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USE OF ONE INSTEAD OF TWO OBSERVATIONS 

The use of a single sample observation to estimate the center of a (symmetric) 

distribution can be, in important senses , preferable to the use of the mean/ 

median/midrange of a sample of 2. 
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Let xl, x2, and x3 denote independent observations from a continuous 

distribution symmetric around (for the sake of simplicity) 0; let ?2 = 

(Xl + x2)/2. For given c>O we let P1 denote P(Ixlj<~) and P2 denote 

P(l~21<~). Stigler (1980) gives examples of density functions for 

which 00 can be found such that Pl'P2 and thus for which xl might in 

a sense be preferred to y2 as an estimator of 0, the mean (i.e., center) 

of the distribution. Here we continue this review of the perverse circum- 

stances under which xl might be preferred to y2 and then under which, even 

when all moments are finite, x3 might be preferred to y2. 

Example 1. We begin with "symmetric stable distributions" (Stigler 

1980); one seeks a distribution for which the log of the characteristic 

function (LCF) (of t) is -It!"; thus the LCF of y2 is -It/21" 2 = -ItRj a 

with R = 2(1aa)‘ae For a<1 we have R>l; thus the distribution of 72 is 

that of Rx1 with R>l (by taking a close to 0 we can make R as large as we like), 
. . 

.v- and we of course have Pl>P2 TJ E. The corresponding density function f(x) 

is (l/r)/; exp(-ta) cos tx dt, in general not readily computable, 

with f(0) = (l/r) r (l/a + 1). 

Example 2. For a = 1 and R = 1 we have a Cauchy distribution. Let 

yl, y2, and y2 be independent observations from this distribution, with 

density function l/~(l + y2); let y2 = (yl + y2)/2; let Xi have the magn 

y: and the sign of yi. Thus the density function f(x) is 1/2rrlxl'5(1 + 

(with f(0) = =), and the c.d.f. is .5 + (sign x)(1/n) arc tan 1x/*5. 

Me now show that Pl'P2 v E. It is well known (and implied above) that 

yl and 72 have identical distributions; thus for any ~0 we have 

P(jyli<G) = P(/721<6). Let E = 62; we have P(jyll<d) = Pl, 

and also P(l3ij<S) = P(Jf2/<4. The proof is completed by showing 

that jy2& always (so that P2<P($4). Let ti f IXil; suppose first 

itude 

I4 ) 
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that XI and x2 are of the same sign; then Isi21 -g = (tf + $)/2 

- (t1 + t2)2/4 = (q - t2)2,4>0. Suppose they are of different sign 
2 

with tIX2 (the case tl<t2 is of course similar); then 1221 - y2 

= ct: - $I/2 - (t1 - t2J2/4 = (t: + 2t1t2 - 3t$,4 

= (t1 + 3t2)(t1 - t2)/4,0. 

Example 3. Stigler (1980) considers the density function f(x) 

= (1 + Ixl)-c(c - 1)/2, 01, with c.d.f. .5 + .5 (sign x) Cl -'(I + 1x1)'-'1. 

For c a multiple of .5 one may obtain P2 explicitly; for c = 1.5 and 2 

we have found empirically that PI>P2 (apparently) v E. 

. Let PI2 = P(lxI]<l-ji21). In spite of the result PI>P2 v E in 

these examples, we have (for any distribution) PI2X.5, it is easily 

shown. We compute PI2 = .445 in Example 2, and ,433 (c = 1.5) and .412 

(c = 2) in Example 3. Thus more than half the time y2 is closer than 

xl to 0; but in these examples, apparently, the difference in closeness 

is generally greater when XI is closer than when ?2 is closer. 

Let P32 = P(lx3l+2l)= Although*we always have PI2C.5, it is 

possible to have P32B.5, e.g., in Example 3 .860 and .529. These values, 

like the above values for PI2, are obtained by numerical integration: 

for Ocucl let E,, be such that Pl = u, and let h(u) = P2 (for Ed), 

then P32 = 1 - 0 h(u)du. ? For Example 2 we may show P32>.5 based 

on the fact P(ly3l<ly2l) = .5 and on the above reasoning to show PI'P2. 

In all the above "heavy-tailed" examples no moments of x exist. We 

now consider the variate t having the distribution of x except truncated 

at + T: that is, for -T<a<b<T, P(aczcb) = P(acxcb)/ P(lxl <T); all 

moments of z are finite. By taking T (>O) as large as we like, we can 

(in analogous notation) make P(lz31~)?2j) as close to P32 (> .5) as we 
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like. Despite this result we have (along with Var(fi) = .5 Var(z3) and 

the fact that P(lzIl<~)>P((221<~) v E is impossible) the fact 

E(l$h5CE(lql) + E(1q1)1 = E(lz31). Thus in these examples more than 

half the time z3 is closer than y2 to 0, but apparently the difference in 

closeness is generally greater when 72 is closer than when 23 is closer 

(cf. the pattern for PI2). 
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