Space Weather Highlights 27 September – 03 October 2004

SWO PRF 1518 05 October 2004

Solar activity was very low this period. Region 673 (S12, L=269, class/area, Eki/240 on 16 September) was the largest region on the disk, but rotated around the west limb on 28 September. All other regions on the disk were small and magnetically simple.

Solar wind data were available from the NASA Advanced Composition Explorer (ACE) spacecraft during most of the summary period. Solar wind speed ranged from a high of near 425 km/s early on 29 September to a low of near 310 km/s early on 27 September. The IMF Bz was generally weak with fluctuations not varying much beyond \pm 5 nT. Early on 02 October, a discontinuity in the solar wind speed, density, and temperature occurred while the IMF Bz indicated a southward enhancement to -8 nT., all indicative of a solar sector boundary change.

There were no greater than 10 MeV proton events at geo-synchronous orbit during the summary period.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels on 27 September.

The geomagnetic field was at mostly quiet to active levels. Isolated minor to major storming was observed at higher latitudes on 02 - 03 due to periods of sustained southward Bz.

Space Weather Outlook 06 October – 01 November 2004

Activity is expected to be very low to low. Isolated moderate activity is possible after the return of old Region 672 on 06 October.

A greater than 10 MeV proton event is not expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 12 - 17 October.

The geomagnetic field is expected to range from mostly quiet to unsettled. From 11 - 15 October and from 29 - 31 October, recurrent high speed coronal hole wind streams are expected to produce occasional active to minor storm periods.

	Duity Solar Duia												
	Radio	Sun	Sunspot	X-ray	Fl			Flares					
	Flux	spot	Area	Background	X	X-ray Flux			O				
Date	10.7 cm	No.	(10 ⁻⁶ hemi.))	С	М	Χ	S	1	2	3	4	
27 Septemb	oer 90	22	310	A6.2	0	0	0	0	0	0	0	0	
28 Septemb	oer 90	22	160	A8.1	0	0	0	0	0	0	0	0	
29 Septemb	oer 90	22	150	A6.1	0	0	0	0	0	0	0	0	
30 Septemb	oer 88	36	190	A5.4	0	0	0	0	0	0	0	0	
01 October	88	37	150	A4.0	0	0	0	0	0	0	0	0	
02 October	88	35	140	A3.9	0	0	0	0	0	0	0	0	
03 October	89	39	130	A4.5	0	0	0	0	0	0	0	0	

Daily Solar Data

Daily Particle Data

	F	Proton Fluence		Electron Fluence					
	(pro	tons/cm ² -day-sr)	(electrons/cm ² -day-sr)					
Date	>1MeV	>10MeV	>100MeV	>.6MeV >2MeV >4MeV					
27 September	6.9E+5	1.4E+4	3.4E+3	4.5E+7					
28 September	3.2E+5	1.5E+4	3.7E+3	1.9E+6					
29 September	4.6E+5	1.4E+4	3.8E+3	1.1E+7					
30 September	5.7E+5	1.4E+4	3.9E+3	1.3E+7					
01 October	6.6E+5	1.4E+4	3.7E+3	2.0E+7					
02 October	3.1E+5	1.5E+4	3.7E+3	4.2E+6					
03 October	8.6E+5	1.4E+4	3.7E+3	3.8E+6					

Daily Geomagnetic Data

Dudy Geomagnetic Duda													
	Ν	fiddle Latitude		High Latitude]	Estimated							
	Fredericksburg			College]	Planetary							
Date	Α	K-indices	Α	K-indices	Α	K-indices							
27 September	2	0-0-0-2-1-1-0	5	1-0-0-2-3-2-1-1	5	1-1-0-1-2-2-3-1							
28 September	5	2-2-2-1-1-1-1-2	5	1-2-3-2-0-0-1-1	8	2-2-3-2-1-1-2-3							
29 September	3	1-0-1-0-2-1-1-2	*	*_*_*_*_*_*_*	5	2-1-0-1-2-2-2-2							
30 September	2	1-0-0-0-1-1-1-0	1	2-0-0-0-0-0-0-0	4	2-1-0-0-1-2-2-2							
01 October	2	0-0-0-1-0-2-2	1	0-0-0-0-0-1-1	4	1-1-1-0-1-2-2-2							
02 October	8	2-2-3-2-3-1-2-1	16	1-2-4-5-4-3-1-0	12	2-3-3-3-4-3-2-2							
03 October	7	0-1-2-2-3-2-2-2	33	0-1-4-6-6-5-3-2	15	1-2-3-4-4-3-3-3							

