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ON THE UNBIASEDNESS PROPERTY OF AIC FOR 

EXACT OR APPROXIMATING MULTIVARIATE ARMA MODELS 

D. F. FINDLEY 
U.S. Bureau of the Census, Washington, D.C. 

ABSTRACT. A rigorous analysis is given of the asymptotic bias of the log 

maximum likelihood as an estimate of the expected log likelihood (the 

negative of the cross-entropy) of the maximum likelihood model, when an 

invertible, conditional, multivariate gaussian ARMA(p,q) model, with or with- 

out coefficient/innovations covariance constraints, is fit to stationary, 

possibly non-gaussian observations. It is assumed that these data 

either (i) arise from a model whose spectral density matrix coincides 

with that of a member of the class of models being fit, or (ii) do not 

conform to any ARMA model but do come from a process whose spectral den- 

sity matrix can be well-approximated by invertible ARMA model spectral 

density matrix functions. For the gaussian sub-case of (i), the innova- 

tions covariance matrices of the models need not be parametrized separately 

from the coefficients, but otherwise a separate parametrization is assumed. 

The analysis shows that, for the purpose of comparing maximum likelihood 

models from different model classes, Akaike's AIC is asymptotically unbiased 

in case (i). In case (ii), its asymptotic bias is of the order of a number less 

than unity raised to the power max(p,q) and so is negligible if max{p,ql 

is not too small. These results extend and complete the somewhat heuristic 

analysis given by Ogata (1980) for exact or approximating univariate auto- 

regressive models. 
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1. INTRODUCTION AND OVERVIEW. 

Let LN[n] denote a log likelihood function of a model from a class, 

parametrized by the coordinate vector n, a member of which i s to be fit to 

the observations x(l),...,x(N). Using E to denote expectati on with respect 

to the true joint distribution of the observations (assumed continuously 

differentiable), set EN[n] = ELN[n]. If ENtrUe designates the expected 

value (assuming it exists) of the true log likelihood function of the data, 

then EN[n] < ENtrUe holds unless LN[n] coincides with the true 

likelihood. Thus, given maximum likelihood estimates, ?lN and TN, from two 

different model classes, if EN[$N] < EN[SN], it seems appropriate 

to prefer the model defined by TN. (See Akaike (1977) and Findley (1982) 

for some perspectives on this criterion.) The difficulty with this procedure 

might appear to be that EN[qN] (and EN[tN]) cannot be calculated 

unless the true joint density of x(l),...,x(N) is known. Akaike (1973) 

proposed, however, that if LN[<~] is a reasonable approximation to 

the true log likelihood, then LN[?jN] - dimn would be an essentially 

unbiased estimate of EN[SN] adequate for such comparisons provided 

N is large enough. (Here dimn denotes the dimension of n, i.e., the 

number of independent parameters estimated in the model.) Akaike's AIC[tN] 

1 with the sma ller is defined to be -2LN[GN] + 2dimn, so the mode 

AIC value is preferred. 
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The analysis of AIC's asymptotic bias properties given in Akaike (1973) 

is not completely rigorous and is restricted to i.i.d. data. Because of 

this restriction, it does not immediately apply to the situation of fitting 

ARMA models to time series. The optimality properties of the minimum AIC 

procedure established in Shibata (1980; 1981a; 1981b) and Taniguchi (1980) 

are more relevant than the bias properties in certain applications, but 

the bias question seems basic and in need of resolution, given the 

influential nature of Akaike's work on AIC (see This Week's Citation 

Classic (1981)). An additional stimulus for this investigation is the 

Bayesian modeling procedure proposed by Akaike (1978), in which 

LN[hN] - dimn is used as an estimate of the log likelihood. 

In the present paper, a rigorous analysis is given of the asymptotic 

bias of EN[GN] - LN[GN], when invertible, and possibly otherwise constrained, 

stationary, gaussian, multivariate ARMA(p,q) models are fit to stationary 

r-dimensional observations x(1) ,...,x(N), under mostly standard data and model 

assumptions described by (2.1-VI) in section 2. Additional notational 

conventions and some background results are also presented there. 

In section 3, we outline the derivation of the formula (3.1) identifying 

this bias as the negative of the trace of F-l[np~q](G[np~q] + 

H[nPsq]}, an expression involving the matrices defined in (2.16-8) 

which describe the covariance matrix of the limiting gaussian distribution 

of ?lN . The details required to fill in this outline are given in Appendix 1. 

Examples 3.1 and 3.2, which present asymptotic properties of a type of uni- 

variate sample autocorrelation, help to illustrate the scope of (3.1) and 
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yield information about some proposed procedures for selecting multi-step- 

ahead forecasting models. 

It is shown in section 4 that, for the case (i) described in the 

Abstract, the trace expression in (3.1) reduces to dimn + (in the non- 

gaussian situation) a scale invariant term involving only the covariances 

and fourth cumulants of the components of the innovations series 

of the observed series x(t). Also for case (i), explicit formulas are 

obtained for F[nPsq], G[,P$qj and H[nP~ql when p or q is 0 

( i.e., moving average or autoregressive models are fit) assuming the model 

parameters n are the model's coeffficients together with the on- and above- 

diagonal elements of its innovations covariance matrix. These formulas 

are used to verify the condition (5.IV) which is imposed in section 5 

where the, perhaps more realistic, case (ii) is considered, when ARMA 

models can only approximately describe the covariance structure of the 

observations. 

The main result of section 5, Proposition 5.3, asserts that in this 

approximating situation, the asymptotic bias formulas obtained in the exact 

modeling situation of section 4 are still accurate to order (6-)max{P,q) 

or better. Here 6- is any positive number less than the number 6 used 

in (2.11) to describe the rate of deca.y of the coefficients of the 

infinite autoregressive and innovations representations of the series x(t). 

The proofs of the preliminary results required for Proposition 5.3 are de- 

ferred to Appendix 2. 
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A less rigorous ana lysis of the asymptoti c bias of AIC for approximating 

univariate autoregressive models is given in Ogata (1980), along with 

interesting examples. After the requisite central limit theorem is 

established, the derivation of the analogue of (3.1) given there does 

beyond presenting the two Taylor expansions we describe in section 3. 

seemingly needed assumption like (2.V) insuring uniform integrability 

and so are proofs of results ana lished in Append 

proof of Propos 

is not mentioned 

logous to those estab 

of the present paper. (A similar lapse occurs in the 

of Taniguchi (1980)). Also, a condition like (5.IV) 

verified, and this too seems essential. 

not go 

Thus a 

is lacking, 

ix 1 

ition 3 

several 

or 

Kozin and Nakajima (1980), who offer a derivation of AIC for time-varying 

AR models in case (i), do make extra assumptions to deal with the difficulty 

of approximating means of quadratic forms having random coefficients. However, 

they neglect to precisely analyze the error in their basic approximation, 

(2-l-13), and the requisite analysis of this error and the verification of 

several subsequent assertions seem to require a number of assumptions beyond 

those that they have made. 

The results of the present paper most directly related to the minimum 

AIC model selection procedure are given in Corollaries 4.1 and 4.2 and in 

Remark 5.3. Some other research related to AIC is summarized briefly in 

Remark 4.2. 



2. ASSUMPTIONS AND OTHER PRELIMINARIES. 

Throughout this paper, x(l),..., x(N) will denote consecutive observations 

from a r-dimensional stationary time series x(t) admitting a representation 

of the form 

x(t) = F c(m)e(t-m) , W)=I > 
m=O 

(2.1) 

where I denotes here the rxr identity matrix and where e(t) = (el(t),...,er(t))T 

(t=O,fl,... ) is a sequence of zero mean random column r-vectors (T denotes 

transpose) with the following properties: 

(2.Ii). For any integers t, u with tPu, e(t) and e(u) are independent. 

(Z.Iii). The absolute moments of order T of the coordinate series -- -- 

ej(t) (lcjcr; t=O,*l ,... ) are uniformly bounded, 

SUPl<j<r; -00<t<m Elej(t)l' < a (2.2). 

Here T is a positive number which will be further specified in (2.VI) below - -- --- - 

and will, in any case, be larger than 8. -- - -- 

(2.Iiii). The mixed moments of order four or less of the coordinate series -- _------ 

ej(t) (l<jcr; - <t<m) do not depend on t. -- - 
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We denote the fourth-order cumulants cum(e,(t), eb(t), et(t), cd(t)) by 

Kabcd (l<a,b,c,dcr) or, if r=l, by K4. Our final assumption on the 

e(t) series is that it has full rank, 

(2.Iiv). C = Ee(t)el(t) is nonsingular. - 

Before we describe the conditions to be imposed on the coefficients 

c(m) in (2.1), we introduce some notational conventions. We use subscripts 

to denote coordinate entries of vectors and matrices. For a matrix K, of 

order v, say, we define IK[, =maxl<i,j<vlKijI. Next, let 6 denote 

a positive number less than 1 whose value is fixed throughout this paper. ---- 

As m increases, we shall require the magnitudes /c(m)\, of the coefficient 

matrices in (2.1) to decay exponentially at a rate more rapid than 6m, 

Jim s"Pm-->cO lJc(m)l,lf/" < 6 , 

a condition which we shall find it convenient to denote by 

I c(m) Ice - oCw)ml (2.3), 

and to describe in words by saying that Ic(m)j, is of order (6-)m. 

In general, it will turn out to simplify the exposition to use 6- to 

denote a positive number (perhaps a different number at each occurrence!) 

whose only significant property is that it is less than 6. (Lemma Al.1 

in Appendix 1 and its proof provide a simple illustration of the utility 

of this notation.) 
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From (2.3), it follows that the series defining the z-transform of the 
co 

coefficients, C(z) = 1 
m=O 

cbdzm, converges uniformly in {lz(c(&-)-I>. 

