Physical Oceanography Division

BENCHMARKS

FOR ATLANTIC OCEAN CIRCULATION

Numerical modeling, paleoclimate and observational studies indicate that both the wind-driven and thermohaline circulation can play an important role in longer-term (greater than decadal) climate variability. The U.S. National Oceanic and Atmospheric Administration addresses both components to satisfy its missions of detecting, attributing and forecasting long-term climate change. We contribute to NOAA's mission by developing and providing observational benchmarks (i.e., indices) for various components of the wind-driven circulation (hereinafter WDC) and MOC in the Atlantic Ocean.

Many early NOAA programs (e.g. STACS, ACCP) were searching for indices of critical North Atlantic WDC and MOC features to monitor. Although not originally NOAA programs, other studies have considered the contribution of southern hemisphere features to the MOC. For continuity of the upper layer limb of the MOC, exchanges are required: from the Indian Ocean to the South Atlantic; across the South Atlantic; and across the equator. The inter-ocean exchange takes place through the Benguela/Agulhas system, south of South Africa. The Agulhas Current at its retroflection sheds energetic rings that carry salt and warm water into the South Atlantic. Satellite altimetric measurements have been calibrated to provide estimates of the transport of the Agulhas Current and the separated rings. The extension of the Benguela Current brings the Indian Ocean waters to the central South Atlantic as it flow northwestward in the South Atlantic subtropical gyre.

The pathways of the upper limb MOC transport are then complicated by the wind-driven circulation features along the western boundary and the interior tropical Atlantic (i.e., equatorial upwelling, off-equatorial down welling, zonal currents), that provide obstacles for this limb to move from the South Atlantic to the North Atlantic. Currently, there is insufficient understanding and data to identify precisely these pathways. However numerical models do provide some initial guidance. Using an eddy-resolving numerical circulation model, (Fratantoni et al., 2000) concluded that 14 Sv of upper limb MOC flow is partitioned among three pathways connecting the equatorial and tropical wind-driven gyre: a frictional western boundary current accounting for 6.8 Sv; a diapycnal pathway involving wind-forced equatorial upwelling and interior Ekman transport, 4.2 Sv; and North Brazil Current (NBC) rings shed at the NBC retroflection, 3 Sv. The results of an AOML, university observational program indicate that previous estimates both in the numbers of rings per year and in their contribution to hemispheric exchanges were low. Based on the results of this work, a monitoring strategy is being developed to monitor ring formation and propagation.

Both the intensity of the subtropical gyre and a component of the warm upper level poleward flow in the North Atlantic are being monitored by submarine cable observations in the Straits of Florida. Similarly, the characteristics of the cold deep return flow are being tracked by research vessel transects across the DWBC east of the Bahamas. In the North Atlantic Ocean, time-series of both the upper layer temperature structure within the subtropical gyre and total water column changes across the basin are being maintained.

The recent history of these and other components of the MOC and WDC motions are characterized by data collected over the past 10 to 50 years. These benchmarks are designed to serve several purposes. Independently these benchmarks serve as indices for (1) the intensity of various components of the MOC and WDC, thereby providing alerts for dramatic changes in these features and (2) verification of the ability of GCM's to simulate the ocean's role in climate variability. Collectively, when assimilated into GCM's they will provide global benchmarks for detection and attribution of climate change. All the benchmarks presently available are shown in Figure 1. We will now describe a few of these indices, when sufficient data are available we provide a description of the characteristics of various scales of variability.


Figure 1. Benchmarks being monitored and available on http://www.aoml.noaa.gov

 

 

<< Back

  Disclaimer | Privacy
  DOC/NOAA/AOML/
PhOD

Roberta.Lusic@noaa.gov  
Last Updated: 05/23/02