BUREAU OF THE CENSUS

STATISTICAL RESEARCH DIVISION REPORT SERIES

SRD Research Report Number: CENSUS/SRD/RR-84/28

ANALYSIS OF CONCURRENT SEASONAL ADJUSTMENT FOR RETAIL AND WHOLESALE SERIES

by

Michael Z. Shimberg
Business Division
Bureau of the Census
Room 2616, F.O.B. #3
Washington, D.C. 20233

(301)763-7515

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Recommended by:

Nash J. Monsour

Report completed:

August 10, 1984

Report issued:

August 20, 1984

Analysis of Concurrent Seasonal Adjustment for Retail and Wholesale Series

Ву

Michael Z. Shimberg 1/ U.S. Bureau of the Census

I. Introduction and Summary

This paper compares the present method of seasonal adjustment to different methods of concurrent seasonal adjustment for various retail and wholesale sales and inventory series. Various measures were used to determine which method of concurrent adjustment was the best and whether the best concurrent adjustment method was better than the present method of seasonal adjustment. The time span of this study was from October 1977 through December 1979, inclusive.

For the present method, the X-ll seasonal adjustment program was executed twice a year and the last observation was the June or December unadjusted final estimate. The projected seasonal factors 2/computed from these executions of the X-ll program were used to adjust advance, preliminary, and final estimates as they became available.

For concurrent adjustment, the X-ll program was executed each month included in the time span of this study. The last estimate input to the X-ll program was dependent upon the type of series and method of concurrent adjustment. Therefore, the last estimate input to the

^{1/} The author is a mathematical statistician who works in Business Division at the Bureau of the Census. The views expressed in this paper are those of the author and do not represent official Census Bureau Policy.

^{2/} In this paper, the term seasonal factor is defined as the product of the seasonal, trading day, and holiday factors.

X-ll program was either a final, preliminary, or advance estimate. If the advance estimate was the last observation, the observation one month prior to this estimate was a preliminary estimate. All observations prior to the preliminary estimate were final estimates.

With the exception of retail sales series with advance estimates, the following three methods of concurrent adjustment were evaluated:

- 1. Only the last estimate (preliminary or final) was adjusted.
- 2. The last two estimates were adjusted.
- 3. The last two estimates and the estimate one year prior to the last estimate were adjusted. For this method, various current month-to-previous month and current year-to-previous year adjusted trends were derived from adjusted estimates which were computed by using seasonal factors generated from the same execution of the X-11 program.

For retail sales series with advance estimates, five methods of concurrent adjustment were evaluated. For the first three methods, the last observation input to the X-ll program was the preliminary estimate.

- The last observation, or preliminary estimate, was adjusted and the one month ahead seasonal factor was used to adjust the advance estimate.
- 2. The last two observations (preliminary and final estimates) were adjusted and the one month ahead seasonal factor was used to adjust the advance estimate.

3. Same as method 2, except that the estimates one year prior to the preliminary and advance estimates were also adjusted.

For methods 4 and 5, each time the X-11 program was executed, the last observation input to the program was an advance estimate.

- 4. The advance estimate was adjusted by the seasonal factor computed for the month with the advance estimate. However, the preliminary and final estimates and the estimates one year prior to the advance and preliminary estimates were adjusted by the seasonal factors computed from the X-11 execution for which the preliminary estimate was the last observation. Therefore, this method was equivalent to the third method, except for the computation of the adjusted advance estimate. With this method, adjusted preliminary and final estimates were not dependent upon the advance estimate.
- 5. The last three observations; or advance, preliminary, and final estimates; and the estimates one year prior to the advance and preliminary estimates were adjusted.

For all methods of concurrent adjustment and the present method of seasonal adjustment, various measures were computed that compared advance, preliminary, and final adjusted estimates and various month-to-month and year-to-year adjusted trends to "ideal" final adjusted estimates and trends. The X-11 program used all final estimates for the period January 1967 through December 1982 to compute seasonal factors which were used to derive "ideal" final adjusted estimates and trends for the time span of this study.

By using the advance and preliminary adjusted estimates in the comparisons instead of all final estimates, this study provides a realistic analysis of concurrent adjustment. These adjusted estimates and the month-to-month and year-to-year adjusted trends, derived from these estimates, are given the most attention by the users of these data.

For all series, excluding the retail series with advance estimates, method 3 was the best according to the various measures used in this study. For the retail sales series with advance estimates, method 5 had the best results for the various measures. Both these methods of concurrent adjustment were better than the present method of using projected factors. These results were expected as the adjusted estimates used in the various measures were derived from the seasonal factors computed from the same X-11 execution which used all available estimates.

If these methods of concurrent adjustment are implemented, final adjusted estimates will be computed from different X-11 executions. Therefore, it is possible that some trends, derived from these adjusted estimates, can be worse than the trends that would be computed if the present method of seasonal adjustment was used. Research will be implemented to study the magnitude of this problem.

Until research of this problem is completed, the present method of seasonal adjustment will continue to be used for all retail and wholesale sales and inventory series.

Section II of this paper describes the data and the design of the study. Section III shows the various measures used for determining the best method of concurrent adjustment and whether the best concurrent method is better than the present method of seasonal adjustment. Section IV discusses the results, and Section V describes the conclusions and recommendations.

II. Description of the Data and Design of the Study

All of the kinds-of-businesses (KB's) that had inventory and/or sales estimates evaluated were included under one classification. For each classification used in this study, the following shows the classification along with the estimates that were computed for each month during the time span of this study:

Classification

- 1. Retail Sales--Category 1
- Retail Sales—Category 2
 Retail Sales—Category 3
- 4. Retail Inventory
- 5. Wholesale Sales
- 6. Wholesale Inventory

Estimates

Advance, Preliminary and Final Preliminary and Final Advance, Preliminary and Final Final 3/
Preliminary and Final Preliminary and Final

Attachment 1 shows and describes the KB's that were used in this study for each classification.

3/ For KB's classified under retail inventory, a preliminary estimate for a particular month is released one month prior to the final estimate. However, the same ratio estimation procedure is used for both estimates. The only difference between the two estimates is that the final estimate is derived from more respondents. For a particular month, the advance estimate is released approximately 10 to 15 days after the last day of the respective month. The preliminary estimate is released approximately 40 to 45 days after the last day of the respective month, and the initial final estimate is released approximately 70 to 75 days after the last day of the respective month. The final estimate that replaces the preliminary estimate will be referenced as the initial final estimate throughout the remainder of this study. Also, the advance estimate is derived from a smaller sample than the sample used to compute preliminary and final estimates.

The KB's that were classified under Retail Sales—Category 1 obtained their advance, preliminary, and final adjusted estimates directly by dividing the undjusted estimates by their respective seasonal factors. The KB's classified under Retail Sales—Category 3 had their adjusted preliminary and final estimates computed by summing the adjusted preliminary and final estimates across all component KB's (classified under Retail Sales—Category 2) that component KB's (classified under Retail Sales—Category 2) that comprise the respective KB. Also, their adjusted advance estimates were computed directly.

The final unadjusted estimates used in this study were derived by benchmarking unadjusted estimates to the 1977 Census of Retail and Wholesale Trade and the 1978 through 1980 annual estimates obtained from annual surveys of Retail and Wholesale Trade. Advance and preliminary unadjusted estimates were derived in a manner that maintained the same advance to preliminary and preliminary to final unadjusted trends originally published. The formulas used to derive advance and preliminary estimates are shown in Attachment 2.

The "ideal" seasonal factors were derived by using final unadjusted estimates for the period January 1967 4/through December 1982 as input to the X-11 program. A seasonal factor is considered "ideal" for a particular month when there are at least three years of data prior to and following the respective month and the filter used for the month is no longer than the seven-term filter, or the "3 x 5 moving average filter". The "ideal" final adjusted estimates were derived by dividing the final unadjusted estimates by their respective "ideal" seasonal factors. However, KB's classified under Retail Sales—Category 3 obtained their "ideal" final adjusted estimates by summing the "ideal" final adjusted estimates across all component KB's that comprise the respective KB. The estimates and trends, computed from these "ideal" adjusted estimates, were compared to the adjusted estimates and trends computed for the present method of seasonal adjustment and the various methods of concurrent adjustment.

A. Present Method (Method A)

The X-11 program was executed twice a year and the June and

December final unadjusted estimates were the last observations.

Projected seasonal factors were used to adjust advance, preliminary,
and final unadjusted estimates as they became available.

^{4/} All of the executions of the X-ll program used the January 1967 final unadjusted estimate as the first observation input into the X-ll program.

When the X-11 program was executed with the December final unadjusted estimate as the last observation, the last seven full years of data were used for deriving trading day factors 5/ and shorter moving average filters were selected for each month, when appropriate. The option to derive holiday factors for the months affected by Easter, Labor Day, and Thanksgiving were used for the following KB's classified under one of the categories in retail: 531100, 541100, 554100, 580000, 591200, 560000, 561100, 560001, 566100, and 560002. Projected seasonal factors were used to derive advance adjusted estimates for the months February through August of the following year and to derive preliminary and final adjusted estimates for the months January through August of the following year. Also, the seasonal factors generated for all the months in the year containing the December final estimate were used to derive revised final adjusted estimates for the months January through November and the initial final adjusted estimate for the month of December. These adjusted estimates were compared to the advance, preliminary, and final adjusted estimates that were computed in the following year. Because the December final estimate was computed after the January advance estimate of the following year became available, the January adjusted final estimate one year prior to the January adjusted advance estimate was not revised.

^{5/} Trading day factors were not derived for any KB's classified under retail and wholesale inventory.

When the X-11 program was executed with the June final unadjusted estimate as the last observation, the same trading day and holiday options used for the previous December execution were repeated. Also, shorter moving average filters were selected for each month, when appropriate. Projected factors were used to derive advance adjusted estimates for the months September through December of the current year and January of the following year, to derive preliminary adjusted estimates for the months September through December of the current year, and to derive final adjusted estimates for the months September through November of the current year.

For this method, the following should be noted:

- For each month used in this study; advance, preliminary, and final adjusted estimates were derived from the same seasonal factor.
- 2. For most months; the adjusted estimates, used to calculate current-to-previous month adjusted trends, were derived by using seasonal factors computed from the same X-11 execution.
- 3. For the months January through August, almost all of the adjusted estimates, used to calculate current-to-previous year adjusted trends, were derived by using seasonal factors computed from the same X-ll execution.

For each month in 1979, the following table shows the month with the last unadjusted final estimate that was input to the X-11 program to derive the seasonal factors used to adjust various current and previous year estimates. This table is also repeated for each method of concurrent adjustment.

	Curre	nt Year Estimat	tes	Previous Year Estimates Compared to 1979 Estimates		
Month in 1979	Advance	Preliminary	Final	Advance	Preliminary	Final
Jan. Feb. Mar. April May June July	June 1978 Dec. 1978	Dec. 1978	Dec. 1978	Dec. 1977 Dec. 1978	Dec. 1978	Dec. 1978
Aug. Sept. Oct. Nov. Dec.	June 1979 "	June 1979 "	June 1979 W Dec. 1979	16 91 11	11 11 11	11 61 16 16

The following shows the classifications for which each of the estimates, or columns headings, in the preceding display were computed:

Classifications for Which Estimates Were Computed Estimates

Retail sales—categories 1 and 3 Advance

Retail sales—all categories and Wholesale sales *Preliminary

and inventory

Retail sales—all categories, Retail inventory, *Final

and Wholesale sales and inventory

Retail sales—categories 1 and 3 *Previous Year

Estimate Compared to 1979 Advance

Retail sales—all categories and Wholesale sales *Previous Year

and inventory Estimate Compared to 1979 Preliminary

Previous Year Estimate Compared

to 1979 Final

Retail inventory

B. Concurrent Seasonal Adjustment (Methods Bl, B2, B3, B4, and B5)

1. Methods Bl, B2 and B3

For the period September 1977 through January 1980, the X-11 program was executed each month and the last observation was the preliminary estimate for all KB's classified under Retail Sales-all categories and Wholesale Sales and Inventory. For the KB's classified under Retail Inventory, the last observation was the final estimate. The January through June concurrent executions of the X-11 program for a given year used the same trading-day, holiday, and moving average options that were used when the December final unadjusted estimate of the previous year was the last observation under Method A. The July through

^{*}For KB's classified under Retail Sales—Category 3, adjusted estimates were derived by aggregation; while the adjusted estimates for KB's in all other categories were obtained directly.

December concurrent executions of the X-11 program for a given year used the same options that were used when the June final unadjusted estimate of the given year was the last observation under Method A.

a. Method Bl

This method duplicated the method of concurrent adjustment that was implemented for other studies done at the Census Bureau.

(1) Retail Sales—All Categories and Wholesale Sales and Inventory

The seasonal factor computed for the last observation, or the month with the preliminary unadjusted estimate, was used to obtain the adjusted preliminary estimate and the projected seasonal factor for the following month was used to compute the adjusted advance estimate. The previous month initial final adjusted estimate was derived by dividing the unadjusted estimate by the seasonal factor that was computed for its preliminary estimate. When the January preliminary unadjusted estimate was the last observation input into the X-ll program, the seasonal factors computed for all months in the prior year were used to derive revised final adjusted estimates. These revised final adjusted estimates were compared to advance and preliminary adjusted estimates of the following year. Because

the January preliminary estimate was computed after the January advance estimate, the January final adjusted estimate one year prior to the January advance estimate was not revised.

For this method, the following should be noted:

- For each month used in this study, the preliminary and initial final adjusted estimates were derived from the same seasonal factor.
- 2. The adjusted estimates, used to calculate the current month advance to previous month preliminary trends, were derived by using seasonal factors computed from the same X-11 execution. However, the adjusted advance estimates were derived by using one month ahead projected factors.

For each month in 1979, the following table shows the month with the last unadjusted preliminary estimate that was input to the X-11 program to derive the seasonal factors used to adjust various current and previous year estimates.

	Currer	nt Year Estimate	se .		Year Estimates to 1979 Estimates
Manth	Culler	ic rear bachine		COMPATED	to 1979 Estimates
Month in 1979	Advance	Preliminary	Final	Advance	Preliminary
Jan.	Dec. 1978	Jan. 1979	Jan. 1979	Jan. 1978	Jan. 1979
Feb.	Jan. 1979	Feb. 1979	Feb. 1979	Jan. 1979	n
Mar.	Feb. 1979	Mar. 1979	Mar. 1979	H	Ħ
April	Mar. 1979	Apr. 1979	Apr. 1979	11	Ħ
May	Apr. 1979	May 1979	May 1979	10	n
June	May 1979	Jun. 1979	Jun. 1979	tr	H
July	Jun. 1979	Jul. 1979	Jul. 1979	Ħ	11
Aug.	Jul. 1979	Aug. 1979	Aug. 1979	11	11
Sept.	Aug. 1979	Sept. 1979	Sept. 1979	Ħ	н
Oct.	Sept. 1979	Oct. 1979	Oct. 1979	H	11
Nov.	Oct. 1979	Nov. 1979	Nov. 1979	10	w
Dec.	Nov. 1979	Dec. 1979	Dec. 1979	81	tt

(2) Retail Inventory

The seasonal factor computed for the last observation was used to obtain the final adjusted estimate. When the December final unadjusted estimate was the last observation input into the X-ll program, the seasonal factors computed for all months in the year with the December estimate were used to derive revised final adjusted estimates. These revised final adjusted estimates were compared to final adjusted estimates of the following year.

For each month in 1979, the following table shows the month with the last unadjusted final estimate that was input to the X-ll program to derive the seasonal factors used to adjust various current and previous year estimates.

Month in 1979	Final (Last Observation)	Previous Month Final	Previous Year Estimate Compared to 1979 Final
Jan.	Jan. 1979	Jan. 1979	Dec. 1978
Feb.	Feb. 1979	Feb. 1979	11
Mar.	Mar. 1979	Mar. 1979	11
April	Apr. 1979	Apr. 1979	**
May	May 1979	May 1979	и
June	Jun. 1979	Jun. 1979	11
July	Jul. 1979	Jul. 1979	11
Aug.	Aug. 1979	Aug. 1979	11
Sept.	Sept. 1979	Sept. 1979	H
Oct.	Oct. 1979	Oct. 1979	11
Nov.	Nov. 1979	Nov. 1979	n
Dec.	Dec. 1979	Dec. 1979	11

b. Method B2

(1) Retail Sales—All Categories and Wholesale Sales and Inventory

The only difference from Method Bl was the computation of the initial final adjusted estimates. For each execution of the X-ll program, the seasonal factor computed for the month prior to the last observation, or the preliminary estimate, was used to obtain the initial final adjusted estimate.

For this method, the adjusted estimates, used to calculate the current month advance to previous month preliminary trends and the current month preliminary to previous month final trends, were derived by using seasonal factors computed for the same X-11 execution. Also, the calculation of the seasonal factor computed for the initial final estimate took into account the initial final estimate, or the revision of the preliminary estimate, and the following month's preliminary estimate.

This method would be the easiest to implement because seasonal factors are only used to adjust initial and revised estimates.

For each month in 1979, the following table shows the month with the last unadjusted preliminary estimate that was input to the X-ll program to derive the seasonal factors used to adjust various current and previous year estimates.