If the determinant detC(z) has no zeros in this disk, then the coefficients 

of the power series expansion 1 
m=O 

d(m)zm of D(z) = C-l(z) will satisfy 

Id(m - V 

We shall, in fact, assume 

(Wrn? (2.4). 

(2.11). The condition (2.3) holds, and, also, detC(z) has no zeros -- --- 

in ClzlG(S-)-I>. - 

As a consequence of (2.1-II), the series x(t) has stationary moments up 

through order four and its covariance structure will closely resemble that of 

a series conforming to an invertible ARMA model. With Iiylty denoting the 

y-norm, {ElylY11/Y, of a random variable y (where y>l), we note for 

later reference that the assumptions (2.1-11) imply that 

t-u-1 

S"Pl<jGr IlXj(m) -mE, Wm)e '(t-m 3j I14 N o[(s-)t-u] (2.5) 

holds for all t>u+l. 
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We shall model the observations as though they coincided with N observations 

Y(l) ,...,y(N) from a stationary time series y(t) which satisfies some invertible 

ARMA(p,q) model, 

Y(t) + &d(MW +.*.+ dd(pMW = 

E(t) + bhlU)4t-1) +e..+ bhl(ddt-d (2.6)s 

whose r-dimensional innovations series E(t) has covariance matrix c[n]. 

Let A[n](z) and B[n](z) designate the respective matrix polynomials 

I + a[n](l)z +... + a[n](p)zP and I + b[n](l)z +...+ b[n](q)zq. 

The parameterizing vector n is required to belong to a set, ETAP,q , about 

which we shall assume 

(2.111). ETApIq is a compact, convex set in the s-dimensional Euclidean -- --- 

coordinate space IRs having non-empty interior. - The coefficients of AL-n](z) -- - 

and B[n](z) and the entries of innovations covariance matrix ~[n] are -- - 

continuous on ETAPsq and three times continuously differentiable in the - --- -- 

interior of ETAP¶q. Also, for each n in ETAP¶q, detc[n] is nonzero, and - -- - - 

the zeros of detA[n](z) and those of detB[n](z) belong to {Izl>(S-)-I}. --- --- 
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This last assumption insures that for each n in ETApsq, 

C[n](z) = A-l[n](z)B[n](z) and D[n](z) = C-l[n](z) have power 

series expansions, 1 O3 c[n](m)zm and 
m=O 

1 m~od[d(m)zm, whose coefficients 

are or order (&)m, e.g., 

sw,ldCd(m) I, - N(Wml (2.7). 

We now consider the log likelihood function associated with gaussian 

observations y(1) ,...,y(N) satisfying (2.6) with the initial conditions 

y(0) = y(4) = . . . = y(-p+l) = 0 (if p>O) (2.8) 

E(0) = E(4) = . . . = &(-q+l) = 0 (if q>O) (2.9). 

When this log likelihood function is evaluated at x(l),...,X(N), we denote 

the result by LN[n]. Thus, 

L&-d = - $ log det27tC[n] - 

where 

&[n](t) =til d[n](m)x(t-m) (1ctcN) 
m=O 

wm 

(2.11). 
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To express LNCIII explicitly as a quadratic form in the components of the 

observations, we define the Nr-dimensional column vectors xN = vec(x(N),...,x(l)) 

(= [xT(N) xT(N-1) . ..xT(l)lT) and eN[n] = vec(s[n](N),...,c[n](l)), 

and we define C -N[nl to be the NrxNr block diagonal matrix 

diag(c'l[n] ,...,rlCnI). If dN[n] denotes the block upper triangular 

matrix of order Nr whose (m,n)-block (men) is the coefficient matrix 

d[n](n-m), then, by (2.11), eN[n] = dN[n]xN, and 

$$?-I~ = - $ log det28c[n] - $ xNTdNT[n]ZBN[n]dN[n]xN (2.12). 

This is a convenient form for the calculation of ENCn], the expected value 

ELN[nJ of LN[nl with respect to the true joint distribution of xN. (We use 

such notation because n will frequently be made random, n , but always after the 

expectation is calculated. If we wrote ELNCnI, this wouldn't be clear.) If 

r(m) = Ex(t)xT(t-m) (m = O,+l,... ) and if we denote by rN the block Toeplitz 

covariance matrix whose (m,n)-block is rT[m-n], then, from (2.12), 

E&d = - ; log det2rC[n] - $trrNdNT[n]ZSN[n]dN[n] (2.13) 

Here tr denotes the trace operator, and we follow the convention that matrix 

products are calculated before traces. 

Now we introduce the spectral density matrices f(X) = (2~)~~ C(eix)cC*(eix) 

and f[nl(X) = (2n)-1CCnl(eiX)c[n]C*[n](eix) (-n<X<n), where * 

denotes complex conjugate transpose. We recall from Hannan (1970, p. 162) 

that 
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log detX[n] = &JR log det2nf[n](h)dh 
-7c 

It will follow from Proposition Al.1 of Appendix 1 that 

uniformly on ETApsq, where 

(2.14). 

(2.15) 

W[q] = - + log detilnZ[n] - i, 1' trf(h)f-l[n](h)dh 
-7t 

= -rlog276 - $, JR {trf(h)f-l[n](h)+log detf[n](h))dh (2.16), 
-76 

with the second equality coming from (2.14). 

Now, let ?jN, nN, and npvq denote points in ETApsq at which maximum values are 

obtained by LN[n], EN[n] and W[n], respectively. We shall assume 

(2.IVi). For N sufficiently large, qN is, almost surely, an interior 

point of ETApsq. -- 

(2.IVii). nN is the only point of ETA psq ----- at which a maximum value of En[n] --- -- 

is obtained. - 
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(2.IViii). nP,q belongs to the interior of ETApsq and is the only point -- - ----- 

of ETApsq at which a maximum value of W[n] is obtained. - --- -- - 

(2.IViv). The hessian matrix ta2W/ananT}[$~q] is non-singular. -- 

For the cases p=O or q=O most of interest to us (when the parameters n are 

the coefficients and the innovations covariances) (2.IViv) will follow from 

(4.11), (4.13-15) and (5.22) below. For the univariate situation (r=l), 

a set of ARMA(p,q) models with p and q both non-zero for which (2.IViv) 

appears to be satisfied is described in Example 1 of Taniguchi (1980, p. 405). 

The situation regarding (2.IVii-iii), which are required by the reference 

we cite for the central limit theorem below, is more difficult, except in the 

case q=O. An especially important issue is addressed in the following Remark, 

which focuses on (2.IViii), but which is largely applicable to (2.IViii), 

as well. However, we mention without giving details that the bias properties 

of AIC established in this paper can also be obtained in certain circumstances 

in which EN[T~J and W[n] are maximized at finitely many points, all 

in the interior of ETApsq. 

Remark 2.1. If np,q is a point Ep,q maximizing W[n], then (2.IViii) requires, 

in particular, that there be no n f nP,q in ETAp,q such that f[n](h) coincides 

with f[nplq](h). When p>O and q>O, and if no special constraints have been 

imposed, this means, in the univariate case, that AC$,q](z) and 

B[nP,q](z) must not have common roots and that at least one of the final 

coefficients a[npsq](p), b[npsq](q) should be non-zero, to prevent the 

possibility that for some n in ETAp*q, A[n](z) = (l-p)A[np*ql(z), 

and B[n](z) = (1-gz)B[nP,q](z) with @#O. Generalizations of 
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these conditions for the case r>l are discussed in Deistler, Dunsmuir and 

Hannan (1978, pp. 361-366). Hosoya and Taniguchi (1982, p. 149) show that, 

if the true spectral density matrix f(X) coincides with some f[oO](A), 

then W[n] will be maximized at rl", so that we must have 

f(A) = f[rlpsq](X) if (2.IViii) holds. If x(t) is an unconstrained 

ARW pg ,qo) process, then (2.IViii) will fail, therefore, if p>pO and q>qO 

(Hannan (1982) describes some pathological behavior of AIC in this case). 

Remark 2.2. It follows from (2.IViii) and from the uniform convergence of (2.15) 

that limN,,,>,, n N = ,-j-q Thus, for N sufficiently large, nN is in the 

interior of ETApSq, and (2 EN/ ST~~[U~] must be zero, along with (aW/ ti)[r/'sq]. 

Also, in the separately parametrized case, i.e., when rl = (gT,OT)T with c[rl] 

depending only on 5 and C[n](eiX) depending only on 8, it follows from 

(2.1-IV) and (2.5), as in Ljung and Caines (1979), that ?? - T? --->a,s,O. The 

condition (2.IVi) shows that, for sufficiently large N, f 8 LN/ m)c+l = 0 

almost surely. 

In the separately parametrized case just described, one can, also as in 

Ljung and Caines (1979), use (2.5) to verify the central limit theorem for 

N~'~($N _ nN) presented as assumption (2.V) below. This assumption is 

likely to be valid more generally: For example, without assuming such a 

separate parametrization, Hosoya and Taniguchi (1982) show that N1/2(? - npsq) 

has the same limiting distribution, when ;N maximizes Whittle's like- 

lihood ((3.12) below.) We will not use the gaussian property of the 

asymptotic distribution. This property is included in (2.V) because it 

seems always to occur when the rest of (2.V) is satisfied. 
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(2.V). The asymptotic distribution of N1/2(nN - T-I~) is gaussian with - - 

mean 0 and covariance matrix -- 

F-l[,P4l(G[~p,ql + H[qP4])F-1[qp,q1 (2.17), 

where nPp9 is as in (2.IVii), where FiIr13 (= -(a2W/ananTICn1) --- 

is given by - - 

+ log detf[n](X))dX G-8), 

where G[n] has (j,k)-entry 

(2.19), 

and where H[rl] has (j,k)-entry -- 

1 
4 Kabcd 

a,h,c,d=l 

Xl: l 1’ C*(eix)~af-l/a~k}C~l(x)C(ei~)d~lcd 
4a2 -‘II 

wm, 

for 1 ( j,k c dimn (=s). 
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Of course, H[n] = 0 if x(t) is gaussian. 

