for the sample set of 

21 series, using a robust regression routine from Interactive Data Analysis by 

McNeil (1977). All regressions were performed on the logistically transformed 

data. 

Robust regression using Tukey’s biweight influence function was performed 

three times, with c values of 2, 4, and 6. The value c allows one to adjust 

the amount that observations far away from the fitted line are downweighted, 

with more drastic downweighting the lower the value of c. McNeil recommends 

choosing a value of c between 4 and 10, with 10 likely to give results very 
9 

close to least squares, and 4 as low as one would probably ever want to go 

(McNeil (19771, p. 157). The value of 2 for c was tried since c = 4 usually 

produced results very close to least squares. Such a low value for c was 

needed to achieve results different from least squares due to the strong 

autocorrelation in the series, as explained below. 

Table C.l gives parameter estimates for four regressions: least squares, 

and three robust regressions using different values of c. The parameters 

estimated are a0 and a, in the regression equation yt = a0 + al t + e t . 

(Recall yt in this case is the logistic transform Ln (pt/(I -p,)), where pt is 

the proportion in question at time t.) For many series, the estimates 

of a 0 and aI for the four runs are similar. Note the value of c = 6 produced 

results very close to the least squares regression results, while c = 2 

sometimes provided estimates different from least squares. Note specifically 

the series SM20, SM25, and FFH35, for which the results for c = 2 differ 

substantially from the others. 

The series and the regression fits were also examined graphically on both 

the original and the tranformed (logistic) scale. Example graphs for series 

SM20 (Single Males, Age 20-24) are included in Figures C.1 and C.2. The 



13 

different performance for the c = 2 robust regression is apparent here. It 

seems c = 2 ignores too many observations. 

The straight line fits are generally very poor, and since there is strong 

autocorrelation present, when one data point lies far from the line, the 

neighoring points generally do so as as well. This results in a large 

variance estimate even when the variance is estimated robustly. Since the 

cutoff point beyond which observations get zero weight depends on the product 

of c and the residual standard error, very low values for c are needed to 

compensate for the high residual standard error. 
. 

Thus, robust regression does not appear to provide significiantly better 

estimates of a linear relation for use in projection than least squares 

regression in the series that were studied. Straight lines do not fit the 

data well, and outliers, while a problem, are not nearly as big a problem as 

autocorrelation. 

3.5 Conclusions 

Modifications to the 1978 method that we recommend are the use of the 

logistic transformation, the dropping of weighted least squares, and the use 

of all available data in fitting models, unless there are concrete reasons 

(theoretical or empirical) why early data should not be used. Outliers are a 

problem in many of the series, but robust regression does not help. 

Autocorrelation in the data is a far more important problem than outliers. In 

fact, the strong autocorrelation in these series results in linear functions 

of time providing extremely poor fits to these data. Thus, our final 

conclusion in regard to the 1978 method is that linear regression on time is 

not an appropriate model for these data, and thus its use should be dropped. 

(Obviously , at this point, we have completely dismantled the 1978 method.) As 
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an al ternat ive, in the next section we investigate the use of ARIMA time 

series models. The objective of these models is to explicitly model the 

autocorrelation structure of time series. 

4. ALTERNATIVE METHODS: Time Series Models 

4.1 Introduction 

The general ARIMA (autoregressive-integrated-moving average) model of order 

T 

vdyt = Xt 

* Xt = e. + 0 
1 

xt-,+ . . . + 0, xtmp + at - O1 a 

(p,d,d for Yt can be written 

t-, - ‘a * - Bq at-q 

where 

(i) V is the differencing operator Vyt = yt - yt-, 

(ii) 
d 

V y t 
= V(Vd-‘y,) so, e.g. V2yt = Vyt - Vyt-, 

(iii) at is a random error series 

(iv> eo,~I,...,~p’eI 9***, Bq and CY’, = Var( a,) are parameters. 

The approach is to difference yt a suitable number of times d to produce a 

stationary series xt (one varying about a constant mean level and whose other 

properties are stable over time). Then xt is related linearly to a 

constant B. (sometimes constrained to be zero), past values of itself (the 

autoregressive part or ‘AR’), and current and past values of the random error 

series (the moving average part or ‘MA’ ). The rrI” in ARIMA stands for 

“integrated”, which is the inverse of differencing. ARIMA modeling consists 

of choosing the model orders (p,d,q) and fitting the model using standard 
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computer software to produce estimates of f3 oP ~,,...,6,9 @“..” Bq’ ua * 

Forecasts can then be produced from the estimated model. 

Time series observations are generally not independent of one another -- 

they usually exhibit a high degree of correlation over time. This makes 

standard statistical techniques such as regression inappropriate for time 

series data (often highly inappropriate). ARIMA models attempt to account for 

correlation in time series data with a small number of parameters (small p and 

9). Most time series are so strongly correlated that they require 

differencing once, or sometimes twice, to produce a stationary series suitable 

for further modeling. 

= ARIMA modeling is typically done with fairly long time series -- 50 or 

more observations for a nonseasonal series and more for a seasonal series. 

Time series as short as the headship rate series (27 observations from 1959- 

1985) present some difficult problems. It was obvious from plots of the 

series that virtually all the headship series would require taking 

Xt = VYt = Yt - Yt-, l 
There was a question as to whether some series might 

benefit from taking a second difference, xt = V2yt . As will be seen later, 

this was tried via models that also introduced an MA operator, (I - BB), when 

the additional difference was included. If the second difference is not 

needed, the estimate of 0 will be very close to I. (For this model, 0 is 

constrained by 10 1 6 I .> In fact, if i = I, one can cancel a (I - B) from 

both sides of the equation, which reduces the equation to that of a first 

difference model. So the models with d = 2 could default back to a model with 

d = 1, depending on estimates of the moving average parameters. 