Alerts and Warnings Issued

Date & Time of Issu	te Type of Alert or Warning	Date & Time of Event UT
27 Sep 1156	ALERT: Electron 2MeV Integral Flux \geq 1000pfu	27 Sep 1135
03 Oct 1105	ALERT: Geomagnetic $K = 4$	03 Oct 1104
03 Oct 1352	ALERT: Geomagnetic $K = 4$	03 Oct 1345

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
06 Oct	100	5	2	20 Oct	90	10	3
07	105	5	2	21	90	8	3
08	105	5	2	22	95	5	2
09	110	5	2	23	95	5	2
10	115	10	3	24	95	5	2
11	115	12	3	25	90	8	3
12	115	15	4	26	90	5	2
13	110	15	4	27	95	5	2
14	105	15	4	28	95	5	2
15	105	15	4	29	95	12	3
16	105	5	2	30	95	10	3
17	100	10	3	31	95	10	3
18	95	10	3	01 Nov	95	10	3
19	90	10	3				

				Energeti	c Events									
	Time		X-ray	Optic	al Informatio	n	Peak	Sweep Freq						
Date		1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity						
Begi	n Max	Max Cla	ass Flux	Brtns	Lat CMD	#	245 2695	II IV						
No Events Observed														
				Flare	List									
Optical														
Time				X-ray			Location	Rgn						
Date	Begin	Max	End	С	lass.	Brtns	Lat CMD							
27 September	1150	1154	1156	В	51.0									
	1700	1704	1712	В	1.1									
28 September	1301	1312	1320	В	31.9			673						
29 September	0634	0640	0648	В	1.5			675						
30 September	No Fla	ares Obse	rved											
01 October	No Fla	ares Obse	rved											
02 October	1327	1332	1342	В	1.5			675						
	1413	1420	1424	В	1.6			675						
03 October	1814	1818	1822	В	1.1			676						
	2115	2120	2124	В	3.7			676						

Region Summary

	Location	1		Sunspot	Character	ristics		_		F	lares	3					
		Helio	Area	Extent	Spot	Spot	Mag		X-ray	/	_	(Optic	al	_		
Date (° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4		
	Reg	gion 673	3														
15 Sep	S13E72	272	0140	03	Hax	001	А	1									
16 Sep	S12E61	269	0240	10	Eki	015	Bg										
17 Sep	S13E51	267	0320	12	Eko	019	В										
18 Sep	S13E35	269	0360	13	Eso	014	В	1									
19 Sep	S13E22	269	0300	11	Eso	015	В										
20 Sep	S13E09	269	0310	10	Dho	018	В										
21 Sep	S13W04	269	0290	10	Dho	012	В										
22 Sep	S13W17	269	0260	10	Dao	014	В	1			1						
23 Sep	S13W31	269	0240	09	Dso	009	В										
24 Sep	S13W44	269	0240	08	Dso	005	В										
25 Sep	S13W57	269	0250	03	Hhx	003	А										
26 Sep	S14W73	272	0180	03	Hsx	001	А										
27 Sep	S15W88	274	0200	04	Hsx	001	А										
								3	0	0	1	0	0	0	0		