In order to be able to calculate limits of expected values of quadratic forms 

in ~1/2($N - nN), we assume that RN - nN converges to zero rapidly enough 

that, for some a > 0 

dimn 
(2.V Ii). SupN N1.i2 1 ti$y - 

j=l 

One immediate consequence of (2.VIi) is that for any y > 1, 

supNmin{W,(l+4/u3 d~m',,+~ 
j =1 

- +y < co (2.21). 

Also, using (2.VIi) and Theorem 4.5.2 of Chung (1968, p. 88), one can establish 

the following lemma. 

Lemma 2.1. If FN (N=1,2,..., - ) is a sequence of non-stochastic matrices -- -- 

tending to F[nP,q] and if (2.V) and (2.VIi) hold, then -- 

1 i q--+ NE(GN - n"')T~N($-' - ,,N) = 

tr F-lCnP~q](Gcnp~q] + HCnp*q]) (2.22). 

Without a condition like (2.Vi), it is not possible, in general, to assert 

even that NE($N - nN)(cN - nN)T tends to the covariance matrix of the asymptotic 
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distribution in (2.V). For integer values of 2a, and for the case of 

approximating univariate autoregressive models, Bhansali (1981) derives 

an analogue of (2.VIi) from another condition on (GN - #)'O). 

The Taylor expansions of section 3 produce quadratic forms in N1i2(TN - nN) 

with random coefficients. To deal with these, we will use several straightforward 

consequences of Holder's inequality, such as the following. 

Lemma 2.2. If y > 1, and p,v > 1 satisfying u-l + v-l = 1 are given, then - 

for any matrix AN of order dimn with (Bore1 measurable) entries depending -- -- - - 

on x(1) ,...,x(N), we have - -- 

sN(GN - TJN)TaN($N - qN) II < Y 

dimn 

Our final assumption augments (2.Iii): 

(2.VIii). For a as in (2.VIi) and for some fi > 1, - -- --- 

suPlGjtr;-m<t<a llej(t) l12p(l+a-1) < m. 

(2.23) 



From this condition and (2.1) we get 

SUPIQjCr;-m<t<m llXj(t)ll 
28(lta-1) 

<- 

and, using the Cauchy-Schwarz inequality, also 

SUpl<j,k<r;-m<t,t<m axj(t)xk(t) 11 
B( lta’l) 

< - 

(2.24) 

W5). 
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3. OUTLINE-DERIVATION OF THF RIAS OF L,[?iN] AS AN ESTIMATOR OF EN[tN]. 

In this section, we outline the proof that, for the maximum likelihood 

model determined by f;N and under the assumptions (2.1 - VI), 

limN,,>, ECEN[~;~I - L,[fiN]l = 

- trF-1[uP$q](G[vP*q] + HCrlPgql) (3.1) 

holds, where F[n], G[n] and H[n] are defined by (2.1%2r)), and nN 

(used below) and nP¶q are characterized by (2.1Vi-ii). 
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We begin with the identity 

E&iNl - +CqNl = {$tSNl - EN[T~II 

+ {$hNl - LNhNI} + {$&lN] - LN[GN]} (3.2), 

and the observation that 

E{EN[~~I - L,[qN]} = 0 (3.3), 

since, by definition, EN[nN] = ELN[nN]. Thus (3.1) will follow if we 

demonstrate that 

1 imN--+ E{E,CCiNI - $jhNl} = 

1 im+-+za E{LN[v~I - LN[$N]> = 

- i tr F-l[np~o](G[nP~o] t H[nP,o]) (3.4). 

We shall establish (3.4) with the aid of the first degree Taylor polynomial 

expansions of the first and third expression on the right in (3.2) around nN and ',;N, 

respectively. We denote {a2EN/ananT}[n] by E$n], etc.. 
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As Remark 2.1 explains, for sufficiently large N, the first derivative terms 

are zero, so we have 

$fiNl - EN[nN] = $ ($N-nN)TEl[n"*]($N-nN) 

=- 1 N(fiN 
2 

- nN)T{N-lE,&N]j(;N - nN) + 

’ N(cN - 
2 

nN)T{N-lE&nN*] - N-lE,&nNI>(;N - nN) 

for some nN* on the line segment in IRs between ?iN and nN. Similarly, 

for some nN** on this line segment, 

LNhNs - LN[nN] = ; (nN - $N)TL;[,,N**](,,N -“,IN) 

= $ N(;N - nN)T{N-lE;[nN]l(:N - nN) 

+ $ N($N - ,N)T{N-lL;[nN] - N-lE;[nN]>(;N - nN) 

+ $ NfiN - nN)T{N-lL&nN**] - N-lL;[nN]}(\N - nN) . 

(3.6) 
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Once we have verified that 

1 im&+co N-lE;[~N] = -F[.,lp,q] 

it will follow from Lemma 2.1 that 

1 imN-+ E{N(;N - TJ~)~{N-~E;[~~]}(;~ - 77N)} = 

- i tr F-l[~P,q](G[~P,q] + H[qP,q]) 

Examining (3.5-6), it is clear that (3.8) and (3.9-11 ) below imply 

"N 1 imNdm E{N(rl - Q~)~{N-~E;[~~*] - N-lE;;rqN]} 

l “N h - 49 = 0 

limN+, E{N(?iN - vN)T{dL$T N**] - N-lL;;[,lN]} 

? ciN - qN>> =0 

limN+, EdN - qN)T{N-lL$vN] - N-1&N]) 

- l-IN>> = 0 

(3.7), 

(3.8). 

3.4). 

(3.9) 3 

(3.10), 

(3.11). 
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The assertions (3.7) and (3.9-11) will be established in Appendix 1. 

Remark 3.1. It follows from (3.1) that LN[tN] always has an upward 

bias, asymptotically, as an estimator of EN[tN]. 

ions of (3.1) in After commenting on some generalizations and variat 

Remarks 3.2-5 below, we shall present two examples in wh 

obtain properties of an autocorrelation estimate. 

ich (3.1) is used to 

Remark 3.2. Using the fact that {aF/anl[np~q] = 0, it is easy to verify 

that trF-I[nPsq]G[nPsq] and trF-l[nP,q]H[nP$q], and therefore also the 

right hand side of (3.1), are invariant under changes of variable n4$ which 

are twice continuously differentiable and non-singular in a neighborhood 

about npsq. 

Remark 3.3. The central limit theorems supporting Lemma 2.1 apply to certain 

non-ARMA models as well, as the references given above (2.V) describe. Also, 

it will be seen in the proofs in Appendix 1 that, for establishing (3.7) 

and (3.9-ll), the only use made of the assumption that the coefficients d[n](m) 

in (2.11) come from an ARMA model is to verify the decay rate condition (A1.7). 

This condition, in turn, is used only to establish that the (m,n)-entries of the 

matrices defining the quadratic forms appearing in LN[~] and its first- 

through-third derivatives are of order O[(&)lm-nl]. Thus this property 

and (2.V - VI) imply (3.1). 
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Remark 3.4. If n is so chosen that it parametrizes only the coefficients 

d[nl(m), and ~Cnl is a constant matrix, CO, then (3.1) becomes an 

expression for minus half the asymptotic bias of the positive definite 

quadratic form x -NN N N NTdNT[nN] CO d [n Ix as an estimator of 

-NN N trr'dNT[nN1 CO d [n 1 (see Example 3.2 below). 

Remark 3.5. As was indicated before (2.5), Hosoya and Taniguchi (1982) have 

established a very general central limit theorem for N1/2(GN-nPsq), where 

GN maximizes Whittle's likelihood, 

iNrd = - $09 det2ac[nl -2 1' trIN(X)f"[n](X)dX (3.12), 
-IT 

where IN( ) denotes the periodogram of x(l),...,x(N). Also, the optimality 

investigation of AIC by Taniguchi (1980) is based on properties of quadratic forms 

in NI/2({N - nP,q). Obvious modifications of our proof of (3.1), with'3iN - nN 

replaced by tN - nP,q, yield, in place of (3.1), 

limN,,,h E~NwbNI - q#9, = 

- tr F-l[nPsq](G[nPsq] + H[nP*q]} 

(3.13), 
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the extra term being the asymptotic mean of the expression NW[np~g] - iN[n"'"], 

in contrast to (3.3). However, it would seem more natural to use iN[?] 

as an estimate of EN[;~], rather than of NW[iir'] (assuming that the 

analogue of (2.V) can be established for :N). That is, (3.1) seems more 

fundamental than (3.13). 

9ur main applications of (3.1) come in sections 4 and 5, but the following 

examples help to illustrate its scope. 

