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ABSTRACT

This paper extends techniques for frequency-based matching (see e.g., Fellegi and Sunter 1969). 
The extended techniques allow table-building under weaker assumptions than those typically
used in practice.  Although CPU requirements can increase, human intervention can be reduced
in some situations.
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1.   INTRODUCTION
   As a special case of their general theory of record linkage, Fellegi and Sunter (1969) presented
a formal model for matching that uses the relative frequency of strings being compared.  For
instance, a surname that is relatively rare in pairs of records taken from two files has more 
distinguishing power than a common one.  Most applications of frequency-based matching have
used close variants of the basic model but have made different simplifying assumptions that
reduce computation and facilitate table building.  
   This paper introduces an extended methodology under weaker assumptions.  While the amount
of computation is significantly increased (as much as an order of magnitude), the need for expert
human intervention is reduced.  Most or all of the matching parameters can be automatically
computed using file characteristics alone.  The methodology does not require calibration data sets
on which true match status has been determined.  No a priori assumptions about parameters or
previously created lookup tables are needed.
   Relative frequency tables are more suitable for situations when one list cannot be assumed a
near subset of another.  When one list is a near subset of the other and a number of other
simplifying assumptions are made, the new method yields tables comparable to those obtained
via previous methods.  If the matching is performed on a subset of pairs (such as those agreeing
on Soundex code of surname or on specific geographic identifiers), then adjustments of the
parameters and decision rules to the subsets are also automatic.
   The outline of this paper is as follows.  In the second section of the paper, background on the
Fellegi-Sunter model of record linkage is presented.  The third section is divided into five parts. 
The first contains the basic theory for the new frequency-based methods.  The theory holds for all
pairs in the product space of two files.  In the second, a method of adjusting for typographical
variation is given.  The method partially accounts for the fact that observed frequencies do not
necessarily correspond to true frequencies.  The third part shows how matching decision rules
can utilize both frequency-based weights and simpler agree/disagree weights obtained via the
Expectation-Maximization (EM) Algorithm (Winkler 1988, 1989a, 1989c; Thibaudeau 1989). 
As the EM-derived weights are sometimes obtained on subsets of pairs such as those agreeing on
geographical subregions, two methods for adjusting the frequency-based weights to subsets are
given.  The fourth part contains empirical results for a comparison of files having substantial
amounts of accurate information.  In the fifth part, a comparison of files having greater amounts



of missing data and/or typographical variation is presented.  The fourth section contains a five
part discussion.  In the first, the relationship of the method of this paper to the method of Fellegi
and Sunter (1969) is discussed.  The second part gives limitations of the adjustment for
typographical variation.  The third part presents characteristics of the subsets that effect the
validity of the adjustment to subsets.  In the fourth part, the relationship to other methods is
described.  The fifth part covers the limitations of the automatic estimation procedures. The fifth
section is a summary. 
   

2.  MODEL OF FELLEGI AND SUNTER 
   The Fellegi-Sunter Model uses a decision-theoretic approach establishing the validity of
principles first used in practice by Newcombe (Newcombe, Kennedy, Axford, and James 1959). 
To give an overview, we describe the model in terms of ordered pairs in a product space.  The
description closely follows Fellegi and Sunter (1969, pp. 1184-1187).  There are two populations 
A  and  B  whose elements will be denoted by  a  and  b.  We assume that some elements are
common to  A  and  B.  Consequently the set of ordered pairs

     A×B = {(a,b): aεA, bεB} 

is the union of two disjoint sets of matches

     M = {(a,b): a=b, aεA, bεB}

and nonmatches

     U = {(a,b): a£b, aεA, bεB}.

   The records corresponding to members of  A  and  B  are denoted by  α(a)  and  ß(b),
respectively.  The comparison vector  γ  associated with the records is defined by:

  γ[α(a),ß(b)] L {γ1[α(a),ß(b)],γ2[α(a),ß(b)],???,γK[α(a),ß(b)]}.

