Space Weather Highlights 19 January 2004

SWO PRF 1482 27 January 2004

Solar activity ranged from very low to high levels. The period began at moderate levels with Region 540 (S11, L=285, class/area Eao/500 on 13 January) producing two M1 flares and several C-class flares. This moderate sized region was in gradual decay, but maintained considerable complexity during the first half of the period. Activity increased to high levels on 20 January as Region 540 produced an M6/2n flare with moderate radio bursts that included a 4500 sfu burst on 245 MHz and a Type II radio sweep (950 km/s). This region also produced an impressive long duration C5 flare on the 20th. An associated Earth-directed halo CME was observed on SOHO/LASCO imagery. Activity levels were very low to low for the remainder of the period. Occasional C-class activity was observed in Region 543 (S16, L=269, class/area Dao/100 on 21 January), the largest being a C6 flare late on the 25th. Two large filament eruptions occurred on the 21st. The first was a 28-degree filament eruption and CME that occurred in the southeast quadrant at around 1200 UTC on 21 January. The second event occurred late on the 21st, when a large prominence erupted off the northwest limb. A CME was visible on LASCO imagery following the eruption.

Solar wind data were available from the NASA Advanced Composition Explorer (ACE) spacecraft during most of the summary period. The period began with elevated solar wind speeds near 560 to 660 km/s in the waning stages of a high speed coronal hole stream. Solar wind speed continued its gradual decline through early on the 22nd. At 0100 UTC on the 22nd, a CME impacted ACE; solar wind speed increased sharply from 475 km/s to over 700 km/s. Sharp increases in density and temperature were also noted. IMF Bz was initially northward, but rotated southward at around 0900 UTC on the 22nd, and stayed southward through most of the 23rd. A second weaker transient impacted ACE at approximately 1400 UTC on the 23rd. Solar wind plasma parameters again rose sharply, but to a much lesser degree than the previous transient. Weak transient signatures were again evident late on the 24th through the 25th, but solar wind speed remained at or below 500 km/s.

There were no greater than 10 MeV proton events at geosynchronous orbit during the summary period.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels every day this period.

The geomagnetic field ranged from quiet to severe storm levels. Quiet to active conditions were observed on 19 - 21 January due to a high speed coronal hole stream. A 33 nT sudden impulse early on the 22nd, signified the onset of a severe geomagnetic storm. This CME was likely associated with the long duration C5 flare observed in Region 540 on 20 January. Severe storm periods were observed at all latitudes until midday on the 22nd. Unsettled to minor storm conditions prevailed late on the 22nd through the 23rd. Mostly quiet to active conditions were observed on the 24th. Unsettled to minor storm conditions were observed on the 25th due to weak transient solar wind flow.

Space Weather Outlook 28 January - 23 February 2004

Solar activity is expected to be at very low to moderate levels. The period will begin with an almost spotless visible disk, so expect very low to low conditions to persist through into the first few days of the period. Old active Region 536 is due to rotate back into view in the next few days and will likely elevate activity levels from very low to low with a chance for an M-class flare. Old active Region 537 will return in early February and further enhance flare probabilities. The late stages of the forecast period will likely see a return to low and even very low conditions as the active longitudes rotate out of view.

There is a slight chance for a greater than 10 MeV proton event during the period.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 28 January, 01 - 08 February, and again on 12 - 18 February, due to recurrent coronal holes.

Geomagnetic activity is expected to range from quiet to minor storm levels with a chance of isolated major storm levels. The large transequatorial coronal hole of the last few rotations has broken up into several smaller coronal holes. This series of recurrent coronal holes is due to return on 31 January -07 February and is expected to produce minor storm level activity with a chance of isolated major storm levels. Another coronal hole is expected to return on 11 - 14 February and produce active to minor storm levels.

