

Hubble Watches Light from Mysterious Erupting Star Reverberate Through Space - In January 2002, a dull star in an obscure constellation suddenly became 600,000 times more luminous than our Sun, temporarily making it the brightest star in our Milky Way galaxy. The mysterious star, called V838 Monocerotis, has long since faded back into obscurity. But observations by NASA's Hubble Space Telescope of a phenomenon called a "light echo" around the star have uncovered remarkable new features. These details promise to provide astronomers with at CAT-scan-like probe of the three-dimensional structure of shells and dust surrounding an aging star.

Astronomical Search for Origins

MAJOR EVENTS IN FY 2005

- The Spitzer Space Telescope (formerly SIRTF the Space Infrared Telescope Facility) will begin its second cycle of science proposals.
- The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered for final science testing.
- James Webb Space Telescope (JWST) will undergo its System Definition Review.

OVERVIEW

Where did we come from? Are we alone? Astronomers search for answers by looking both far away -- towards the beginning of time -- to see galaxies forming, and close to home, searching for planetary systems like our own around nearby stars. NASA's Astronomical Search for Origins (ASO) is a series of closely linked missions that build on prior accomplishments in the quest for answers to these questions and thus directly support the President's new vision to explore the solar system as well as worlds beyond. As each mission makes radical advances in technology, innovations are fed forward, from one generation of missions to the next. In FY 2005, we will operate ongoing missions such as the Hubble Space Telescope (HST) and the Spitzer Space Telescope (SST, formerly SIRTF), and continue development of first and second generation follow-on missions, including the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), and Terrestrial Planet Finder (TPF).

Mission	Goals supported by this Theme	Objectives supporting these Goals
To Explore the Universe and Search for Life	5. Explore the solar system and the universe beyond, understand the origin	5.8 Learn how galaxies, stars, and planetary systems form and evolve.
	and evolution of life, and search for evidence of life elsewhere.	5.9 Understand the diversity of worlds beyond our solar system and search for those that might harbor life.

RELEVANCE

Knowing where we come from requires understanding how the universe began and how its subsequent evolution culminated in everything we are and observe today. Understanding whether we are alone in the cosmos depends upon our search for life-sustaining planets or moons, and our understanding of the diversity of life here on Earth. ASO programs are aimed at developing the technologies, building the instruments that make the observations, and doing the science that will bring us the answers to our questions.

Education and Public Benefits

Over the last decade, few scientific endeavors have provided the world with more spectacular images or yielded more fascinating results than ASO's flagship: the Hubble Space Telescope (HST). As more sophisticated instruments have been added through the years, we have witnessed the birth of stars, begun to unravel the mysteries of black holes, and looked billions of years into our past. This flood of knowledge -- and questions -- has spread throughout the globe via front page press, television, websites, and school curricula at all levels. ASO will continue to make significant contributions toward meeting national goals for the reform of science, math and technology education and the general elevation of scientific and technological literacy throughout the country.

IMPLEMENTATION

The Astronomical Search for Origins theme is composed of many elements that work together to achieve the program's goals and objectives. Repeated management and scientific peer reviews ensure that each mission provides data in a cost-effective manner. In many cases, the data obtained from different missions are complementary and are combined in cross-disciplinary studies by members of the scientific community. Theme responsibility resides in the Office of Space Science at NASA HQ. Enterprise official is Dr. Edward Weiler, Associate Administrator for Space Science. Theme director and point of contact is Dr. Anne Kinney, Director of the Astronomy and Physics Division at NASA HQ. This theme is in full compliance with NPG 7120.5B.

IMPLEMENTATION SCHEDULE

Theme Element	Schedule by Fiscal Year			Purpose				
	02 03 04	05	06 07 08 0	9				
Spitzer Space Telescope (SST)				Study the formation of stars, galaxies, and planets via spectroscopy, high-sensitivity photometry and imaging.				
Hubble Space Telescope (HST)				Provide a serviceable, state-of-the-art, orbiting observatory to study the history of the Universe.				
Far Ultraviolet Spectroscopic Explorer (FUSE)				Study physical processes governing the evolution of galaxies as well as the origin and evolution of stars and planetary systems.				
Kepler				Explore the structure and diversity of planetary systems, with a special emphasis on detecting Earth-size planets in the habitable zone around other stars.				
Stratospheric Observatory for Infrared Astronomy (SOFIA)				Study the properties of interstellar space as well as planet and star formation.				
Keck Interferometer				Characterize exo-zodiacal dust to support TPF design; direct detection of "hot Jupiters" and brown dwarfs; astronomic detection of planets.				
Space Interferometry Mission (SIM)				Detect planets outside the solar system by observing thousands of stars; serve as technological pathfinder for TPF.				
James Webb Space Telescope (JWST)				Provide the next generation space telescope to observe the first stars and galaxies; determine the shape and fate of the Universe.				
Terrestrial Planet Finder (TPF)				Find/characterize Earth-like planets around nearby stars.				
Tech 8	Tech & Adv Concept Development Operations Research							

No exceptions to NPG 7120.5B have been taken.

STATUS

- Both SIM and JWST successfully completed Confirmation Reviews to enter Phase B development.
- SOFIA telescope assembly was installed in the 747 aircraft.
- SIRTF (renamed the Spitzer Space Telescope), last of the Great Observatories, was launched in August 2003.
- HST discovered a 13-billion-year-old planet, the oldest known in the Milky Way.
- Keck Interferometer achieved its first scientific result: detection of a young star surrounded by dust in which planets may be forming.

For more detailed status information: http://origins.jpl.nasa.gov/.