Current Year Estimates				Previous Year Estimates Compared to 1979 Estimates		
Month in 1979	Advance	Preliminary	Final*	Advance	Preliminary	
Jan.	Dec. 1978	Jan. 1979	Feb. 1979	Feb. 1978**	Jan. 1979	
Feb.	Jan. 1979	Feb. 1979	Mar. 1979	Jan. 1979	11	
Mar.	Feb. 1979	Mar. 1979	Apr. 1979	99	H	
April	Mar. 1979	Apr. 1979	May 1979	n	11	
May	Apr. 1979	May 1979	Jun. 1979	10	#	
June	May 1979	Jun. 1979	Jul. 1979	•	H	
July	Jun. 1979	Jul. 1979	Aug. 1979	¥	Ħ	
Aug.	Jul. 1979	Aug. 1979	Sept. 1979	11	H	
Sept.	Aug. 1979	Sept. 1979	Oct. 1979	¥F	11	
Oct.	Sept. 1979	Oct. 1979	Nov. 1979	•	н	
Nov.	Oct. 1979	Nov. 1979	Dec. 1979	u	H	
Dec.	Nov. 1979	Dec. 1979	Jan. 1980	. •	11	

^{*}All periods under this column are different from the periods that were displayed for method Bl.

^{**}This period is different from the period that was displayed for method Bl.

(2) Retail Inventory

The only difference from method Bl was the computation of the previous month final adjusted estimates. For each execution of the X-ll program, the seasonal factor computed for the last two observations were used to adjust the estimates of these observations.

For this method, the adjusted estimates, used to calculate the current month to previous month trends, were derived by using seasonal factors computed from the same X-11 execution. Also, the calculation of the seasonal factor, computed for the previous month's estimate, took into account the following month's estimate.

For each month in 1979, the following table shows the month with the last unadjusted final estimate that was input to the X-11 program to derive the seasonal factors used to adjust various current and previous year estimates.

Current Year Estimates

Month in 1979	Final (Last Observation)	Previous Month to Final*	Previous Year Estimate Compared to 1979 Final
Jan.	Jan. 1979	Feb. 1979	Dec. 1978
Feb.	Feb. 1979	Mar. 1979	₩
Mar.	Mar. 1979	Apr. 1979	#
April	Apr. 1979	May. 1979	•
May	May 1979	Jun. 1979	•
June	Jun. 1979	Jul. 1979	•
July	Jul. 1979	Aug. 1979	•
Aug.	Aug. 1979	Sept. 1979	•
Sept.	Sept. 1979	Oct. 1979	Ħ
Oct.	Oct. 1979	Nov. 1979	H
Nov.	Nov. 1979	Dec. 1979	*
Dec.	Dec. 1979	Jan. 1980	H

^{*}All periods under this column are different from the periods that were displayed for method Bl.

c. Method B3

(1) Retail Sales—All Categories and Wholesale Sales and Inventory

The only difference from method B2 was the computation of the previous year adjusted final estimates that were compared to the adjusted preliminary and advance estimates of the following year. For each execution of the X-11 program, the seasonal factor one year prior to the last observation was used to derive a revised final adjusted estimate that was compared to the adjusted preliminary estimate. Also, the seasonal factor one year prior to the month following the last observation, or the month with the advance estimate, was used to derive a revised final adjusted estimate.

This method was equivalent to method B2 for deriving seasonal factors for computing advance, preliminary, and initial final adjusted estimates.

For this method the adjusted estimates, used to calculate various current month to previous month and current year to previous year trends, were derived by using seasonal factors computed from the same X-11 execution. However, the adjusted advance estimates used to compute month-to-month and year-to-year trends, were derived by using one month ahead projected factors. Also, the calculation of the seasonal factors that were computed for estimates one year prior to the advance and preliminary estimates took

into account the initial final and preliminary estimates of the following year.

For each month in 1979, the following table shows the month with the unadjusted preliminary estimate that was input to the X-11 program to derive the seasonal factors used to adjust various current and previous year estimates.

	Curre	ent Year Estimat	Previous Year Estimates Compared to 1979 Estimates		
Month in 1979	Advance	Preliminary	Final	Advance*	Preliminary*
Jan.	Dec. 1978	Jan. 1979	Feb. 1979	Dec. 1978	Jan. 1979
Feb.	Jan. 1979	Feb. 1979	Mar. 1979	Jan. 1979	Feb. 1979
Mar.	Feb. 1979	Mar. 1979	Apr. 1979	Feb. 1979	Mar. 1979
April	Mar. 1979	Apr. 1979	May 1979	Mar. 1979	Apr. 1979
May	Apr. 1979	May 1979	Jun. 1979	Apr. 1979	May 1979
June	May 1979	Jun. 1979	Jul. 1979	May 1979	Jun. 1979
July	Jun. 1979	Jul. 1979	Aug. 1979	Jun. 1979	Jul. 1979
Aug.	Jul. 1979	Aug. 1979	Sept. 1979	Jul. 1979	Aug. 1979
Sept.	Aug. 1979	Sept. 1979	Oct. 1979	Aug. 1979	Sept. 1979
Oct.	Sept. 1979	Oct. 1979	Nov. 1979	Sept. 1979	Oct. 1979
Nov.	Oct. 1979	Nov. 1979	Dec. 1979	Oct. 1979	Nov. 1979
Dec.	Nov. 1979	Dec. 1979	Jan. 1980	Nov. 1979	Dec. 1979

^{*}All periods under this column are different from the periods that were displayed for method B2.

(2) Retail Inventory

The only difference from method B2 was the computation of the previous year adjusted estimates that were compared to the adjusted final estimates of the following year. For each execution of the X-ll program, the seasonal factor one year prior to the last unadjusted final estimate was used to derive the revised final adjusted estimate.

For this method, the adjusted estimates, used to calculate current month to previous month and current year to previous year trends, were derived by using seasonal factors from the same X-11 execution. Also, the computation of the seasonal factor calculated for the estimate one year prior to the final estimate took into account the final estimate of the following year.

For each month in 1979, the following table shows the month of the last unadjusted final estimate that was input to the X-11 program to derive the seasonal factors used to adjust various current and previous year estimates.

Month in 1979	Final (Last Observation)	Previous Month to Final	Previous Year Estimate Compared to 1979 Final*
Jan.	Jan. 1979	Feb. 1979	Jan. 1979 Feb. 1979
Feb.	Feb. 1979	Mar. 1979	Mar. 1979
Mar.	Mar. 1979	Apr. 1979	
April	Apr. 1979	May. 1979	Apr. 1979
May	May 1979	Jun. 1979	May 1979
June	Jun. 1979	Jul. 1979	Jun. 1979
	Jul. 1979	Aug. 1979	Jul. 1979
July Aug.	Aug. 1979	Sept. 1979	Aug. 1979
Sept.	Sept. 1979	Oct. 1979	Sept. 1979
Oct.	Oct. 1979	Nov. 1979	Oct. 1979
Nov.	Nov. 1979	Dec. 1979	Nov. 1979
Dec.	Dec. 1979	Jan. 1980	Dec. 1979

^{*}All periods under this column are different from the periods that were displayed for method B2.

2. Methods B4 and B5

Methods B1, B2, and B3 used projected factors to compute adjusted advance estimates. Because advance estimates are released almost as soon as they become available, using projected factors would be the most expedient way to derive adjusted advance estimates.

Methods B4 and B5 used the concurrent factor that was computed for the advance estimate instead of the projected factor to derive adjusted advance estimates. These methods are only applied to the KB's classified under Retail Sales—Categories 1 and 3.

For the period October 1977 through February 1980, the X-ll program was executed each month and the last observation, or unadjusted estimate, was the advance estimate. The February through July concurrent executions of the X-ll program for a given year used the same trading-day, holiday, and moving average options that were used when the December final unadjusted estimate of the previous year was the last observation under method A. The August through January concurrent executions of the X-ll program used the same options that were used when the June final unadjusted estimate was the last observation under method A.

(a) Method B4

This method is identical to method B3, except for the computation of the advance estimate. The advance estimate used the seasonal factor that was computed for the advance estimate, to derive the adjusted advance estimate.

For this method, the adjusted estimates, used to derive adjusted advance to preliminary trends and adjusted advance to previous year trends, were derived from seasonal factors computed from different X-ll executions. However, the seasonal factors used to derive the adjusted estimates, used in the computation of the trends described above, were derived from concurrent seasonal factors. For this method, the computation of seasonal factors, that would be used to derive preliminary and final adjusted estimates and adjusted estimates one year prior to the advance and preliminary estimates, would not be dependent on the advance estimate.

The following table shows for each month in 1979 the month with the last unadjusted advance estimate input to the X-ll program (current year advance column only) and the month with the last unadjusted preliminary estimate that was used to derive other current year and previous year estimates.

					ar Estimates
	Currer	nt Year Estimate	<u>es</u>	Compared to	1979 Estimates
Month in 1979	Advance*	Preliminary	Final	Advance	Preliminary
Jan.	Jan. 1979	Jan. 1979	Feb. 1979	Dec. 1978	Jan. 1979
Feb.	Feb. 1979	Feb. 1979	Mar. 1979	Jan. 1979	Feb. 1979
Mar.	Mar. 1979	Mar. 1979	Apr. 1979	Feb. 1979	Mar. 1979
April	Apr. 1979	Apr. 1979	May 1979	Mar. 1979	Apr. 1979
May	May 1979	May 1979	Jun. 1979	Apr. 1979	May 1979
June	Jun. 1979	Jun. 1979	Jul. 1979	May 1979	Jun. 1979
July	Jul. 1979	Jul. 1979	Aug. 1979	Jun. 1979	Jul. 1979
Aug.	Aug. 1979	Aug. 1979	Sept. 1979	Jul. 1979	Aug. 1979
Sept.	Sept. 1979	Sept. 1979	Oct. 1979	Aug. 1979	Sept. 1979
Oct.	Oct. 1979	Oct. 1979	Nov. 1979	Sept. 1979	Oct. 1979
Nov.	Nov. 1979	Nov. 1979	Dec. 1979	Oct. 1979	Nov. 1979
Dec.	Dec. 1979	Dec. 1979	Jan. 1980	Nov. 1979	Dec. 1979

^{*}All periods under this column are different from the periods that were displayed for method B3. Also, all periods represent the month with the last unadjusted advance estimate input to the X-11 program.

(b) Method B5

This method was only used for the KB's in Retail Sales—Category 1 6/. When the advance estimate was the last observation input to the X-ll program, the seasonal factors computed for the advance, preliminary, and final estimates, and the estimates one year prior to the advance and preliminary estimates were derived from the same X-ll execution. Therefore, the adjusted estimates, used to compute various current month to previous month and current year to previous year trends, were derived from the same X-ll execution.

^{6/} This method was not used for the KB's classified under Retail Sales— Category 3 because all preliminary and final estimates for KB's in this classification were derived by aggregation.

For this method, the seasonal factors used to derive adjusted preliminary and final adjusted estimates are dependent upon the advance estimates. Also, the advance, preliminary, and initial final estimates affected the computation of the seasonal factors that were used to derive adjusted estimates one year prior to the advance and preliminary estimates.

The following table shows for each month in 1979, the month with the last unadjusted advance estimate input to the X-ll program to derive seasonal factors used to compute various current year and previous year adjusted estimates.

		Curre	nt Year	Estimat	.es				ear Estir o 1979 Es	
Month in 1979	Adv	ance	Prel	iminary	Fina	<u>al</u>	Adva	ance	Prel	iminary
Jan.	Jan.	1979	Feb.	1979	Mar.	1979	Jan.	1979	Feb.	1979
Feb.	Feb.	1979	Mar.	1979	Apr.	1979	Feb.	1979	Mar.	1979
Mar.	Mar.	1979	Apr.	1979	May.	1979	Mar.	1979	Apr.	1979
April	Apr.	1979	May	1979	Jun.	1979	Apr.	1979	May	1979
May		1979	Jun.	1979	Jul.	1979	May	1979	Jun.	1979
June		1979	Jul.	1979	Aug.	1979	Jun.	1979	Jul.	
July	Jul.	1979	Aug.	1979	Sept.	1979	Jul.	1979	Aug.	
Aug.	Aug.	1979	Sept.	1979	Oct.	1979	Aug.	1979	Sept.	
Sept.	Sept.		Oct.	1979	Nov.	1979	Sept.	1979	Oct.	1979
Oct.		1979	Nov.	1979	Dec.	1979	Oct.	1979	Nov.	1979
Nov.		1979	Dec.	1979	Jan.	1980	Nov.	1979	Dec.	1979
Dec.		1979		1980	Feb.	1980	Dec.	1979	Jan.	1980

III. Measures for Analyzing Concurrent Adjustment

The following notation will be used in this section:

FINIDLt = The "ideal" final adjusted estimate for month t.

 FIN_{t} = The final adjusted estimate for month t.

PRE+ = The preliminary adjusted estimate for month t.

 ADV_t = The advance adjusted estimate for month t.

Month t represents a month in the time span that was used for analyzing the results from this study (October 1977 through December 1979, a total of 27 months).

There were thirteen measures, shown below, used to compare the results from the various methods of concurrent adjustment to the present method of seasonal adjustment. These measures used both absolute percent change and root mean square error computations. The first five measures dealt with various comparisons of the adjusted estimates. Measures 6 through 9 dealt with various comparisons of current month to previous month adjusted trends, and measures 10 through 14 dealt with various comparisons of current year to previous year adjusted trends. The measures were as follow:

Absolute Percent Change Computations

Level Comparisons

Measures

1.
$$1/27 \sum_{t} |(((fiN_t/fiNiDL_t)-1)*100)|$$

2.
$$1/27 \sum_{t} |(((PRE_{t}/FINIDL_{t})-1)*100)|$$

3.
$$1/27\sum_{t} |(((ADV_{t}/FINIDL_{t})-1)*100)|$$

4.
$$1/27\sum_{t} |(((PRE_{t}/FIN_{t})-1)*100)|$$

5.
$$1/27\sum_{t} |(((ADV_{t}/PRE_{t})-1)*100)|$$

Current Month to Previous Month Comparisons

Measures

6.
$$1/27\sum_{t} |(((PRE_{t}/FIN_{t-1}) - (FINIDL_{t}/FINIDL_{t-1}))*100)|$$

7.
$$1/27\sum_{t} |(((FIN_{t}/FIN_{t-1}) - (FINIDL_{t}/FINIDL_{t-1}))*100)|$$

8.
$$1/27\sum_{t} |(((ADV_t/PRE_{t-1}) - (FINIDL_t/FINIDL_{t-1}))*100)|$$

9.
$$1/27\sum_{t} |(((ADV_{t}/PRE_{t-1}) - (PRE_{t}/FIN_{t-1}))*100)|$$

Current Year to Previous Year Comparisons

Measures

10.
$$1/27\sum_{t} |(((PRE_{t}/FIN_{t-12}) - (FINIDL_{t}/FINIDL_{t-12}))*100)|$$

11.
$$1/27\sum_{t} |(((FIN_t/FIN_{t-12}) - (FINIDL_t/FINIDL_{t-12}))*100)|$$

12.
$$1/27\sum_{t} |(((ADV_{t}/FIN_{t-12}) - (FINIDL_{t}/FINIDL_{t-12}))*100)|$$

13.
$$1/27\sum_{t} |(((ADV_{t}/FIN_{t-12}) - (PRE_{t}/FIN_{t-12}))*100)|$$

Root Mean Square Error Computations

Level Comparisons

Measures

1.
$$(1/27\sum_{t} ((((FIN_{t}/FINIDL_{t})-1)*100)**2))**1/2$$

2.
$$(1/27\sum_{t}(((PRE_{t}/FINIDL_{t})-1)*100)**2))**1/2$$

3.
$$(1/27\sum_{t} ((((ADV_{t}/FINIDL_{t})-1)*100)**2))**1/2$$

4.
$$(1/27\sum_{t} ((((PRE_{t}/FIN_{t})-1)*100)**2))**1/2$$

5.
$$(1/27\sum_{t}((((ADV_{t}/PRE_{t})-1)*100)**2))**1/2$$

Current Month to Previous Month Comparisons

Measures

6.
$$(1/27\sum_{t}((((PRE_{t}/FIN_{t-1}) - (FINIDL_{t}/FINIDL_{t-1}))*100)**2))**1/2$$

7.
$$(1/27\sum_{t}((((FIN_{t}/FIN_{t-1}) - (FINIDL_{t}/FINIDL_{t-1}))*100)**2))**1/2$$

8.
$$(1/27\sum_{t}((((ADV_{t}/PRE_{t-1}) - (FINIDL_{t}/FINIDL_{t-1}))*100)**2))**1/2$$

9.
$$(1/27\sum_{t}((((ADV_{t}/PRE_{t-1}) - (PRE_{t}/FIN_{t-1}))*100)**2))**1/2$$

Current Year to Previous Year Comparisons

Measures

10.
$$(1/27\sum_{t}((((PRE_{t}/FIN_{t-12}) - (FINIDL_{t}/FINIDL_{t-12}))*100)**2))**1/2$$

11.
$$(1/27\sum_{t}((((FIN_{t}/FIN_{t-12}) - (FINIDL_{t}/FINIDL_{t-12}))*100)**2))**1/2$$

12.
$$(1/27\sum_{t}((((ADV_{t}/FIN_{t-12}) - (FINIDL_{t}/FINIDL_{t-12}))*100)**2))**1/2$$

13.
$$(1/27\sum_{t}((((ADV_{t}/FIN_{t-12}) - (PRE_{t}/FIN_{t-12}))*100)**2))**1/2$$

Most of the measures shown above used adjusted advance and preliminary estimates. The various adjusted estimates and trends included in these measures are given the most attention by many of the users of these data.