				Duly Su		uu						
	Radio	Sun	Sunspot	X-ray	_							
	Flux spot		Area	Background	Х	-ray F	lux					
Date	10.7 cm	No.	(10 ⁻⁶ hemi.))	С	М	Х	S	1	2	3	4
19 January	135	87	490	B3.9	9	2	0	4	0	0	0	0
20 January	129	94	540	B3.9	0	1	0	1	1	1	0	0
21 January	130	104	560	B3.3	2	0	0	1	0	0	0	0
22 January	122	76	400	B2.5	0	0	0	0	0	0	0	0
23 January	115	62	260	B1.9	0	0	0	0	0	0	0	0
24 January	108	47	230	B1.8	0	0	0	0	0	0	0	0
25 January	102	48	130	B1.6	1	0	0	2	0	0	0	0

Daily Solar Data

Daily Particle Data													
	Pro (proto	oton Fluence ons/cm ² -day-si	Electron Fluence (electrons/cm ² -day-sr)										
Date	>1MeV	>10MeV	>100MeV	>.6MeV >2MeV >4MeV									
19 January	3.1E+6	1.5E+4	4.2E+3	3.0E+8									
20 January	2.0E+6	1.4E+4	3.8E+3	1.5E+8									
21 January	1.0E+7	1.5E+4	3.7E+3	2.0E+8									
22 January	2.5E+7	1.2E+4	2.7E+3	2.2E+7									
23 January	2.7E+6	1.1E+4	2.7E+3	6.6E+7									
24 January	1.1E+6	1.1E+4	2.4E+3	1.3E+8									
25 January	6.6E+5	1.0E+4	2.0E+3	4.0E+7									

Daily Geomagnetic Data

Duny Geomagneae Duna													
Middle Latitude	High Latitude	Estimated											
Fredericksburg	College	Planetary											
A K-indices	A K-indices	A K-indices											
10 3-2-2-3-3-2-2	37 3-2-2-6-6-6-3-3	17 3-2-3-4-4-3-3											
11 3-2-2-3-3-2-2	37 3-2-2-6-6-6-3-3	16 3-3-3-2-4-4-3-3											
8 2-2-3-2-2-1-2-2	26 2-2-4-5-5-5-3-2	12 2-2-4-3-4-3-3-2											
35 4-4-3-5-5-2-4-6	80 5-5-7-7-7-4-6-3	62 5-5-6-7-7-4-5-4											
21 3-4-3-4-3-4-4-3	80 3-4-6-7-7-7-6-3	38 4-5-4-5-5-5-3											
10 4-2-2-3-2-1-2-2	23 4-2-3-5-4-3-4-3	15 4-2-2-4-3-3-3-3											
17 4-3-3-3-3-2-3	48 4-5-5-6-5-6-4-4	33 5-5-5-4-4-3-3											
	Middle Latitude Fredericksburg A K-indices 10 3-2-2-2-3-3-2-2 11 3-2-2-2-3-3-2-2 8 2-2-3-2-2-1-2-2 35 4-4-3-5-5-2-4-6 21 3-4-3-4-3-4-4-3 10 4-2-2-3-2-1-2-2 17 4-3-3-3-3-2-3	Middle Latitude High Latitude Fredericksburg College A K-indices 10 3-2-2-2-3-3-2-2 37 3-2-2-6-6-6-3-3 11 3-2-2-2-3-3-2-2 37 3-2-2-6-6-6-3-3 8 2-2-3-2-2-1-2-2 26 2-2-4-5-5-5-3-2 35 4-4-3-5-5-2-4-6 80 5-5-7-7-7-4-6-3 21 3-4-3-4-3-4-4-3 80 3-4-6-7-7-7-6-3 10 4-2-2-3-2-1-2-2 23 4-2-3-5-4-3-4-3 17 4-3-3-3-3-3-2-3 48 4-5-5-6-5-6-4-4											