Example 3.1. Consider the fitting to univariate observations x(l),...,x(N) 

of an AR(p) model whose first p-l coefficients are constrained to he zero, 

by choosing n = (t;,9) to maximize 

logh~ - e!w{ f 
25 t=1 

x2(t) + y (x(t) - ex(t-p))% 
t=p+1 

This is a special case of a procedure approximating that used by 

Gersch and Kitagawa (1982) to obtain a model for making p-step-ahead 

forecasts. $N and ZN are easily calculated: GN coincides with the 

estimator of the autocorrelation at lag p, p(p), given by 

rNb) = CN 
t=p+1 

x(t)x(t-P)/l;i; x2(t), and 

zN = N-l{ f x2(t) + ! b 
t=1 t=p+1 

(t) - 3, (t-p>p>. 
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We find that 6P v" = p(p), this being the quantity which minimizes 

I' /l-eeipX12f(X)dX, the variance of the p-step-ahead prediction 

e,",or when Bx(t-p) is used to predict x(t). This form of predictor is optimal 

when x(t) is a gaussian AR(l) process. Even in this AR(l) case, however, it follows 

from (3.14) below that for the log likelihood, L~[nl, of this example, 

L,[:N] - 2 is not an asymptotically unbiased estimator of EWfiN] when p' 2. 

Thus the term penalizing for the number of parameters estimated in the cri- 

terion of Gersch and Kitagawa for selecting models for p-step-ahead 

prediction (p> 2) cannot be viewed as an asymptotic bias correction. 

(Shibata (1980) and Taniguchi (1980) show that, for series satisfying (2.3), 

certain classes of asymptotically biased AIC-like criteria share the same 

optimality properties as AIC.) 

Evaluating both sides of minus two times (3.1) for this example, we get 

1 i mN-+ NE 
pr(0) + (N-p) J' Il-rN(p)eiPX12f(h)dX 

-'II -1 

x2(t) + L:=p+l w 1 - rNb)x(t-pH2 

= ~s(SP*O)‘~ J” 11 - p(p)eiPX14f2(X)dA t .Z 
-A 04 

+ 8~@(W’~“)-1 I” (p(p) - cospX)2f2(X)dh 
-II 

(3.14)s 
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where 02 is the innovations variance of x(t), and [PsO = /yXll - p(p)eiPA12f(h)dX. 

It can be argued that the terms pr(0) and IF-I x2(t) can be simultaneously eliminated 

from the left hand side of (3.14) without affecting the limit. 

If f(X) = (02/2*)ll-Be ix '2, the bias formula (3.14) yields the values I 

given in Table 3.1 below for the asymptotic bias of -2LN[$N] as an 

estimator of -~EN[?~]. 

Table 3.1. Values of (3.14) When xt is a Gaussian AR(l) Process 

with Autoregressive Coefficient 8. 

I%P 1 
0.1 4 .oo 
0.2 4 .oo 
0.3 4 .oo 
0.4 4 .oo 
0.5 4 .ocl 
0.6 4 .oo 
0.7 4.00 
0.8 4 .oo 
0.9 4.00 

2 3 4 5 6 7 8 9 
4.69 4.86 4.88 4.89 4.89 4.89 4.89 4.89 
5.22 5.76 5.93 5.98 6.00 6.00 6.00 6 .OO 
5.63 6.62 7.10 7.30 7.38 7.41 7.42 7.43 
5.96 7.40 8.30 8.80 9.07 9.21 9.28 9.31 
6.22 8.08 9.46 10.41 11.04 11.43 11.67 11.81 
6.44 8.67 10.53 12.01 13.14 14.00 14.61 15.06 
6.62 9.16 11.47 13.49 15.24 16.71 17.94 18.95 
6.77 9.58 12.27 14.80 17.15 19.32 21.30 23 .ll 
6.89 9.93 12.95 15.90 18.79 21.60 24.32 26.96 

4.19 
6.00 
7.43 
9.33 

12 .oo 
16.00 
22.67 
36.00 
76.00 

The fact that the range of values of (3.14) increases with p suggests th.e pos- 

sibility that the problem of selecting expressions for prediction with lags 

p>l increases in difficulty with increasing p. 

Example 3.2. Following Remark 3.4, we set 5 = 1 in the log likelihood 

function of Example 3.1 to investigate the quadratic form appearing in 

LN['ll* For the resulting log likelihood, (3.1) yields 
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imN+cu E((N-p) 1’11 - rN(p)eiph12f(X)dX - IN 
t,ptl(x(t) - rN(p)x(t-p))' 

-IT 

= 8n(r(O))-l ITi (p(p) - cospA)2f2(X)dX, 
-IT 

which, as (2.V) shows, is 2r(O) times the asymptotic variance of 

N1i2(rN(p) - p(p)), see also Anderson (1971, p. 489). 

Example 3.3. By Remark 3.2, the same bias formulas hold if f3 in the 

likelihood functions of the preceding examples is replaced by its p-th 

power ep, provided either that p is odd or that p(p)>0 if p is even. 

These likelihoods would arise from the fittiny of a predictor of the form @x(t) 

for x(ttp) (such as an AR(l) model for x(t) would produce). In this case 

eP$O = {p(p)}W (If p is even and p(p)<O, then ep,D = 0 and 

(2.IViv) fails.). 

4. EVALUATION OF THE ASYMPTOTIC BIAS WHEN THE CORRECT MODEL 

BELONGS TO THE CLASS OF MODELS BEING FIT. 

In this section we assume, in addition to (2.1-VI), that 

f(A) = fcnp'ql(q (-7rw71) (4.1), 
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so that the observed series x(t) is an ARMA(pU,qG) process with po<p and qU<q 

(see Remark 2.1). When (4.1) holds, we denote the matrices F[$¶q], 

G[nPsq] and H[qp,q] of (2.17-9) by r[npsq], &Psq] 

and fl[np¶q]. 

Using the formulas (a/anllog detf[n](h) = 

trf-l[~](h){af/a~>[ll](h) and {alanlf-&l(h) = 

-f-l[n](h)Caf/an)[n](h)f-l[n](h) (see Dwyer (1967)), one verifies 

easily that 

trf[d( A) {a2fm1/atlj arlk )[TI]( h) + 

= trf[~l(h){af-l/atlj}Crll(A)f[al(~)IaF-l/arl,}C171(~) 

= trfml[d( h) Iaf/arlj )[rll( h)f-l[vl( h) {?ff/ allk >[d( A) 

= trf-'[~](h){a2f/a~ja~k}[~](~) 

arq,llog detf-'[n](h) 

(lCj,k<dimn) (4.2). 

Integrating the first equation in (4.2) over -~CC~<IT and setting n=nP¶q, 

we obtain immediately from (2.17-8) that 

&lP,q] = &nP,q] (4.3). 
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xc 

Suppose that a gaussian ARMA(P,Q) model parametrized by r is also fit to 

1) ,...,x(N ) by maximizing LN[c] or CN[<], that TN and iN are the respective 

maximizing parameter vectors, and that the analogues of the assumptions made for 

the n-models are satisfied by the r-models, including f(X) = f[sP,Q](X), 

where yp,Q maximizes WCC]. Recall from section 1 that, for model selection, 

If the fourth cumulants of e(t) vanish, 

Kabcd = 0 (l<a,b,c,dcr) (4.4), 

as they do when x(t) is gaussian, then "H[nP,g]=O, and (3.1), (3.14) and (4.3) 

yield 

Proposition 4.1. Then for the maximum Suppose that (4.1) and (4.4) hold. 

likelihood model specified k$N, we have -- 

limN,,>,, EIEN[?~I - LN[S~I} = - dimn (4.5). 

For the model specified by fiN maximizing Whittle's likelihood (3.12), --- 

we have -- 

limW,,* E{NW[GN] - L"[GN]> = 

- dimn + y tr r(lml) T (n+lml)dT(n+\ml)C'ld(n) (4.6). 
Ill=- n=O 
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the sign of EN[tN] - EN[qN], or, by analogous reasoning, of W[iN] - W[?], 

can be used to suggest which model to prefer. By subtracting (4.5) and (4.6) 

from their analogues for the c-models, we obtain 

Corollary 4.1. Under the above assumptions, including (4.4), --- 

LNrfNl - LN[qN] - {dimr; - dimn) 

is an asymptotically unbiased estimator of EN[tN] - EN[;iN], a& -- 

L”N[ tN] - LN[iN] - {dime - dimn} 

(4.7) 

(4.8) 

is an asymptotically unbiased estimator of N{W[p] - W[p]}. -- 

This corollary shows that Akaike's bias correction has the desired 

asymptotic property under (4.4) even when the parameters of the model are sub- 

jected to complicated constraint conditions like those which arise with uniformly 

sampled data from continuous autoregressions or in ARMA data combined with inde- 

pendent additive observation errors. We included the GN-results above 

because (2.V) has not yet been verified for N1/2($N - nN) in this general- 

constraint situation, whereas N1i2(GN - qp,q) has been shown to have the 

requisite limiting distribution, as we discussed in section 2. For the remaind- 

er of the paper, the parametrizations will be one's for which (2.V) has been 

verified, and we will not present results for NW[iN] - L"N[;N],these being 

obvious analogues of those we give for EN[tN] - LN[$N]. 



To generalize Corollary 4.1 to situations in which (4.4) fails, we require 

the innovations covariance matrix to be parametrized separately from the coeffi- 

cients: we specify that n = (ST,oT)T, that 

fCn30) = C[el(eix)c-l[~lC*[eS(ei~) (4.9) 

and, for simplicity's sake, also that 5 be the column vector of length 

r(r+1)/2 whose entries define consecutively the on- and above-diagonal 

entries of I[<], according to the lexicographical ordering of the 

( row, column) indices, 

51 52 l l l Sr (r-1)/2 +l- 

I . 53 . . . 5r(r-1)/2 t2 

ml = : : : : 
. 
. 

I . . . . . 