A. Level Comparisons

Measures 1 through 3 listed under each computation method (absolute percent change and root mean square error) show how close the adjusted final, preliminary, and advance estimates are to the "ideal" adjusted final estimate. The fourth and fifth measures for each computation method show how close the adjusted preliminary estimates are to the adjusted final estimates and how the adjusted advance estimates compare to the adjusted preliminary estimates.

B. Current Month to Previous Month Comparisons

Measures 6 through 8 listed under each computation method show how close various month-to-month adjusted trends are to the "ideal" month-to-month adjusted trend. Measure 9 compares the adjusted advance to preliminary trend to the adjusted preliminary to final trend. These four measures are considered to be the most important measures for evaluating whether one of the methods of concurrent seasonal adjustment should be implemented. Month-to-month adjusted estimates are given the most attention by the mass media.

C. Current Year to Previous Year Comparisons

Measures 10 through 12 listed under each computation method show how close various year-to-year adjusted trends are to the "ideal" year-to-year adjusted trend. Measure 13 compares the adjusted advance to previous year trend to the adjusted preliminary to previous year trend.

For each measure (absolute percent computation or root mean square error computation) one of the following three notations is shown in the following table for each classification used in this study:

 The measure is denoted with an "X". This implies that the measure was not computed for any KB under the classification.

or

2. The methods of concurrent seasonal adjustment that will have identical results for the measure (e.g., Bl=B2=B3). This is because all the variables used in the measure are computed identically.

or

3. The measure is denoted with an "N". This implies that the measure was computed for the classification and none of the different methods of concurrent seasonal adjustment have identical results for the measure.

Classification

Retail Sales-Category 2 and Wholesale sales Retail Sales Retail Sales Retail Category 3 and Inventory Category 1 Measure Inventory B2=B3 B2=B3=B4 B2=B3=B4 1 B1=B2=B3 B1=B2=B3=B4 2 Х B1=B2=B3 B1=B2=B3=B4 B1=B2=B3 B1=B2=B3 and 3 Х Х B4=B5B2=B3=B4 B2=B3 B2=B3=B4 4 Х B1=B2=B3 X B1=B2=B3 Х 5 B2=B3=B4 B2=B3=B4 6 X B2=B3 Х Х Х 7 B2=B3 B1=B2=B3B1=B2=B3 8 X Х 9 X Х B2=B3 B2=B3 Bl=B2 and B1=B2 and B1=B210 X B3=B4 B3=B4 X X B1=B2 X 11 N* N* X Х 12 N* Х N* 13 Х

^{*}Bl is approximately equal to B2. All of the months will have the same results except, possibly, for January as the previous year initial final adjusted estimates for these two methods were computed from seasonal factors derived from different X-11 executions (see section II).

IV. Results of the Study

Attachments 3 and 4 show the results from this study. Attachment 3 shows various results for all KB's comprising each classification. For all classifications, the following results for each applicable measure (using both absolute percent change and root mean square error computations) are shown for each KB comprising the respective classification:

- 1. The first line shows the results of the measure for each method of seasonal adjustment (methods A, Bl, B2, B3, B4, and B5).
- 2. For each method of seasonal adjustment, the result was divided by the result computed for method A and expressed as a percent. These results are shown on the second line. A value less than 100 indicates the method shows an improvement over method A. The best method of concurrent adjustment would have the smallest value.
- 3. For methods Bl, B2, B3, B4, and B5; the number of observations for which the results of the measure had a value less than the value obtained for method A was divided by 27 and expressed as a percent.

Attachment 4 shows various results for each classification. For each classification, the following results for each applicable measure (absolute percent change and root mean square error computations) are displayed:

 The geometric mean (computed across all KB's that comprise the classification) of the measure was calculated for each method of seasonal adjustment and is shown on the first line.

- 2. The geometric mean of the measure, computed in 1 above, for each method was divided by the result computed for method A and expressed as a percent. This result is shown on the second line. A value less than 100 indicates the method shows an improvement over method A.
- 3. The average, or mean, of the percent of observations (computed across all KB's that comprise the classification) that methods B1, B2, B3, B4, and B5 had a value less than the value obtained for method A.

 These results are shown on the third line.

For all classifications, excluding Retail Sales—Categories 1 and 3, method B3 should be the best method of concurrent adjustment. For Retail Sales—Categories 1 and 3, the best methods should be respectively, methods B5 and B4 7/. These results are expected because the adjusted estimates, used in the computation of the various measures, are derived from seasonal factors computed from the same X-11 execution which takes into account all available estimates. For each concurrent execution of the X-11 program, initial and revised estimates have an effect on the computation of seasonal factors for all back months. This effect diminishes for months further back in time. Even though it was expected that the best method of concurrent adjustment would be method B3, B4, or B5 the other methods were evaluated because they would be easier to implement.

7/ For Retail Sales—Category 3, the only difference between method B4 and B3 is that method B4 used the concurrent seasonal factor instead of the one month ahead projected factor to derive adjusted advance estimates. Adjusted preliminary and final estimates were derived by aggregation. The use of the concurrent factor should provide better results for all measures that use the adjusted advance estimates in the computation.

The following will be shown for each classification:

- 1. The measure shown in Section III that was calculated by using the absolute percent change computation 8/.
- 2. For the "best" method of concurrent adjustment (Method B3, B4, or B5), the percent improvement over method A. The percent improvement is computed in the following manner.

GM = the geometric mean. Also the geometric mean for both methods are displayed in Attachment 4.

If the "best" method did not have the best percent improvement over method A, the following will be shown for the next two columns:

- The method or methods that actually had the best percent improvement over method A.
- 4. For the method shown in column 3, the percent improvement over method A.
- 8/ The results computed for the measures that used the root mean square error computations will not be shown as the results are similar to the results that used the absolute percent change computations.

Retail Sales—Category 1

	For Method B5 Percent Improvement	Improvement	Best Percent Over Method A Percent Improvement
Measure From Section III	Over Method A	Method	Over Method A
Level Analysis			
1 2 3 4 5	30.9 19.9 8.6 11.6 8.3	B 4	12.3
Month-to-Month Analysis			
6	31.5		
8 9	18.3 18.1		
Year-to-Year Analysis			
10 12 13	12.9 8.5 6.7	Bl or B2 B4	13.8 8.8

Retail Sales—Category 2

Measure From Section III	For Method B3 Percent Improvement Over Method A
Level Analysis	
1 2 4	20.5 17.5 6.7
Month-to-Month Analysis	
6	32.1
Year-to-Year Analysis	
10	11.3

Retail Sales—Category 3

	For Method B4		Method B4 Best Percent Over Method A
Measure From Section III	Percent Improvement Over Method A	Method	Percent Improvement Over Method A
Level Analysis			
1 2 3 4 5	18.7 13.5 6.6 8.2 15.3		
Month-to-Month Analysis			
6 8 9	34.3 14.4 21.3		
Year-to-Year Analysis			
10 12 13	16.3 9.2 9.1	В2	11.1
	Retail Inventory		
Measure From Section III	For Method B3 Percent Improvement Over Method A		
Level Analysis			
1	3.0		
Month-to-Month Analysis			
7	10.0		
Year-to-Year Analysis			
11	20.2		

Wholesale Sales

Measure From Section III	For Method B3 Percent Improvement Over Method A
Level Analysis	
1 2 4	16.4 8.1 3.2
Month-to-Month Analysis	
6	15.9
Year-to-Year Analysis	
10	•5

Wholesale Inventory

Measure From Section III	For Method B3 Percent Improvement Over Method A
Level Analysis	
1 2 4	23.9 .8 4.5
Month-to-Month Analysis	
6	4.3
Year-to-Year Analysis	
10	0

V. Conclusions and Recommendations

According to the measures used in this study; the best advance, preliminary, initial final, and previous year adjusted estimates were derived by using the concurrent adjustment method which used all available estimates as input to the X-ll program. The best method of concurrent adjustment for the various classifications included in this study were as follow:

Classification	Best Concurrent Method
Retail SalesCategory 2, Retail Inventory, and Wholesale Sales and Inventory	Method B3
Retail Sales—Category 1	Method B5
Retail SalesCategory 3	Method B4

For all classifications the best method of concurrent adjustment was proven to be better than the present method of seasonal adjustment.

If the best method of concurrent adjustment is implemented, many of the final adjusted estimates will be derived from different X-ll executions instead of the X-ll execution that included all available estimates. Therefore, month-to-month and year-to-year adjusted trends can be distorted, or worse than the trends derived from the present method of seasonal adjustment.

The following measures, used in this study, showed the distortion or possible distortion of adjusted trends when adjusted final estimates were not derived from the seasonal factors computed from the X-11 execution that included all available estimates:

1. Measure 10 or 11 (The result of year-to-year trends compared to the results of the year-to-year trends computed from the "ideal" adjusted estimates).

For all classifications used in this study, method B3 had the better results for the geometric mean of this measure when compared to the results computed for method B2 or B1. The previous year final adjusted estimate was not revised for method B2. For the following classifications; Retail Inventory, Wholesale Sales, and Wholesale Inventory, method A had better results for the geometric mean of this measure when compared to the results computed for method B1 or B2.

2. Measure 7 9/ (The results of month-to-month trends compared to the results of the month-to-month trends computed from the "ideal" adjusted estimates).

For retail inventory series, method B2 or B3 had a 10 percent improvement over the present method. However, method B1 only had a 1 percent improvement over method A. Method B1 used seasonal factors from two different X-11 executions to derive the month-to-month trends derived from final adjusted estimates.

9/ For this measure the KB's classified under Retail Inventory were the only KB's in this study to derive month-to-month trends from adjusted final estimates.

These results indicate that if the best method of concurrent adjustment is implemented for each classification, other adjusted trends that were not analyzed in this study can be worse than the adjusted trends derived by using the present method of seasonal adjustment. Research should be done to study the magnitude of this problem. If research shows the problem is not significant, the best concurrent adjustment method for each classification should be implemented for all KB's comprising the respective classification. Otherwise, the results from studying the magnitude of this problem should be used to determine how far back in time seasonal factors are to be used to derive adjusted estimates for each concurrent execution of the X-ll program. Also, the following question must be answered:

Will the users of these data accept adjusted estimates being revised each month even though their corresponding unadjusted estimates remain the same?

Until research of this problem is completed, the present method of seasonal adjustment will continue to be used for all retail and wholesale sales and inventory series.

Retail Sales—Category 1

	<u>KB</u>	Description
1.	531100	Department stores
2.	541100	Grocery stores
3.	554100	Gasoline service stations
4.	580000	Eating and drinking places
5.	591200	Drug stores

Retail Sales—Category 2

	<u>KB</u>	Description
1.	550001*	Motor vehicle dealers (automobile, boats, airplanes, motorcycles, and recreational vehicles)
2.	553100*	Auto and home supply stores
3.	561100	Men's clothing
4.	560001	Women's clothing
5.	566100	Shoe stores
6.	560002	Miscellaneous apparel (children's, family, custom tailors, and novelty shops)
7.	57001	Furniture, floor covering, drapery, and upholstery stores
8.	570002	Household appliances and radio and television stores
9.	573300	Music stores

Retail Sales—Category 3

	<u>КВ</u>	Description
1.	550000*	Motor vehicle dealers (550001 + 553100)
2.	560000	Apparel and accessories stores (561100 + 560001 + 566100 + 560002)
3.	570000	Furniture and home funding stores (570001 + 570002 + 573300)

^{*}Commencing in 1982 advance estimates were tabulated directly for KB's 550001 and 553100 as these KB's were sampled separately for the advance survey.

Retail Inventory

KB Description

- 1. KB's 531100, 550000, 560000, and 570000 have previously been defined.
- 2. 540000 Total food stores (541100 + 542000 + 543100 + 544100 + 54510 + 546000 + 549900)

Wholesale Sales and Inventory

	<u>KB</u>	Description
1.	501000	Automobiles and other motor vehicles (501200 + 501300 + 501400)
2.	506000	Electrical goods (506300 + 506400 + 506500)
3.	508000	Machinery, equipment and supplies (508100 + 508200 + 508300 + 508400 + 508500 + 508600 + 508700 + 508800)
4.	514000	Groceries and related products (514100 + 514200 + 514300 + 514400 + 514500 + 514600 + 514700 + 514800 + 514900)
5.	518000	Beer, wine and distilled alcoholic beverages (518100 + 518200)

Let

 ADV_{t}^{O} = the initial unadjusted advance estimate published for month t.

 PRE_{t}^{O} = the initial unadjusted preliminary estimate published for month t.

 FIN_t^O = the initial unadjusted final estimate published for month t.

 ADV_t^r = the unadjusted advance estimate for month t used in this study.

 $_{\text{PRE}_{\text{t}}}^{\text{r}}$ = the unadjusted preliminary estimate for month t used in this study.

 ${
m FIN_t}$ = the final unadjusted estimates for month t used in this study. The estimates were derived by benchmarking the unadjusted estimates to the 1977 Census of Retail and Wholesale Trade and the 1978 through 1980 estimates obtained from the annual survey of Retail and Wholesale Trade.

Month t = represents an estimate in the time span of this study; October 1977 through December 1979, inclusive.

1. Deriving unadjusted preliminary estimates used in this study

Note: This formula maintains the following relationship:

$$\frac{PRE_{t}^{r}}{r} = \frac{O}{PRE_{t}}$$

$$\frac{r}{FIN_{t-1}}$$

$$O$$

$$FIN_{t-1}$$

2. Deriving unadjusted advance estimates used in this study

$$ADV_{t} = ADV_{t}/PRE_{t-1} * PRE_{t-1}$$

Note: This formula maintains the following relationship:

$$\frac{\text{ADV}_{t}}{\text{PRE}_{t-1}^{r}} = \frac{\text{ADV}_{t}}{\text{PRE}_{t-1}^{o}}$$

ATTACHMENT 3
RETAIL SALES
CATEGORY 1

PART A LEVEL ANALYSIS

ABSOLUTE PERCENT CHANGE

ABS(FIN / FINIDL)							(FIN /	(FIN / FINIDL) ** 2						
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2/MA</th><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2/MA</th><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2/MA</th><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2/MA</th><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2/MA</th><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2/MA</th><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2/MA	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>		
531100	0.992 100.0	0.720 72.6 66.7	0.762 76.8 66.7	0.762 76.8 66.7	0.762 76.8 66.7	0.632 63.8 74.1	1.172 100.0	0.864 73.8 66.7	0.983 83.9 66.7	0.983 83.9 66.7	0.983 83.9 66.7	0.904 77.2 74.1		
541100	0.553 100.0	0.466 84.2 51.9	0.386 69.8 66.7	0.386 69.8 66.7	0.386 69.8 66.7	0.376 68.0 66.7	0.654 100.0	0.543 83.0 51.9	0.492 75.1 66.7	0.492 75.1 66.7	0.492 75.1 66.7	0.474 72.4 66.7		
554100	0.516 100.0	0.407 79.0 48.1	0.340 65.9 66.7	0.340 65.9 66.7	0.340 65.9 66.7	0.344 66.6 55.6	0.734 100.0	0.530 72.2 48.1	0.475 64.6 66.7	0.475 64.6 66.7	0.475 64.6 66.7	0.484 65.9 55.6		
580000	1.095 100.0	0.918 83.8 55.6	0.873 79.7 63.0	0.873 79.7 63.0	0.873 79.7 63.0	0.840 76.7 63.0	1.334 100.0	1.081 81.1 55.6	1.047 78 5 63.0	1.047 78.5 63.0	1.047 78.5 63.0	1.010 75.7 63.0		
591200	0.620 100.0	0.539 87.0 48.1	0.464 74.8 63.0	0.464 74.8 63.0	0.464 74.8 63.0	0.442 71.3 44.4	0.814 100.0	0.709 87.1 48.1	0.574 70.5 63.0	0.574 70.5 63.0	0.574 70.5 63.0	0.527 64.7 44.4		

CATEGORY 1

ABSOLUTE PERCENT CHANGE

	ABS(PRE	/ FINID	.)			(PRE /	(PRE / FINIDL) ** 2						
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>	
531100	1.399	0.968 69.2 70.4	0.968 69.2 70.4	0.968 69.2 70.4	0.968 69.2 70.4	0.993 71.0 66.7	1.887 100.0	1.239 65.7 70.4	1.239 65.7 70.4	1.239 65.7 70.4	1.239 65.7 70.4	1.280 67.9 66.7	
541100	0.584 100.0	0.506 86.7 48.1	0.506 86.7 48.1	0.506 86.7 48.1	0.506 86.7 48.1	0.458 78.5 63.0	0.675 100.0	0.596 88.2 48.1	0.596 88.2 48.1	0.596 -88.2 48.1	0.596 88.2 48.1	0.551 81.7 63.0	
554100	0.922 100.0	0.792 85.9 51.9	0.792 85.9 51.9	0.792 85.9 51.9	0.792 85.9 51.9	0.822 89.1 48.1	1.092 100.0	0.942 86.3 51.9	0.942 86.3 51.9	0.942 86.3 51.9	0.942 86.3 51.9	0.999 91.5 48.1	
580000	1.355 100.0	1.109 81.8 44.4	1.109 81.8 44.4	1.109 81.8 44.4	1.109 81.8 44.4	1.179 87.0 48.1	1.606 100.0	1.362 84.9. 44.4	1.362 84.9 44.4	1.362 84.9 44.4	1.362 84.9 44.4	1.388 86.5 48.1	
591200	0.824 100.0	0.669 81.2 59.3	0.669 81.2 59.3	0.669 81.2 59.3	0.669 81.2 59.3	0.627 76.1 63.0	1.078 100.0	0.839 77.9 59.3	0.839 77.9 59.3	0.839 77.9 59.3	0.839 77.9 59.3	0.783 72.6 63.0	