Crossed West Limb. Absolute heliographic longitude:269

Region Summary - continued.																
	Location Sunspot Characteris									I	Flares	s				
Dete		Helio	Area	Extent	Spot	Spot	Mag		X-ray	y V		(<u>)ptic</u>		4	
Date	(°Lat°CMD)	Lon	<u>(10° hemi</u>) (helio)	Class	Count	Class	C	M	X	8	I	2	3	4	
25 9	ле 509575	291011 07 127	J 0120	02	Harr	001	٨									
23 56	ep SU8E/5	13/	0120	02	Нах	001	A									
26 Se	ep S08E61	138	0090	03	HSX	001	A									
2/ 80	ep S08E48	138	0110	03	HSX	001	A									
28 Se	ep S08E35	138	0100	02	Hax	001	A									
29 Se	ep S08E22	137	0090	03	Hax	001	A									
30 Se	ep S08E08	138	0100	03	Hsx	001	A									
01 O	ct S09W06	139	0090	03	Hsx	002	А									
02 O	ct S09W19	139	0090	03	Hsx	002	А									
03 O	ct S09W33	140	0070	03	Hsx	002	А									
								0	0	0	0	0	0	0	0	
Still o	on Disk.															
Abso	olute heliograp	phic lon	gitude:139													
	Re	gion 67	6													
28 Se	ep S11E76	097	0060	02	Hax	001	А									
29 Se	ep S11E64	095	0060	02	Hax	001	А									
30 Se	ep S12E52	094	0060	02	Hax	001	А									
01 O	ct S12E38	095	0050	02	Hsx	001	А									
02 O	ct S12E25	095	0040	02	Hsx	001	А									
03 O	ct S12E11	096	0040	04	Cso	005	В									
				•			_	0	0	0	0	0	0	0	0	
Still o	on Disk							Ū	Ŭ	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ū	
Abso	olute helioora	nhic lon	oitude:96													
11050	fute fieldsful		Situde.70													
	Re	ojon 67	7													
30 Se	en NO2FO9	137	0030	05	Cso	004	R									
01 0	ct N01W06	139	0010	03	Byo	004	B									
010	of N02W21	1/1	0010	01		007										
020	of $NO2W21$	141	0010	00	Алл	002	A									
05 0	Ct 1NU2 W 54	141	0000	00		000		Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	
C+:11	on Diale							U	U	U	U	U	U	0	U	
	UII DISK.	nhia las	aituda. 120													
ADSO	nute nellograj	pnic ion	gitude:139													
	л		10													
02.0	Re	gion 67	ð 00 2 0	0.4	Р	000	р									
03 0	ct N12W29	136	0020	04	DSO	002	в	~	0	~	0	~	0	~	0	
0.11	D' 1							0	0	0	0	0	0	0	0	
Still	on Disk.	1 · 1	. 1 105													
Abso	olute heliograj	phic lon	gitude:136													

		Sunsp	ot Number	nominiy i	Radic	Flux	Geomagne	etic					
	Observed	values	Ratio	Smooth	values	*Penticton	Smooth	Planetary	Smooth				
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value				
					2002			-					
October	153.9	97 5	0.63	158.8	2002 90 5	167.0	1594	23	15.6				
November	· 159.9	95.5	0.05	150.0	85.2	168.7	154.8	16	16.3				
December	1/7 0	90.5 80.8	0.00	170.7	82.1	158.6	150.0	13	17.0				
Determoti	147.7	00.0	0.55	144.0	02.1	130.0	150.7	15	17.0				
2003 January 140.3 70.7 0.53 141.7 81.0 144.0 140.2 12 18.2													
January	149.3	79.7	0.53	141.7	81.0	144.0	149.2	13	18.2				
February	87.0	46.0	0.53	136.4	78.5	124.5	144.7	17	18.9				
March	119.7	61.1	0.51	128.1	74.2	132.2	139.5	21	19.4				
								• •					
April	119.7	60.0	0.50	121.5	70.3	126.3	135.0	20	20.1				
May	89.6	55.2	0.62	118.3	67.8	129.3	133.1	26	21.0				
June	118.4	77.4	0.65	113.6	65.2	129.4	130.2	24	21.5				
								4.0					
July	132.8	85.0	0.64	106.9	62.0	127.8	127.2	19	22.0				
August	114.3	72.7	0.64	102.8	60.3	122.1	125.2	23	22.2				
September	82.6	48.8	0.59	100.7	59.8	112.3	123.7	18	21.8				
		. . .											
October	118.9	65.6	0.55	96.6	58.4	153.1	121.8	35	21.1				
November	118.9	67.2	0.57	93.6	57.0	153.1	120.1	28	20.0				
December	75.4	47.0	0.62	91.4	55.0	115.1	118.0	16	18.6				
					2004								
January	62.3	37.2	0.60	87.9	52.0	114.1	116.3	22	18.1				
February	75.6	46.0	0.61	84.2	49.4	107.0	115.5	13	17.7				
March	81.0	48.9	0.60	80.9	47.2	112.2	114.6	14	16.9				
April	59.3	39.3	0.66			101.2		11					
May	77.3	41.5	0.54			99.8		8					
June	78.9	43.2	0.55			97.4		8					
July	87.8	51.0	0.58			118.5		23					
August	69.5	40.9	0.59			110.1		10					
September	50.0	27.7	0.55			103.1		10					

Recent Solar Indices (preliminary) of the observed monthly mean values

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

_

Weekly Geosynchronous Satellite Environment Summary Week Beginning 27 September 2004

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W100) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W74).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 12 (W75) and GOES 10 (W136) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W100) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