1 . . . . cr(r+1)/2 

From (4.9) we calculate that 

. 

k I' [a2/a5XTItrf[np~q]f'1C,lo,log detf[n](X)I]n=np qdX 
71 -71 , 

(4.W, 
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this latter expression being the Fisher information matrix for variances and 

covariances of an r-variate gaussian process whose covariance matrix is 

scnp q. 

From the left hand side of (4.11)), it is clear that this is the matrix 

of order r(r+1)/2 in the upper left corner of F[npsq]. If we denote this 

matrix by F (l)[npsq], we obtain from YcCulloch (1982) that 

%I [cpsq] = $T{Z-l[(p~q] $, +[i+q]}K (4.11) 

where K is a full rank matrix of order r(r+1)/2xr2 whose entries do not 

depend on C[CP,q]. 

The bottom right corner of order dimn - r(r+1)/2 of ?[nP,q] is 

F(2)['I 
P,4] = + JIT [a2/aeaeTCtrf[~P,q1(h)f-1C~l(h) + 

log detf[n](A)l]n=np,q dX 

= & 1” [az/aeaeT 
-T 

{trf-I[nPpq]f[n] w + 
log detf-l[n](A)l]n=np,q dx 

(4.12), 

where the second equality comes from integrating the first and last 

expressions in (4.2). A simpler expression for ?(2)[np~q] can be obtained 
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in some important special cases. For example, suppose that x(t) is an 

AR(po) process, that an AR(p) model is being fit with p>po, and that 

9 = vec(a(l),...,a(p)). Then, with rP[npso] denoting the block Toeplitz 

matrix whose (m,n)-block is JX ei(j- k)~f[no~"](~)dh ( = Ex(t-k)xT(t-j) 
-76 

by (4.1), but we use the first definition for later reference) (l<m,ncp), 

the first integral in (4.12) is straightforward to evaluate and leads to 

(4.13). 

Similarly, suppose x(t) is an MA(Q) process, that an MA(q) model is 

fit with qqo and that 0 = vec(b(l),...,b(q)). Then, defining the inverse- 

autocovariance matrix (Cleveland (1972)) at lag j-k by 

rinvhosq]( j-k) = ( 2n)-2Jrne i(k-j)Af-l[qO$q]( h)dh (l<j,kcq), 

we obtain from the second integral in (4.12) the block matrix formula 

F”(2) cTo9ql =-!$~[rPpql@ rin~hovql(j-k)]lgj k<q (4.14). 
, 

Returning to our general discussion based on (4.9), we now demonstrate that 

F[npsq] and &np$q] are block diagonal, 

%lp,ql = o 

L 

F”(l)r~p~ql 0 

F"(2)hP'gl 
I 

= &pi] (4.15). 
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To verify this, observe that for any coordinate ek of 8, {aC/aok~[e](eix) = 

T {ac/aek,[el(m)eimh. Since C"Cel(eix) = lzzo d[8](m)eim", it is 
m=l 

clear that for any constant matrix K (o), K(o)c-1Ce3(ei~)~aC/aej}Cel(eix) 

has the form T w[o](m)eimA, 
m=l 

and hence that its integral over -M&T is 0. 

Therefore, for any 'j and 8k, 

= IT -IT 
tr{ac/a~j}tslC{c-lCEIC-lCel(eix) 

{ac/aek)[el(ei”))* + 

IaC/aek~Cel(eix)c-lCFIC-l[el(ei~)]d~ = 0, 

from which (4.15) follows. 

By a similar calculation, it can be demonstrated that (4.9) implies 

(4.16) 

where ~(l)[~p~g] is the matrix of order r(r+1)/2 whose (j,k)-entry is 
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(4.17). 

((4.16) is due to Hosoya and Taniguichi (1982, p. 138)). In conjunction with 

(3.1), the formulas (4.15-16) lead immediately to 

Proposition 4.2. For a parametrization of the form n = (ST,oT)T as in -- 

(4.9), and for the maximum likelihood model specified hhN, we have --- 

1 i “N--+x EIENCG~I - L,[8N]) = 

-dimn - P4(1 )hW (4.18) 

where f(I)[n p+l and $,)h p,q] are given by (4.11) and (4.17), - 

respectively. 

Suppose an ARMA(p,q) model, parametrized by n = (5T,eT)T as in (4.9), 

and an ARMA(P,Q) model, parametrized by 5 = (ET,~T)T with 5 as before, are 

fit to the same observations. Obviously, dim 5 - dim n = dim w - dim 8, 

the difference in the number of ARMA coefficient parameters. The analogue of 

Corollary 4.1, for separately parametrized models fit to data which need not 

satisfy (4.5), is, therefore, 

Corollary 4.2. For two separately parametrized models specified &maximum -- 

likelihood estimates TN and qN, 



L,CtN] - L,CfiN] - {dimu - dim81 

is an asymptotically unbiased estimator of EN[2N] - E,C;IN]. -- - 
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(4.19) 

Remark 4.1. The propositions and corollaries of this section hold for 

certain non-ARMA models as well, assuming (4.1) holds. See Remark 3.2. 

Remark 4.2. In the context of using the statistics (4.19) in the manner 

indica%ed above to select a univariate AR(p) model from models of orders 0 

through Pmax 3 when the data come from a gaussian AR(po) process with po<pmax, 

Shibata (1976) showed that as rY increases indefinitely, the model selected 

will have order at least p. with probability 1, and order larger 

than p. with non-zero probability depending on Pmax. Hannan (1980a) 

generalized Shibata's results to the case of fitted ARMA(p,q) models when 

p'po, q&lo and either p = p. or q = q,. The results of 

Woodroofe (1982) suggest in this case that the probability of overfitting 

is never larger than 0.288 and that the expected number of overfitted 

parameters will always be less than 1. (When p>po and q>q,, causing 

(2.IVii) to fail, see Remark 2.1, Hannan (1981)b) showed that the minimum 

AIC procedure can overestimate p. and q. with probability arbitrarily 

close to 1, and also that, even in this situation, the one-step-ahead 

prediction error performance of the minimum AIC model appears to be good.) 

In Hannan (198Oa), modifications proposed by various authors of the term 

(dimu - dime) in (4.19) are discussed which yield model selection 

procedures giving consistent estimates of the model order when (4.1) holds. 
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However, for some possibly more realistic situations discussed in the next 

section, where it is assumed that the observations do not conform to any 

ARMA(p,q) model, Shibata (1980, 1981a) and Taniguchi (1980) show that the 

minimum AIC procedure selects models for prediction or spectrum estimation 

in an optimal way according to natural loss functions, whereas the con- 

sistent procedures lead to unboundedly large loss for certain series. 

Thus consistency can be an undesirable property in the context of selecting 

model orders. 

5. APPROXIMATING THE ASYMPTOTIC MEAN OF EN[cN(p,q)] - LN[?,N(p,q)] 

WHEN X(t) IS NOT AN ARMA PROCESS. 

In this section, we assume that the series x(t) satisfies (2.11) but is 

not an ARMA process. We also assume that (3.1) holds for all orders (p,q) 

in a set S with max(p+q: (p,q)eSl = ~0, when the maximum likelihood 

estimates $N+N(p,q) are obtained from separable parametrizations (4.9) 

and the compact parameter sets ETAP,q have the Cartesian product form 

axoP,q (with n=(c,e), gca,edPs4). We assume the models parametrized 

by OPy4 have a certain uniformity property described in (5.1) below, and a 

certain comprehensive property (5.11), as well as the properties implied by 

(2.111), which is assumed to hold. Two additional assumptions, (5.111) 

and (5.IV) below, also play a role. 

Working from such assumptions, we show that the matrices F[nP,4], 

G[nP,q] and H[rlP,4] can be well approximated, as max{p,q} increases, by 

the respective matrices F[npyq], e[np*q] and R[npsq] obtained by 
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replacing f(X) by f[nPsq](i) in their defining expressions. As a 

consequence, the asymptotic bias formulas of section 4 will be seen to be 

correct to within 0[(6-) max{Psql] (Proposition 5.3). The most 

complete results are obtained for autoregressive models and moving average 

models. 

Recall from section 2 that f(X) = 

any n = (t;,e) in ax0P,q, that f[n](X) = 

(2m)-IC[e](ei~)c[~lC*[e](eiX). Our bas 

in this section are (5.1-11): 

(2a)-1C(eiX)CC*(eiX) and, for 

ic requirements 

(5.1). The entries of C[o](eix), D[e](eix)(=C-l[e](eiX)), - 

WW~jHW(e in) and {a2c/aejaek}[e](eiA) 

(l<j,kcdimo;e&P,q) are uniformly bounded for (p,q) E S artcJ -a=~A(r. 

(5.11). Let v be anypositive integer such that (v,q)ES (resp. (p,v)~S.) -- -- 

For any given r-th order matrix polynomial P(z) of degree v with P(O)=1 - 

and such that the roots of detP(z) belong to {Izl>~-l}, there exists A ---p-v 

ed4 (resp. 0P9 v) such that C[e](eix) = P(eiX) -- 

(resp. D[e](eix) = P(eiX)). 

The condition (5.1) seems reasonable since (C(eiX)lol and ID(eiX)I, 

are bounded. The condition (5.11) insures that for v sufficiently large, 

the v-th partial sums of C(eiX) and D(eiA) are associated with candi- 

date models. 
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For each e&P,q, define 

C(e) = iI, n[e](eih)f(x)D*[a](ei')dA. 

This is the covariance matrix of the one-step-ahead forecast error when x(t) 

is forecast as though it conformed to the ARMA(p,q) model with coefficients 

determined by 8. With nP,q = (gP,q,eP,q) denoting the asymptotic limit 

of the maximum likelihood estimates, it is shown in Appendix 2 that the matrix 

relations 

q-yq = C( p q) > 1 
e ’ 

hold, and that 0Psq is uniquely determined by %he property 

det Y,P,S) 
= mingp'q det C(@) 

A least squares analogue lsep'q of Op*q can be defined by 

If a parameter vector $psq in Oppq exists with the propert,y that 

z(cepgq) 6 z(e) for all e&J 

(5.1) 

(5.2). 