CATEGORY 1

ABSOLUTE PERCENT CHANGE

	ABS (ADV	/ FINIDL	.)			(ADV /	(ADV / FINIDL) ** 2						
KB	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>	
531100	1.745	1.783 102.2 40.7	1.783 102.2 40.7	1.783 102.2 40.7	1.553 89.0 63.0	1.553 89.0 63.0	2.109 100.0	2.125 100.7 40.7	2.125 100.7 40.7	2.125 100.7 40.7	1.907 90.4 63.0	1.907 90.4 63.0	
541100	0.976 100.0	1.001 102.6 29.6	1.001 102.6 29.6	1.001 102.6 29.6	0.948 97.1 44.4	0.948 97.1 44.4	1.293 100.0	1.270 98.2 29.6	1.270 98.2 29.6	1.270 .98.2 29.6	1.179 91.1 44.4	1.179 91.1 44.4	
554100	1.986 100.0	1.889 95.1 59.3	1.889 95.1 59.3	1.889 95.1 59.3	1.778 89.5 51.9	1.778 89.5 51.9	2.436 100.0	2.358 96.8 59.3	2.358 96.8 59.3	2.358 96.8 59.3	2.188 89.8 51.9	2.188 89.8 51.9	
580000	1.788 100.0	1.723 96.4 48.1	1.723 96.4 48.1	1.723 96.4 48.1	1.733 96.9 40.7	1.733 96.9 40.7	2.076 100.0	2.005 96.6 48.1	2.005 96.6 48.1	2.005 96.6 48.1	1.969 94.8 40.7	1.969 94.8 40.7	
591200	1.414	1.402 99.1 33.3	1.402 99.1 33.3	1.402 99.1 33.3	1.204 85.1 63.0	1.204 85.1 63.0	1.777 100.0	1.740 97.9 33.3	1.740 97.9 33.3	1.740 97.9 33.3	1.510 85.0 63.0	1.510 85.0 63.0	

CATEGORY 1

ABSOLUTE PERCENT CHANGE

	ABS(PRE	/ FIN)					(PRE /	FIN) *x 2	!			
KB	METH A Ma/ma	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>
531100	0.686 100.0	0.562 81.9 37.0	0.582 84.9 40.7	0.582 84.9 40.7	0.582 84.9 40.7	0.585 85.2 40.7	1.197 100.0	0.824 68.8 37.0	0.774 64.7 40.7	0.774 64.7 40.7	0.774 64.7 40.7	0.822 68.6 40.7
541100	0.355 100.0	0.300 84.5 37.0	0.309 87.2 48.1	0.309 87.2 48.1	0.309 87.2 48.1	0.283 79.9 63.0	0.457 100.0	0.398 87.0 37.0	0.411 89.9 48.1	0.411 89.9 48.1	0.411 89.9 48.1	0.377 82.4 63.0
554100	0.696 100.0	0.746 107.2 33.3	0.641 92.1 48.1	0.641 92.1 48.1	0.641 92.1 48.1	0.676 97.2 51.9	0.880 100.0	0.928 105.5 33.3	0.792 90.0 48.1	0.792 90.0 48.1	0.792 90.0 48.1	0.901 102.4 51.9
580000	0.816 100.0	0.826 101.2 48.1	0.696 85.3 63.0	0.696 85.3 63.0	0.696 85.3 63.0	0.751 92.0 55.6	0.946 100.0	0.953 100.7 48.1	0.893 94.4 63.0	0.893 94.4 63.0	0.893 94.4 63.0	0.869 91.9 55.6
591200	0.502 100.0	0.499 99.5 48.1	0.497 99.1 48.1	0.497 99.1 48.1	0.497 99.1 48.1	0.444 88.5 51.9	0.638 100.0	0.624 97.9 48.1	0.642 100.7 48.1	0.642 100.7 48.1	0.642 100.7 48.1	0.551 86.4 51.9

CATEGORY 1

ABSOLUTE PERCENT CHANGE

ABS(ADV / PRE)							(ADV /	(ADV / PRE) ** 2						
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA XMB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>		
531100	1.694 100.0	1.395 82.4 66.7	1.395 82.4 66.7	1.395 82.4 66.7	1.355 80.0 74.1	1.503 88.8 66.7	2.378 100.0	1.864 78.4 66.7	1.864 78.4 66.7	1.864 78.4 66.7	1.873 78.8 74.1	2.027 85.2 66.7		
541100	0.843 100.0	0.861 102.1 37.0	0.861 102.1 37.0	0.861 102.1 37.0	0.738 87.5 51.9	0.753 89.3 63.0	1.075 100.0	1.024 95.2 37.0	1.024 95.2 37.0	1.024 95.2 37.0	0.898 83.5 51.9	0.941 63.0		
554100	1.645 100.0	1.714 104.2 44.4	1.714 104.2 44.4	1.714 104.2 44.4	1.570 95.4 66.7	1.623 98.7 44.4	2.165 100.0	2.262 104.5 44.4	2.262 104.5 44.4	2.262 104.5 44.4	2.064 95.3 66.7	2.086 96.4 44.4		
580000	1.477 100.0	1.416 95.9 55.6	1.416 95.9 55.6	1.416 95.9 55.6	1.347 91.2 63.0	1.343 91.0 63.0	1.810	1.640 90.6 55.6	1.640 90.6 55.6	1.640 90.6 55.6	1.634 90.3 63.0	1.610 88.9 63.0		
591200	1.144	1.146 100.2 44.4	1.146 100.2 44.4	1.146 100.2 44.4	0.974 85.1 81.5	1.040 91.0 63.0	1.506 100.0	1.439 95.5 44.4	1.439 95.5 44.4	1.439 95.5 44.4	1.270 84.4 81.5	1.324 87.9 63.0		

CATEGORY 1

PART B MONTH-TO-MONTH ANALYSIS

ABSOLUTE PERCENT CHANGE

	ABS((PR	RE/FIN) -	(FINIDL/F	INIDL(-1))))	· ((PRE/F	· ((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2						
KB	METH A Ma/ma	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>	
531100	1.716 100.0	1.118 65.1 77.8	1.053 61.4 77.8	1.053 61.4 77.8	1.053 61.4 77.8	0.987 57.3 85.2	2.083 100.0	1.399 67.2 77.8	1.344 64.5 77.8	1.344 64.5 77.8	1.344 64.5 77.8	1.316 63.2 85.2	
541100	0.869 100.0	0.812 93.4 55.6	0.729 84.0 59.3	0.729 84.0 59.3	0.729 84.0 59.3	0.696 80.2 59.3	1.025 100.0	0.915 89.2 55.6	0.862 84.1 59.3	0.862 84.1 59.3	0.862 84.1 59.3	0.802 78.3 , 59.3	
554100	1.156 100.0	0.993 85.9 63.0	0.875 75.6 66.7	0.875 75.6 66.7	0.875 75.6 66.7	0.911 78.8 74.1	1.326 100.0	1.137 85.8 63.0	1.023 77.1 66.7	1.023 77.1 66.7	1.023 77.1 66.7	1.089 82.2 74.1	
580000	1.373 100.0	1.053 76.7 63.0	1.005 73.2 59.3	1.005 73.2 59.3	1.005 73.2 59.3	1.008 73.4 70.4	1.844 100.0	1.409 76.4 63.0	1.293 70.1 59.3	1.293 70.1 59.3	1.293 70.1 59.3	1.231 66.8 70.4	
591200	1.136	0.850 74.9 70.4	0.742 65.3 77.8	0.742 65.3 77.8	0.742 65.3 77.8	0.644 56.7 88.9	1.321 100.0	1.005 76.0 70.4	0.888 67.2 77.8	0.888 67.2 77.8	0.888 67.2 77.8	0.763 57.8 88.9	

CATEGORY 1

ABSOLUTE PERCENT CHANGE

İ	ABS((AD	V/PRE) -	(FINIDL/F	INIDL(-1)))		((ADV/PRE) - (FINIDL/FINIDL(-1))) ** 2					
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>
531100	1.569	1.573 100.3 37.0	1.573 100.3 37.0	1.573 100.3 37.0	1.340 85.5 66.7	1.261 80.4 59.3	2.053 100.0	1.995 97.2 37.0	1.995 97.2 37.0	1.995 97.2 37.0	1.642 80.0 66.7	1.496 72.9 59.3
541100	1.189	1.055 88.7 66.7	1.055 88.7 66.7	1.055 88.7 66.7	0.991 83.3 70.4	0.946 79.5 74.1	1.418	1.290 91.0 66.7	1.290 91.0 66.7	1,290 91.0 66.7	1.193 84.1 70.4	1.132 79.8 74.1
554100	1.724 100.0	1.696 98.3 59.3	1.696 98.3 59.3	1.696 98.3 59.3	1.550 89.9 74.1	1.501 87.0 66.7	2.039 100.0	2.067 101.3 59.3	2.067 101.3 59.3	2.067 101.3 59.3	1.883 92.3 74.1	89.0 66.7
580000 F	1.303 100.0	1.258 96.5 55.6	1.258 96.5 55.6	1.258 96.5 55.6	1.215 93.3 55.6	1.164 89.3 55.6	1.621 100.0	1.614 99.5 55.6	1.614 99.5 55.6	1.614 99.5 55.6	1.530 94.4 55.6	1.442 89.0 55.6
591200 :	1.538 100.0	1.487 96.6 59.3	1.487 96.6 59.3	1.487 96.6 59.3	1.253 81.5 63.0	1.127 73.3 74.1	1.869 100.0	1.794 96.0 59.3	1.794 96.0 59.3	1.794 96.0 59.3	1.522 81.4 63.0	1.374 73.5 74.1

RETAIL SALES CATEGORY 1

ABSOLUTE PERCENT CHANGE

1.168

100.5

1.168

100.5

1.222 105.2 44.4

1.162 100.0

591200

ROOT MEAN SQUARE ERROR

1.225

83.8

1.106 75.6 77.8

	ABS ((AI	V/PRE) -	(PRE/FIN)	• •			((ADV/PRE) - (PRE/FIN)) ** 2						
KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>	
531100	1.342 100.0	1.218 90.7 55.6	1.311 97.7 55.6	1.311 97.7 55.6	1.091 81.3 66.7	1.113 82.9 74.1	1.763 100.0	1.503 85.3 55.6	1.630 92.5 55.6	1.630 92.5 55.6	1.457 82.7 66.7	1.492 84.7 74.1	
541100	0.861 100.0	0.843 98.0 40.7	0.882 102.5 40.7	0.882 102.5 40.7	0.738 85.7 55.6	0.681 79.2 74.1	1.146	1.071 93.4 40.7	1.069 93.2 40.7	1.069 93.2 40.7	0.885 77.2 55.6	0.850 74.1 74.1	
554100	1.458 100.0	1.560 107.0 37.0	1.566 107.4 51.9	1.566 107.4 51.9	1.384 94.9 63.0	1.345 92.3 51.9	1.912 100.0	1.998 104.5 37.0	2.055 107.5 51.9	2.055 107.5 51.9	1.837 96.1 63.0	, 1.787 93.4 51.9	
580000	1.224 100.0	0.979 80.0 59.3	1.063 86.8 55.6	1.063 86.8 55.6	0.992 81.1 63.0	0.991 80.9 70.4	1.551 100.0	1.326 85.5 59.3	1.400 90.2 55.6	1.400 90.2 55.6	1.325 85.4 63.0	1.212 78.1 70.4	

1.462

100.0

1.536 105.1 44.4

1.464

100.1

1.464

100.1

0.874 75.2 77.8

0.970 83.5 74.1

CATEGORY 1

PART C YEAR-TO-YEAR ANALYSIS

ABSOLUTE PERCENT CHANGE

	ABS((CY	PRE/PYFIN	I) - (FINI	DL/FINID	(-12))		((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2						
KB	METH A Ma/ma	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>	
531100	1.191	0.895 75.1 55.6	0.895 75.1 55.6	0.940 78.9 70.4	0.940 78.9 70.4	0.970 81.5 74.1	1.616 100.0	1.205 74.5 55.6	1.205 74.5 55.6	1.325 82.0 ,70.4	1.325 82.0 70.4	1.379 85.3 74.1	
541100	0.710 100.0	0.620 87.3 55.6	0.620 87.3 55.6	0.586 82.6 74.1	0.586 82.6 74.1	0.616 86.8 63.0	0.828 100.0	0.745 90.0 55.6	0.745 90.0 55.6	0.708 85.5 74.1	0.708 85.5 74.1	0.709 85.7 1 63.0	
554100	1.033 100.0	0.972 94.2 48.1	0.972 94.2 48.1	0.942 91.2 66.7	0.942 91.2 66.7	0.954 92.4 70.4	1.179 100.0	1.196 101.5 48.1	1.196 101.5 48.1	1.104 93.7 66.7	1.104 93.7 66.7	1.131 96.0 70.4	
580000	1.059 100.0	0.937 88.5 55.6	0.937 88.5 55.6	1.018 96.1 51.9	1.018 96.1 51.9	0.966 91.2 66.7	1.332 100.0	1.189 89.2 55.6	1.189 89.2 55.6	1.218 91.5 51.9	1.218 91.5 51.9	1.162 87.2 66.7	
591200	0.713	0.621 87.1 66.7	0.621 87.1 66.7	0.601 84.4 51.9	0.601 84.4 51.9	0.601 84.4 59.3	0.862 100.0	0.770 89.3 66.7	0.770 89.3 66.7	0.702 81.4 51.9	0.702 81.4 51.9	0.689 79.9 59.3	

CATEGORY 1

ABSOLUTE PERCENT CHANGE

	ABS((CY	ADV/PYFI	I) - (FINI	DL/FIHIDU	.(-12))		((CYADV/PYFIN) - (FINIDL/FINIDL(-12)) ** 2						
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA XMB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>	
531100	1.976 100.0	1.751 88.6 55.6	1.757 88.9 55.6	1.762 89.1 59.3	1.774 89.8 59.3	1.729 87.5 66.7	2.571 100.0	2.236 87.0 55.6	2.246 87.4 55.6	2.321 90.3 59.3	2.289 89.0 59.3	2.260 87.9 66.7	
541100	1.150 100.0	1.166 101.4 33.3	1.153 100.3 33.3	1.154 100.3 40.7	1.068 92.8 59.3	1.082 94.1 70.4	1.348 100.0	1.331 98.7 33.3	1.323 98.1 33.3	1,334 99.0 40.7	1.274 94.5 59.3	1.260 93.5 70.4	
554100	2.305 100.0	2.209 95.8 63.0	2.200 95.4 59.3	2.245 97.4 44.4	2.122 92.0 59.3	2.184 94.8 66.7	2.821 100.0	2.749 97.4 63.0	2.748 97.4 59.3	2.755 97.7 44.4	2.617 92.8 59.3	2.704 95.8 66.7	
580000	2.008 100.0	1.862 92.7 70.4	1.843 91.8 70.4	1.826 90.9 63.0	1.921 95.7 51.9	1.806 89.9 74.1	2.245 100.0	2.103 93.7 70.4	2.086 92.9 70.4	2.036 90.7 63.0	2.140 95.3 51.9	2.021 90.0 74.1	
591200	1.548 100.0	1.489 96.2 40.7	1.475 95.2 40.7	1.496 96.6 44.4	1.329 85.8 66.7	1.417 91.5 63.0	2.007 100.0	1.846 92.0 40.7	1.843 91.8 40.7	1.872 93.3 44.4	1.694 84.4 66.7	1.769 88.1 63.0	

CATEGORY 1

ABSOLUTE PERCENT CHANGE

	ABS((CY	ADV/PYFI	I) - (CYPR	(E/PYFIN))		((CYADV/PYFIN) - (CYPRE/PYFIN)) ** 2					
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH B5 MB5/MA %MB5<ma< th=""></ma<></th></ma<>	METH B5 MB5/MA %MB5 <ma< th=""></ma<>
531100	1.934	1.570 81.2 70.4	1.576 81.5 70.4	1.778 91.9 63.0	1.847 95.5 59.3	1.745 90.2 74.1	2.856 100.0	2.152 75.3 70.4	2.165 .75.8 .70.4	2.440 85.4 63.0	2.604 91.2 59.3	2.431 85.1 74.1
541100	0.993 100.0	0.965 97.2 48.1	0.952 95.9 48.1	0.986 99.3 40.7	0.891 89.7 44.4	0.905 91.1 55.6	1.245 100.0	1.121 90.0 48.1	1.109 89.1 48.1	1,237 99.4 40.7	1.172 94.2 44.4	1.130 90.8 55.6
554100	1.968 100.0	2.049 104.1 51.9	2.042 103.7 51.9	1.946 98.9 48.1	1.844 93.7 70.4	1.902 96.6 59.3	2.571 100.0	2.698 104.9 51.9	2.694 104.8 51.9	2.596 101.0 48.1	2.414 93.9 70.4	98.2 98.2 59.3
580000	1.693 100.0	1.642 97.0 51.9	1.623 95.9 51.9	1.667 98.5 51.9	1.711 101.1 51.9	1.631 96.4 55.6	2.047 100.0	1.881 91.9 51.9	1.867 91.2 51.9	1.987 97.1 51.9	2.084 101.8 51.9	1.984 96.9 55.6
591200	1.298 100.0	1.289 99.2 44.4	1.275 98.2 44.4	1.251 96.4 55.6	1.149 88.5 63.0	1.197 92.2 48.1	1.763 100.0	1.609 91.3 44.4	1.605 91.1 44.4	1.621 91.9 55.6	1.494 84.8 63.0	1.542 87.4 48.1

