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Consider the following two models for a monthly time series zt: 

12 
Model I : zt = 1 ai Mit + ut 

1 

Model II: (14P)z t = Wt = (l-d2)ut 

(We use monthly time series for concreteness. All that follows applies im- 

mediately to time series with other seasonal periods.) B is the backshift 

operator (Bjzt = Zt-j); al,...,alp and 0 are parameters; and the monthly 

indicator variables, Mit, are defined by 

* 
1 t h Jan. 

M1t = 
0 otherwise 

. 

. 

. 

1 t-Dec. 

M12,t = 
0 otherwise . 

If E(ut) = 0, then under Model I a1 = E(zt) when time point t is a January, 

a7 ,_ = E(zt) when time point t is a February, etc., so that al,...,alT are 

then the monthly means. We actually do not need any assumptions about ut for 

what follows other than later assuming it has continuous probability distribu- 

tions. Still the most common application of our result would be to the case 

where ut follows an ARIMA (autoregressive-integrated-moving average) model. 

We could have replaced ut in Model II by another time series vt, as long as it 

was assumed that ut and vt have the same probability structure. 

Our result states that Model I and Model II can be regarded as equivalent 

when 0 = 1. By this we mean that the joint probability distribution of any set 



2 

of zt's is the same under both models. For convenience, we may demonstrate 

this for the set (zI,...,zn) = f . The set of time points l,...,n might cor- 

respond to times at which zt is observed, or to some observed and some fu- 

ture times, for example. 

At first the equivalence result may appear obvious since applying (l-512) 

to Model I yields 

(1-Rl2)z t = (1412)u t 

(since (I-B~~)M it = 0) and this is Model II with 0 = 1. However, Model I ap- 

plies to all t=l ,...,n whereas Model II, as specified, applies only to 

t=13 ,...,n and does not say anything about zI,...,zIz. A little further 

thought makes it clear that equivalence of the two models also requires that 

z1 ,...,zIz have the same distribution (joint with all other random variables 

involved) under both models. This means that for Model II we must have 

Zt = at + ut t=l,..., 12 (we shall hereafter assume t=l is a January). This 

leads us to our result. 

Theorem: Models I and II given above are equivalent if and only if in 

12 
Model 11 we have (i) 0 = 1, and (ii) zt = CaiMit + ut t=l,...,lZ. 

1 

Proof: The argument above amounts to proving that Model I implies Model II 

12 
with 0 = 1 and zt = CaiMit + ut t=l,...,lZ . To prove the reverse im- 

1 
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plication, and to gain further insight into the relationships between the 

models, we solve the difference equation given by Model II for any 0. Let- 

ting t = i+lZk for i=l,..., 12 and k ) 0 we easily see that 

I( 
Zi+12k = zi + L wi+12j k>l 

j=l 

= Zi + ~ (1-0B1')ui+12j 
j=l 

k 
= Zi + 1 CUi+l2j - QUi+lZ(j-111 

j=l 

k-l 
= Zi + ui+12k + (1-O) 1 Ui+lzj - @Ui l 

j=l 

If 0 = 1 this reduces to 

Zi+lZk = zi + ui t12k - u-i k>O 

NOW using the condition Zi = ai + Ui i=l,...,lZ we get 

Zi+I2K = ai + uitl2k 

which is Model I, thus proving the theorem. QED 

(1) 

(2) 

(3) 

To see the necessity of conditions (i) and (ii) of the theorem for 

Model II notice the following: 



4 

(a) If ~1 then Models I and II are not equivalent since (1) above 

will not reduce to (2) - zt will depend not just on ut, but also 

on ut-12, ut-24 ,... 

(b) If condition (i) of the theorem holds but not (ii), then (2) above 

will not reduce to (3) and Models I and II are not equivalent. In 

this case Models I and II say something different about the start- 

ing values zl,...,zl2, though having the same implications for 

wt = (l-B12)zt, t=13 ,..., n. 

Vote: Applying l-612 to Model I and setting 0 = 1 in Model II leads to the 

same difference equation: 

(l-R12)zt = u t - q-12 l (4) 

The general solution to (4) is the sum of any particular solution and a solu- 

tion to the homogeneous equation 

(l-Bl'), t=O. (5) 

As (4) is a twelfth order equation a particular solution is determined by 

specifying zt for twelve values of t. The particular solution given by 

Model I is determined by the conditions Zi = ai + Ui i=l,...,lZ. With- 

out initial conditions the solution under Model II with 0 = 1 (say zE’) 

can differ from that under Model I (say zi) by any solution to (5), 
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E~ir~it. 12 
which can be written pt = 

1 
In symbols Z{’ = Z: + CBiMit . 

1 

Condition (ii) requires 81 = . . . = B12 = 0; without it or other initial con- 

ditions, Model II leaves the Bi unspecified. For example, under Model II 

WF1 Could set Bi = -(ai+ui) SO that Zl = . . . = ~17 = 0. 