(5.3). 

@.a> 
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holds (as happens when r=l, of course, and also, for r>l, when q=O and the 

entries of 8 are the AR-coefficients), then we have ,opyq = lseP9q = epyq, 

because (5.4) implies the corresponding inequalities for the determinants 

and traces, and f3psq uniquely satisfies (5.2). In general, however, we 

will not know whether nppq has the property required of lsop9q in (5.3), 

so we shall make the assumption that a constant M exists, independent of 

(p,q), such that 

(5.111). trIC(epSq) - Cl c M tr{Z(lsep3q) - Cl. 

The following result is established in Appendix 2. 

Proposition 5.1. Under (2.11) and (5.1-III), the assertions (5.5-8) below 

are valid: -- 

tr{C[Ep*q] - Cl - ~[(~-)max@GW] (5.5)s 

IX trK[Bpsq] - C}(eih){C[tP~q] - C1*(eih)dh 
-76 

N q-(~paxWUq)] (5.6), 

,(' tr{D[epsq] - D)(eih){D[eP~q] - D}*(eih)dA 
-7l 

(5.7)s 

Jn jtr{f[nplq] - fl(h)(,,,dh - O[(d-)max'pSql] 
-76 

(5.8). 
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Remark 5.1. The examples constructed by Erohin (1959) show that 

functions C(eiA) satisfying (2.11) exist for which the rates of conver- 

gence given in (5.5-7) are the best possible. Presumably the same is true 

of (5.8). 

One immediate consequence of (5.8) is 

Corollary 5.2. Under the above assumptions, if gpsq(eih) ((p,q)ES) is --- - - 

any family of continuous rxr matrix functions which is uniformly bounded, i.e., - 

sup-liA?A;(p,q)&s Ig Psq(e")l, < ~0 (5.9) 9 

then 

Jz tr{f[npsq] 
-It 

- f}(h)gp$q(eih)dA - 0[(6-)max{psq)] 

and 

(5.1% 

(5.11). 

Now we are ready to analyze F[np,q] - ?[npsq], 

G[ +ql - @np,q] and H[np¶q] - I$-np,q]. We have 

FCrlp~ql - &P,q] = 
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It follows from (5.1), (5.1) and (5.5) that the Hessian matrices 

~a2f~~,a~a~‘~[~p.q](x) (l<j,k<r) satisfy (5.9). Hence, from (5.10) 

and (5.12), we can conclude that 

Cfjk - fjkCnPyq]}(h){a2f-'/ananT}C~p~ql(h)dx 

(5.12). 

IF[np*g] - i[np*g][, u O[(~-)max~p~g3] 

An analogous calculation yields 

(5.13). 

IG[Tpq - i&pq, N o[(s-)max(p+ (5.14), 

and similar arguments based on (5.11) and two obvious applications of the 

matrix identity AlA2-BlB2 = (Al-Bl)(A2-B2) + Bl(A2-B2) + (Al-Bl)B2 lead to 

(H[np,g] - l$np'g]l, m O[(G-)max{p*gl] (5.15). 

To go on to an analysis of the approximation of the bias expression 

trF'1[nPy4](G[~P,4]+H[nP~q]) by tr~'l[np~g](~[np~g] 

+R[nP$g]) we need a property such as 

sups JF-lcnpqo < O" (5.15) 
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(see also Remark 5.2 below). Since C[np,q] > C, by (5.1), the formula 

(4.11) shows that sups li;:)[npsq]l, < ~0. By (4.15) therefore, 

(5.16) is equivalent to 

(5.IV). 

For a univariate example of an approximating autoregressive-moving 

average modeling situation in which (5.IV) appears to be satisfied, see 

Example 1 of Taniguchi (1980). The next proposition, whose proof is given 

in Appendix 2, shows that (5.IV) is satisfied by approximating pure auto- 

regressive and pure moving average models. 

Proposition 5.2. The matrices F"(2)[ap"] and F"(2)[no3q] 

given by (4.13-4) are such that 

sup1<p<m li;:)hp3011, < O3 

and 

sup1<q<a 

Now we establish the main result of this section. 

(5.17) 

(5.18). 
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Proposition 5.3. Suppose 

to the observed series x(t) -- 

that (5.1-11) hold and that the models being fit ---- 

are described by either (a), (b) or (c) below: - - 

(a) Autoregressive models in which the B-parameter coordi- --- 

nates are the coefficients themselves or a one-to-one, --- --- 

twice continuously differentiable transformation thereof; 

(b) Moving average models satisfying (5.111) in which the --- 

o-parameter coordinates are the coefficients themselves -- 

or a one-to-one, twice continuously differentiable --- 

transformation thereof. 

(c) Autoregressive-moving average models such that (5.111-IV) -- 

are satisfied. 

Then, with dime(p,q) denoting the dimension 

of the coordinate vectors in CJpsq, the asymptotic error -- - 

bounds (5.19-20) below are valid: --- 

ItrFW1[np*q]G[np3q] - {r(r+1)/2 + dime(p,q)}l - 0[(6-)max{p~ql] 

(5.1% 

(5.20)s 

where F(I) = + KT{E-'& C-llK with K as in (4.11), and where the -- --- 

(j,k)-entry of H(I) is given by 
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i 
a,h,c,d=l 

Kabcd{az-l/aSj CC-0 
true] 

(5.2I), 

with z[c~~~~]=z, so that trF;:)H(I) is independent of (p,q). 

Consequently, trF-I[nP$q](G[nP$q]+H[nPsq]) - dime(p,q) approaches 

a constant value exponentially rapidly as max{p,ql increases. - - 

Proof. Ry (4.3) and 

the two assertions 

(4.15-6) , the assertions (5.19-20) are equivalent to 

ItrF-l[nP,q]G[np,q] - trf-lCnP~q]@nP~q]l 

- q-(6-)maxhqQ, 

and 

(trF-I[nP,q]H[nP,q] - tr?-l[np~q]fl[np~q]j 

- O[(G-)max{P~ql]. 

These, in turn, are immediate consequences of (5.13-5) and 

lo0 - 0~p.yxhbs)l (5.22), 

which we shall now verify 

start from the equation 

under the assumption that (5.IV) holds. bfe 
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F-I[nP,q] = 

{I + p-I[nP,q](F[nP,q] - ~[nP,S]),-IW[nP,q] 

C=W, 

where I denotes the identity matrix of appropriate order. It follows from 

(5.13) and (5.16) that I~'l[~P~ql(FCnP~ql - fCnp9ql)l,,, is of order 

(g-)max{P,ql, which makes it possible to justify the expansion 

11 + F-l[nP,q](F[nP,q] - eP,q]))-I - I = 

,i, (-l)k~F-1[~P,41(F[~P,ql - F[r,P,q])>k (5.24) 

and to verify that the entries on the left in (5.24) are uniformly of order 

(6-paxbw). After right multiplication by r-I[nP,q], this left hand side 

becomes F-l[nPsq] - F-I[nP*q], by (5.23). Since the entries of 

F[ Psq], (p,q)ES, are bounded, by (5.1) and (5.1), the assertion (5.22) 

follows. Proposition (5.2) and Remark 3.2 show that (5.IV) holds in the 

situations (a) and (b), as well as in (c), so the proof is complete. 

Remark 5.2. Using the fact that, for any fixed positive interger m, 

(p+q)m(6-)max(P,ql is of order (6-)max{Psql, it is easy to see that 

(5.19-20) still hold in situation (c) of Proposition 5.3 when the 

boundedness condition (5.IV) is replaced by one permitting growth of order 

(p+q)"* In fact, if IF '(-l)[np*q]lm grows not faster than (l/Go)max~Pyql 
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with 6Go<1, then (5.19-20) continue to hold if the asserted decay rate, 6- , 

is replaced by (6/60)- . 

Remark 5.3. The preceding remark and Proposition (4.1) together suggest 

that, in the gaussian case and under the assumptions of this section, the 

asymptotic bias of LW['?iN] - {r(r+l)/Z + dime(p,q)} as an estimate of 

EN[cN] can quite generally be expected to decay exponentially rapidly as 

max(p,ql increases and so be negligible, as Akaike proposed, for moderate 

values of max{p,q} and sufficiently large N. Similarly, based on (5.19-20) 

and Corollary 4.2, Akaike's use of LN(EN) - LN(GN) - {dimw - dime) as a 

bias-corrected estimate of EN[tN] - EN[;I*N] is also justified for certain 

classes of non-gaussian series, if N is large enough and max{p,ql is not too small. 

APPENDIX I. PROOFS OF (2.15), (3.7) and (3.9-11). 

We shall have need of two lemmas. 

Lemma Al.l. Suppose RN = CRN(m,n)ll<m,ncN and SN = ~SN(m,n)llcm,nGN 

are block-partitioned matrices of order Nr, for N=1,2,..., whose blocks -- -~ 

(of order r) satisfy -- 

maxIIRN(m,n)l,, ISN(m,n) 1,) ( M(s-) (6-j Immnl (Al .I>, 
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for l<m,n<N and for some constant M(h,) which does not depend on 

m,n or N. - Then a similar constant M"(&-) exists for which the blocks 

of order r of the product matrix [TN(m,n)]lQ,ncN = RNSN satisfy -- -- 

lTNhn) I, < li(sp-)lm-nl (A1.2) 

for l<m,n<N and N=1,2,... . 