CATEGORY 2

PART A LEVEL ANALYSIS

		ABSO	LUTE PERC	ENT CHANGE	ROOT MEAN SQUARE ERRO					
	ABS(FIN	/ FINIDL	.)		(FIN /	FINIDL)	ex 2			
KB	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th></th><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th></th><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A Ma/Ma</th><th></th><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<>	METH A Ma/Ma		METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""></ma<>		
550001	2.420 100.0	2.118 87.5 55.6	2.019 83.4 74.1	2.019 83.4 74.1	2.980 100.0	2.685 90.1 55.6	2.515 84.4 74.1	2.515 84.4 74.1		
553100	1.702 100.0	1.234 72.5 77.8	1.211 71.1 74.1	1.211 71.1 74.1	2.00 8 100.0		1.441 71.7 74.1	1.441 71.7 74.1		
561100	2.797 100.0	2.402 85.9 59.3	2.150 76.9 66.7	2.150 76.9 66.7	3.494 100.0		2.527 72.3 66.7	2.527 72.3 66.7		
560001	1.829 100.0	1.359 74.3 66.7	1.089 59.6 74.1	1.089 59.6 74.1	2.371 100.0		1.416 59.7 74.1	1.416 59.7 74.1		
566100	1.637	1.165 71.2 59.3	1.121 68.5 63.0	1.121 68.5 63.0	2.290 100.0		1.460 63.7 63.0	1.460 63.7 63.0		
560002	1.278 100.0	1.184 92.6 48.1	1.110 86.9 48.1	1.110 86.9 48.1	1.645 100.0		1.386 84.3 48.1	1.386 84.3 48.1		
570001	1.039	0.886 85.3 51.9	1.004 96.7 48.1	1.004 96.7 48.1	1.370 100.0		1.222 89.1 48.1	1.222 89.1 48.1		
570002	1.766 100.0	1.330 75.3 63.0	1.482 83.9 51.9	1.482 83.9 51.9	2.113 100.0		1.759 83.2 51.9	1.759 83.2 51.9		
573300	2.115 100.0	2.091 98.8 44.4	2.050 96.9 40.7	2.050 96.9 40.7	2.804 100.0		2.637 94.1 40.7	2.637 94.1 40.7		

RETAIL SALES CATEGORY 2

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

ABS	ſP	D	F	•	FI	N	T	n	1
יכעה	`	n	_	•		11	ı	v	_ ,

1	MDJIFKE	, LINIDE	. ,	
KB	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""></ma<>
550001	2.454 100.0	2.160 88.0 59.3	2.160 88.0 59.3	2.160 88.0 59.3
553100	2.220 100.0	1.703 76.7 81.5	1.703 76.7 81.5	1.703 76.7 81.5
561100	2.108 100.0	1.743 82.7 63.0	1.743 82.7 63.0	1.743 82.7 63.0
560001	2.098 100.0	1.504 71.7 74.1	1.504 71.7 74.1	1.504 71.7 74.1
566100	1.412 100.0	1.171 82.9 48.1	1.171 82.9 48.1	1.171 82.9 48.1
560002	1.972	1.704 86.4 59.3	1.704 86.4 59.3	1.704 86.4 59.3
570001	1.539 100.0	1.328 86.3 55.6	1.328 86.3 55.6	1.328 86.3 55.6
570002	2.541 100.0	2.230 87.7 51.9	2.230 87.7 51.9	2.230 87.7 51.9
573300	4.371 100.0	3.570 81.7 70.4	3.570 81.7 70.4	3.570 81.7 70.4

(PRE / FINIDL) ** 2

•••••		· ·	
METH A MA/MA	METH B1 MB1/MA %MB1 <ma< td=""><td>METH B2 MB2/MA %MB2<ma< td=""><td>METH B3 MB3/MA %NB3<ma< td=""></ma<></td></ma<></td></ma<>	METH B2 MB2/MA %MB2 <ma< td=""><td>METH B3 MB3/MA %NB3<ma< td=""></ma<></td></ma<>	METH B3 MB3/MA %NB3 <ma< td=""></ma<>
3.216 100.0	2.667 82.9 59.3	2.667 82.9 59.3	2.667 82.9 59.3
2.792 100.0	2.190 78.4 81.5	2.190 78.4 81.5	2.190 78.4 81.5
2.672 100.0	2.151 80.5 63.0	2.151 80.5 63.0	2.151 80.5 63.0
2.634 100.0	1.965 74.6 74.1	1.965 74.6 74.1	1.965 74.6 74.1
1.935 100.0	1.485 76.8 48.1	1.485 76.8 48.1	1.485 76.8 48.1
2.697 100.0	2.497 92.6 59.3	2.497 92.6 59.3	2.497 92.6 59.3
1.903 100.0	1.654 86.9 55.6	1.654 86.9 55.6	1.654 86.9 55.6
3.036 100.0	2.694 88.7 51.9	2.694 88.7 51.9	2.694 88.7 51.9
5.490 100.0	4.927 89.7 70.4	4.927 89.7 70.4	4.927 89.7 70.4

RETAIL SALES CATEGORY 2

ABSOLUTE PERCENT CHANGE

	ABS(PRE	/ FIH)			(PRE /	FIN) XX 2	2	
KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""></ma<>
550001	0.753 100.0	0.640 85.0 51.9	0.744 98.8 51.9	0.744 98.8 51.9	0.910 100.0	0.761 83.7 51.9	0.898 98.6 51.9	0.898 98.6 51.9
553100	1.533 100.0	1.506 98.2 37.0	1.234 80.5 74.1	1.234 80.5 74.1	1.775 100.0	1.760 99.1 37.0	1.391 78.4 74.1	1,391 78.4 74.1
561100	1.683 100.0	1.697 100.8 48.1	1.397 83.0 70.4	1.397 83.0 70.4	2.236 100.0	2.245 100.4 48.1	1.930 86.3 70.4	1.930 86.3 70.4
560001	0.628 100.0	0.619 98.6 48.1	0.721 114.7 48.1	0.721 114.7 48.1	0.780 100.0	0.779 99.9 48.1	0.925 118.6 48.1	0.925 118.6 48.1
566100	0.887 100.0	0.894 100.8 51.9	1.031 116.3 40.7	1.031 116.3 40.7	1.036 100.0	1.048 101.2 51.9	1.242 119.9 40.7	1.242 119.9 40.7
560002	1.410 100.0	1.432 101.6 33.3	1.265 89.7 66.7	1.265 89.7 66.7	1.940 100.0	1.967 101.4 33.3	1.805 93.0 66.7	1.805 93.0 66.7
570001	0.861 100.0	0.831 96.5 40.7	0.794 92.2 51.9	0.794 92.2 51.9	1.176 100.0	1.153 98.1 40.7	1.054 89.7 51.9	1.054 89.7 51.9
570002	1.548 100.0	1.410 91.1 51.9	1.318 85.2 59.3	1.318 85.2 59.3	1.902 100.0	1.728 90.8 51.9	1.601 84.2 59.3	1.601 84.2 59.3
573300	3.400 100.0	3.318 97.6 44.4	2.939 86.4 51.9	2.939 86.4 51.9	4.530 100.0	4.442 98.1 44.4	4.122 91.0 51.9	4.122 91.0 51.9

CATEGORY 2

PART B MONTH-TO-MONTH ANALYSIS

•		ABSO	LUTE PERC	ENT CHANGE	ROOT MEAN SQUARE ERROR ((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2						
	ABS((PR	RE/FIN) -	(FINIDL/F	INIDL(-1)))	·	((PRE/F	IN) - (FI	HIDL/FINI	DL(-1))) ** 2	2	
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th></th><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %NB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th></th><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %NB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th></th><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %NB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<>		METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %NB3<ma< th=""><th></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %NB3<ma< th=""><th></th></ma<></th></ma<>	METH B3 MB3/MA %NB3 <ma< th=""><th></th></ma<>		
550001	2.756 100.0	2.248 81.6 70.4	1.996 72.4 77.8	1.996 72.4 77.8		3.476 100.0	70 6	2.612 75.1 77.8	2.612 75.1 ,77.8		
553100		1.829 76.7 66.7	1.518 63.6 85.2	1.518 63.6 85.2		2.736 100.0	2.132 77.9 66.7		1.865 68.2 85.2		
561100	3.360 100.0	2.822 84.0 63.0	2.371 70.6 66.7	2.371 70.6 66.7		4.016 100.0	3.319 82.7 63.0	2.849 71.0 66.7	2.849 71.0 66.7		
560001	2.499 100.0	1.683 67.3 77.8	1.561 62.5 81.5	1.561 62.5 81.5		3.188	2.217 69.5 77.8	2.095 65.7 81.5	2.095 65.7 81.5		
566100	2.498 100.0	1.588 63.6 77.8	1.488 59.6 70.4	1.488 59.6 70.4		2.972 100.0		1.805 60.7 70.4	1.805 60.7 70.4		
560002	2.031 100.0	1.762 86.8 59.3	1.684 82.9 55.6	1.684 82.9 55.6		2.798 100.0	2.556 91.4 59.3	2.583 92.3 55.6	2.583 92.3 55.6		
570001	1.776 100.0	1 285	1.205 67.8 81.5	1.205 67.8 81.5		2.060 100.0	1.649 80.0 74.1	1.536 74.6 81.5	1.536 74.6 81.5		
570002	2.450 100.0	1.776 72.5 74.1	1.558 63.6 74.1	1.558 63.6 74.1		2.873 100.0	2.302 80.1 74.1	1.985 69.1 74.1	1.985 69.1 74.1		
573300	4.307 100.0	3.105 72.1 70.4	3.069 71.3 66.7	3.069 71.3 66.7		5.617 100.0	4.470 79.6 70.4	4.215 75.0 66.7	4.215 75.0 66.7		

CATEGORY 2

PART C YEAR-TO-YEAR ANALYSIS

AB	S	0	L	U٦	ſΕ	P	ER	C	EN1	r c	H	A	N	G	E

	ABS((CY	PRE/PYFIN) - (FIN1	DL/FINIDL(-12))	(CYPRE	/PYFIN) -	(FINIDL/	FINIDL(-12)) ×	* 2
KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th></th><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th></th><th></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th></th><th></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th></th><th></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th></th><th></th></ma<>		
550001	2.079 100.0	1.698 81.7 51.9	1.698 81.7 51.9	1.718 82.6 59.3	2.638 100.0	2.185 82.8 51.9	2.185 82.8 51.9	2.172 82.3 59.3	
553100	2.068 100.0	1.821 88.0 55.6	1.821 88.0 55.6	1.835 88.7 63.0	2.765 100.0	2.384 86.2 55.6	2.384 86.2 55.6	2.400 86.8 63.0	
561100	1.928 100.0	1.816 94.2 63.0	1.816 94.2 63.0	1.676 87.0 66.7	2.419 100.0	2.336 96.5 63.0	2.336 96.5 63.0	2.162 89.4 66.7	
560001	1.360 100.0	1.449 106.5 40.7	1.449 106.5 40.7	1.202 88.4 55.6	1.773 100.0	1.665 93.9 40.7	1.665 93.9 40.7	1.528 86.2 55.6	
566100	1.337	1.526 114.1 48.1	1.526 114.1 48.1	1.117 83.6 63.0	1.588 100.0	2.017 127.0 48.1	2.017 127.0 48.1	1.487 93.6 63.0	
560002	1.716	1.622 94.5 55.6	1.622 94.5 55.6	1.587 92.5 51.9	2.472 100.0	2.407 97.4 55.6	2.407 97.4 55.6	2.348 95.0 51.9	
570001	1.515 100.0	1.363 90.0 63.0	1.363 90.0 63.0	1.376 90.9 59.3	1.982	1.743 87.9 63.0	1.743 87.9 63.0	1.746 88.1 59.3	
570002	1.927 100.0	1.819 94.4 55.6	1.819 94.4 55.6	1.817 94.3 55.6	2.436 100.0	2.348 96.4 55.6	2.348 96.4 55.6	2.281 93.6 55.6	
573300	3.97 0 100.0	3.409 85.9 59.3	3.409 85.9 59.3	3.609 90.9 66.7	5.093 100.0	4.696 92.2 59.3	4.696 92.2 59.3	4.733 92.9 66.7	

CATEGORY 3

PART A LEVEL ANALYSIS

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

ABS	(FII	/	FI	NI	DL)
-----	------	---	----	----	-----

KB	METH A	METH B1	METH B2	METH B3	METH B4
	MA/MA	MB1/MA	MB2/MA	MB3/MA	MB4/MA
	,,,,,,,,,	XMB1 <ma< td=""><td>%MB2<ma< td=""><td>XMB3<ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<></td></ma<></td></ma<>	%MB2 <ma< td=""><td>XMB3<ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<></td></ma<>	XMB3 <ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<>	%MB4 <ma< td=""></ma<>
50000	2.298	1.971	1.901	1.901	1.901
	100.0	85.8	82.7	82.7	82.7
	2000	66.7	77.8	77.8	77.8
60000	1.368	1.031	0.956	0.956	0.956
	100.0	75.4	69.9	69.9	69.9
	200.0	70.4	70.4	70.4	70.4
70000	1.148	1.013	1.066	1.066	1.066
	100.0	88.3	92.9	92.9	92. 9
		55.6	59.3	59.3	59.3

(FIN / FINIDL) ** 2

METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
2.812 100.0	2.494 88.7 66.7	2.358 83.9 77.8	2.358 83.9 77.8	2.358 83.9 77.8
1.814 100.0	1.310 72.2 70.4	1.181 65.1 70.4	1.181 65.1 70.4	1.181 65.1 70.4
1.464	1.275 87.1 55.6	1.318 90.0 59.3	1.318 90.0 59.3	1.318 90.0 59.3

CATEGORY 3

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

ABS	(PRE	/ F	IHIDL)
-----	------	-----	--------

KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
550000	2.341 100.0	2.045 87.3 59.3	2.045 87.3 59.3	2.045 87.3 59.3	2.045 87.3 59.3
560000	1.315 100.0	1.051 80.0 66.7	1.051 80.0 66.7	1.051 80.0 66.7	1.051 80.0 66.7
570000	1.403 100.0	1.302 92.8 59.3	1.302 92.8 59.3	1.302 92.8 59.3	1.302 92.8 59.3

(PRE / FINIDL) ** 2

METH A	METH B1	METH B2	METH B3	METH B4
MA/MA	MB1/MA	MB2/MA	MB3/MA	MB4/MA
*****	%MB1 <ma< td=""><td>%MB2<ma< td=""><td>%MB3<ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<></td></ma<></td></ma<>	%MB2 <ma< td=""><td>%MB3<ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<></td></ma<>	%MB3 <ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<>	%MB4 <ma< td=""></ma<>
3.057	2.518	2.518	2.518	2.518
100.0	82.4	82.4	82.4	82.4
	59.3	59.3	59.3	59.3
1.638	1.307	1.307	1.307	1.307
100.0	79.8	79.8	79.8	79.8
	66.7	66.7	66.7	66.7
1.733	1.606	1.606	1.606	1.606
100.0	92.7	92.7	92.7	92.7
	59.3	59.3	59.3	59.3

CATEGORY 3

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

							_
ARS	/ A I	w	•	E T	'N'T	nı	•

NDSTRDT	, , , , , , ,	• •		
METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
2.850 100.0	2.757 96.8 55.6	2.757 96.8 55.6	2.757 96.8 55.6	2.712 95.2 59.3
2.040 100.0	2.088 102.3 37.0	2.088 102.3 37.0	2.088 102.3 37.0	1.856 91.0 66.7
2.246 100.0	2.215 98.6 29.6	2.215 98.6 29.6	2.215 98.6 29.6	2.111 94.0 66.7

(ADV / FINIDL) ** 2

METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
3.582 100.0	3.488 97.4 ·55.6	3.488 97.4 55.6	3.488 97.4 55.6	3.418 95.4 59.3
2.702 100.0	2.721 100.7 37.0	2.721 100.7 37.0	2.721 100.7 37.0	2.523 93.4 66.7
2.885 100.0	2.871 99.5 29.6	2.871 99.5 29.6	2.871 99.5 29.6	2.750 95.3 66.7

CATEGORY 3

ABSOLUTE PERCENT CHANGE

	ABS(PRE	/ FIN)				(PRE /	FIN) ** 2	!		
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
550000	0.748 100.0	0.653 87.4 51.9	0.671 89.7 63.0	0.671 89.7 63.0	0.671 89.7 63.0	0.888 100.0	0.769 86.6 51.9	0.841 94.6 63.0	0.841 94.6 63.0	0.841 94.6 63.0
560000	0.631 100.0	0.624 98.9 33.3	0.622 98.6 55.6	0.622 98.6 55.6	0.622 98.6 55.6	0.807 100.0	0.798 98.9 33.3	0.781 96.7 55.6	0.781 96.7 55.6	0.781 96.7 55.6
570000	0.702 100.0	0.648 92.3 40.7	0.614 87.5 63.0	0.614 87.5 63.0	0.614 87.5 63.0	0.849 100.0	0.823 97.0 40.7	0.785 92.5 63.0	0.785 92.5 63.0	0.785 92.5 63.0

