Space Weather Highlights 04 October – 10 October 2004

SWO PRF 1519 12 October 2004

Solar activity was very low to low this period. Region 679 (S10, L=004), a spotless plage region, produced three low-level C-class flares early in the summary period. Region 680 (N15, L=124, class/area, Dao/080 on 08 Oct) accounted for the remainder the period's activity producing four low-level C-class flares before rotating around the west limb on 09 October. The summary period ended with the disk spotless.

Solar wind data were available from the NASA Advanced Composition Explorer (ACE) spacecraft during most of the summary period. A sector boundary crossing on 03 October was followed by elevated solar wind plasma and IMF Bz oscillating between +6 and –8 nT through 04 October. Solar wind conditions returned to quiet levels by 05 October and persisted through early 08 October. Solar wind speed gradually rose from a low of 275 km/s to near 425 km/s by the end of the summary period.

There were no greater than 10 MeV proton events at geo-synchronous orbit during the summary period.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate levels the entire summary period.

The geomagnetic field was mostly quiet to unsettled with some isolated periods of active conditions observed at high latitudes.

Space Weather Outlook 13 October – 08 November 2004

Solar activity is expected to be very low to low.

A greater than 10 MeV proton event is not expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 13 - 17 October.

The geomagnetic field is expected to range from mostly quiet to unsettled. From 13 - 15 October, a recurrent high speed coronal hole wind stream is expected to produce occasional active to minor storm periods.

Duny Solut Dun												
	Radio	Sun	Sunspot	X-ray	Fl			Flares				
	Flux	spot	Area	Background	X	-ray Fl	lux		O	otical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)		С	М	Х	S	1	2	3	4
04 October	91	41	140	A5.7	1	0	0	0	0	0	0	0
05 October	91	40	120	A6.8	1	0	0	0	0	0	0	0
06 October	92	39	130	A6.8	1	0	0	0	0	0	0	0
07 October	94	38	140	A6.4	0	0	0	0	0	0	0	0
08 October	91	28	100	B1.1	0	0	0	0	0	0	0	0
09 October	88	24	110	B1.3	3	0	0	0	0	0	0	0
10 October	89	0	0	B1.7	1	0	0	0	0	0	0	0

Daily Solar Data

Daily Particle Data

]	Proton Fluence		Electron Fluence					
	(pro	otons/cm ² -day-sr)	(electrons/cm ² -day-sr)					
Date	>1MeV	>10MeV	>100MeV	>.6MeV >2MeV >4MeV					
04 October	1.5E+5	1.5E+4	3.6E+3	3.1E+6					
05 October	1.5E+5	1.5E+4	3.7E+3	6.6E+6					
06 October	1.0E+5	1.5E+4	3.8E+3	1.1E+7					
07 October	1.4E+5	1.5E+4	3.9E+3	2.4E+7					
08 October	2.3E+5	1.6E+4	4.1E+3	7.6E+6					
09 October	4.0E+5	1.5E+4	4.1E+3	1.8E+6					
10 October	2.9E+5	1.4E+4	3.8E+3	1.7E+6					

Daily Geomagnetic Data

	Duny Geomagnetic Duni													
	N	Iiddle Latitude		High Latitude]	Estimated								
	Fredericksburg			College]	Planetary								
Date	Α	K-indices	Α	K-indices	Α	K-indices								
04 October	8	3-3-1-1-2-1-2-2	12	2-3-2-2-4-1-1	10	3-3-2-2-2-3-3								
05 October	3	2-2-1-0-1-0-0-1	4	2-2-3-1-0-0-0-1	5	2-2-2-0-1-2-2-2								
06 October	2	0-2-2-1-0-0-0-0	6	0-0-2-4-2-1-0-0	5	1-2-2-2-2-2-2								
07 October	4	0-1-0-0-3-3-0	2	0-0-1-1-2-0-0-0	4	1-2-1-1-2-2-2-2								
08 October	4	0-2-1-0-2-2-1-2	6	0-0-1-0-2-4-1-2	7	1-3-2-1-2-2-1-3								
09 October	3	2-1-1-0-1-1-1-1	4	3-1-0-2-0-1-1-1	6	3-1-0-1-1-2-2-2								
10 October	5	2-1-1-2-2-1-1-1	5	1-1-1-3-2-0-1-1	8	3-3-0-3-2-2-2-2								

Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UT
No Alerts Issued		

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
13 Oct	80	15	4	27 Oct	90	5	2
14	80	20	5	28	90	5	2
15	80	15	4	29	90	10	3
16	80	10	3	30	90	10	3
17	80	12	3	31	90	10	3
18	80	10	3	01 Nov	90	5	2
19	80	10	3	02	85	5	2
20	80	10	3	03	85	5	2
21	85	8	3	04	80	5	2
22	85	5	2	05	80	5	2
23	90	5	2	06	80	10	3
24	90	5	2	07	80	10	3
25	90	8	3	08	80	10	3
26	90	5	2				