Alerts and Warnings Issued											
Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UT									
19 Jan 0010	5 - 245 MHz Bursts	18 Jan									
19 Jan 0949	ALERT: Electron 2MeV Integral Flux > 1000pfu	19 Jan 0930									
19 Jan 1358	ALERT: Geomagnetic K=4	19 Jan 1358									
19 Jan 1539	EXTENDED WARNING: Geomagnetic K= 4	18 Jan 2047 - 19 Jan 2359									
19 Jan 2137	ALERT: Type II Radio Emission	19 Jan 2003									
19 Jan 2319	EXTENDED WARNING: Geomagnetic K=4	18 Jan 2047 - 20 Jan 1600									
20 Jan 0010	3 - 245 MHz Bursts	19 Jan									
20 Jan 0744	ALERT: X-Ray Flux exceeded M5	20 Jan 0742									
20 Jan 0759	SUMMARY: X-ray Event > M5	20 Jan 0743									
20 Jan 0817	SUMMARY: 10cm Radio Burst	20 Jan 0734									
20 Jan 0822	ALERT: Type II Radio Emission	20 Jan 0739									
20 Jan 0912	ALERT: Electron 2MeV Integral Flux > 1000pfu	20 Jan 0850									
20 Jan 1552	EXTENDED WARNING: Geomagnetic K= 4	18 Jan 2047 - 20 Jan 2359									
20 Jan 2336	EXTENDED WARNING: Geomagnetic K= 4	18 Jan 2047 - 21 Jan 1600									
21 Jan 0843	ALERT: Electron 2MeV Integral Flux > 1000pfu	21 Jan 0820									
21 Jan 2138	WATCH: Geomagnetic A≥ 30	22 Jan									
22 Jan 0111	WARNING: Geomagnetic K= 5	22 Jan 0125 - 1600									
22 Jan 0114	WARNING: Geomagnetic Sudden Impulse	22 Jan 0125 - 0200									
22 Jan 0143	ALERT: Geomagnetic $K=4$	22 Jan 0140									
22 Jan 0145	SUMMARY: Geomagnetic Sudden Impulse	22 Jan 0140									
22 Jan 0202	ALERT: Geomagnetic K-index of 5	22 Jan 0200									
22 Jan 0514	ALERT: Electron 2MeV Integral Flux > 1000pfu	22 Jan 0500									
22 Jan 1257	WARNING: Geomagnetic $K=6$	22 Jan 1257 - 1600									
22 Jan 1304	ALERT: Geomagnetic $K=6$	22 Jan 1305									
22 Jan 1435	ALERT: Geomagnetic $K=7$	22 Jan 1433									
22 Jan 1557	EXTENDED WARNING: Geomagnetic K= 5	22 Jan 0125 - 2359									
22 Jan 2358	WARNING: Geomagnetic $K=4$	22 Jan 2359 - 1600									
23 Jan 0119	2 - 245 MHz Radio Bursts	22 Jan									
23 Jan 0503	WARNING: Geomagnetic $K=5$	23 Jan 0504 - 1600									
23 Jan 0505	ALERT: Geomagnetic $K=5$	23 Jan 0506									
23 Jan 1234	ALERT: Electron 2MeV Integral Flux > 1000pfu	23 Jan 1205									
23 Jan 1552	EXTENDED WARNING: Geomagnetic K= 5	23 Jan 0504 - 2359									
23 Jan 2349	EXTENDED WARNING: Geomagnetic K= 5	23 Jan 0504 - 24 Jan 1600									
24 Jan 1142	ALERT: Electron 2MeV Integral Flux > 1000pfu	24 Jan 1120									
24 Jan 1555	WARNING: Geomagnetic $K=4$	24 Jan 1600 - Jan 24 2359									
24 Jan 2353	EXTENDED WARNING: Geomagnetic K= 4	24 Jan 1600 - Jan 25 1600									
25 Jan 0016	1 - 245 MHz Radio Burst	24 Jan									
25 Jan 134	CANCEL WARNING: Geomagnetic $K=4$	24 Jan 1555									
25 Jan 142	WARNING: Geomagnetic K= 4	25 Jan 0142 - 1600									
25 Jan 814	WARNING: Geomagnetic $K = 5$	25 Jan 0814 - 1600									
25 Jan 824	ALERT: Geomagnetic K-index of 5	25 Jan 0823									
25 Jan 1552	ALERT: Electron 2MeV Integral Flux > 1000pfu	25 Jan 1525									