Beyond the choice of d, the usual model selection procedures are based on 

the fact that given models correspond to distinct patterns in the auto- 

correlations, 
‘k 

= Corr(xt,xtWk) k = 1,2,3 ,... . If the usual sample 
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estimates of pk are reasonably reliable, one may examine these for a pattern 

corresponding to a given model to select p and q. Unfortunately, the 

shortness of the headship series precluded any serious attempts at selection 

of p and q by statistical means. The approach taken was to try several models 

with various small (usually 0 or 1) values of p and q, examine forecasts from 

these models to see how they differed, and try to choose a model or models 

that seemed reasonable for most of the series. 

Another problem with short time series is that even if a reasonable model 

is selected, estimates of the model parameters, and consequently forecasts 
w 

calculated from the estimated model, will be unreliable. There is no way 

arownd this problem. The best course is to limit models to a very small 

number of parameters. While adding parameters to a model may make it more 

flexible and realistic, for short series these benefits are quickly offset by 

the increased error due to estimating more parameters. 

A final problem in forecasting with short time series is that it is 

difficult to assess the accuracy of forecasts from a given model, or to 

compare the relative accuracy of forecasts from different models or 

procedures. Comparison of forecasts from a single origin with later observed 

actual values are likely to be governed by one or two random shocks after the 

forecast origin. This makes such comparisons of little value in deciding 

which model or forecasting procedure will perform well in the future. Use of 

a small number of different forecast origins cannot be expected to do much 

better, yet a small number of origins is all that would be available for short 

series. The accuracy of long term forecasts is especially difficult to assess 

-- much more so than forecasts one or two years ahead. It is not hard to see 

that with 27 years of data little can be said about where the series will be 
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15 years from now. In section 4.5, we illustrate some of the forecasting 

problems by calculating forecast intervals for several series. 

The next section describes our efforts at empirical evaluation of 

forecasts from various ARIMA models. The conclusions are primarily negative 

-- these empirical comparisons do not offer a reliable method of selecting 

“best*’ models for each series individually, or of selecting one model to use 

on all series that is “best” in some sense. Thus, the choice of which model 

to use must be based on other considerations, such as simplicity and intuitive 

appeal. 
. 

While these problems have been discussed mostly in the context of ARIMA 

modding, they are in fact present, in one form or another, for any 

forecasting procedure applied to short series. ARIMA models are neither more 

nor less susceptible to these difficulties than other approaches. It should 

also be kept in mind that just because it is difficult to use ARIMA models to 

adequately model the correlation structure of a short series, doing nothing 

about autocorrelation is not an appropriate alternative. Autocorrelation can 

cause serious problems for other procedures, and doing nothing about it 

effectively assumes autocorrelation is not present (an ARIMA(O,O,O) model). 

This is likely to be worse than making an attempt at modeling. 

4.2 Empirical Forecasting Evaluation 

Five models were studied, The notation used is that of Box and Jenkins 

(1970 ). 

co,1 ,O) “RANDOM WALK” 

vyt t 
= a 
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(0 ,I ,O)-WITH-CONSTANT 

Vyt = e. + at 

(2 ,I ,O)-WITH-CONSTANT 

VYt = e. + 4’ (VYtwl ) + @,(VY,-,) + at 

(4, I ,o )-WITH-CONSTANT 

. 

Vyt = e. + 0, (VYt-, 1 + 42(VYt-2) + 

+3 (VY t-3) + “4(VYt-4) + at 
I 

(0,2,2) 

VYt2 = Yt- 2Yt-' +Yt-2 = at - eIat-, - e2atm2 

All modeling was performed on the logistically transformed data. A 

conditional likelihood estimation procedure from the SCA time series package 

was used to estimate the models and produce forecasts. The conditional 

likelihood procedure sometimes has difficulty estimating moving average 

parameters with values near 1. In such instances an exact likelihood 

estimation is recommended. The exact likelihood estimation in SCA was 

therefore used for the (0,2,2) model. Occasionally this estimation procedure 

will not converge, in which case the model cannot be estimated in the SCA 

package. For the (0,2,2) model this situation occurred with eight of the 21 

sample series, leaving the remaining four models to be compared. Six recent 

observations (1979-1984) were witheld before modeling the series and used to 
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compare and evaluate forecasts from the models. Plots of the forecasts were 

also compared with these actual observations. 

Considering that the models were estimated using only 20 observations, 

the forecasts are 1 ikely to be unreliable. Since forecast accuracy decreases 

the farther one tries to forecast into the future, less emphasis should be 

placed on 4, 5, and 6-years-ahead forecasts. It was decided to evaluate the 

models based both on forecasts through 3-years-ahead and on forecasts through 

6-years-ahead. For the j-years-ahead forecast evaluation, data from 1959-1978 

were used to produce forecasts for 1979-1981. Then data from 1959-1981 were 

used to re-estimate the model and produce forecasts for 1982-1984. Due to the 

inhwent increase in uncertainty of the forecasts as they extend further into 

the future, a weighted mean absolute error and a weighted root mean square 

error measure were computed, with weights that decrease geometrically as the 

forecasts extend into the future. The measures for the 6-years-ahead forecast 

evaluation are defined as 

6 

c @ 
i-l 

weighted MAE = i=I 
1’1978 i - y1978+il t 

6 
z d-l 

i-l 

6 
c B 

i-lcf 
- ‘1978+i) 

2 l/2 

i=I 
1978,i 

weighted RMSE = -- 
6 
z B 

i-l 

i=I 

where f 
hi 

= ith-step-ahead forecast from origin j. For the 3-step-ahead 

evaluations, 
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weighted MAE = 

3 i-l 
c B If 1978,i - ‘1978+i I +I B 

i=I 
’ i-1 If1981 i 

i=I , - ‘1981+i 1 

3 
21 B 

i-l 

i=I 

weighted RMSE = 

3 i-l 3 I/2 
' B 

i-Icf 2 

T i=I 
lfIg78 i - YIg78+iJ2 + ' ' 

, i=I 
1981 ,i - ‘1981+i) 

3 

2GB 
i-l 

* i=l 

Values for $ of .7 and .85 were chosen to vary the deemphasis given to 

longer term forecasts. These four measures were computed for all five models 

on all 21 series, except for the (0,2,2) model with the eight series for which 

the estimation did not converge. For each series, the models were ranked 

according to how close the forecasts produced were to the actual values as 

measured by the criteria above. 