Each of the  γi, i = 1, ???, K, represents a specific comparison.  For instance, γ1  could represent
agreement/disagreement on sex.   γ2  could represent the comparison that two surnames agree and
take a specific value or that they disagree.  Where confusion does not arise, the function  γ  on 
AXB  will be denoted by  γ(α,ß),  γ(a,b), or  γ.  The set of all possible realizations of  γ  is
denoted by  Γ.  The conditional probability of  γ(a,b)  if  (a,b)εM  is given by

       m(γ) L P{γ[α(a),ß(b)]|(a,b)εM} 

            =    Σ     P{γ[α(a),ß(b)]}?P[(a,b)|M].
                 (a,b)εM     
  
Similarly we denote the conditional probability of  γ if  (a,b)εU  by u(γ).  We observe a vector of
information  γ(a,b)  associated with pair  (a,b) and wish to designate a pair as a link (denote the
decision by A1), a possible link (decision  A2), or a nonlink (decision  A3).  A linkage rule  L  is



defined a mapping from  Γ, the comparison space, onto a set of random decision functions  D =
{d(γ)} where

      d(γ) = {P(A1 | γ),P(A2 | γ),P(A3 | γ)}; γεΓ

and

      Σi=1
3 P(Ai | γ) = 1.

   There are two types of error associated with a linkage rule.  A Type I error occurs if an
unmatched comparison is erroneously linked.  It has probability

     P(A1 | U) =  Σ  u(γ)?P(A1 | γ)
                       γεΓ

A Type II error occurs if a matched comparison is erroneously not linked.  It has probability

     P(A3 | U) =  Σ  m(γ)?P(A3 | γ)
                       γεΓ

   Fellegi and Sunter (1969) define a linkage rule  L0,  with associated decisions  A1,  A2, and  A3, 
that is optimal in the following sense:

   Theorem (Fellegi-Sunter 1969).  Let  L' be a linkage rule with associated decisions  A1',  A2',
and  A3' such that it has the same error probabilities  P(A3'|M) = P(A3|M)  and P(A1'|U) = P(A1|U) 
as  L0.  Then  L0  is optimal in that  P(A2|U) @ P(A2'|U)  and  P(A2|M) @ P(A2'|M).

   In other words, if  L' is any competitor of  L0  having the same Type I and Type II error rates
(which are both conditional probabilities), then the conditional probabilities (either on set  U  or 
M) of not making a decision under rule  L'  are always greater than under  L0.  To describe rule 
L0, we need the following likelihood ratio   

          R L R[γ(a,b)] = m(γ)/u(γ).                           

We observe that, if  γ  represents a comparison of  K  fields, then there are at least  2K

probabilities of form  m(γ).   If  γ   represents agreements of  K  fields, we would expect this to
occur more often for matches  M  than for nonmatches  U.  The ratio  R  would then be large. 
Alternatively, if  γ  consists of disagreements, the ratio  R  would be small.  If the numerator is
positive and the denominator is zero in (2.1), we assign an arbitrary very large number to the
ratio.  The Fellegi-Sunter linkage rule  L0  takes the form:



 If  R > Tµ, then denote  (a,b)  as a link.

 If Tλ @ R @ Tµ, then denote  (a,b)  as a possible link. (2.2)

 If  R < Tλ, then denote  (a,b)  as a nonlink.

The cutoffs Tλ and Tµ are determined by the desired error rate bounds µ and λ on the false match
rates and false nonmatch rates, respectively.  The Fellegi-Sunter linkage rule is actually optimal
with respect to any set  Q  of ordered pairs in  A×B  if we define error probabilities  PQ  and a
linkage rule  LQ  conditional on  Q.  Thus, it may be possible to define subsets of  A×B  on which
we make use of differing amounts and types of available information.

3.   FREQUENCY-BASED MODEL    
3.1.  Basic Frequency-Based Parameter Estimation
   In this section, we also closely follow the terminology of Fellegi and Sunter (1960, section
3.3.1).  Let the true frequencies of occurrence of a specified string in files A and B, respectively,
be 

        f1, f2, ???, fm ;     Σj=1
m fj = NA

and
   
        g1, g2, ???, gm ;    Σj=1

m  gj = NB.

Let the corresponding true frequencies in  ANB  be

        h1, h2, ???, hm ;    Σj=1
m hj = NAB.