CATEGORY 3

ABSOLUTE PERCENT CHANGE

1					_					• •
	ABS(ADV	/ PRE)				(ADV /	PRE) ** 2		•	
KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
550000	2.397 100.0	2.007 83.7 70.4	2.007 83.7 70.4	2.007 83.7 70.4	1.976 82.4 81.5	3.095 100.0	2.617 84.6 70.4	2.617 84.6 70.4	2.617 84.6 70.4	2.603 84.1 81.5
560000	2.122 100.0	1.931 91.0 66.7	1.931 91.0 66.7	1.931 91.0 66.7	1.763 83.1 74.1	2.680 100.0	2.445 91.2 66.7	2.445 91.2 66.7	2.445 91.2 66.7	2.218 82.8 74.1
570000	2.187 100.0	2.047 93.6 63.0	2.047 93.6 63.0	2.047 93.6 63.0	1.939 88.6 59.3	2.846 100.0	2.656 93.3 63.0	2.656 93.3 63.0	2.656 93.3 63.0	2.439 85.7 59.3

CATEGORY 3

PART B MONTH-TO-MONTH ANALYSIS

		ABSO	LUTE PERC	ENT CHANG	SE .		ROO	T MEAN SQ	UARE ERRO)R
	ABS((PF	RE/FIN) -	(FINIDL/F	INIDL(-1))))	((PRE/F	:IN) - (FI	HIDL/FINI	DL(-1)))	* × 2
KB	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA XMB4<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA XMB4 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
550000	2.635 100.0	2.133 80.9 70.4	1.899 72.1 77.8	1.899 72.1 77.8	1.899 72.1 77.8	3.279 100.0	2.695 82.2 70.4	2.457 74.9 77.8	2.457 74.9 77.8	2.457 74.9 77.8
560000	1.864 100.0	1.209 64.8 85.2	1.090 58.5 81.5	1.090 58.5 81.5	1.090 58.5 81.5	2.127 100.0	1.482 69.7 85.2	1.373 64.5 81.5	1.373 64.5 81.5	1.373 64.5 81.5
570000	1.471 100.0	1.137 77.3 74.1	0.989 67.3 85.2	0.989 67.3 85.2	0.989 67.3 85.2	1.738 100.0	1.416 81.4 74.1	1.304 75.0 85.2	1.304 75.0 85.2	1.304 75.0 85.2

CATEGORY 3

ABSOLUTE PERCENT CHANGE

ABS((ADV/PRE) - (FINIDL/FINIDL(-1))

(CADV/P	RE) - (FI	NIDL/FINI	DL(-1)))	XX 2
METH A	METH B1 MB1/MA	METH B2 MB2/MA	METH B3 MB3/MA	METH B4 MB4/MA
110,110	%MB1 <ma< td=""><td>%MB2<ma< td=""><td>%MB3<ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<></td></ma<></td></ma<>	%MB2 <ma< td=""><td>%MB3<ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<></td></ma<>	%MB3 <ma< td=""><td>%MB4<ma< td=""></ma<></td></ma<>	%MB4 <ma< td=""></ma<>
3.298	3.270	3.270	3.270	3.214
100.0	99.1 51.9	99.1 51.9	99.1 51.9	97.4 59.3
2.771	2.664	2.664	2,664	2.306
100.0	96.1 59.3	96.1 59.3	96.1 59.3	83.2 66.7
2.533	2.455	2.455	2.455	2.252
100.0	96.9 70.4	96.9 70.4	96.9 70.4	88.9 70.4

KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
50000	2.750 100.0	2.691 97.9 51.9	2.691 97.9 51.9	2.691 97.9 51.9	2.505 91.1 59.3
6000	2.218 100.0	2.083 93.9 59.3	2.083 93.9 59.3	2.083 93.9 59.3	1.794 80.9 66.7
70000	2.023 100.0	1.886 93.2 70.4	1.886 93.2 70.4	1.886 93.2 70.4	1.720 85.0 70.4

CATEGORY 3

ABSOLUTE PERCENT CHANGE

ABS((ADV/PRE) - (PRE/FIN))

KB	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
50000	2.481 100.0	2.003 80.8 74.1	2.001 80.6 55.6	2.001 80.6 55.6	1.879 75.7 77.8
60000	2.008 100.0	1.895 94.4 59.3	1.951 97.1 55.6	1.951 97.1 55.6	1.664 82.9 66.7
70000	2.303 100.0	2.118 92.0 63.0	1.985 86.2 70.4	1.985 86.2 70.4	1.786 77.5 77.8

ROOT MEAN SQUARE ERROR

((ADV/PRE) - (PRE/FIN)) ** 2

METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
3.058 100.0	2.513 82.2 74.1	2.373 77.6 55.6	2.373 77.6 55.6	2.262 73.9 77.8
2.702 100.0	2.531 93.7 59.3	2.484 92.0 55.6	2.484 92.0 55.6	2.186 80.9 66.7
2.952 100.0	2.716 92.0 63.0	2.570 87.1 70.4	2.570 87.1 70.4	2.315 78.4 77.8

CATEGORY 3

PART C YEAR-TO-YEAR ANALYSIS

	ABSOLUTE PERCENT CHANGE						ROO	T MEAN SQ	UARE ERRO	R
	ABS((CY	PRE/PYFIN) - (FINI	DL/FINIDL	.(-12))	(CCYPRE	/PYFIN) -	(FINIDL/	FINIDL(-1	2)) ** 2
KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA XMB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA XMB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""><th>METH A Ma/ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH B4 MB4/MA %MB4<ma< th=""></ma<></th></ma<>	METH B4 MB4/MA %MB4 <ma< th=""></ma<>
550000	1.985 100.0	1.637 82.5 63.0	1.637 82.5 63.0	1.623 81.7 59.3	1.623 81.7 59.3	2.515 100.0	2.081 82.7 63.0	2.081 82.7 63.0	2.060 81.9 59.3	2.060 81.9 59.3
560000	1.081 100.0	1.045 96.6 48.1	1.045 96.6 48.1	0.842 77.9 74.1	0.842 77.9 74.1	1.223 100.0	1.252 102.4 48.1	1.252 102.4 48.1	1.020 83.4 74.1	1.020 83.4 74.1
570000	1.252 100.0	1.209 96.6 59.3	1.209 96.6 59.3	1.153 92.1	1.153 92.1	1.542 100.0	1.469 95.3	1.469 95.3	1.380 89.5	1.380 89.5

RETAIL SALES CATEGORY 3

ABSOLUTE PERCENT CHANGE

ABS((CYADV/PYFIN) - (FINIDL/FINIDL	(-12))
-----------------------	---------------	--------

					•	
KB	METH A MA/MA	METH B1 MB1/MA	METH B2 MB2/MA	METH B3 MB3/MA	METH B4 MB4/MA	
		XMB1 <ma< td=""><td>XMB2<ma< td=""><td>%MB3<ma< td=""><td>XMB4<ma< td=""><td></td></ma<></td></ma<></td></ma<></td></ma<>	XMB2 <ma< td=""><td>%MB3<ma< td=""><td>XMB4<ma< td=""><td></td></ma<></td></ma<></td></ma<>	%MB3 <ma< td=""><td>XMB4<ma< td=""><td></td></ma<></td></ma<>	XMB4 <ma< td=""><td></td></ma<>	
550000	2.834 100.0	2.686 94.8	2.665 94.0	2.581 91.1	2.601 91.8	
i		48.1	48.1	48.1	59.3	,
560000	2.669 100.0	2.589 97.0 63.0	2.581 96.7 59.3	2.418 90.6 63.0	2.312 86.6 70.4	
570000	2.654 100.0	2.572 96.9 63.0	2.553 96.2 63.0	2.607 98.2 63.0	2.504 94.3 66.7	

((CTADV/	Libiu) -	(FINIDL)	LIMIDE (-I	2)) ** 2
METH A	METH B1	METH B2	METH B3	METH B4
MAZMA	MB1/MA	MB2/MA	MB3/MA	MB4/MA
	%MB1 <ma< td=""><td>%MB2<ma< td=""><td>%MB3<ma< td=""><td>XMB4<ma< td=""></ma<></td></ma<></td></ma<></td></ma<>	%MB2 <ma< td=""><td>%MB3<ma< td=""><td>XMB4<ma< td=""></ma<></td></ma<></td></ma<>	%MB3 <ma< td=""><td>XMB4<ma< td=""></ma<></td></ma<>	XMB4 <ma< td=""></ma<>
3.699	3.582	3.567	3.544	3.571
100.0	96.8	96.4	95.8	96.5
	48.1	48.1	48.1	59.3
3.495	3.386	3.352	3.141	3.043
100.0	96.9	95.9	89.9	87.1
	63.0	59.3	63.0	70.4
3.285	3.221	3.197	3.226	3.076
100.0	98.1	97.3	98.2	93.6
	63.0	63.0	63.0	66.7

CATEGORY 3

ABSOLUTE PERCENT CHANGE

ABS((CYADV/PYFIN) - (CYPRE/PYFIN))

METH A METH B1 METH B2 METH B3 METH B4 MB1/MA MB1/MA MB2/MA MB3/MA MB4/MA KB XMB1<MA %MB2<MA XMB3<MA %MB4<MA 2.211 2.189 550000 2.637 2.342 2.388 100.0 83.8 83.0 88.8 90.5 66.7 70.4 70.4 63.0 560000 2.425 2.165 2.157 2.208 2.142 100.0 89.3 88.9 91.0 88.3 66.7 66.7 55.6 55.6 2.422 2.324 570000 2.305 2.417 2.275 94.0 100.0 96.0 95.2 99.8 55.6 55.6 40.7 59.3

ROOT MEAN SQUARE ERROR

((CYADV/PYFIN) - (CYPRE/PYFIN)) ** 2

METH A	METH B1	METH B2	METH B3	METH B4
MA/MA	MB1/MA %MB1 <ma< td=""><td>MB2/MA %MB2<ma< td=""><td>MB3/MA %MB3<ma< td=""><td>MB4/MA %MB4<ma< td=""></ma<></td></ma<></td></ma<></td></ma<>	MB2/MA %MB2 <ma< td=""><td>MB3/MA %MB3<ma< td=""><td>MB4/MA %MB4<ma< td=""></ma<></td></ma<></td></ma<>	MB3/MA %MB3 <ma< td=""><td>MB4/MA %MB4<ma< td=""></ma<></td></ma<>	MB4/MA %MB4 <ma< td=""></ma<>
3.342 100.0	2.841 85.0 66.7	2.817 84.3 70.4	3.018 90.3 70.4	3.100 92.8 63.0
3.210 100.0	2.867 89.3	2.836 88.3	2.776 86.5	2.666 83.0
	66.7	66.7	55.6	55.6
3.172 100.0	2.971 93.7 55.6	2.956 93.2 55.6	3.097 97.7 40.7	2.890 91.1 59.3

RETAIL INVENTORY

PART A LEVEL ANALYSIS

ABSO	LUTE	PERCENT	CHANGE
------	------	---------	--------

Α	RS	1	FI	N	1	FI	N	11	11	1

			•	
KB	METH A	METH B1	METH B2	METH B3
	MAZMA	MB1/MA	MB2/MA	MB3/MA
		XMB1 <ma< td=""><td>XMB2<ma< td=""><td>XMB3<ma< td=""></ma<></td></ma<></td></ma<>	XMB2 <ma< td=""><td>XMB3<ma< td=""></ma<></td></ma<>	XMB3 <ma< td=""></ma<>
531100	0.550	0.528	0.528	0.528
	100.0	96.0	96.0	96.0
		40.7	40.7	40.7
540000	0.348	0.327	0.327	0.327
	100.0	94.1	94.1	94.1
		44.4	44.4	44.4
550000	0.769	0.829	0.829	0.829
r 1	100.0	107.8	107.8	107.8
		37.0	37.0	37.0
560000	0.851	0.731	0.731	0.731
	100.0	85.8	85.8	85.8
		55.6	55.6	55.6
570000	0.510	0.525	0.525	0.525
	100.0	102.9	102.9	102.9
! !		40.7	40.7	40.7

ROOT MEAN SQUARE ERROR

(FIN / FINIDL) ** 2

METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""></ma<>
0.658 100.0	0.627 95.3 40.7	0.627 .95.3 40.7	0.627 95.3 40.7
0.409	0.399 97.6 44.4	0.399 97.6 44.4	0,399 97.6 44.4
0.965 100.0	1.106 114.6 37.0	1.106 114.6 37.0	1.106 114.6 37.0
0.937 100.0	0.839 89.5 55.6	0.839 89.5 55.6	0.839 89.5 55.6
0.634	0.665 104.9 40.7	0.665 104.9 40.7	0.665 104.9 40.7

RETAIL INVENTORY

PART B MONTH-TO-MONTH ANALYSIS

ABSOLUTE PERCENT CHANGE

ABS((FIN/FIN(-1)) - (FINIDL/FINIDL(-1)))				((FIN/FIN(-1)) - (FINIDL/FINIDL(-1))) ** 2					
KB	METH A MA/MA	METH B1 MB1/MA XMB1/HA	METH B2 MB2/MA MB2 <ma< th=""><th>METH B3 MB3/MA %MB3/MA</th><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3/MA	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th></th></ma<>	
531100	0.534 100.0	0.508 95.1 48.1	0.473 88.5 63.0	.0.473 88.5 63.0	0.615 100.0	0.590 96.1 48.1	0.569 92.6 63.0	0.569 92.6 63.0	
540000	0.477 100.0	0.383 80.3 59.3	0.308 64.7 59.3	0.308 64.7 59.3	0.593 100.0	0.515 86.9 59.3	0.425 71.8 59.3	0,425 71.8 59.3	
550000	0.711 100.0	0.815 114.5 40.7	0.734 103.1 44.4	0.734 103.1 44.4	0.904 100.0	1.002 110.8 40.7	0.960 106.1 44.4	0.960 106.1 44.4	
560000	0.597 100.0	0.526 88.3 59.3	0.493 82.6 70.4	0.493 82.6 70.4	0.765 100.0	0.716 93.7 59.3	0.667 87.2 70.4	0.667 87.2 70.4	
570000	0.369 100.0	0.455 123.3 29.6	0.448 121.4 33.3	0.448 121.4 33.3	0.528 100.0	0.591 111.9 29.6	0.621 117.5 33.3	0.621 117.5 33.3	

RETAIL INVENTORY

PART C YEAR-TO-YEAR ANALYSIS

ABSOLUTE PERCENT CHANGE

!										
	ABS((CY	FIN/PYFIN) - (FINI	DL/FINIDL(-12))	((CYFIN/PYFIN) - (FINIDL/FINIDL(-12)) ** 2					
KB	METH A Ma/Ma	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<>	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th></th></ma<>		
531100	0.247 100.0	0.315 127.6 18.5	0.315 127.6 18.5	0.230 93.1 44.4	0.388 100.0	0.428 110.2 18.5	0.428 110.2 18.5	0.291 75.1 44.4		
540000	0.098 100.0	0.248 252.1 14.8	0.248 252.1 14.8	0.113 115.4 40.7	0.137 100.0	0.323 235.4 14.8	0.323 235.4 14.8	0.144 105.2 40.7		
550000	0.443 100.0	0.647 146.0 22.2	0.647 146.0 22.2	0.398 89.7 37.0	0.546 100.0	0.830 152.1 22.2	0.830 152.1 22.2	0.505 92.4 37.0		
560000	0.379 100.0	0.366 96.5 48.1	0.366 96.5 48.1	0.230 60.5 63.0	0.492 100.0	0.509 103.4 48.1	0.509 103.4 48.1	0.266 54.0 63.0		
570000	0.243 100.0	0.407 167.4 22.2	0.407 167.4 22.2	0.135 55.6 48.1	0.333 100.0	0.548 164.6 22.2	0.548 164.6 22.2	0.172 51.7 48.1		

PART A LEVEL ANALYSIS

- 4	I R	5	n	ŧ	11	T	E	P	F	Đ	C	FI	N٦	r	C	H	A	N	G	F
•	10		v	•	v		_		_	м	v	_			•	43	n	м	u	_

ROOT MEAN SQUARE ERROR

ARG	(FIN	/ F	THT	DL)
803	· FIR	, r		DL J

}	VDS/LTM	, LIMIDE	.)	
KB	METH A MA/MA	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""></ma<>
501000	2.654 100.0	2.304 86.8 66.7	2.095 79.0 74.1	2.095 79.0 74.1
506000	1.247 100.0	1.156 92.7 48.1	1.045 83.8 66.7	1.045 83.8 66.7
508000	0.901 100.0	0.969 107.5 44.4	0.858 95.2 48.1	0.858 95.2 48.1
514000	0.993 100.0	0.913 92.0 51.9	0.870 87.6 51.9	0.870 87.6 51.9
518000	1.202 100.0	1.037 86.3 66.7	0.887 73.8 74.1	0.887 73.8 74.1

(FIN / FINIDL) ** 2

METH A	METH B1	METH B2	METH B3
MA/MA	MB1/MA	MB2/MA	MB3/MA
110/110			
	XMB1 <ma< td=""><td>%MB2<ma< td=""><td>%MB3<ma< td=""></ma<></td></ma<></td></ma<>	%MB2 <ma< td=""><td>%MB3<ma< td=""></ma<></td></ma<>	%MB3 <ma< td=""></ma<>
3.266	2.794	2.542	2.542
100.0	85.5	77.8	
100.0			77.8
	66.7	74.1	74.1
1.697	1.582	1.416	1.416
100.0	93.2	83.4	83.4
	48.1	66.7	66.7
1.235	1.310	1.198	1.198
100.0	106.1	97.0	97.0
	44.4	48.1	48.1
1.215	1.083	0.994	0.994
100.0	89.2	81.8	81.8
	51.9	51.9	51.9
1.464	1.247	1.132	1 172
	- : :		1.132
100.0	85.2	77.3	77.3
	66.7	74.1	74.1