From example graphs of the evaluation measures for two of the series 

(Figures D.l and D.2) it is clear that there is little difference in forecast 

evaluation between the RMSE and MAE, and between the two values of 6. It 

should be noted here Figure D.2 (the series FPI20) is an example where the 

estimation did not converge for the (0,2,2) model. The number of forecast 

years used did in some cases influence the outcome. With the accuracy of 

longer forecasts in dcubt, it was felt that the outcome of the 3-years-ahead 

analysis was more relevant. The ranks for the 13 sample series where the 

(0,2,2) model was estimable are displayed in Figure D.3. The rankings of all 
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the models, both including and excluding the (0,2,2) model, are displayed in 

Figure D.4. The (O,I,O) and (0,2,2) models had the most top ranks (4 each) 

but also had the most lowest ranks (5 and 3, respectively). No model seems 

obviously superior from these graphs or the tables in Figure D.4. 

A nonparametric Friedman rank sum test was performed on the rankings, the 

result being no model significantly better than the others. The forecast 

evaluation measures, likewise, did not point to a clearcut choice of model to 

use. Rather than select different models for different series, it thus seemed 

desirable to choose one model for all series. The (O,I,O)-with-constant model 
w 

was selected as a reasonable model that was certainly as good as any other 

and ,= in fact, had the highest individual Friedman rank sum. In addition, the 

(0,' ,O)-with-constant model has simplicity as an appealing feature. Forecasts 

of this model will be a straight line from the last data point, with a slope 

that is the mean of the differenced data. 

4.3 Robust Estimation of (0,' ,O)-With-Constant 

The method of estimating slope in the (O,I,O) model produces forecasts 

that are equivalent to connecting a line from the first observation to the 

last observation and extending the line for forecasting. This would seem to 

ignore the rest of the data. While such a forecasting procedure is 

appropriate if the (O,l,O) model is correct and there are no outliers in the 

data, an outlier at the first or last time point could cause poor forecasts. 

As noted in section 2.1, outliers appear to be present in many of the 

series. A procedure that is affected little by outliers is called "robust". 

Hence, use of a robust procedure to estimate the constant O. in the 

(O,I,O)-constant model was investigated. 
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Kafadar (1982) discusses the formation of a “t-like” statistic that 

replaces the classical mean or average with a biweight estimate, 

N 

where ut = (x, - Tbi) / (c.sbi). In our procedure, Tbi is an estimate of f30 

for the (0,’ ,0 j-constant model. This is an iterative process, with TLy’ = 

median (x,) . sbi is a measure of the spread of the data that remains 

constant over the iterations. It is proportional to the median absolute 
w 

deviation, 

* 
s(o) = rnfd I xt- TLy’ I . 

The biweight function itself, 

b(u) = u(I - u~)~, u 2 1, 

= 0, IUI > I 

reduces the influence of values far away from a measure of center by 

downweighting them in the resulting estimate. Thus, we taper the weights 

given to x-values more than (c.sbi)/2 away from Tbi, down to zero for values 

more than (C. Sbi) away from Tbi . A graph of the biweight function can be 

found in figure E.1 . As noted in section 3, McNeil (1977) suggests picking c 

to be in the range [4,101. Results very near to use of the arithmetic mean 

follow for c = 10, and c = 4 usually provides great protection from outlying 

values. 

Graphs comparing the nonrobust (O,I,O)-constant forecasts with the robust 

forecasts for c = 4 and 6 revealed that use of robust procedures can affect 

the forecasts. The robust forecasts appeared more reasonable when they 
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differed from the non-robust forecasts, especially in series with outliers 

present near the beginning or end of the data. Figure E .2 is an example of 

this. With c = 6, the extreme values are downweighted some, resulting in 

forecasts that differ from those of the nonrobust procedure. Using c = 4 

produces more downweighting and forecasts that differ still further. With 

limited data and many series, we thought it better to strive for more 

protection from outliers rather than less, and so judged that choosing c = 4 

was more appropriate. Thus, the modelling of all I30 series,using an 

(0 ,I ,O)-constant model, was performed with the robust estimation procedure, 
. 

with c = 4. 

* 

4.4 (0,2,1) Model Considered 

The graphs of some series seemed to indicate a change of slope in recent 

years, particularly since 1978. Prime examples are the series FFH25 just 

considered, as well as the series MP120 (male primary individuals, ages 20- 

24), FFH30 (female head of household, husband not present, ages 30-34), FFH35 

(female head of household, husband not present, ages 35-40). Graphs of these 

series are given in Figures F. I , F.2, and F.3 respectively. This raised the 

possibility of using a model with a linear forecast function, where the slope 

is estimated in a way that gives more weight to recent differences of the 

data. The (0,2,1) model is such a model. Letting xt = Vyt, we can write the 

model as: 

V2yt = VXt = (I - eB)at (Bat = atwl 1. 
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This is a (O,I,I) model for the once-differenced values xt. The (0,l ,l) 

model produces constant forecasts of xt that are an exponentially weighted 

moving average (EWMA) of the data: 

xp = (1 - e)Cx, + ext-, + eLxte2 + . . . 1 

Notice the weights on the observations decline exponentially and sum to one. 