We note that  hj @ min (fj,gj), j = 1, 2, ???, m.  For the empirical examples of sections 3.3 and 
3.4, for j = 1, 2, ???, m, we will generally use  

    hj = min (fj,gj)     if  fj>1  or  gj>1

    hj = 2/3             otherwise.

The latter part of the definition implicitly means that, if we observe only one pair agreeing on a
specific string, the pair has 2/3 chance of being a match and 1/3 chance of being a nonmatch. 
   The following additional notation is needed

  eA  or  eB      the respective probabilities of a name being misreported in  A  or  B 
                  (assumed independent of a particular name);

  eA0  or  eB0    the respective probabilities of a name not being reported
                        in  A  or  B  (name independent);



  eT              the probability that a name is differently (but correctly)
                      reported in the two files.

Then we have the following representations:

   P(string agrees & jth string| M) 
         = hj (1-eA)(1-eB)(1-eT)(1-eA0)(1-eB0)/NAB
         K hj (1-eA-eB-eT-eA0-eB0)/NAB;

   P(string disagrees | M) 
     = [1-(1-eA)(1-eB)(1-eT)](1-eA0)(1-eB0)   K   eA + eB + eT;

   P(string missing on either file | M) 
     = 1 - (1-eA0)(1-eB0)  K  eA0 + eB0;

   P(string agrees & jth string| U) 
      = (fj?gj - hj)(1-eA)(1-eB)(1-eT)(1-eA0)(1-eB0)/(NA?NB - NAB)
      K (fj?gj - hj)(1-eA-eB-eT-eA0-eB0)/(NA?NB - NAB);

   P(string disagrees | U) 
     = [1-(1-eA)(1-eB)(1-eT) Σj=1

m (fj?gj -hj)/(NA?NB - NAB)](1-eA0)(1-eB0)
      K [1-(1-eA-eB-eT)Σj=1

m (fj?gj - hj)/(NA?NB - NAB)](1-eA0-eB0); and

  P(string missing on either file | U) 
    = 1 - (1-eA0)(1-eB0)  K  eA0 + eB0.

   We define the weight for agreement on the  jth  specific string, j = 1, 2, ???, m,  by

    wgt(j) =  hj?(NA?NB-NAB) / ((fj?gj-hj)?NAB), (3.1a)

if either  fj>1  or  gj>1  and by 

    wgt(j) = 2?(NA?NB-NAB)/NAB   (3.1b)
 
if  fj=1  and  gj=1.  The weight represents the probability of agreement over the entire product
space.  We observe that  eA0  and  eB0  can be estimated directly using file characteristics.  To
estimate  eT,  eA  and  eB, we need to know   ANB.  They cannot be estimated directly.  In practice,
guesses based on past experience are often used.  
   For a production matching system for the 1990 Decennial Census (Winkler 1988, 1989a,
1989c), use of the EM-Algorithm (see e.g., Dempster, Laird and Rubin 1977) allows direct
estimation of  P(string disagrees|M)  and, thus, approximate estimation of the sum  eA+eB+eT. 
For most matching (and for the methods of the next section), we only need to estimate  
P(string disagrees|M).



3.2.  Weight Adjustment for Typographical Variation
   If, say, x  percent of files  A  and  B  contain typographical errors that are uniformly distributed
through the files, then, for  i = 1, 2, ???, n, the true frequencies  fi  and  gi  will not correspond the
observed frequencies  x?fi  and  x?gi  and the (average) agreement weight will not be correct.
    In particular, 

  
  PO(agree|M)   (Σi x?hi)/(Σi x?hi)           PT(agree|M)
  -------------- L ----------------------------- K -------------------,
  PO(agree|U)   (Σi (x?fi?x?gi-x?hi)/NA?NB)    x?x?PT(agree|U)

where  PO  and  PT  depend on observed and true frequencies, respectively.
   The adjustment factor (for typographical variation) is the ratio  ß  of the number of pairs
agreeing on the string to the number of pairs agreeing on Soundex code of the string.  The
adjusted weights are obtained by multiplying the existing weights by  ß.  The ratio adjusts for the
fact that the observed frequencies of strings such as 'Smith' are less than the true frequencies
because of typographical variation.  The adjustment is always less than one.  The adjustment is
assumed independent of the subset over which the weights are computed or applied.  To use the
adjustment, we must assume that Soundex encoding brings most pairs having typographical
variation together.  Under the assumptions that typographical errors  eA, eB, and  eT are uniformly
distributed on  M  and  U  and for the original string and the Soundex of the string,  ß  effectively
is the ratio

  (PO(agree Soundex|M)/PO(agree Soundex|U)) / (PO(agree|M)/PO(agree|U)).