Proof. The meaning of (Al.l) is that, for some 6,<6 and some M(s,), 

the magnitudes of the entries of the (m,n)-blocks of RN and SN are bounded 

above by M(60)60 lrnmnl, for l<m,ncN and N=1,2,... . A straightforward 

calculation shows that the quantities ITN(m,n)l, are therefore bounded 

above by M2(&,) Irn-t1l6,l~-~l, and thus also by M(61)611m-nl for 

some M(sl), if S,<61<6. Hence (A1.2) holds. 

Lemma A1.2. Suppose that for each n in ETAp,q, a matrix function --- - - 

@d(z) = [~jk[~l(Z)~(lrjk[~l(Z)l1(j,k~r .& defined, where the 

'?tjk['?lI(Z) and $jk[TlI(Z) are polynomials in z of degree not exceeding do, whose 

coefficients, as functions of n, are three-times continuously differentiable. - - --- 

Assume that the zeros of $jk[q](z) belong to Clzl>(S-)-'I, for all l<j,kcr, ---- 

so that the formula (A1.3) is valid, --- 

~LhlW = T Cd(m>zm (Izl e+) 
m=O 

(A1.3). 



49 

Then, for any differential operator,eJ, in the coordinates of T-I having -- - 

order J, 0~5~3, the entries of the matrices &l&n](m) (m=O,l,... ) are -- 

such that -- 

sup,IfYJ@Cnl(m)I, - NWml (A1.4) 

holds. 

Proof. It follows easily from the formula (see Titchmarsh (1939, p. 90)) 

@[v](m) = (hi)-l JI~I=~- zemel Q[n](z)dz that the entries in the coeffi- 

cient matrices $[n](m) are three times continuously differentiable and also 

that 

BJoCd(z) = 3, ffJdXm)zm (A1.5). 

Clearly, @J@jkCnl(z) = ~J{~jk[nI(z)/~jkcnl(z)} = 

{@jkCn](z)}'J+l pjk[n](z), where pjk[nl(z) is a polynomial 

in z of degree not exceeding Jd, whose coefficients are continuous functions 

of n. Since each $jk[nl(Z) is bounded away from 0 on C~Z\~(S-)-~>, 

it follows from the compactness of ETAp'g that a constant M(&-) exists 

such that 

sup, l/4J@cd(dl, ( M(s-) (A1.6). 
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The assertion (A1.3) is an immediate consequence of (A1.5-6) and Cauchy's 

inequality (Titchmarsh (1939, p. 84)). 

An important consequence of Lemma Al.2 and (2.111) is that, in addition 

to (2.7), we also have 

18JdCnl(m) IQ) - OCW"l (A1.7) 

for any differential operator 811, in the coordinates of n, of order J not 

exceeding 3. Thus, if we partition the matrix dNT[n]C-N[n]dN[n] of (2.13-4) 

into N blocks of order r, denoting the (m,n)-block by {dNT[n]Z-N[n]dN[n]l(m,n), 

it follows from (A1.7) and Lemma Al.1 that a constant M(a,) exists such that 

(A1.8) 

holds for all lam,ncN, N=1,2,... . 

Now we establish the following basic result connecting EN[n] of 

(2.13) with V[n] of (2.16). 

Proposition Al.l. For 8J as in (A1.7), the limit -- -- 
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1imN --->03 IN~WCd - fiJE&d> = 

-l/2 F trr(lml)y (n+lml) BJIdTCnl(n+(mI)C'l[n~d[~l(n)} 
m=do n=O 

(A1.9) 

holds uniformly for T-I in ETAP39. -- 

Proof. First, aided by the trace properties trAlA2 = trA2A1 and trA = trAT, 

we directly calculate 

~JtrrNdNTITI]C-N[~IdN[lll = 

trr(m-n) ~(dT[~l(m)c'l[nId[nl(n)) = 
t=l m,n=O 

N-l-lrnl 
Ni1 trr(lm( )C C (Y-n-(ml) ,&J{dLnl(n+jmj )&nId~nI(n)I1 (ALlO). 

m=-N+l n=O 

From Parseval's formula and the same trace properties, we obtain 

&- ti 11, trf(X)fBICnl(X)dX = 

T trr(lml) F N /35{dTCn1(n+ImI )C'l[nId[nI(n)I 
m=dza n=O 

(Al .ll ) . 
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Also, as a consequence of (A1.7), a constant !?(&-) exists such that 

supnl~JIdT[nl(n+lml)c-l[n~d[~~(n)}l~ 

< qs-) (6-p+lml (A1.12) 

holds for O<(m/,n<=. Since minus twice NBJW[n] - eJEN[n] is equal 

to (Al.ll) minus (A1.10), the assertion of the proposition follows from (A1.12) 

by a straightforward calculation. 

The assertion (3.7) is an immediate consequence of (A1.g) with J=2 and 

the fact (see Remark 2.2) that nN approaches nP,q as N becomes infinite. 

PROOF OF (3.9) 

Applying (A1.S) with J=3, we observe that a constant M exists which is 

an upper bound for the magnitudes of the third derivatives of the entries of 

N-lEN[n] for all n in ETAp,q and all N. Therefore, an application of the 

mean value theorem leads to 

(A1.13), 
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where n N* is as in (3.9). If we set AN = NSIEi[qN*] - NmlEi[nN], then 

from (A1.13) and the triangle inequality for the norm II=II 
1+/l 

we get 

S"pl<j,kGdimn UAj~U~+,-~ c Mqiin iIn;* - nj" 111+~-1. 

Since IInN*- 
j 

+11,4 < nay - nyll+,-1 (lcjcdimn), it 

follows from (2.21) that 

1 i mN-->ao SUPlcj,k<dimn 
N “kjk’l+a-l = 0 (A1.14). 

Now, if we set a=1 and p=lta in (2.23), the resulting expression shows 

that (3.9) is a consequence of (2.V) and (A1.14). 

PROOF OF (3.10) 

The proof resembles that of (3.9) in outline, but there are differences 

detail. To start, we demonstrate that, for a,6 as in (2.VI), a 

constant M(a,p) exists such that for all partial derivative operators 

B3 of order 3, we have 

SUPN,n IINs l$LNcnlR fl(l+a-l) ’ M(a,fi) (A1.15). 
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The uniform boundedness of b310g detc[n] follows from (2.111), so that 

to demonstrate (A1.15) only the terms contributed by the quadratic form of 

N'lLN[?] need be examined. Using (A1.8), we obtain the existence of a con- 

stant M(s,) such that 

I~3CN-lxNTdNT[n]C-N[n]dN[n]xN11 = 

t-1 
N-11 F c trx 

t=l m,n=O 
.(t-n)xT(t-m 

~ N t-l 
< MC&-) NW1 ,& mln=O Ix(t-n)xT(t-m) l,(6-)mtn 

, 
(A1.16). 

If ‘(a,B) denotes the value of the left hand side of (2.25), 
then by calculating the norms ll*llB(lta-1) of both sides of (A1.16) and 

using the triangle inequality, we get 

II fi3 

( Mc6,) +a,B) C(~-){l+-)Y112 , 

from which (A1.15) follows. 

Now, for each index pair (j,k) (l<j,k<dimn) and for each 

N = 1,2,..., the mean value theorem asserts that 
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{N-lL&nN** 1 - NmlI-lCnNI}jk 

dimn 
= 1 N-lIa3LN/anianjankfC~~(nN** - n!) 

i=l i 1 

Let us set holds for some fl = fl(j,k) between nN** and nN. 

AN = N-lL;[n '**I - NBILi[nN]. If we take (l+a" )-norms in (A1.17) 

(A1.17) 

and then apply Hslder's inequality to the norms of products on the right, 

we find that 

llAN Ill+,- 
jk 

N** 
i 

- nrlg(B-l)-l(l+a-l)* 

Thus, from (A1.15), 

so that 1 imp&&+, llA;klll+a-l = 0, by (2.21). This fact, (2.VIi) 

and (2.23), with y=l and u=l+a, yield (3.10). 
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PROOF OF (3.11) 

We shall prove a slightly stronger result than (3.11), namely that 

for some constant M and for a as in (Z.VI), 

1 W”nN - nN)T{N-lL&nN] - N-lE&nNII($N - nN)I 

( MN-min{1/2,(1+3a)/4) 

(Al .18) 

holds. First let us describe how (A1.18) can be obtained once it has been 

established that, for some constant k 

sup,., u{L;;Cnl - EE;Cd }jkII4 < ~N1'2 (Al .19 ‘) 

holds, for l<j,k<dimn: Using Hb'lder's inequality, it is easily 

verified that the left hand side of (A1.18) is bounded above by 

- N-1E~[~Nl}j,kl14 (A1.20). 

Next, note that, by (2.21), there is a constant M'such that 

+8,3 < MN -min(1/2,3(l+a)/8) 

(A1.21). 
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If we set M=m, then (A1.18) follows immediately from (A1.19-21). 

Thus, it only remains to verify (A1.19). 

To do this, it will be convenient to denote the matrix 

a2/a~jask{dNT[n1~-NC,IdNC,II by QN[n]. If QN[n] is partitioned 

into blocks of order r, ON[n] = [I?N[n](m,n)]lGm,nGN, then, b,y (A1.8), 

there is a constant M(&-) such that 

sup, lQNCnl(m,n) loo < M(6-)(6-) Imen’ (A1.22) 

holds, for 16m,n(N, for all N=1,2,... . Since 

{‘-lIIUI - El[n-IIjk = XNTONIQ!,N - EXNTQNrnJXN, the inequality (A1.19) 

is equivalent to 

,,xNTQN[,,],N - ExNTQNC,]xN14 C iN1'2 (A1.23). 