Thus, this model produces a constant forecast of the future slope, and hence a 

linear forecast for yt (which turns out to start from the last data point), 
w 

with more weight given to recent observations in determining the slope. 
A 

*The above formula for x,(a) applies when the series is long enough, 
A 

and 8 is small enough so that the weight given to x, , 
p-1 

, is effectively 

zero. For short series, or i values near 1 , this will not be the case and the 

weights in i,(!L) will not be exactly (I 
A A. A 

- e)eJ. In fact, for 8 = I the 
n 

weights turn out to be all 1 /n, so the (0,2, I ) model with 8 = I produces the 

same forecasts as the (0, I ,O> model with a (non-robustly estimated) 

constant. As another way to look at this, notice if 8 = 1 in the (0,2,1) 

model we can cancel a V = 1-B on the left hand side with the 1 - 8B = I-B on 

the right to get 

Vyt = e. + at 

the (0,l ,O> with constant model for yt. We preferred to treat the (0 ,I ,O)- 

constant model separately and not as a special case of the (0,2 ,I > 

with 8 = I, so that we could use a robust estimate of e. While techniques 
. 

developed for robust estimation and forecasting with general ARIMA models 

could be used on the (0,2,1) model, these techniques are usually applied to 
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series longer than 27 observations, and they require considerably more effort 

for each series. 

The (0,2,1) model was fitted to all 130 headship rate series by the exact 

maximum likelihood estimation procedure in the SCA time series package. As 

noted earlier, use of exact maximum likelihood is important in estimating 

models with moving average terms. For models with a 1 - 8B moving average 

term with 8 near 1, conditional likelihood tends to underestimate 8 . This is 

crucial in our application, since many of the series probably do not require a 

second difference. In that case, we would expect to get i = 1, so the model 
w 

would reduce to the (0 ,I ,O)-constant model. Unfortunately, the SCA package 

doesnot constrain e to the invertibility region C-1 ,ll, with the result that 

for many of the series the SCA package produced an estimate of i greater than 

1. One expects that the correct maximum likelihood estimate of f3 is 1 in 

these cases, though we did not pursue the further work needed to verify this. 

Of 130 series, 21 had values of 8 less than 1 for the (0,2,1) model. 

The (0,2,1) model yielded forecasts that were practically identical to the 

(0,l ,O)-with constant non-robust forecasts in 10 of these 21 series. In some 

of those 10 cases the series exhibited no significant change in level over the 

27 observations, so that the forecasts from both models varied little from one 

another. (See Figure F.4 and note the scale of the vertical axis.) In the 

other cases, the series did not seem to exhibit much change in slope in recent 

years, in which case forecasts from the (0,2,1) model differ little from 

forecasts from the non-robust (0,l ,O)-with-constant model. In producing 

forecasts for the (0,2,1 > model, we thus revert back to the (0,l ,O )-with- 

constant forecasts for the 109 series for which i 1 1, and for the 10 series 

with e < 1 where the (0,2,1 ) model made little difference. 
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In reverting back to the (0,l ,0)-with-constant model, outliers may still 

be a problem, so robust estimation of the model was used. For the 11 

remaining series, forecasts from the (0,2,1) model were used. Although they 

are few in number, they are among the more influential individual series with 

respect to their contribution to the total number of households. Hence it was 

felt that the total effect on the household projections due to incorporating 

the (0,2,1) forecasts for just the 11 series should not be ignored. 

4.5 Conclusions 

The modeling procedure settled on for the proportions was to use the 

(0,&l ) model only when (1 ) i < 1, and (2) the (0,2,1 ) forecasts appeared 

somewhat different from the non-robustly estimated (O,l,O)-with constant 

forecasts. Otherwi se, the robustly estimated (0,l ,O)-with constant model was 

used. Requirement (1) comes from the fact that the (O,l,O)-with constant 

model is the special case of the (0,2,1) model with 0 = 1. Requirement (2) 

was used to protect against outliers since we could not estimate the (0,2,1) 

model robustly. If the (0,2,1) forecasts did not differ much from the non- 

robust (0,l ,O)-with constant forecasts, it seemed safer to use the robustly 

estimated (0 ,I ,0)-with constant model in case outliers were present. These 

models were used to forecast the 130 series of proportions, with the (0,2,1 ) 

model being used for 11 of these series. The resulting forecasts of the 

proportions were used to produce the headship projections referred to as 

Series A in Bureau of the Census (1986, Series P-25, No. 986). 

The decision to use the (0,l ,0)-with constant in conjunction with the 

(0,2,1) model was based largely on their simplicity and intuitive appeal. The 

shortness of the historical time series of proportions (27 annual obser- 

vations) prevents any effective statistical discrimination between alternative 
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time series models. This is true both for selecting a model for any one 

particular series and for selecting one model to use for all series. 

Differencing each series at least once seems wise. Until substantially more 

data become available, it is difficult to say much beyond this. 

5. EXAMINATPON OF FORECASTS AND PROJECTIONS 

5.1 Upper and Lower Bounds for Forecasts 

Earlier we noted one would not have much statistical faith in forecasts 

for the year 2000, based on only 27 years of annual data (1959-1985). To get 
. 

some idea of the precision of the forecasts from the (0,2,1) and (0,l ,O)-with- 

cons&ant models, upper and lower 95% confidence bounds for the forecasts were 

calculated using both models, for several headship rate series. These 

calculations proceed from the assumption that the estimated model is, in fact, 

the correct model for the data. Since this is not the case in practice, and 

since our data here are limited in length, these calculations will give only a 

very rough idea of the precision of the forecasts. First, we will derive the 

forecast error variances for the two models. We will then discuss the results 

of the forecast bounds for several series. The use of the two different 

models gave some indication of the sensitivity of the results to model 

choice. Finally we will address the option of a constant rate forecast, i.e.; 

using the 1985 value as the projection into the future. 