3.3.  Combining Frequency-Based and EM-Derived Parameters
   Typically, matching parameters (or weights) and the associated decision rules are applied on
small subsets of the entire product space A×B.  The subset might consist of pairs agreeing on a
character-by-character basis for a specified string.  Such a string might be the Soundex code of
the surname.  Soundex coding can sometimes account for very minor spelling variations.  The
subset might also consist of those pairs agreeing on a geographical subregion such as a set of
Census blocks.  On the subset, we compute simple agree/disagree matching probabilities for each
comparison field using the EM Algorithm (Winkler 1988, 1989a, 1989c).  The probabilities and
resultant matching weights give the relative distinguishing power of various fields with respect to
each other.  For instance, agreement on first name might have a much larger positive weight than
agreement on marital status.  Disagreement on first name might have a lesser negative weight
than disagreement on marital status. 
   Adjustments to subsets assure that the frequency-based weights do not overwhelm other
weights that are computed over the subset.  For instance, the scale, or range, of weights
associated with the frequencies of surnames might be too great.  Then the designation of a pair as
a match or possible match could depend almost solely on the weight associated with surname.  
Two different types of adjustments to subsets are needed.  The first assures that the average (in a
sense to be made clear) frequency-based weight agrees with the agreement weight computed via
the EM Algorithm.  The second assures that the average frequency-based weight associated with



a field for which a weight is not presently available has the proper scale.  In the second case, such
a weight might be associated with a field used as logical blocking characteristic used in creating a
subset of pairs.  The EM Algorithm can not be used to estimate a simple agree/disagree weight
on the subset because all pairs agree on the characteristic.
   Let  m0  and  u0  be the respective estimated probabilities of agreement on a string given a
match and given a nonmatch relative to a subset  Q.  The probabilities could be obtained via the
EM Algorithm or some other method.  Let 

    α1 = m0?NAB / (Σj=1
m  aj?lj)     and  (3.2a)

     α2 = u0?(NA?NB - NAB) / (Σj=1
m  bj?lj), (3.2b)

where  aj = hj   if  fj>1  or  gj>1  and

       aj = 2/3    otherwise,  

       bj = fj?gj - hj  if  fj>1  or  gj>1  and

       bj = 1/3   otherwise, and

       lj = 1   if the jth string occurs in  Q  and
        
       lj = 0   otherwise.

The assumption that  aj=2/3  and  bj=1/3  means that, if we observe only one pair agreeing
on a specific string, the pair has 2/3 chance of being a match and 1/3 chance of being a
nonmatch. 
   We approximate  P(string agrees & jth string| MNQ)  by

    K α1?hj / NAB  if  fj>1  or  gj>1 

 and  (3.3a)

    K α1?(2/3)/NAB  otherwise.

We approximate  P(string agrees & jth string| UNQ)  by

 K α2?(fj?gj - hj)/(NA?NB - NAB)  if  fj>1  or  gj>1

     and  (3.3b)

 K α2?(1/3)/(NA?NB - NAB)  otherwise.

The adjusted weights associated with the jth specific value of the string are given by



    wgtQ(j) =  α1?wgt(j) / α2,        j = 1, 2, ???, m,

where  wgt(j)  is given by (3.1a,b) and  wgtQ(i) is the quotient of (3.3a) and (3.3b).  We observe
that

    Σj=1
m P(string agrees & jth string| MNQ) = m0, (3.4a)

    Σj=1
m P(string agrees & jth string| UNQ) = u0,  and (3.4b)

   wgtQ(i)/wgtQ(j) = wgt(i)/wgt(j)     for all  i  and  j. (3.4c)