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

ABS	(PR	F	FI	NT	DL)

KB	METH A	METH B1	METH B2	METH B3	
	MAZMA	MB1/MA	MB2/MA	MB3/MA	
		XMB1 <ma< td=""><td>XMB2<ma< td=""><td>%MB3<ma< td=""><td></td></ma<></td></ma<></td></ma<>	XMB2 <ma< td=""><td>%MB3<ma< td=""><td></td></ma<></td></ma<>	%MB3 <ma< td=""><td></td></ma<>	
1000	2.760	2.331	2.331	2.331	
	100.0	84.5	84.5		
	100.0			84.5	
		74.1	74.1	74.1	
36000	1.505	1.466	1.466	1.466	
,,,,,	100.0	97.4	97.4		
	100.0			97.4	
		55.6	55.6	55.6	
08000	1.386	1.456	1.456	1.456	
	100.0	105.1	105.1	105.1	
	100.0				
		48.1	48.1	48.1	
4000	1.118	0.978	0.978	0.978	
. 1000					
	100.0	87.5	87.5	87.5	
		48.1	48.1	48.1	
8000	2.645	2.297	2.297	2.297	
. 6000					
	100.0	86.8	86.8	86.8	
		63.0	63.0	63.0	

(PRE / FINIDL) *x 2

METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""></ma<>
3.390 100.0	3 009 74.1	3.029 29.3 74.1	3.029 89.3 74.1
1.985 100.0	1.967 99.1 55.6	1.967 99.1 55.6	1.967 99.1 55.6
1.693 100.0	1.879 111.0 48.1	1.879 111.0 48.1	1.879 111.0 48.1
1.264 100.0	1.192 94.3 48.1	1.192 94.3 48.1	1.192 94.3 48.1
4.757 100.0	4.386 92.2 63.0	4.386 92.2 63.0	4.386 92.2 63.0

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

	ABS(PRE	/ FIN)		
KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< td=""><td>METH B2 MB2/MA %MB2<ma< td=""><td>METH B3 MB3/MA %MB3<ma< td=""></ma<></td></ma<></td></ma<>	METH B2 MB2/MA %MB2 <ma< td=""><td>METH B3 MB3/MA %MB3<ma< td=""></ma<></td></ma<>	METH B3 MB3/MA %MB3 <ma< td=""></ma<>
501000	2.194 100.0	2.214 100.9 55.6	2.130 97.1 55.6	2.130 97.1 55.6
506000	0.915 100.0	0.905 98.9 29.6	0.916 100.1 55.6	0.916 100.1 55.6
508000	1.102 100.0	1.067 96.9 33.3	1.122 101.8 51.9	1.122 101.8 51.9
514000	0.485 100.0	0.531 109.5 63.0	0.489 100.8 63.0	0.489 100.8 63.0

2.115 98.2 59.3 1.834 85.2 81.5 1.834 85.2 81.5

2.153 100.0

518000

(PRE / FIN) ×× 2

METH A	METH B1	METH B2	METH B3
MA/MA	MB1/MA	MB2/MA	MB3/MA
110/110	%MB1 <ma< td=""><td>%MB2<ma< td=""><td></td></ma<></td></ma<>	%MB2 <ma< td=""><td></td></ma<>	
	VLID I / LIW	AUDZZMA	%MB3 <ma< td=""></ma<>
2.592	2.597	2.424	2.424
100.0	100.2	93.5	93.5
100.0			
	55.6	55.6	55. 6
1.229	1,225	1.273	1.273
100.0	99.7	103.6	103.6
100.0			
	29.6	55.6	5,5.6
1.343	1.331	1.345	1.345
100.0	99.1		
100.0		100.2	100.2
	33.3	51.9	51.9
0.588	0.646	0.557	0.557
100.0	109.9	94.7	94.7
	63.0	63.0	63.0
4.626		4.312	4.312
	4.615		
100.0	99.8	93.2	93.2
	59.3	81.5	81.5
	2002		

PART B MONTH-TO-MONTH ANALYSIS

ABSOLUTE PERCENT CHANGE

1					ROOT TERM STORKE ERROR						
:	ABS((PR	RE/FIN) -	(FINIDL/F	INIDL(-1)))	((PRE/F	NIDL/FINI	WIDL/FINIDL(-1))) **				
KB	METH A Ma/Ma	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th></th></ma<>			
501000	3.359 100.0	2.607 77.6 81.5	2.434 72.5 81.5	2.434 72.5 81.5	3.991 100.0	3.038 76.1 81.5	2.831 70.9 81.5	2.831 70.9 81.5			
506000	1.877 100.0	1.720 91.6 48.1	1.691 90.1 51.9	1.691 90.1 51.9	2.625 100.0	2.473 94.2 48.1	2.450 93.4 51.9	2.450 93.4 51.9			
508000	1.776 100.0	1.643 92.5 59.3	1.636 92.1 59.3	1.636 92.1 59.3	2.044 100.0	1.929 94.4 59.3	1.882 92.1 59.3	1.882 92.1 59.3			
514000	0.992 100.0	0.874 88.1 55.6	0.801 80.8 63.0	0.801 80.8 63.0	1.227 100.0	1.156 94.2 55.6	1.045 85.1 63.0	1.045 85.1 63.0			
518000	2.837 100.0	2.539 89.5 66.7	2.458 86.6 63.0	2.458 86.6 63.0	4.687 100.0	4.360 93.0	4.119 87.9	4.119 87.9			

PART C YEAR-TO-YEAR ANALYSIS

ABSOLUTE PERCENT CHANGE

•										
; !	ABSCCCY	PRE/PYFIN) - (FINI	DL/FINIDL(-12))	((CYPRE	/PYFIN) -	(FINIDL/	FINIDL(-12))	×× 2	
KB	METH A Ma/Ma	METH B1 MB1/MA XMB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th></th></ma<>		
501000	2.470 100.0	2.619 106.0 44.4	2.619 106.0 44.4	2.380 96.4 55.6	3.215 100.0	3.370 104.8 44.4	3.370 104.8 44.4	3.100 96.4 55.6		
596000	1.644	1.738 105.7 44.4	1.738 105.7 44.4	1.693 103.0 48.1	2.161 100.0	2.255 104.4 44.4	2.255 104.4 44.4	2.099 97.2 48.1		
508000	1.492 100.0	1.648 110.5 33.3	1.648 110.5 33.3	1.437 96.3 51.9	1.793 100.0	1.978 110.3 33.3	1.978 110.3 33.3	1.810 100.9 51.9		
514000	0.704 100.0	0.979 139.1 25.9	0.979 139.1 25.9	0.733 104.2 51.9	0.857 100.0	1.192 139.1 25.9	1.192 139.1 25.9	0.915 106.8 51.9		
518000	2.755 100.0	2.713 98.5 44.4	2.713 98.5 44.4	2.704 98.2 48.1	5.418 100.0	5.080 93.8 44.4	5.080 93.8 44.4	5.343 98.6 48.1		

PART A LEVEL ANALYSIS

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

ABC	(FIN	/ E	TMT	DI Y
ADJ	LIN	, ,	171	171 7

	ND3(1211	, , , , , , , , ,	• •	
KB	METH A	METH B1	METH B2	METH B3
	MA/MA	MB1/MA XMB1 <ma< td=""><td>MB2/MA %MB2<ma< td=""><td>MB3/MA %MB3/MA</td></ma<></td></ma<>	MB2/MA %MB2 <ma< td=""><td>MB3/MA %MB3/MA</td></ma<>	MB3/MA %MB3/MA
501000	0.540	0.454	0.413	0.413
	100.0	84.0 59.3	76.4 63.0	76.4 63.0
506000	0.480	0.531	0.368	0.368
	100.0	110.7 37.0	76.7 59.3	76.7 59.3
508000	0.621	0.553	0.513	0.513
İ	100.0	89.0 44.4	82.6 55.6	8 2.6 55.6
514000	0.681	0.600	0.583	0.583
:	100.0	88.2 51.9	85.6 55.6	85.6 55.6
518000	1.143	0.917	0.706	0.706
	100.0	80.2 55.6	61.8 70.4	61.8 70.4

(FIN / FINIDL) ** 2

METH A	METH B1	METH B2	METH B3
MA/MA	MB1/MA	MB2/MA	MB3/MA
	%MB1 <ma< td=""><td>%MB2<ma< td=""><td>%MB3<ma< td=""></ma<></td></ma<></td></ma<>	%MB2 <ma< td=""><td>%MB3<ma< td=""></ma<></td></ma<>	%MB3 <ma< td=""></ma<>
	7011D 2 -11IA	WINE VIII	WIIN COLIN
0.649	0.594	0.527	0.527
100.0	91.4	81.2	81.2
100.0			
	59.3	63.0	63.0
0.633	0.711	0.494	0.494
100.0	112.3	78.1	78.1
	37.0	59.3	59.3
0.796	0.666	0.628	0.628
100.0	83.7	78.9	78.9
	44.4	55.6	55.6
	• • • •	22.0	33.0
0.854	0.814	0.749	0.749
100.0	95.3	87.7	87.7
	51.9	55.6	
	31.7	22.0	55.6
1.448	1.212	0.931	0.931
100.0			
100.0	83.7	64.3	64.3
	55.6	70.4	70.4

ABSOLUTE PERCENT CHANGE

ROOT MEAN SQUARE ERROR

				/				

(PRE / FINIDL) ** 2

i	ADSTRE	. LINIDE	. ,		(PRE /	LIUIDE) >	1× 2	
KB	METH A Ma/ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A MA/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""></ma<>
501000	1.752 100.0	1.831 104.5 51.9	1.831 104.5 51.9	1.831 104.5 51.9	2.047 100.0	2.146 104.8 51.9	2.146 104.8 51.9	2.146 104.8 51.9
506000	0.743 100.0	0.836 112.6 40.7	0.836 112.6 40.7	0.836 112.6 40.7	1.031	1.119 108.6 40.7	1.119 108.6 40.7	1.119 108.6 40.7
508000	0.851 100.0	0.768 90.3 51.9	0.768 90.3 51.9	0.768 90.3 51.9	1.017 100.0	0.947 93.1 51.9	0.947 93.1 51.9	0.947 93.1 51.9
514000	1.247 100.0	1.172 94.0 59.3	1.172 94.0 59.3	1.172 94.0 59.3	1.451 100.0	1.398 96.3 59.3	1.398 96.3 59.3	1.398 96.3 59.3
518000	1.629 100.0	1.565 96.1 48.1	1.565 96.1 48.1	1.565 96.1 48.1	1.984	1.893 95.4 48.1	1.893 95.4 48.1	1.893 95.4 48.1

ABSOLUTE PERCENT CHANGE

ABS(PRE / FIN)

KB	METH A	METH B1	METH B2	METH B3	
	MAZMA	MB1/MA	MB2/MA	MB3/MA	
	1107 110				
		XMB1 <ma< td=""><td>%MB2<ma< td=""><td>XMB3<ma< td=""><td></td></ma<></td></ma<></td></ma<>	%MB2 <ma< td=""><td>XMB3<ma< td=""><td></td></ma<></td></ma<>	XMB3 <ma< td=""><td></td></ma<>	
01000	1.851	1.868	1.812	1.812	
	100.0	100.9	97.9	97.9	
	100.0				
		29.6	59.3	59.3	
506000	0.785	0.793	0.775	0.775	
	100.0	101.0	98.8	98.8	
	100.0				
		51.9	51.9	51.9	
508000	0.709	0.758	0.727	0.727	
	100.0	106.9	102.5	102.5	
	100.0				
		51.9	63.0	63.0	
14000	1.382	1.381	1.265	1.265	
	100.0	99.9	91.5	91.5	
	100.0				
		51.9	70.4	70.4	
18000	1.397	1.325	1.223	1.223	
	100.0				
	100.0	94.8	87.5	87.5	
		37 0	E 0 7	E0 7	

ROOT MEAN SQUARE ERROR

(PRE / FIN) ** 2

METH A	METH B1	METH B2	METH B3
MA/MA	MB1/MA	MB2/MA	MB3/MA
*****	%MB1 <ma< td=""><td>%MB2<ma< td=""><td></td></ma<></td></ma<>	%MB2 <ma< td=""><td></td></ma<>	
	VLID T ZUW	ANDZNIA	%MB3 <ma< td=""></ma<>
2.205	2.220	2.188	2 100
			2.188
100.0	100.6	99.2	99.2
	29.6	59.3	59.3
1.070	1.073	0.985	0.985
100.0	100.3	92.1	92.1
	51.9	51.9	51.9
	31.7	31.7	3,4.7
0.897	0.915	0.898	0.898
100.0			
100.0	102.0	100.0	100.0
	51.9	63.0	63.0
1.569	1.573	1.433	1.433
100.0	100.3	91.3	91.3
	51.9	70.4	70.4
1.803	1.756	1.593	1.593
100.0	97.4	88.3	
100.0			88.3
	37.0	59.3	59.3

PART B MONTH-TO-MONTH ANALYSIS

ABSOLUTE PERCENT CHANGE

:				ent onange		Kou	1112011 34	ONKE EKKE	, 15
,	ABS((PR	RE/FIN) -	(FINIDL/F	FINIDL(-1)))	((PRE/F	IN) - (FI	HIDL/FIHI	DL(-1)))	XX 2
KB	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA XMB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>•</th></ma<></th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA XMB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>METH A Ma/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>•</th></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>METH A Ma/MA</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>•</th></ma<></th></ma<></th></ma<></th></ma<>	METH A Ma/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>•</th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th>•</th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th>•</th></ma<>	•
501000	1.657	1.956 118.0 44.4	1.892 114.2 44.4	1.892 114.2 44.4	2.022 100.0	2.302 113.9 44.4	2.256 111.5 44.4	2.256 111.5 44.4	
306000	0.923 100.0	0.980 106.2 51.9	0.936 101.4 51.9	0.936 101.4 51.9	1.235 100.0	1.305 105.7 51.9	1.237 100.2 51.9	1.237 100.2 51.9	
508000	0.677 100.0	0.650 96.0 51.9	0.606 89.6 55.6	0.606 89.6 55.6	0.845 100.0	0.827 97.9 51.9	0.776 91.8 55.6	0.776 91.8 55.6	
514000	1.048	1.014 96.7 55.6	0.954 91.0 66.7	0.954 91.0 66.7	1.246 100.0	1.207 96.9 55.6	1.164 93.4 66.7	1.164 93.4 66.7	
518000	1.938 100.0	1.876 96.8 59.3	1.646 85.0 59.3	1.646 85.0 59.3	2.398 100.0	2.295 95.7 59.3	2.076 86.6 59.3	2.076 86.6 59.3	

PART C YEAR-TO-YEAR ANALYSIS

ABSOLUTE PERCENT CHANGE

	ABS((C)	PRE/PYFIN) - (FINI	DL/FINIDL(-12))	((CYPRE	/PYFIN) -	(FINIDL/	FINIDL(-12)) XX 2
КВ	METH A MA/MA	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma '<="" th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma '<="" th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma></th></ma<>	METH B3 MB3/MA %MB3 <ma '<="" th=""><th>METH A Ma/Ma</th><th>METH B1 MB1/MA %MB1<ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<></th></ma>	METH A Ma/Ma	METH B1 MB1/MA %MB1 <ma< th=""><th>METH B2 MB2/MA %MB2<ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<></th></ma<>	METH B2 MB2/MA %MB2 <ma< th=""><th>METH B3 MB3/MA %MB3<ma< th=""><th></th></ma<></th></ma<>	METH B3 MB3/MA %MB3 <ma< th=""><th></th></ma<>	
301000	2.157 100.0	2.339 108.4 44.4	2.339 108.4 44.4	2.150 99.7 55.6	2.546 100.0	2.743 107.7 44.4	2.743 107.7 44.4	2.544 99.9 55.6	
506000	0.866 100.0	1.036 119.7 37.0	1.036 119.7 37.0	0.883 102.0 59.3	1.211 100.0	1.375 113.6 37.0	1.375 113.6 37.0	1.217 100.5 59.3	
508000	0.794 100.0	0.816 102.8 48.1	0.816 102.8 48.1	0.828 104.3 48.1	0.937 100.0	1.044 111.5 48.1	1.044 111.5 48.1	0.974 104.0 48.1	,1
514000	1.431 100.0	1.404 98.1 63.0	1.404 98.1 63.0	1.454 101.6 63.0	1.634 100.0	1.634 100.0 63.0	1.634 100.0 63.0	1.668 102.1 63.0	
518000	1.565 100.0	1.708 109.1 48.1	1.708 109.1 48.1	1.449 92.6 63.0	2.122 100.0	2.224 104.8 48.1	2.224 104.8 48.1	2.084 98.2 63.0	