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	/ Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
28 Jan	105	20	4	11 Feb	120	15	3
29	110	15	4	12	120	20	4
30	110	15	3	13	120	15	3
31	110	20	4	14	120	20	4
01 Feb	115	20	5	15	125	15	3
02	115	20	5	16	130	15	3
03	120	30	5	17	130	15	3
04	120	15	3	18	120	10	3
05	125	10	3	19	115	10	3
06	130	20	4	20	110	15	3
07	135	15	3	21	105	10	3
08	135	10	3	22	100	12	3
09	130	10	3	23	100	15	3
10	125	12	3				

						Energe	tic Events						
D.	T	ìme		X	ray	Opt	tical Informatio	n	Pe	ak	ak Sweep Fr		
Date	$\frac{1}{2}$		$\frac{1}{2}$	Integ		Imp/	Location	Rgn	Radio	$\frac{5 \text{ Flux}}{2605}$	Inte	nsity	
	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	11	IV	
19 Jan 04	0525	0532	0535	M1.0	.003	Sf	S17E05	540	290				
19 Jan 04	1230	1240	1246	M1.0	.006	540	G1 (1112	560	59	1.50	2		
20 Jan 04	0729	0/43	0/4/	M6.1	.028	2n	S16W12	540	4500	150	3		
						Fla	re List						
								(Optical				
D.			Time	;	<u> </u>		X-ray	Imp /	Lo	cation	Rgr	l	
Date 10 January		Begin	Max 010	0	$\underline{\text{End}}$		Class.	Brtns	Lat	CMD	527	7	
19 January		0102	010	ð 2	0112		CI.I D(7				53	/ \	
		0138	014	3	0149		B6./				540)	
		0206	021	5	0219						54(J	
		0226	023	1	0235		CI.7				54()	
		0248	025	5	0303		C1.2				540)	
		0442	044	7	0455		B5.8						
		0529	053	3	0543		M1.0	Sf	S 1	7E05	540)	
		0658	065	8	0703			Sf	S15	5W01	540)	
		0932	093	6	0938		C1.0				537	7	
		1230	124	0	1246		M1.0				540)	
		1425	143	9	1456		C3.4				543	3	
		1738	174	3	1746		C1.5				537	7	
		1958	200	0	2024		C8.2	Sf	S15	5W03	540)	
		2202	004	5	0229		C5.5		-				
		2346	004	0	0137			Sf	S13	3W09	54()	
20 Januarv	, F	30010	002	2 A	0022			1f	S12	3W09	2.0		
y contracting	F	30104	011	2 A	0112			Sf	S12	2W08			
	L	0734	074	4	0810		M6 1	2n	S12 S16	5W12	54()	
21 January	,	0020	003	6	0107		(2)		510	12	543	ŝ	
21 Janual y		0020	003	9	0050	02.5		Sf	Qf Q14		5/2	, R	
		0023	002) 1	0037		C12	51	510	5 VV 12	54.	,	
		1021	105	ו ר	1110		U1.2						
		1031	100	∠ 0	1112		D/.0						
		1/00	1/2	0	1/29		B8.0						
		1908	191	5	1916		B/.4						
22 I		2340	234	/	2357		B7.2				54()	
22 January	r	0930	093	5	0940		B5.7				544	ł	
		1705	171	3	1726		B8.1						
23 January	r	1115	112	2	1127		B2.7				542	2	
		1611	161	9	1624		B3.3				540)	
		1800	180	4	1808		B2.5				544	1	
24 January	r	0449	045	5	0459		B2.5				540)	
2		1006	100	9	1012		B2.5				540)	
25 January	r	0756	080	0	0802		B4.3				540)	
5		1322	132	5	1327		B3.9				540)	
		2227	222	7	2249			Sf	N1	1W70	542	2	
		2222	222	2	2248		C6 3	Sf	S19	8W77	542	3	