Derivation of Forecast Error Variances 

The general ARIMA (p,d,q) model, 

@(B$ = B(B)at (1 > 
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in several ways. One way is in terms of the curren t and 

previous values of the uncorrelated random shocks at only: 

Yt 
= a 

t + $1 at-, + ☺1pt-2 + � l - 

=a + 

t 

.F IJJ a 
J=I j t-j 

= $(B)at 
(2 1 

(Actually, this result needs to be generalized for models involving dif- 

ferencing, but this need not concern us here.) This form of the model may be 
w 

used in calculating the variance of the forecast error, V(a) - the variance 

of t&e difference between the actual value at some future time point n + !2 

(data through time point n), and its forecasted value: 

v(k) = Var(yn+R -; 1 n+R 

In the form of (2) we have, since at is known for t 6 n 

Y n+R 
= a 

n+R + ☺I, an+%-, + l l l + 9~~1 an+~ + ☺IRan + l l * 

A A A n 

yn+& = an+R + +,an+%-, + . . . + *&-,an+, + $pn + . . . . 

Combining these expressions, 

A A 

‘n+!L -Y n+R = (a n+R -a 1 n+R 
A 

+ J, (a 
1 n+R-1 - an+R-l 1 + . . . + $,-, (an+, - an+, 1 . 

A 

But at = 0 for t > n so 
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v(l) = Var(Yn+R - Y,+Q) = Varbn+R + +lan+R-l + . . . + JIR-,an+,) 

2 2 
= (I +JI, +$J2+ . . . +qJg-, aa . 2 I2 

(3) 

To get estimates of the q’s in terms of the parameters of a specific 

model, we apply 4(B), the general autoregressive operator, to both sides of 

(2), 

40)yt = 4(B) $(B)at (4) 

but from (I), $(j=j)yt = B(B)at . Therefore, from equations (4) and (1 1, 

e(B) = $(B) $(B) (5) 

Thus, the Jlj for (3) may be obtained by equating coefficients of Bj, 

j=O,1,2, . . . n: 

(I-e,B - . . . - eqBq) = (I-$,B - . . . - 0 
p+d 

BP+d)(l+$lB+$2B2 + . ..) 
(6) 

Estimates of the qj result from substituting estimates of the $1’3 and B’s in 

(6). 

Now, the (0,2,1) model, in its general form, 

V2yt = (1 - BIB)at 

may be expressed in its expanded form, 

Yt - 2Yt-1 + Q-2 = at - e,at-1 l 
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From (61, 

(I - BIBI = (I - 2B + B2)(1 + $B + +2B2 + . ..> 

the Qj are calculated to be 

9, = 1 

JI, = 2 - 8, 

4J, = 2(2 - 8,) - 1 = 3 - 28, 

= 4 - 3el 

To compute the forecast error variance in (3), an estimate of 0: was obtained 

from the SCA computer package. 

For the (O,l,O)-with-constant model, 

Yt - yt-, = e. + at 

the actual value at some future time point n + R can be shown to be 

R 
Y n+R = Y, + ReO +jgl an+j . 

Since the best forecast of future a 
n+j 

'3 is zero, our forecast from the 

(O,l,O)-with-constant model is then 

A A 

Y n+R = y, + ReO . 
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A 

where 8 
0 

is the estimate of 8 
0 

variance directly: 

V(a) = Var(yn+R -; 1 n+R 

Here, we calculate the forecast error 

!2 
Var(R(Bo - e^,) + jgl a,+j) 

? 
A 

= R' Var(e 
? 

0 
) + Ra' 

a (7) 

= 

A 

eO’ 
a function of the data through time n, is independent of a 

n+l' l *� � an+R' 
A 

If e. was calculated as the mean of the first differences, its variance 

would be 0:/n, and the forecast error variance would be 
. 

V(E) = up + R 2, . 
n 

(8) 

The error in estimating e. is not important untless R is large, as V(!L> is 

dominated by for !2 small relative to n. When e. is estimated by the 

biweight estimate of location, as in our analysis, equation (7) still holds, 

with Var(e,) estimated by sti, the asymptotic variance estimate for the 

biweight estimate. We obtained this from a computer program by Kafadar 

(1982). 

Forecast and Forecast Bounds Results 

Figures G.1 - c.6 are graphical examples of the upper and lower bounds 
A 

for three series where the two models differ (i.e. 8,(l); SF25 (single 

females, ages 25-30), SM25 (single males, ages 25-30), and MFSP35 (married 

females, husband present, ages 35-44). 

The difference in results may be explained in several ways. Different 

estimates of o2 a 
were used in calculating the forecast bounds for the two 

models - s2 for the (0 2 1) model, and sEi for the (O,l,O)-with-constant 
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model. If outliers were present in the series, 
2 

'bi 
should be less than s2, 

contributing towards narrower bounds for the (O,l,O)-with-constant model. In 

addition, earlier we derived the I). 's for the (0,2,1) model. For the 
J 

(O,l,O)-with-constant model, $j is 1 for all j. If one compares the Qjls from 

both models, the (0,2,1) ej's are all larger, contributing to wider bounds 

for the (0,2,1). Finally, the forecast error variance for the (O,l,O)-with- 

constant model takes into account error in estimating eo, while the (0,2,1) 

forecast error variance does not account for error in estimating 8,. It is 

difficult to account for this error in estimating autoregressive or moving 

average parameters. This latter item would contribute towards wider bounds 
A 

for&he (O,l,O)-with-constant model. Unless 8, is very near 1 the 

larger +. 
J 

's for the (0,2,1) will have more of an effect than the Var(i,) term 

for the (O,l,O)-with-constant. Thus, we would expect the (0,2,1) to produce 

the wider bounds. 

In fact, in all three series considered here, the bounds for the (O,l,O)- 

with-constant model were narrower than those from the (0,2 ,I) model. This, 

however, does not mean that in general, the (O,l,O)-with-constant model is 

preferrable. Model selection should not be based on looking for narrow 

forecast bounds -- wider bounds may well be more correct! 

Using these results, the validity of the constant series projections 

cannot be ruled out. They fall within the confidence bounds for all the 

series that we examined; however, in several series, the projections fall very 

near an upper or lower bound. The uncertainty of the forecast bounds 

themselves should be considered here; they are only rough estimates based on 

assuming knowledge of the correct model for the data. Thus, a slight change 

in a parameter estimate, or estimate of variance, even assuming the model is 

correct, could lead to the constant series falling outside the forecast 
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bounds, or moving further inside. We conclude by reminding the reader that we 

are forecasting 15 time points in the future, based only on 27 data points. 