Note that  m0/u0  is the simple agree/disagree weight.  Equation (3.4c) yields the fact that the
adjusted frequency-based weights have the same relative distinguishing power with respect to
specific strings as the unadjusted frequency-based weights.  The sums in (3.4) are over those
specific strings that occur in  Q.
   For strings for which we do not have estimates of the simple agree and disagree probabilities 
m0  and  u0, the adjusted weights  wgt2Q(i), i =  1, 2, ???, m, depend on the number of pairs  NQ  in
the subset  Q  and the number of pairs  N1Q  in  Q  that are matches.  We estimate 

  m0 K 1   except for typographical variation and (3.5a)

  u0 K (MQ - N1Q)/NQ  except for typographical variation, (3.5b)

where  MQ  is the number of pairs in  Q  that agree on the string.  N1Q  is estimated like NAB.  It is
the minimum of the number of strings in  Q  that agree on the specific values if the strings occur
more than once; 2/3, otherwise.  As with (3.1), (3.2), and (3.3), we implicitly assume that  

       m0 = P(agree on string | M) K 1,

except for typographical variation due to errors.  (3.5a) is only suitable for use with a string such
as last name (or possibly, first name) that we expect virtually all matches to agree on.  We also
assume that typographical variation effects  m0  and  u0  identically so that they cancel in  m0/u0.
3.4.  Application Using Files with Good Distinguishing Information
   The results in this section are from a computer matching application with two files of Los
Angeles data.  Each file contains 20,000 records.  The observed counts for 1024 agree/disagree
patterns for ten variables in a set of pairs are used in obtaining most matching parameter
estimates.  The ten variables are first name, middle initial, house number, street name, unit
(apartment #), age, sex, relation, marital status, and race.  Frequency-based weights are created
for surname and first name.  The set of pairs consists of 249,000 agreeing on geocodes and first
character of surnames.  The geocode is the Census block number.  As there can be at most 20,000
matches, it is not computationally practicable to consider counts based on all 400 million pairs in
the product space.  Based on prior experience, it is known that more than 70 percent of the
matches will be in the set of 249,000 pairs. 
   We arbitrarily use 0.00001 as the estimate for the sum eA+eB+eT  associated with the frequency-
based weights for both the last name and the first name.  Direct estimation of the sum for first



name using the EM-Algorithm yields approximately 0.01.  The downward adjustment increases
the distinguishing power of the frequency-based weights.  The increase occurs because the total
weight of pairs for disagreeing on either last name or first name and agreeing randomly on
demographic characteristics such as age, marital status, and relationship or address character is
decreased.  The typographical adjustment for first name is 0.42 and for last name is 0.63.  The
adjustment to the set of pairs  Q  is 0.30 for first name and 0.16 for last name.  The values of 0.30
and 0.16 indicates that the distinguishing powers (i.e., range of weights) of first name and last
name are greater on the whole space than on Q.  The overall adjustment to the frequency-based
weights for first name and last name are 0.12 (=0.42?0.30) and 0.10 (=0.63?0.16), respectively. 
For each type of matching, the high cutoff Tµ is chosen so that less than one percent of the
matches is false.  The low cutoff Tλ is chosen so that few, if any, matches having total weight less
than the cutoff exist.  Both determinations are subjective because true match statuses are
unknown.
   There are several reasons why frequency-based matching performs better than basic matching
that uses only agree/disagree weights (Table 1).  First, the number of designated matches
increases from 12,455 to 13,136 when compared to a basic matcher.  The increase is basically
due to pairs having rare surnames and rare first names.   Such pairs, if they have a moderate
number of disagreements on other  characteristics, are designated as possible matches by the
basic matcher.  Second, a net of 350 pairs that a nonmatches with the basic matcher are
designated possible matches by the frequency-based matcher.  The set consists of those pairs
agreeing on rare surnames but agreeing on few other characteristics.
3.5.  Application Using Files with Poor Distinguishing Information
   The results in this section are from a computer matching application with two files of St Louis
data.  The larger file contains 13,719 records while the smaller 2,777.  The smaller data file was
obtained from various administrative data sources.  The observed counts for 128 agree/disagree
patterns for seven variables in a set of pairs were used for most parameter estimates.  The seven
variables were first name, middle initial, address, age, sex, telephone, and race.  Frequency-based
weights were created for surname and first name.  The set of pairs consists of 43,377 agreeing on
Soundex code of surname.
   We arbitrarily use 0.0001 as the estimate for the sum   eA + eB + eT  associated with the
frequency-based weights for both the last name and the first name.  Direct estimation of the sum
for first name using the EM-Algorithm yields approximately 0.01.  The downward adjustment
increases the distinguishing power of the frequency-based weights.  Arbitrarily chosen
adjustments of 0.25 and 0.0625 for typographical variation in first name and last name were
used.  As matching was for all pairs, no adjustment for a subset  Q  was used.
   Both basic and frequency-based matching do not perform well (Table 2).  The set of matches
consists of slightly more than 300 of the 2800 records.  The file, which is used for obtaining
additional information about black males between ages 18 and 44, contains much missing data. 
For middle initial, telephone, and race, there are 1201, 2153, and 1091 missing data items,
respectively.  Age and address are also typically inaccurate.  Frequency-based matching
designates more pairs as possible matches (269 versus 157).  The increased number represents
those pairs agreeing on both a relatively rare first and a relatively rare last name while most other
characteristics are either missing or disagree.   