ATTACHMENT 4 RETAIL SALES CATEGORY 1

	MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB4 GMMB4/GMMA AV %MB4 <ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<>	GM OF METHB5 GMMB5/GMMA AV %MB5 <ma< th=""></ma<>
	LEVEL ANALYSIS						
ABS(FIN /	/ FINIDL)	0.719 100.0	0.583 81.1 54.1	0.527 73.2 65.2	0.527 73.2 65.2	0.527 73.2 65.2	0.497 69.1 60.7
ABS(PRE /	/ FINIDL)	0.966 100.0	0.780 80.7 54.8	0.780 80.7 54.8	0.780 80.7 54.8	0.780 80.7 54.8	0.773 80.1 57.8
ABS(ADV /	/ FINIDL)	1.536 100.0	1.521 99.0 42.2	1.521 99.0 42.2	1.521 99.0 42.2	1.404 91.4 52.6	1.404 91.4 52.6
ABS(PRE /	/ FIN)	0.586 100.0	0.553 94.3 40.7	0.525 89.5 49.6	0.525 89.5 49.6	0.525 89.5 49.6	0.518 88.4 52.6
ABS(ADV /	PRE)	1.317 100.0	1.273 96.6 49.6	1.273 96.6 49.6	1.273 96.6 49.6	1.155 87.7 67.4	1.208 91.7 60.0
	MONTH-TO-MONTH ANALYSIS						
\BS((PRE	/FIN) - (FINIDL/FINIDL(-1)))	1.219 100.0	0.958 78.6 65.9	0.871 71.5 68.1	0.871 71.5 68.1	0.871 71.5 68.1	0.835 68.5 75.6
ABS((ADV	/PRE) - (FINIDL/FINIDL(-1)))	1.452 100.0	1.394 96.0 55.6	1.394 96.0 55.6	1.394 96.0 55.6	1.257 86.6 65.9	1.186 81.7 65.9
\BS((ADV∕	/PRE) - (PRE/FIN))	1.191 100.0	1.139 95.6 47.4	1.176 98.7 51.1	1.176 98.7 51.1	1.014 85.1 64.4	0.976 81.9 69.6

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB4 GMMB4/GMMA AV %MB4 <ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<>	GM OF METHB5 GMMB5/GMMA AV %MB5 <ma< th=""></ma<>
YEAR-TO-YEAR ANALYSIS						
ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))	0.920 100.0	0.793 86.2 56.3	0.793 86.2 56.3	0.795 86.4 63.0	0.795 86.4 63.0	0.802 87.1 66.7
ABS((CYADV/PYFIN) - (FINIDL/FINIDL(-12))	1.747 100.0	1.657 94.8 52.6	1.647 94.3 51.9	1.656 94.8 50.4	1.593 · 91.2 59.3,	1.599 91.5 68.1
ABS((CYADV/PYFIN) - (CYPRE/PYFIN))	1.527 100.0	1.457 95.4 53.3	1.447 94.7 53.3	1.481 96.9 51.9	1.429 93.6 57.8	1.424 93.3 58.5

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GMMB4/GMMA</th><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GMMB4/GMMA</th><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""><th>GMMB4/GMMA</th><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<>	GMMB4/GMMA	GM OF METHB5 GMMB5/GMMA AV %MB5 <ma< th=""></ma<>
LEVEL ANALYSIS						
(FIN / FINIDL) ** 2	0.906 100.0	0.718 79.2 54.1	0.673 74.2 65.2	0.673 74.2 65.2	0.673 74.2 65.2	0.643 71.0 60.7
(PRE / FINIDL) ** 2 '	1.192 100.0	0.955 80.1 54.8	0.955 80.1 54.8	0.955 80.1 54.8	0.955 80.1 54.8	0.948 79.6 57.8
(ADV / FIHIDL) ** 2	1.896 100.0	1.859 98.0 42.2	1.859 98.0 42.2	1.859 98.0 42.2	1.710 90.2 52.6	1.710 90.2 52.6
(PRE / FIN) ** 2	0.781 100.0	0.710 91.0 40.7	0.679 87.0 49.6	0.679 87.0 49.6	0.679 87.0 49.6	0.668 85.6 52.6
(ADV / PRE) ** 2	1.721 100.0	1.591 92.5 49.6	1.591 92.5 49.6	1.591 92.5 49.6	1.484 86.3 67.4	1.533 89.1 60.0
MONTH-TO-MONTH ANALYSIS						•
((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2	1.471 100.0	1.156 78.5 65.9	1.063 72.3 68.1	1.063 72.3 68.1	1.063 72.3 68.1	1.016 69.0 75.6
((ADV/PRE) - (FINIDL/FINIDL(-1))) ** 2	1.782 100.0	1.728 97.0 55.6	1.728 97.0 · 55.6	1.728 97.0 55.6	1.537 86.3 65.9	1.435 80.5 65.9
((ADV/PRE) - (PRE/FIN)) ** 2	1.544 100.0	1.456 94.3 47.4	1.490 96.5 51.1	1.490 96.5 51.1		1.249 80.9 69.6

RETAIL SALES

CATEGORY 1

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB4 GMMB4/GMMA AV %MB4 <ma< th=""><th>GM OF METHB5 GMMB5/GMMA AV %MB5<ma< th=""></ma<></th></ma<>	GM OF METHB5 GMMB5/GMMA AV %MB5 <ma< th=""></ma<>
YEAR-TO-YEAR ANALYSIS						
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2	1.126 100.0	0.997 88.5 56.3	0.997 88.5 56.3	0.976 86.7 63.0	0.976 86.7 63.0	0.976 86.7 66.7
((CYADV/PYFIN) - (FINIDL/FINIDL(-12)) ** 2	2.132 100.0	1.997 93.7 52.6	1.992 93.4 51.9	2.007 94.1 50.4	1.943 91.1 59.3	1.941 91.0 68.1
((CYADV/PYFIN) - (CYPRE/PYFIN)) ** 2	2.012 100.0	1.815 90.2 53.3	1.809 89.9 53.3	1.907 94.8 51.9	1.871 93.0 57.8	1.842 91.5 58.5

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""></ma<>
LEVEL ANALYSIS				
ABS(FIN / FINIDL)	1.770 100.0	1.454 82.1 58.4	1.408 79.5 60.1	1.408 79.5 60.1
ABS(PRE / FINIDL)	2.188 100.0	1.805 82.5 62.6	1.805 82.5 62.6	1.805 82.5 62.6
ABS(PRE / FIN)	1.240	1.197 96.5 45.3	1.157 93.3 57.2	1.157 93.3 57.2
MONTH-TO-MONTH ANALYSIS				
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))	2.590 100.0	1.939 74.9 70.4	1.760 67.9 73.3	1.760 67.9 73.3
YEAR-TO-YEAR ANALYSIS				
ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))	1.884	1.770 93.9 54.7	1.770 93.9 54.7	1.671 88.7 60.1

RETAIL SALES

CATEGORY 2

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""></ma<>
LEVEL ANALYSIS			· ·	
(FIN / FINIDL) ** 2	2.256 100.0	1.843 81.7 58.4	1.743 77.3 60.1	1.743 77.3 60,1
(PRE / FINIDL) ** 2	2.796 100.0	2.328 83.3 62.6	2.328 83.3 62.6	2.328 83.3 62.6
(PRE / FIN) ** 2	1.568 100.0	1.518 96.8 45.3	1.483 94.6 57.2	1.483 94.6 57.2
MONTH-TO-MONTH ANALYSIS				
((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2	3.184 100.0	2.501 78.5 70.4	2.291 72.0 73.3	2.291 72.0 73.3
YEAR-TO-YEAR ANALYSIS	·			
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2	2.436 100.0	2.312 94.9 54.7	2.312 94.9 54.7	2.184 89.7 60.1

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<>	GM OF METHB4 GMMB4/GMMA AV %MB4 <ma< th=""></ma<>
LEVEL ANALYSIS					
ABS(FIN / FINIDL)	1.534 100.0	1.272 83.0 64.2	1.246 81.3 69.1	1.246 81.3 69,1	1.246 81.3 69.1
ABS(PRE / FINIDL)	1.628 100.0	1.409 86.5 61.7	1.409 86.5 61.7	1.409 86.5 61.7	1.409 86.5 61.7
ABS(ADV / FINIDL)	2.355 100.0	2.336 99.2 40.7	2.336 99.2 40.7	2.336 99.2 40.7	2.198 93.4 64.2
ABS(PRE / FIN)	0.692 100.0	0.642 92.7 42.0	0.635 91.8 60.5	0.635 91.8 60.5	0.635 91.8 60.5
ABS(ADV / PRE)	2.233 100.0	1.994 89.3 66.7	1.994 89.3 66.7	1.994 89.3 66.7	1.890 84.7 71.6
MONTH-TO-MONTH ANALYSIS					
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))	1.933 100.0	1.431 74.0 76.5	1.270 65.7 81.5	1.270 65.7 81.5	1.270 65.7 81.5
ABS((ADV/PRE) - (FINIDL/FINIDL(-1)))	2.311 100.0	2.195 95.0 60.5	2.195 95.0 60.5	2.195 95.0 60.5	1.977 85.6 65.4
ABS((ADV/PRE) - (PRE/FIN))	2.255 100.0	2.003 88.8 65.4	1.979 87.7 60.5	1.979 87.7 60.5	1.774 78.7 74.1

RETAIL SALES

CATEGORY 3

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<>	GM OF METHB4 GMMB4/GMMA AV %MB4 <ma< th=""></ma<>
YEAR-TO-YEAR ANALYSIS					
ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))	1.390 100.0	1.274 91.6 56.8	1.274 91.6 56.8	1.163 83.7 66.7	1.163 83.7 66.7
ABS((CYADV/PYFIN) - (FINIDL/FINIDL(-12))	2.718 100.0	2.615 96.2 58.0	2.599 95.6 56.8	2.534 93.2 58.0	2.469 90.8 65.4,
ABS((CYADV/PYFIN) - (CYPRE/PYFIN))	2.493 100.0	2.233 89.6 63.0	2.216 88.9 64.2	2.321 93.1 55.6	2.266 90.9 59.3

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GNMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GNMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GNMA AV %MB3 <ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<>	GM OF METHB4 GMMB4/GMMA AV %MB4 <ma< th=""></ma<>
LEVEL ANALYSIS					
(FIN / FINIDL) ** 2	1.955 100.0	1.609 82.3 64.2	1.543 78.9 69.1		1.543 78.9 69.1
(PRE / FINIDL) ** 2	2.055 100.0	1.742 84.8 61.7	1.742 84.8 61.7	1.742 84.8 61.7	1.742 84.8 61.7
(ADV / FINIDL) ** 2	3.034 100.0	3.009 99.2 40.7	3.009 99.2 40.7		2.873 94.7 64.2
(PRE / FIN) ** 2	0.847 100.0	0.797 94.0 42.0	0.802 94.6 60.5	0.802 94.6 60.5	0.802 94.6 60.5
(ADV / PRE) ** 2	2.869 100.0	2.571 89.6 66.7	2.571 89.6 66.7	2.571 89.6 66.7	2.415 84.2 71.6
MONTH-TO-MONTH ANALYSIS			1		
((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2	2.297 100.0	1.782 77.6 76.5	1.638 71.3 81.5	1.638 71.3 81.5	1.638 71.3 81.5
((ADV/PRE) - (FINIDL/FINIDL(-1))) ** 2	2.850 100.0	2.775 97.4 60.5	2.775 97.4 60.5	2.775 97.4 60.5	2.556 89.7 65.4
((ADV/PRE) - (PRE/FIN)) ** 2	2.900 100.0	2.585 89.1 65.4	2.475 85.3 60.5	2.475 85.3 60.5	2.254 77.7 74.1

	MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""><th>GM OF METHB4 GMMB4/GMMA AV %MB4<ma< th=""></ma<></th></ma<>	GM OF METHB4 GMMB4/GMMA AV %MB4 <ma< th=""></ma<>
	YEAR-TO-YEAR ANALYSIS					
	((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2	1.680 100.0	1.564 93.1 56.8	1.564 93.1 56.8	1.426 84.9 66,7	1.426 84.9 66.7
	((CYADV/PYFIN) - (FINIDL/FINIDL(-12)) ** 2	3.489 100.0	3.393 97.3 58.0	3.369 96.6 56.8	3.299 94.6 58.0	3.221 92.3 65.4
1	((CYADV/PYFIN) - (CYPRE/PYFIN)) ** 2	3.240 100.0	2.893 89.3 63.0	2.869 88.5 64.2	2.960 91.4 55.6	2.880 88.9 59.3

RETAIL INVENTORY

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""></ma<>
LEVEL ANALYSIS				
ABS(FIN / FINIDL)	0.577 100.0	0.560 97.0 43.7	0.560 97.0 43.7	0.560 97.0 43.7
MONTH-TO-MONTH ANALYSIS				
ABS((FIN/FIN(-1)) - (FINIDL/FINIDL(-1)))	0.525 100.0	0.520 99.0 47.4	0.473 90.0 54.1	0.473 90.0 54.1
YEAR-TO-YEAR ANALYSIS				
ABS((CYFIN/PYFIN) - (FINIDL/FINIDL(-12))	0.251 100.0	0.376 150.0 25.2	0.376 150.0 25.2	0.200 79.8 46.7

RETAIL INVENTORY

MEASU	RE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""></ma<>
LEVEL	ANALYSIS				
(FIN / FINIDL)	** 2	0.688 100.0	0.688 100.0 43.7	0.688 100.0 43.7	0.688 100.0 43.7
монтн-	TO-MONTH ANALYSIS				
((FIH/FIH(-1))	- (FINIDL/FINIDL(-1))) ** 2	0.668 100.0	0.664 99.4 47.4	0.626 93.7 54.1	0.626 93.7 54.1
YEAR-	TO-YEAR ANALYSIS			•	
((CYFIN/PYFIH)	- (FINIDL/FINIDL(-12)) ** 2	0.343	0.502 146.4 25.2	0.502 146.4 25.2	0.250 72.7 46.7

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GMMB2/GMMA</th><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<>	GMMB2/GMMA	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""></ma<>
LEVEL ANALYSIS				
ABS(FIN / FINIDL)	1.289	1.196 92.8 55.6	1.077 83.6 63.0	1.077 83.6 63.0
ABS(PRE / FINIDL)	1.763	1.621 91.9 57.8	1.621 91.9 57.8	1.621 91.9 57.8
ABS(PRE / FIN)	1.182 100.0	1.192 100.8 48.1	1.145 96.8 61.5	1.145 96.8 61.5
MONTH-TO-MONTH ANALYSIS			i	
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))	1.994	1.749 87.7 62.2	84.1	1.677 84.1 63.7
YEAR-TO-YEAR ANALYSIS			,	
ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-	1.637 100.0	1.819 111.1 38.5	1.819 111.1 38.5	1.629 99.5 51.1

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3/MA</th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3/MA</th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3/MA
LEVEL ANALYSIS				
(FIN / FINIDL) ** 2	1.649	1.509 91.5 55.6	1.371 83.2 63.0	1.371 83.2 63.0
(PRE / FINIDL) ** 2	2.329 100.0	2.256 96.9 57.8	2.256 96.9 57.8	2.256 96.9 57.8
(PRE / FIN) ** 2	1.634 100.0	1.660 101.6 48.1	1.584 96.9 61.5	1.584 96.9 61.5
MONTH-TO-MONTH ANALYSIS				
((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2	2.618 100.0	2.359 90.1 62.2	2.238 85.5 63.7	2.238 85.5 63.7
YEAR-TO-YEAR ANALYSIS				
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2	2.252 100.0	2.465 109.5 38.5	2.465 109.5 38.5	2.250 99.9 51.1

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""></ma<>
LEVEL ANALYSIS				1
ABS(FIN / FINIDL)	0.660 100.0	0.593 89.9 49.6	0.502 76.1 60.7	0.502 76.1 60.7
ABS(PRE / FINIDL)	1.176 100.0	1.166 99.2 50.4	1.166 99.2 50.4	1.166 99.2 50.4
ABS(PRE / FIN)	1.148 100.0	1.155 100.6 44.4	1.096 95.5 60.7	1.096 95.5 60.7
MONTH-TO-MONTH ANALYSIS				
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))	1.160 100.0	1.188 102.4 52.6	1.110 95.7 55.6	1.110 95.7 55.6
YEAR-TO-YEAR ANALYSIS				•
ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))	1.271 100.0	1.365 107.4 48.1	1.365 107.4 48.1	1.271 100.0 57.8

MEASURE	GM OF METHA GMMA/GMMA	GM OF METHB1 GMMB1/GMMA AV %MB1 <ma< th=""><th>GM OF METHB2 GMMB2/GMMA AV %MB2<ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<></th></ma<>	GM OF METHB2 GMMB2/GMMA AV %MB2 <ma< th=""><th>GM OF METHB3 GMMB3/GMMA AV %MB3<ma< th=""></ma<></th></ma<>	GM OF METHB3 GMMB3/GMMA AV %MB3 <ma< th=""></ma<>
LEVEL ANALYSIS				•
(FIN / FINIDL) ** 2	0.834 100.0	0.774 92.7 49.6	0.648 77.6 60.7	0.648 77.6 60.7
(PRE / FINIDL) ** 2	1.439 100.0	1.432 99.5 50.4	1.432 99.5 50.4	1.432 99.5 50.4
(PRE / FIN) ** 2	1.430 100.0	1.432 100.1 44.4	1.346 94.1 60.7	1.346 94.1 60.7
MONTH-TO-MONTH ANALYSIS				
((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2	1.445 100.0	1.471 101.8 52.6	1.392 96.3 55.6	1.392 96.3 55.6
YEAR-TO-YEAR ANALYSIS				
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2	1.586 100.0	1.703 107.4 48.1	1.703 107.4 48.1	1.600 100.9 57.8