5.2 Comparison with Alternative Projections 

It is of interest to compare the headship projections produced using 

various time series models to alternative projections produced from 

demographic and economic models. Census Bureau demographers compare 

alternative projections on the basis of total households rather than on 

headship rates. For the projections using time series and economic models, 
. 

the headship rates are forecast and combined with population projections to 

obtain projections of the number of households. Census Bureau demographers 

formulate judgemental forecasts of household totals, imp1 icitly incorporating 

their knowledge and opinions of the future course of such things as marriage 

and divorce rates, and their effects on household formation. As total 

households are used as part of the basis for comparison, it seems reasonable 

to directly consider the annual time series of total number of households. By 

fitting a time series model to this series, forecasts of total households can 

be produced directly, depending only on the past behavior of the total 

household data. 

Data on total households was obtained from 1950 to 1985. The logged data 

was modeled and an (0 ,I ,O)-with- constant model seemed to be reasonable. An 

outlier analysis indicated very large residuals for years 1980 and 1982. The 

outlier effects were estimated and the data and projections modified to 

account for these outliers. The projected total households for 1995 and 2000 

from this procedure were compared to seven other projections of total 

households for 1995 and 2000. (See figures H.l and H.2) Three of the 

projections, TCR high, TCR average, and TCR low, were obtained from an 
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economic model relating household formation to certain economic variables. 

(See Tella, Chandrasekar, and Reznek (19851.) Projections using this model 

require projections of the economic variables. The TCR high projections use 

economic projections from the Council of Economic Advisors (CEA), TCR low 

uses economic projections from the Housing Division of Census, and TCR average 

uses economic projections that are an average of the CEA and Housing Division 

economic projections. The projections denoted as AROIOC correspond to the use 

of the (O,l,O)-constant model on all 130 series, and those denoted MA021 

correspond to the use of the (0,2,1> model on 11 of the series and the (O,l,O) 

constant model on the rest. (See sections 4.2 and 4.4.) Two projections 

base&i on demographic assumptions are included, denoted as the demographic and 

constant projections. The constant projections are based on the assumption 

that the householder proportions will remain at their current 1985 level, with 

only changes in population structure affecting the proportions. This actually 

corresponds to use of a random walk without trend model, (O,l,O), for the 

proportions. The demographic projections are judgemental forecasts developed 

by Census Bureau demographers. They reflect the assumptions that recent rapid 

increases in the number of households formed will moderate due to an assumed 

leveling off of marriage and divorce rates, the completion of the passage of 

the baby boom cohorts past the ages where they are most likely to form their 

own households, and other demographic considerations. 

The time series model projections based on headship rates come closest to 

the projections based on time series modeling of total households. As a 

whole, the demographic and economic model projections tend to be lower than 

the time series model projections, so these projections imply a deviation in 

the future from the past pattern of consistent increases in numbers of 

households. The time series direct projections of total households differ 



35 

. 

from the others in that they do not directly account for effects of the 

present and future age structure of the population. In the other projections, 

the future age structure is taken into account explicitly in the time series 

and economic model projections (by projecting householder proportions and 

combining these with age-sex specific population projections) or implicitly in 

the case of the demographic judgemental projections. The impact of these age 

structure shifts may not be captured by the dotted projection line, thereby 

contributing to the projection differences. 

Some differences in projections may be due to the different breakdowns of 

the headship rates. The time series and constant model methodologies were 

appljed to a series of headship rates broken down by 130 age-sex-marital- 

householder status categories. The TCR economic models considered a breakdown 

of the data into only four age specific categories. The demographic 

judgemental projections did not explicitly involve a breakdown of the data. 

To investigate the effect of the different breakdowns on the headship 

projections, the (0,2,1) time series model was estimated for the four age 

categories used in the TCR models and resulting projections produced. (See 

Figure H.3 .) The projections of householders for the four age categories and 

the totals from this method (hereafter called MA021(4) > were compared to 

those from the TCR models, the constant projections, the MA021 model applied 

to the 130 series breakdown, and a middle level set of projections proposed by 

Census Bureau demographers. The latter three projections are included in 

Population Division’s 1986 household projection publication. Census Bureau 

demographers felt the projections from the MA021 method may be too high and 

that assuming headship rates would remain constant was not a very likely 

scenario. A middle level series was created by using as projection slopes for 

each of the 130 series an average of the projection slopes for those series 
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from the MA021 and constant projections. The slope is 0 for the latter. 

Census demographers felt the middle level series produced results more 

consistent with their assumption that changes in marriage and divorce rates 

will slow considerably but not cease over the next 15 years. The choice of 

breakdown into 4 series or 130 series did have an effect. The projection 

level for total households for MA021 (4) is lower than for MA021 , in fact, it 

is about the same as the middle series projections. On the other hand, with 

regard to projections broken down by the four age specific categories, the 

MA021 (4) projections follow the MA021 projections more closely than any of the 

TCR projections. It seems that both the type of model used and the type of 

datgbreakdown are important in explaining the differences in projections. 

The demographic projections and the three TCR economic projections also 

differ from the time series model projections by incorporating outside 

information (other than population projections) that may relate to the 

formation of households. The TCR projections were formally obtained through a 

model relating household formation to economic variables. The demographic 

judgemental projections were informally obtained incorporating such outside 

information as expected behavior of future marriage and divorce rates, and 

their relation to and impact on household formations. A time series model 

cannot take into account any predicted change in the structure of the series 

beyond the last time point, or future information about related variables, 

unless such information can be quantified and incorporated into the model. 