4.DISCUSSION



4.1.  Finite Population Correction
   The chief difference between the frequency-based methods of this paper (section 3.1) and those
of Fellegi and Sunter (1969) are a type of finite population correction.  In two files  A  and  B, for
some  j, we observe  fj  and  gj  occurrences of the jth string.  In this paper, if  fj>1  or  gj>1, we
take  hj=min(fj,gj)  as the number of matches associated with the string and  fj?gj-hj  as the number
of nonmatches.  Fellegi and Sunter take the number of matches to be  fj (if  A  is the target file)
and the number of nonmatches to be  fj?gj.  If both  fj  and  gj  are 1, then we assume that the
number of matches is 2/3 and the number of nonmatches is 1/3.  Fellegi and Sunter assume both
the number of matches and number of nonmatches are 1.
   If both files A and B are assumed to be subsets of the same population which is basically the
union of the two files and both A and B are approximately equal to the union, then could use 
hj=max(fj,gj) as the estimated number of matches and  hj?hj-hj  as the number of matches.  This
method of computation may be preferred if one file is known to contain strings subject to
substantial typographical variation.   
4.2.  Subsets Used for Weight Computation  
   Rogot, Sorlie, and Johnson (1986) use a different approach for adjusting  frequency-based
weights to subsets.  They use both observed frequencies on the whole space and on the subset.  If
the methods of this paper and of Rogot, Sorlie, and Johnson (1986) are taken to the whole space,
the finite population correction is ignored in our computation, and the adjustment for deaths of
Rogot, Sorlie, and Johnson is ignored (i.e., taken to be uniformly one), then the two approaches
coincide.  On the subsets, the methods of getting relative scales according to values of the strings
are different.  Also, Rogot, Sorlie, and Johnson do not assure that the sums of the numerators and
denominators in the weights equal estimated  m0  and  u0  as we do.
   The main reason that the adjustments of this paper and of Rogot, Sorlie, and Johnson are useful
is that, on the whole space, the relative distinguishing power of uncommon strings as compared
with common strings can be preserved.  For instance, on the whole space, assume 100 pairs have
'Smith' and one has 'Zabrinsky' while, on the subset, assume that 10 sets, (say, depending on a
geocode) of 10 'Smith' occur while one 'Zabrinsky' still occurs.  Then, on the subset, the
perceived relative distinguishing power of the geocode-'Zabrinsky' relative to geocode-'Smith' is
less.  If agreement on a blocking characteristic, say geocode, could also be accounted for, then
distinguishing power could conceivably increase.  The subset adjustment method of this paper
has a computational advantage.  Lookup tables and adjustments based only on surnames are more
easily computed than those based on both geocodes and surnames.
4.3.  Adjustment for Typographical Variation
   The adjustment  ß  for typographical variation is intended to account partially for the fact that
we cannot observe the true frequencies (independent of typographical variation) in the files being
used.  For instance, if files  A  and  B  each contain 100 'Smiths' but each file only contains 90
'Smiths' because of typographical variation, then we would calculate the ratio  hj/(fj?gj-hj)  based
on file characteristics to be 0.0112 (K90/(90?90-90)) rather than 0.0101 (K100/(100?100-100)).  If
perceived and true frequencies are 6 and 9, respectively, then the ratios are 0.125 and 0.2,
respectively.  Using the files with typographical errors yields weights that are perceived to have
more distinguishing power than they actually have.
   Because the adjustment  ß  is based on Soundex code of a string and Soundex is not able to
account for most typographical variation, ß  is likely to be too large.  The adjustment  ß  performs
similarly to the transmission weight adjustment (Howe and Lindsay 1981, Newcombe 1988). 