Region Summary															
	Locatio	n	-	Sunspot	Character	istics					Flare	es			
Data (° Lat ° CMD)	Helio	Area (10^{-6} hemi)	Extent (helio)	Spot	Spot	Mag	\overline{C}	X-ra M	y v		1)ptic	al	4
Date				(neno)	Class	Count	Class	<u> </u>	IVI	Λ	5	1	2	5	4
	Re	gion 54	0												
12 Jan	S11E76	290	0060	06	Hhx	006	A	1							
13 Jan	S11E68	285	0500	15	Eao	007	В								
14 Jan	S13E59	286	0180	11	Eao	004	В								
15 Jan	S13E43	284	0300	14	Eso	010	В	2				1			
16 Jan	S13E28	286	0350	13	Eao	013	В								
17 Jan	S14E15	286	0350	14	Eso	009	В	5	1		3				
18 Jan	S14E02	285	0330	16	Fko	036	В	1	1		1	1			
19 Jan	S14W10	284	0300	16	Fko	030	Bgd	4	2		4				
20 Jan	S14W22	283	0220	15	Eao	023	Bgd		1				1		
21 Jan	S14W35	283	0220	13	Eso	022	Bg								
22 Jan	S14W48	283	0100	12	Eso	005	Bg								
23 Jan	S14W61	283	0080	13	Cso	003	В								
24 Jan	S14W81	289	0110	02	Hsx	001	А								
25 Jan	S15W91	286	0060	01	Hsx	001	А								
								13	5	0	8	2	1	0	0
Still on	Disk.														
Absolut	te heliograp	phic lon	gitude: 28	35											
	Ro	$\sigma i \alpha n 54$	1												
15 Ian	S09W03	330	0030	05	Dso	005	в								
16 Jan	S09W18	332	0010	02	Byo	003	B								
17 Jan	S09W31	332	0060	03	Dao	003	B								
18 Jan	S10W44	331	0010	02	Bxo	003	B								
19 Jan	S09W58	332	0010	01	Axx	001	A								
20 Ian	S09W71	332	0010	01	1 1/1/1	001	11								
21 Jan	S09W84	332													
21 Juli 22 Ian	S09W97	332													
22 Juli	507 11 71	552						0	0	0	0	0	0	0	0
Crossed	West Lim	h						U	0	U	J	U	0	0	5
100500		1 · 1		•											

Absolute heliographic longitude: 330

Region Summary - continued.																
	Locatio	n		Sunspot	Characte	ristics	M		v		Flar	es		1		
Date	(°Lat°CMD)	Helio	Area (10^{-6} hemi)	Extent (helio)	Spot	Spot	Mag Class	\overline{C}	X-ra M	y v	- <u> </u>	1	<u>ptic</u>	3	1	
Date				(licito)	Class	Count	Class	<u> </u>	111	Λ	5	1	2	5	-	
	Re	gion 54	2		~		_									
16 Jar	n N11E54	260	0060	03	Cso	002	В									
17 Jar	n N11E43	258	0030	01	Hsx	001	А									
18 Jar	n N11E30	258	0000	00	_	000	_									
19 Jar	n N08E15	259	0110	15	Bxo	011	В									
20 Jar	n N10W03	264	0110	08	Dai	012	Bg									
21 Jar	n N10W16	264	0110	11	Dai	021	Bg									
22 Jar	n N10W29	264	0090	08	Dsi	014	В									
23 Jar	n N10W42	264	0040	06	Cso	007	В									
24 Jar	n N10W61	269	0030	01	Hsx	001	А									
25 Jar	n N09W71	266	0040	04	Cso	003	В				1					
								0	0	0	1	0	0	0	0	
Still o	on Disk.															
Absol	lute heliograp	phic lon	gitude: 26	4												
Region 543																
19 Jar	1 S18E05	269	0070	04	Cai	005	Bø	1								
20 Iar	n S17W08	269	0080	05	Dao	005	Bø	1								
20 Jul 21 Jar	n S16W21	269	0100	05	Dao	010	Bø	1			1					
22 Jar	n S16W34	269	0080	04	Dso	006	Bø	1								
22 Jan 23 Jan	n S16W47	269	0040	04	Cso	004	B									
24 Jar	n S16W60	268	0050	02	Hsx	001	A									
25 Jar	n S16W72	260	0020	01	Hsx	001	A	1			1					
20 Jul	1 510 (1/2	207	0020	01	115/1	001	11	3	0	0	2	0	0	0	0	
Still o	on Disk							2	Ū	Ŭ	-	Ŭ	Ŭ	Ŭ	Ŭ	
Absol	ute heliograi	ohic lon	gitude [.] 26	9												
			0	-												
2 0 T	Re NOOTOO	gion 34	0120	00	р [.]	014	Л									
20 Jar	1 NU8EU9	252	0130	08	Dai	014	Вg									
21 Jar	1 NU8W04	252	0130	08	DS0		Вg									
22 Jar	1 NU8W17	252	0130	09	Cso	011	В									
23 Jar	n N08W30	252	0100	10	Dao	008	В									
24 Jar	1 N08W44	252	0040	07	Bxo	004	В									
25 Jar	n N08W57	252	0010	06	Bxo	003	В	~	6	~	6	~	<u> </u>	~	0	
a	D'1							0	0	0	0	0	0	0	0	
Still o	on Disk.			-												
Absol	lute heliogra	phic lon	gitude: 25	2												