The differences in projected total households are also due in part to the fact 

that outside information was not incorporated into the time series 

projections. If the expected behavior of the outside information and its - 

relation to household formation are accurate, then the time series projections 

may prove to be too high. 
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6. FUTURE WORK 

The work described in this paper serves as a foundation for future 

work. Many of the problems considered here -- what transformation to use, how 

to deal with the autocorrelation present in the data, treatment of outliers, 

dealing with short series -- must be dealt with by any approach to 

thehousehold projections. There are certain extensions to our work that were 

not pursued due to time limitations. 

One obvious improvement would be to do something about outliers in the 

(0,2,1 > model. Outliers can adversely affect both the estimate of the moving 

average parameter, and, if they are near the end of the series, the forecasts 

prod@ed for any given value of the parameter. Unfortunately, procedures for 

treatment of outliers in this sort of model are only recently being 

developed. Martin, Samarov, and Vandaele (1983) and Bell (1983) have 

suggested approaches that could be tried. Computer software for the former 

was not available for this study. Computer software by Bell was available, 

but to use the procedure on all 130 individual series is a substantial 

investment in time and resources. Robust (outlier resistant) procedures were 

easy to use with the (0,l ,O)-constant model, since fitting this model simply 

amounts to estimating the mean of the differenced data. 

The primary difficulty faced in analyzing the headship rate series is the 

limited number of observations available on each series. Unless additional 

past data on each series could somehow be obtained, this suggests that to 

obtain more information one should consider pooling information across 

series. For example, if one assumed all the series followed the same model 

with the same parameter values, all the series could be used jointly to 

estimate the parameters. While such an extreme assumption is most likely 

inappropriate for this data, some grouping of series and use of shrinkage 
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estimation or Bayesian techniques might prove useful. Another approach to 

pooling information is to consider if a number of the series are essentially 

being driven by some underlying series. Perhaps there exists some aggregated 

series, whose movements account for much of the movement in the 130 series, 

which is some function (possibly linear) of the series under consideration. 

This can be investigated by analogues of standard multivariate analysis 

techniques that are suitable for time series data. 

Another approach related to that mentioned above is to consider using 

other variables to explain the behavior of the household headship rates via 
. 

some sort of model (such as a regression model). The advantages of such an 

approach for forecasting depend heavily on the extent to which the "other 

variables" are either known in advance of the headship rates (leading 

indicators), or can be forecast (more accurately than the headship rates 

directly). This approach has recently been pursued by Tella, Chandrasekar, 

and Reznek (1985), who review considerable additional literature on the 

subject. As noted above, many of the issues considered here will still be 

present, so that a combination of their approach with some of the ideas 

mentioned here may be most fruitful. 
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Table A.1 - Household Series Description 

Age groups: 14-17, 18-19, 20-24, 25-29, 30-34, 35-44, 
45-54, 55-64, 65-74, 75 and above 

Categories: Single (never married) 

Married, spouse present 

Family Households 

Nonfamily Householders 
* 

Secondary Individuals 
(Lodgers, 

employees, etc) 

Group quarters 
(Rooming houses, 

convents, etc.) 

Note: The categories are not exclusive. For example, one may be included in 

Male 
Female 

Male 
Female 

Married male, wife present 
with own household 

Male family householder, 
wife not present 

Female family householder, 
husband not present 

Males 
Females 

Males 
Females 

Malks 
Females 

the proportion of MARRIED MALE WIFE PRESENT WITH OWN HOUSEHOLD and 
MARRIED MALE WIFE PRESENT. 

Data are proportions. The denominator depends on the respective 
category. For example, MARRIED MALE WIFE PRESENT is based on the 
number of men who have been married at any time 

Consult Census Bureau publication 805, series P-25, "Projections of the 
Number. of Households and Families: 1979 to 1995" for more information. 



Table A.2 - Household Series Sample 

. 

Series Name 

SM20 

SM25 

SF18 

SF20 

SF25 

SF30 

MMSPl4 

MMSPl8 

MMSP30 

MMHH18 
* 

MMHH30 

MFSP35 

FFH25 

FFH35 

MP120 

MP125 

~~130 

MP165 

FP120 

FP125 

FP165 

Series Description 

Single males, ages 20-24 

Single males, ages 25-29 

Single females, ages 18-19 

Single females, ages 20-24 

Single females, ages 25-29 

Single females, ages 30-34 

Married males, wife present, ages 14-17 

Married males, wife present, ages 18-19 

Married males, wife present, ages 30-34 

Married males, wife present, with own household, ages 18-19 

Married males, wife present, with own household, ages 30-34 

Married females, .husband present, ages 35-44 

Female family householder, husband not present, ages 25-29 

Female family householder, husband not present, ages 35-44 

Male nonfamily householder, ages 20-24 

Male nonfamily householder, ages 25-29 

Male nonfamily householder, ages 30-34 

Male nonfamily householder, ages 65-74 

Female nonfamily householder, ages 20-24 

Female nonfamily householder, ages 25-29 

Female nonfamily householder, ages 65-74 
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Table B.l 

Series Range What Normal Probability Plots Show rl (VYt) 

SM20 .I 

SM25 .I 

MMSP14 .2 

- MMSP18 .7 

MMspI30 .8 

MMHH18 .6 

MMHH30 .97 

MP120 0 

MP125 .l 

~~130 .l 

MP165 .4 

SF18 .6 

SF20 .25 

.75 

.4 

.9 

.95 

.95 

- 1.0 

- 1.0 

.2 

.5 

.5 

.7 

.9 

.55 

Due to range of data, transformation 
does not matter. A couple outliers. 

Original data seems to have a short 
logistic. One large outlier. 

Not much difference between transfor- 
mations. One very large outlier in 
series produces two large outliers in 
differenced data. Series is very 
volatile and not that important. 

Original data might be best but series 
behaves very badly. Series is not 
that important. 

Difficult to tell - actually arcsin 
looks worst. There appears to be at 
least 3 positive outliers. 

Original data has a short upper tail 
that is well-corrected by the logistic. 

Original data may have a short upper 
tail which the logistic corrects. 

Original data may have a short lower 
tail which arcsin or logistic corrects. 