We shall obtain (A1.23) from (A1.22) by using an approximating series G(t) 

gotten by truncating the innovations representation (2.1) of x(t), 

i(t) = tilc(m)e(t-m) 
m=O 

(t=1,2,... ) . 

Clearly, from (2.3) and (2.Iii), if l~v~8, then 

SUpl<i<r IlXi(t) - ii(t)“,, N n[(qtl (A1.24). 
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Defining gN = vec(i(N), g(N-l)..., i(l)), we note that 

XNTQN [T-l IXN - "xNTQN[nl;iN is equal to 

(xN + ;N)TQN[nl(xN - iN). Applying (A1.22), (A1.24) and the 

Cauchy-Schwarz inequality to this last expression, it follows that, for 

y=l or 4, IxNTQN[n]xN - iNTQN[n]iN~~, is bounded by some constant 

independent of N and n. Consequently, (A1.23) can be obtained by showing 

that 

s”PN ,rl N-1/211;NTQN[n];N - E;NTQN[n];NI14 < QD . 

However, from the definition of i(l) ,...,i(N), we can write iNTQN[nIiN 

in the form eNTQN[n]eN, where eN = vec(e(N) e ****s 41)). Further, by (2.3) and 

Lemma Al.l, if Qi[n] is partitioned into blocks of order r, 

Q$Cnl = [Q~[~l(m,n)ll<m,ntN, then the blocks satisfy 

sup, IQ$dhn)l, < $~-)(Wim-nl (A1.25), 

for l<m,n<N and N=1,2,..., where I?(&-) is a constant. Thus 

we have finally reduced the demonstration of (A1.19) to the verification 

that (A1.25) implies 

supN 'I NB2E{eNTQi[n]eN - EeNTQg[n]eN14 < O" l 
, 
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This involves a tedious but rather straightforward calculation based on the 

independence of e(t) (t=1,2,... ) and the uniform boundedness of the eighth 

moments of the components ej(t) (l<j<r) assumed in (2.Iiii), which we 

omit for lack of space. 

APPENDIX 2. DERIVATIONS OF (5.1-2), 

(5.5-8) AND (5.17-8). 

PROOFS OF (5.1-2) 

We note that, from (2.16), it is simple to show, with the aid of the 

differentiation formulas used to establish (4.2), that the equation 

{aw/a~>[(~,e)]=O implies 

cCt;l = c(e) (A2 .l). 

The assertions of (5.1) follow immediately from this and from (A2.4) below. 

One consequence of (A2.1) is that, for maximizing purposes, a con- 

centrated version W[e] of W[nl can be obtained by substituting C(e) for 

C[II] in (2.16). After simplification, this yields 

WC01 = - .$ log det2neC(e) (A2.2). 
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Since Op,q uniquely satisfies W[e p*q] = max@,q W[e], it also uniquely 

satisfies 

detC(ep,q) = mingp,q detC(e) 

which verifies (5.2). 

(~2.3)~ 

PROOFS OF (5.5-8) 

Let L denote the lag operator, Lx(t) = x(t-1). Observe that for any 

0 in Op,q, (D[e](L) - D(L))x(t) is a linear function of x(t-1), x(t-2),... 

and so is uncorrelated with D(L)x(t) = e(t). Hence the covariance matrix, 

q e), of NmMt) is the sum of the covariance matrices of e(t) and 

{D[el(L> - D(L)lx(t). Calculating these from the spectral density matrices, 

we arrive at the following basic formula, 

D[e](eih)f(h)D*[e](ei')dA = c + 
-IT 

./n{D[e]-Dl(eih)f(h){D[e]-Dj*(eih)dx 
-7-t 

(A2.4). 

The key inequality for establishing rates of convergence is a direct 

consequence of (A2.4), (5.1), (5.3) and (5.111): 
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? tr{D[e] - D)(eix)f(x){D[e] - D1*(eiX)dA 
-lT 

> M'ltr{ZISp$q] - C) (edPA) (A2.5). 

We now choose (p,q) E S with p and q large enough that the zeros of the de- 

terminants either of the p-th and later partial sums of D(z) or, when pCq, of 

the q-th and later partial sums of C(z) all lie in Cl~1>6-~}, and also large 

enough that these determinants are uniformly bounded away from zero on 1Izj=l). 

Then (5.11) insures either that a BP in OP,q exists such that D[eP](z) 

coincides with the p-th partial sum of D(z), or that a 84 in OP¶q exists 

such that C[eq](z) coincides with the q-th partial sum of C(z). This 

implies, via (2.3-4), that 

SUP-~<.<.,, (DCep](ei') - D(eiX)I, m OCWPI (A2.6), 

or 

(A2.7). 

It is D[eq](eiX) - D(eiX), not C[eq](eix) - C(eiX), about which 

we need such information. l-lowever, observe that for any 8, 

D[e J(eiA)IC - c[e])(eiX)D(eiA) = DCel(eix) - D(e”) 

W’.f% 
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so that (A2.7) and the uniform boundedness of the lD[eq](ei')l, imply, 

in fact, that 

sup,,Gxcs lo[eq](e”) - D(e”)I, - oC(Wql (A2.9). 

If mf and Mf are, respectively, the smallest and largest eigenva 

occurring in the family f(h) (-ITGA~IT), then 

0 < mf1 < f(X) < MfI (A2.10 

ues 

Using (A2.6), (A2.9), (A2.10) and (A2.5) in an obvious way, we obtain (5.5). 

Note that by (A2.4) with e=ePsq, (5.5) is equivalent to 

J' tr{D[ep,q]-D)(ei~)f(X)oCep~q]-D1*(eiX)dA 
-71 

(A2.11). 

This fact, in conjunction with (A2.10), implies (5.7). 

Now we turn to (5.6). Using (A2.8), we re-express the left-hand side 

of (A2.11) as 1/21~ times 

J' trD[eP,q](eix){C - C[eP,4]}(eix)c(C - C[eP~ql>*(eih> 
-IT 

&&i$ (A2.12). 



63 

The assumption (5.1) insures the existence of a positive constant MC with 

the property that 

C[eP3q](eih)C*[ePsq](eiA) G MCI, 

holds, for all -n;(h<x and (p,q)ES. Hence we have 

D*[ep¶q](eih)D[epsq](eih) z M;lI (A2.13) 

for these h and (p,q). If mC denote the smallest eigenvalue of C, then Cam,I. 

Together with (A2.13), this shows that (A2.12) is greater than or equal to 

mC Mi' I" tr{C-C[epvq]}(eih){C-C[epsq]}*(eiA)clA, 
-7c 

so it is now apparent that (5.6) is implied by (A2.11). 

The assertion (5.8) is a straightforward consequence of (5.5-7). 

PROOFS OF (5.17-8) 

To establish the assertions (5.17-8) of Proposition 5.2, we begin by 

verifying 



suPl(p<m 'ErpCnp~"]Yl'm < c0 
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(A2.14) 

and 

SUpl~q<m ( Ir~nvCnO’ql}-l lo0 < m (A2.15), 

where rp[npp9] and rynv [n"sq J are block-Toeplitz autocovariance 

matrices whose (j,k)-blocks are, respectively, 

IT 

r[np$n](j-k) = i!$ ei (j-k)Xc[eP,O](eiX)C[~p,OJ 
-lI 

7 C*[epsn](eih)dX, 

for l<j,kGp, and 

rinvCvo3ql(j-k) = &J ‘,i (k-j)hD*[e0,q](eix)c-1[~9yq] 
-IT 

7 n[efl,q](eix)dA, 

for l<j,kCq. 

Indeed, from a straightforward multivariate generalization of Theorem 2.2 

of Shaman (1976), we obtain 
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{rP[rjPq)-l < i, Jn D*[ep~"](eih)Z-l[Ep~o] 
-IT 

3 D[eps"](eih)dh 

and 

{rynv[qoJyrl < 1 ? 1x C[e"~q](eiA)c[go~q] 
n -TC 

3 C*[eosq](eih)dh. 

From these matrix inequalities it is clear that the boundedness of 

ID[eP9']I co and IC[eo9q]l co (guaranteed by 5.1) and 

limpA, C-1[$30] = limqA, C-l[Eo,q] = Z-l 

(see (5.5)) together imply (A2.14-15). 

The assertion (5.17) follows immediately from 

(A2.16). 

(4.13), (A2.14) and 

ire some properties of 

I(r)* 
If I(r) is par- 

titioned into blocks of order r, the (j,k)-block is a matrix with 1 in the 

To complete the derivation of (5.18), we requ 

the commutator matrix of order r2, which we denote 

(A2.16) 

k-th row and j-th column and zeros elsewhere. I(r) has the properties that 
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= I(r) and that, for any two matrices Al, A2 of order r, 

(4) 
Al @ A2 = I(r)(A2@ Al)I(r), see Magnus and Neudecker (1979). If I(r) 

denotes a block diagonal matrix of order r2q whose diagonal blocks coincide 

with I(r), it is readily verified that 

We conclude, therefore, from (4.14) that 

F;:) 

(9) 
C,losql = I(r) (crqinvC 

(4) 
,“qY1 @ x-ltsOq)I(r) (A2.17), 

from which 

follows immediately. Thus (5.18) is a consequence of (A2.15-16). 

We remark, in passing, that the formula (A2.17) leads to a formula 

for the large-sample covariance matrix of the maximum likelihood estimates 

of the coefficients of a multivariate moving average process, expressed in 
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terms of the coefficients and the innovations covariance matrix of the 

associated backward moving average model, see Findley (1983). 
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