Sunspot Numbers Radio Flux Geomagnetic												
	Observed	values	Ratio	Smooth	values	*Penticton	Smooth	Planetary	Smooth			
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value			
2002												
Ianuary	189.0	114 1	0.60	184.8	113.5	2273	194.6	08	123			
February	107.0	107.4	0.00	188.6	113.5	205.0	197.0	10	12.5			
March	153.1	107.4 08.4	0.55	188.0	114.7	180.3	197.2	10	12.0			
100.5 175.1 10 12.7												
April	194.9	120.7	0.62	186.2	110.5	189.8	191.5	15	13.2			
Mav	204.1	120.8	0.59	183.6	108.9	178.4	188.0	15	13.3			
June	146.0	88.3	0.60	179.9	106.3	148.7	183.0	11	13.5			
• • • • •				- , , , ,								
July	183.5	99.6	0.54	175.4	102.7	173.5	176.3	11	13.7			
August	191.0	116.4	0.61	169.2	98.7	183.9	169.5	16	14.2			
September	r 206.4	109.6	0.53	163.4	94.6	175.8	164.1	14	15.0			
1												
October	153.9	97.5	0.63	158.8	90.5	167.0	159.4	23	15.6			
November	159.8	95.5	0.60	150.9	85.2	168.7	154.8	16	16.3			
December	147.9	80.8	0.55	144.6	82.1	158.6	150.9	13	17.0			
					2003							
Januarv	149.3	79.7	0.53	141.7	81.0	144.0	149.2	13	18.2			
February	87.0	46.0	0.53	136.4	78.5	124.5	144.7	17	18.9			
March	1197	61.1	0.51	128.1	74.2	132.2	139.5	21	194			
					,				-,			
April	119.7	60.0	0.50	121.5	70.3	126.3	136.3	20	20.0			
May	89.6	55.2	0.62	118.3	67.8	129.3	135.0	26	21.0			
June	118.4	77.4	0.65	113.6	65.2	129.4	132.6	24	21.8			
July	132.8	85.0	0.64			127.8		20				
August	114.3	72.7	0.64			122.1		23				
September	r 82.6	48.8	0.59			112.3		19				
October	118.9	65.6	0.55			153.1		32				
November	118.9	67.2	0.57			153.1		31				
December	75.4	47.0	0.62			115.1		17				

Recent Solar Indices (preliminary) of the observed monthly mean values

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

_

Weekly Geosynchronous Satellite Environment Summary

Week Beginning 19 January 2004

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W113) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12.

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Heartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers. The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 12 and 10 in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W113) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