No apparent short lower tail in the 
original data. Transformation 
doesn’t seem to matter. There are 
some negative outliers. 

Same story as MP125. 

Transformation does not matter. 

Original series seems to have short 
upper tail that logistic seems to 
correct. Complicated by one large 
positive outlier. 

Transformation has little effect. One 
large negative outlier. 

.12 

-.20 

-.45 

-.34 

-.05 

-.14 

-033 

.27 

-.I7 

-.ll 

-.20 

-.14 

-.lO 



Table B.1 (continued) 

Series Range What Normal Probability Plots Show rl (Qt) 

SF25 .I 

SF30 .05 

MFSP 35 .75 

. 
FFH25 .2 

* 

FFH35 .4 

FP120 -05 

FP125 .I 

FP165 .4 

.3 

.I5 

.9 

.4 

.7 

.2 

.3 

.7 

Original data may have a short upper 
and lower tail. Arcsin or logistic 
seems to help some, though logistic 
may produce a longish lower tail. 

Hard to distinguish characteristics 
of lower tail from presence of negative 
outliers. 

Original may have a short upper and 
lower tail. Logistic corrects short 
upper tail , not the short lower tail. 

Original data seems to have a short 
lower tail corrected by logistic. 
One large outlier in series produces 
one large positive and one large nega- 
tive outlier in differenced data. 

Transformation has no effect. No ap- 
parent outliers - good plots. 

Original data look best. Transformed 
data looks OK but one slight negative 
outlier in original is elongated by 
logistic. 

Original seems to have short upper and 
lower tail corrected by logistic. 

Transformation has no effect. Two 
negative and one positive outlier. 
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-.38 
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-.37 

-.I5 

-.29 



Figure 6.1 LOGISTIC AND ARCSIN TRANSFORMATIOt~S 
* 
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. . . . . . No transformation 
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Note: The arcsin and no transformation are linearly 
resealed to have the same value and slope at 
Pt = .5 as the logistic transformation. 
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Table C.l 

Parameter Estimates Looked at in Comparing Robust versus Least Squares Regression 

Series 

SM20 0.04 0.019 -0.12 .038 -0.11 .038 -0.10 .037 
SM25 -2.17 .064 -1.76 .043 -1.64 ,036 -1.61 .034 
MMSPl4 0.35 -.046 0.60 -.060 0.79 -.070 0.90 -.076 
MMSP18 2.36 -.026 2.38 -.031 2.42 -.036 2.43 -.038 
MMSP30 3.24 -.064 3.13 -.058 3.08 -.055 3.07 -.054 
MMHH18 0.96 .033 1.11 ,020 1.15 .018 1.18 .017 
MMHH30 3.72 .052 3.82 .040 3.94 .026 3.99 .023 
MP120 -3.39 .094 -3.38 .090 -3.35 .086 -3.27 .078 
MP125 -1.99 .082 -2.02 ,082 -1 .95 .073 -1.94 .071 
~P130 -1.66 .071 -1.66 .072 -1.62 .068 -1.61 .o69 
MP165 -0.14 ,029 -0.11 .030 -0.11 ,032 -0.10 .033 
SF18 0.70 .043 0.70 ,041 0.70 ,041 0.70 .041 
SF20 -1.32 .060 -1 .I0 .049 -1 .lO .049 -1 .I0 .049 
SF25 -2.88 .069 -2.62 .055 -2.57 .052 -2.56 .051 
SF30 -3.34 .053 -3.28 ,049 -2.97 .032 -2.95 .031 
MFSP35 2.10 -.032 2.21 -.032 2.12 -.032 2.12 -.031 
FFH25 -0.68 -.006 -0.81 .002 -0.86 .005 -0.89 .007 

FFH35 -0.29 .047 -0.21 .037 -0.18 0033 -0.17 .032 
FP120 -2.66 .049 -2.62 ,044 -2.59 .040 -2.58 .039 
FPI25 -2.27 ,069 -2.17 .061 -2.13 .056 -2.12 .054 
FP165 -0.22 .052 -0.18 .047 -0.16 .046 -0.15 ,045 

aO 

c=2 c=4 C=6 
Robust Robust Robust 

al aO aO 

Least Squares 

al aO al 

- 
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Figure D.4 
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Note: Above ranks are for the 13 series that included the (0,2,2) model 

Ranks 

Model 1 2 2 4 

AR010 5 1 0 2 

AROIOC 2 4 2 0 

AR210C 0 1 5 2 

AR410C 1 2 1 4 

Note: Above ranks are for the 8 series for which we could not 
estimate the (0,2,2) model 
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Fiaure E.2 
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Figure F.i SERIES WI20 
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Figure G.l 
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Figure G.2 
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Figure G.3 
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Figure H.l 
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Figure H.2 
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Figure H.3 a 

1995 

Series Total < 25 25-34 

TCR high(4) 103,235 5,710 21,428 41,063 35,034 
TCR avg (4) 101,041 5,474 20,785 40,385 34,397 
TCR low (4) 98,848 5,238 20,142 39,707 33,761 

MA021 (130) 102,785 4,492 20,470 
middle level (130) 100,308 4,316 19,927 
1985 constant (130) 98,180 4,264 19,559 

c 

MAO21 (4) 100,249 4,122 19,373 
II 

Figure H.3 b 

2000 

Series Total < 25 25-34 

TCR high (4) 110,689 6,379 19,996 45,923 38,391 
TCR avg (4) 107,262 5,998 19,116 44,794 37,354 
TCR low (4) 103,835 5,616 18,237 43,665 36,317 

MA021 (130) 110,217 4,882 18,924 49,511 36,900 
middle level (130) 105,933 4,442 18,004 46,942 36,555 
1985 constant (130) 102,440 4,299 17,455 44,703 35,983 

MA021 (4) 105,497 4,103 17,412 47,290 36,691 

35-54 55 + 

43,410 34,413 
41,951 34,115 
40,628 33,730 

42,143 34,611 

35-54 55 + 