						Energet	tic Events						
Time				Х	ray	Opt	ical Informatio	Р	eak	Sweep Freq			
Date	1/2		1/2	$\frac{1}{2}$ In ¹		Imp/	Location	Rgn	Radi	io Flux	Inte	Intensity	
]	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV	
No Events	Observ	ed											
						Elas	a List						
						Flav	e List						
									Optical		_		
	5		Time		<u> </u>		X-ray	Imp /	L	ocation	Rgı	1	
Date 04 October	<u> </u>	ozo	Max 0045		<u>End</u>		Class.	Brtns	La	t CMD	(7)	c	
04 October	0	202	1225		1241		B1.2				670	3	
	1	303 (22	1525		1541		C2.0						
	1	033	103/	,	1044		B1.3 D2.6				679	C	
05 October	2	130	2202	-	2204		D3.0 C1 4				0/0	5	
05 October	1	043 720	1724		1720		C1.4 D1.0						
	1	73U 200	1/34	,	1/37		D1.U D1.5						
	2	200	2204		2207		B1.3						
0(Ostalian	2	300	2317	-	2327		B9.0 D2.2						
06 October	0	242	10249		1040		B2.3						
07.0	1	819 720	1834		1849		C2.5				(7)	C	
0/ October	0	/30	0/34		0/39		B1.3				6/8	5	
	0	944 126	0949		J954		BI.9				6/3)	
	2	130	2143	-	2146		B2.1				6/8	5	
00.0.4.1	2	213	2216		2218		BI./						
08 October	0	135	0138		0140		B1.4				(7)	h	
	0	849	0852		J854		B2.9				6/8	8	
	1	832 052	1840	,	1854		B3.1				(7)	ъ.	
00 0 - t - 1	2	053	2057	-	2100		B2.4				6/8	5	
09 October	0	126	0058		0103		B2.4				6/8	5	
	0	126	0135		0139		B2.0						
	0	421	0431		J439		CI.2				(0)	h	
	0	911	0916		J924		B3.1				680	J	
	1	002	1009		1012		B2./				680)	
	1	04/	1052		1059		B8.2				680)	
	1	345	1349		1352		B4.4				680)	
	1	441	1449		1504		B5.4				680)	
	1	546	1555		1603		B8.0				680)	
	l	010 (50	1619		1625		B4.9				680	J	
	1	028	1/05		1/08		B2.0				680	J	
	l	/41	1756		1805		B4.3				(0)	h	
	1	90/	1913		1917						680	J	
	2	011	2014	-	2018		B2./				<i>c</i>	h	
	2	032	2044	-	2055		C1.2				680	J	
10.0	2	137	2143		2147		B6.4				680	J	
10 Octobe	er 0	321	0328		0334		C2.0				680	J	
	0	452	0459	(0515		B3.7						
	0	621	0627	(0633		B5.7					2	
	0	641	0649		0656		B8.7				680)	
	1	329	1406		1525		B4.9						

Region Summary

	Locatio	n		ristics		Flares										
		Helio	Area	Extent	Spot	Spot	Mag		X-ra	y	. —	(Optic	al	_	
Date	(°Lat°CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	С	М	Х	S	1	2	3	4	
	Re	gion 67	3			0.01										
25 Se	p S08E75	137	0120	02	Hax	001	A									
26 Se	p S08E61	138	0090	03	Hsx	001	Α									
27 Se	p S08E48	138	0110	03	Hsx	001	А									
28 Se	p S08E35	138	0100	02	Hax	001	А									
29 Se	p S08E22	137	0090	03	Hax	001	А									
30 Se	p S08E08	138	0100	03	Hsx	001	А									
01 Oc	et S09W06	139	0090	03	Hsx	002	А									
02 Oc	et S09W19	139	0090	03	Hsx	002	А									
03 Oc	et S09W33	140	0070	03	Hsx	002	А									
04 Oc	et S10W46	139	0070	03	Hsx	002	А									
05 Oc	et S11W59	139	0070	02	Hsx	001	А									
06 Oc	et S10W76	143	0060	02	Hsx	001	А									
07 Oc	et S10W89	143	0060	02	Hsx	001	А									
								0	0	0	0	0	0	0	0	
Cross	ed West Lim	ıb.														
Abso	lute heliograp	phic lon	gitude:139													
	Re	gion 67	6													
28 Se	p S11E76	097	0060	02	Hax	001	А									
29 Se	p S11E64	095	0060	02	Hax	001	А									
30 Se	p S12E52	094	0060	02	Hax	001	А									
01 Oc	et S12E38	095	0050	02	Hsx	001	А									
02 Oc	et S12E25	095	0040	02	Hsx	001	А									
03 Oc	et S12E11	096	0040	04	Cso	005	В									
04 Oc	et S11W02	095	0050	04	Dso	007	В									
05 Oc	et S12W15	095	0040	05	Cso	008	В									
06 Oo	et S13W28	095	0030	03	Cso	004	В									
07 Oc	et S13W41	095	0020	01	Hsx	001	А									
08 Oo	et S13W54	095	0020	03	Bxo	003	В									
09 Oo	et S13W67	095	0020	01	Axx	001	А									
10 Oc	et S13W80	095	-			-										
								0	0	0	0	0	0	0	0	