The transmission weight is intended to be a rather precise adjustment for typographical variation
that depends on knowledge of true match status.  The main advantages of  ß  is that it is easily
computed and does not depend on true match status.     
4.4.  Comparison with Other Frequency-Based Methods
   If we assume that file  A  is a subset of file  B, that the finite population correction can be
ignored (i.e., fj?gj=fj?gj-hj), that the subset  Q  is the whole product space  A×B, then the adjusted
weights take the form, j = 1, ???, m,

   wgtQ(j) = (m0?Σj=1
m fj?gj/NA?NB)/(u0?gj/NB) L m0?freq(j)/u0,   

where  m0  and  u0  are the general agreement probabilities on  A×B.  The factor  freq(j)  that
adjusts the general agreement weight to the specific weight agrees with the standard adjustment
factor (see e.g., Newcombe, Fair, and Lalonde 1987 pp. 134-135; 1989 
pp. 88-89).  The ratio   m0/u0  implicitly accounts for some of the typographical variation. 
Applying it uniformly to all frequency-based weights is consistent with the explicit assumptions
of this paper and of Fellegi and Sunter (1969) and with the implicit assumption of Newcombe,
Fair, and Lalonde (1987, 1989). 
4.5.  Limitations
   Presently, the only apparent limitations are with the EM-Algorithm-based procedures used to
compute the m- and u-probabilities representing simple agree/disagree comparisons (Winkler
1989a, section 4.3).  For smaller files having less than 2,000 records and exhibiting large
amounts of typographical variation, the m-probabilities associated with key matching fields such
as first name have occasionally had to be adjusted upward to improve matching decision rules.  
If adjusting parameters improves the rules, then the original unadjusted parameter estimates do
not accurately represent the true distributions (e.g., Winkler 1989b, sections 2.3.4, 4.2).

5.SUMMARY
   The frequency-based matching parameter estimation methodology of this paper extends the
methodology of Fellegi and Sunter (1969).  If strong simplifying assumptions are made, then the
methodology of this paper approximately agrees with methods currently in use.  Methods of
accounting for certain types of typographical variation and for estimating parameters on subsets
of the product space are introduced.  No calibration data sets having known true match status are
needed.

Author’s note: A version of this paper appeared under the same title in the American Statistical
Association Proceedings of the Section on Survey Research Methods in 1989 on pages 778-783. 
The results have not been superseded. 

This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has
undergone a Census Bureau review more limited in scope than that given to official Census Bureau
publications.  This report is released to inform interested parties of research and to encourage discussion. 
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Table 1. Comparison of Matching Results from Basic Matcher and
Frequency-Based Matcher, Los Angeles Files

Frequency-Based
| Match | Possible |Nonmatch| Total

-------------------------------------------------
Match | 12320 | 128 | 7 | 12455

-------------------------------------------------
Basic Possible | 808 | 2146 | 58 | 3012

-------------------------------------------------
Nonmatch | 8 | 386 | 3821 | 4215
-------------------------------------------------

Total | 13136 | 2660 | 3886 | 19682

Table 2. Comparison of Matching Results from Basic Matcher and
Frequency-Based Matcher, St Louis Files

Frequency-Based
| Match | Possible |Nonmatch| Total

-------------------------------------------------
Match | 305 | 21 | 2 | 328

-------------------------------------------------
Basic Possible | 15 | 142 | 0 | 157

-------------------------------------------------
Nonmatch | 2 | 106 | 2184 | 2292
-------------------------------------------------

Total | 322 | 269 | 2186 | 2777