To further examine the implications of the models we consider the joint 

probability density for z = (~1 ,...,z,,) under the two models. Let p(*) de- 

not2 the joint density for any given set of random variables, that is, the 

appropriate density for the given arguments, which can vary, but which will 

z1- 1 
. 0 . 
. . . . 

42 6 : : ;, 1 

W13 -1 0 . . 0 1 
= 

. . . 

. . 

. 

. . 

. . 

wn -1 

always be specified. Since the transformation 

. 

. . 

. . 
. . 

0 . . 0 1 

has unit Jacobian we have 

X 

Zl’ 
. 
. 

42 
213 

. 

. 
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Under Model I w t = (lqp >ut, and under Model II w t = (l-oB1’)u t so that 

P(wI3,***9 w,,) in (6) is the same under Models I and II if and only if 0 = 1. 

Under Model I 

We use pz ('1 and P,# ) in (7 ') to emphasize when we mean the density of the 

zt's and when we mean that of the ut's. Condition (ii) that 

12 
Zt = CaiMit + Ut t=1 ,...,I2 is the same as saying that (7) holds. So 

1 

under Model II, 0 = 1 and condition (ii) imply that both terms on the right 

hand side of (7) are the same as under Yodel I, and hence that p(z) is the 

same under both models - the models are equivalent. 

Comments 

Questions about the equivalence of Models I and II arise most often in 

practice when a model of the form of Model II (say with ut following an ARIMA 

model) has been fitted and the estimate of 0, which by invertibility must lie 

in C-1,1], is either the boundary value of 1 or close enough to it to make the 

model with 0 = 1 seem reasonable. Cancelling l-B12 from both sides of Model II 

leads to Model I, or rather it does if condition (ii) of the theorem holds 
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(equivalently, (7) holds). Thus, one would consider using Model I, although 

there might he some question about (7) holding. It is our opinion that this 

should not be a concern, and that in practice when 0 = 1 Models I and II should 

be regarded as equivalent. There are two reasons for this. 

The first reason is that we see no justification for making different 

assumptions about p(zI,...,zI2)wI3,..., Wn) under Models I and I I when 0 = 1. 

The assumptions typically made in practice are made really for convenience: 

under Model I (7) is assumed (so the model holds for all t), while under 

Mods1 II one works only with the differenced data wl3,...,wn, which is the 

same as setting p(zl,...,zI21wI3,...,wn) = 1 in (6), or assuming that zI,...,zl2 

are degenerate random variables, or analyzing the data conditional on zI,...,zI2. 

In fact, if under Model II with 0 = 1 we make assumptions about 

P(Zl ,aee,z12)w13 ,...,Wn) that do not correspond to Zi = ai + Ui, i=l,...,lZ, 

there is no reason we cannot use Model I by redefining it to hold only for 

t 2 13, and then making the same assumptions about p(zl,...,zI21w13,...,wn) that 

we were making under Model II. Most assumptions we would make about 

P(Zl ,***sq&q39***, wn) cannot be checked from the data anyway. Thus an argument 

that when 0 = 1 Models I and II should be distinguished by assumptions about 

P(Zl 9-*Jldq3 ,.**,Yn) seems unconvincing. 

The other reason for assuming that Models I and II are equivalent when 

0 = 1 is that any reasonable assumptions about zI,...,zlz, as expressed in 

P(ZI ,D**,Z12lW13,***,Wn), will have no effect asymptotically, and thus should 

make little difference in practice. To see why, notice from (6) that the 

log-likelihood function, R, is 
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2 = in P(z) = En P(Wlj,***,Wn) + Rn P(Zl,...,Z121W13,...,Wn) 

= i P+n PbJqbl3 9--*,Wt-l) + Rn P(Zl,...,Z12lW13,...,Wn). 
t=13 

Assuming p(wtlwl3 ,...,wt-I) and p(zI,...,zI21wl3,...,wt) exhibit some sort 

of stable behavior as t grows large, we see the behavior of 

0-l 1 = n-l F 2r-l P(wtlq3,***,“t-~) + 
* t=13 

n-l Rn p(zI 9’...Z&q3,...,Wn) 

will be governed by the behavior of the first term, since the second term 

will approach zero. Analogous analyses could be given for other manipula- 

tions involving the likelihood function. 

The equivalence of Model I and Model II with 0 = 1 means that computations 

done (correctly) with either model will yield the same results. However, the 

effort required may not be the same: computations are typically much easier 

under Model I than under Model II. To take the simplest case, if ut is white 

noise Model I is a simple linear regression model whereas Model II with 0 = 1 

is a noninvertible ARIMA model. For the latter, computations such as evalua- 

tion of the likelihood function (Ljung and Box 1979, Hillmer and Tiao 1979) or 

computing of forecasts (Harvey 1981) are somewhat difficult. 

It should be kept in mind that Model II is more general than Model I, 

because Model I imposes the constraint 0 = 1. This constraint may affect iden- 
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tification and estimation of models involving the stochastic structure of ut, 

so that Models I and II (with 0 not constrained to be 1) may lead to overall 

models of different form. 
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