Still on Disk. Absolute heliographic longitude:095

Region Summary - continued.														
Location Sunspot Characteristics								Flares						
Data (⁹ Lat ⁹ CMD)	Helio A			Spot	Spot	Mag	\overline{C}	X-ra	y v		1	<u>)ptic</u>		4
Date (*Lat*CMD)	Lon aion 67	<u>(10 nemi)</u> 7	(nello)	Class	Count	Class	U	IVI	Λ	3	1	2	3	4
30 Sen N02E00	137	0030	05	Cso	004	R								
01 Oct N01W06	137	0030	03	Byo	004	B								
01 Oct N01W00	1/1	0010	01		007									
02 Oct N02W21 03 Oct N02W34	141	0010	01	ЛЛЛ	002	Λ								
04 Oct N02W47	141													
05 Oct N02W60	141													
06 Oct N02W00	140													
07 Oct N02W86	140													
07 000 1102 1100	140						0	0	0	0	0	0	0	0
Crossed West Lim	h						U	U	U	U	U	U	U	0
Absolute heliogram	no. Nhie long	vitude 139												
riosolute nellogra		5111110.159												
Re	gion 67	8												
03 Oct N12W29	136	0020	04	Dso	002	В								
04 Oct N12W42	135	0020	04	Dso	002	B								
05 Oct N13W58	138	0010	01	Axx	001	A								
06 Oct N12W62	129	0040	04	Cso	004	В								
07 Oct N12W75	129	0060	05	Dro	006	B								
08 Oct N15W83	124													
							0	0	0	0	0	0	0	0
Crossed West Lim	b.													
Absolute heliogram	ohic long	gitude:136												
Re	gion 67	9												
06 Oct S10E63	004													
07 Oct S10E50	004													
08 Oct S10E37	004													
							0	0	0	0	0	0	0	0
Still on Disk.														
Absolute heliograp	phic long	gitude:004												
Re	gion 68	0												
08 Oct N15W83	124	0080	04	Dao	005	В								
09 Oct N15W93	121	0090	05	Cso	003	В	2							
							2	0	0	0	0	0	0	0
Crossed West Lim	b.													
Absolute heliograp	phic long	gitude:124												

	Sunspot Numbers Radio Flux Geomagnetic													
	Observed	values	Ratio	Smooth	values	*Penticton	Smooth	Planetary	Smooth					
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	An	Value					
Wientin	500	<u> </u>	14/0//0	0110		10.7 Cm	v ulue	<u>r</u> p	Vulue					
					2002									
October	153.9	97.5	0.63	158.8	90.5	167.0	159.4	23	15.6					
November	: 159.8	95.5	0.60	150.9	85.2	168.7	154.8	16	16.3					
December	147.9	80.8	0.55	144.6	82.1	158.6	150.9	13	17.0					
2003														
January	149.3	79.7	0.53	141.7	81.0	144.0	149.2	13	18.2					
February	87.0	46.0	0.53	136.4	78.5	124.5	144.7	17	18.9					
March	119.7	61.1	0.51	128.1	74.2	132.2	139.5	21	19.4					
April	119.7	60.0	0.50	121.5	70.3	126.3	135.0	20	20.1					
May	89.6	55.2	0.62	118.3	67.8	129.3	133.1	26	21.0					
June	118.4	77.4	0.65	113.6	65.2	129.4	130.2	24	21.5					
July	132.8	85.0	0.64	106.9	62.0	127.8	127.2	19	22.0					
August	114.3	72.7	0.64	102.8	60.3	122.1	125.2	23	22.2					
September	82.6	48.8	0.59	100.7	59.8	112.3	123.7	18	21.8					
October	118.9	65.6	0.55	96.6	58.4	153.1	121.8	35	21.1					
November	: 118.9	67.2	0.57	93.6	57.0	153.1	120.1	28	20.0					
December	75.4	47.0	0.62	91.4	55.0	115.1	118.0	16	18.6					
					2004									
January	62.3	37.2	0.60	87.9	52.0	114.1	116.3	22	18.1					
February	75.6	46.0	0.61	84.2	49.4	107.0	115.5	13	17.7					
March	81.0	48.9	0.60	80.9	47.2	112.2	114.6	14	16.9					
April	59.3	39.3	0.66			101.2		11						
May	77.3	41.5	0.54			99.8		8						
June	78.9	43.2	0.55			97.4		8						
July	87.8	51.0	0.58			118.5		23						
August	69.5	40.9	0.59			110.1		10						
September	50.0	27.7	0.55			103.1		10						

Recent Solar Indices (preliminary) of the observed monthly mean values

<u>NOTE</u>: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

_

Weekly Geosynchronous Satellite Environment Summary Week Beginning 04 October 2004

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W100) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W74).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to more localized phenomena and the

measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/m²⁾ as measured by GOES 12 (W75) and GOES 10 (W136) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W100) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