PERFORMANCE MEASURES

Outcomes/Annual	Performance Goals (APGs)
Outcome 5.8.1	Learn how the cosmic web of matter organized into the first stars and galaxies and how these evolved into the stars and galaxies we see today.
5ASO4	Demonstrate James Webb Space Telescope (JWST) primary mirror technology readiness by testing a prototype in a flight-like environment.
5ASO5	Successfully demonstrate progress in learning how the cosmic web of matter organized into the first stars and galaxies and how these evolved into the stars and galaxies we see today. Progress towards achieving outcomes will be validated by external review.
Outcome 5.8.2	Understand how different galactic ecosystems of stars and gas formed and which ones might support the existence of planets and life.
5ASO6	Successfully demonstrate progress in understanding how different galactic ecosystems of stars and gas formed and which ones might support the existence of planets and life. Progress towards achieving outcomes will be validated by external review.
Outcome 5.8.3	Learn how gas and dust become stars and planets.
5ASO7	Successfully demonstrate progress in learning how gas and dust become stars and planets. Progress towards achieving outcomes will be validated by external review.
Outcome 5.8.4	Observe planetary systems around other stars and compare their architectures and evolution with our own.
5ASO3	Demonstrate system-level instrument pointing precision consistent with SIM's flight system basic performance requirements, as specified in program plan.
5ASO8	Successfully demonstrate progress in observing planetary systems around other stars and comparing their architectures and evolution

Outcomes/Annua	Performance Goals (APGs)
	with our own. Progress towards achieving outcomes will be validated by external review.
Outcome 5.9.1	Characterize the giant planets orbiting other stars.
5ASO9	Successfully demonstrate progress in characterizing the giant planets orbiting other stars. Progress towards achieving outcomes will be validated by external review.
Outcome 5.9.2	Find out how common Earth-like planets are and see if any might be habitable.
5ASO2	Successfully complete the Kepler mission Preliminary Design Review (PDR).
5ASO10	Successfully demonstrate progress in finding out how common Earth-like planets are and seeing if any might be habitable. Progress towards achieving outcomes will be validated by external review.
Outcome 5.9.3	Trace the chemical pathways by which simple molecules and dust evolve into the organic molecules important for life
5ASO1	Deliver the SOFIA Airborne Observatory to Ames Research Center for final testing.
5ASO11	Successfully demonstrate progress in tracing the chemical pathways by which simple molecules and dust evolve into the organic molecules important for life. Progress towards achieving outcomes will be validated by external review.
Outcome 5.9.4	Develop the tools and techniques to search for life on planets beyond our solar system.
5ASO12	Successfully demonstrate progress in developing the tools and techniques to search for life on planets beyond our solar system. Progress towards achieving outcomes will be validated by external review.
Uniform Measures	
5ASO13	Complete all development projects within 110% of the cost and schedule baseline.
5ASO14	Deliver at least 90% of scheduled operating hours for all operations and research facilities.
5ASO15	At least 80%, by budget, of research projects will be peer-reviewed and competitively awarded.

INDEPENDENT REVIEWS

Review Types	Performer	Last Review Date	Next Review Date	Purpose
Subcommittee	ASO Subcommittee	10/03	2/04	Review science strategy, program implementation Strategy.
Nat'l Acad. of Sciences Advisory Council	Space Studies Board	7/00	7/10	Decadal Survey for Astronomy and Physics.
Federal Advisory Committee	NAC	12/03	3/04	Review science/program implementation strategies.
Federal Advisory Committee	SSAC	11/03	3/04	Review science/program implementation strategies.

BUDGET

Budget Authority (\$ millions)	FY 2003	FY 2004	Change	FY 2005
Astronomical Search for Origins	685.3	898.8	+168.0	1,066.8
<u>Development</u>	<u>358.6</u>	<u>245.0</u>	<u>-88.1</u>	<u>156.9</u>
Hubble Space Telescope	140.7	139.8	-110.1	29.7
SOFIA	46.6	54.4	-54.4	
Spitzer Space Telescope	148.3			
Kepler	23.0	50.8	+76.4	127.2
<u>Operations</u>	<u>7.2</u>	<u>24.4</u>	+32.2	<u>56.6</u>
Research	<u>119.1</u>	<u>197.8</u>	<u>+34.5</u>	232.3
Technology and Advanced Concepts	<u>200.5</u>	<u>431.6</u>	<u>+189.4</u>	<u>621.0</u>
James Webb Space Telescope	95.7	253.1	+65.0	318.1
Technology and Advanced Concepts	104.8	178.5	+124.4	302.9

Theme: Astronomical Search for Origins **Development**: Hubble Space Telescope

Purpose

Objectives	Performance Measures		
5.8	5ASO5-7,13		

Since 1990, the Hubble Space Telescope (HST) has used its pointing precision, powerful optics and state-of-the-art instruments to explore the visible, ultraviolet and near-infrared regions of the electromagnetic spectrum. Hubble will continue to investigate the formation, structure and evolution of stars and galaxies, studying the history of the universe, and providing a space-based research facility for optical astronomy. HST has already rewritten the textbooks of astronomy, and is expected to do so until decommissioned.

OVERVIEW

Extending HST's operational life has required instrument upgrades to keep the observatory at the forefront of astronomical research throughout its mission. During Servicing Mission 3B in March 2002, astronauts installed the Advanced Camera for Surveys (ACS) and a cryo-cooler that brought the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) back to life. These instruments should enable HST to continue to provide high quality astronomical data for several more years, after which the observatory will be decommissioned pending its controlled reentry into Earth's atmosphere using an automated spacecraft. The previously planned Servicing Mission SM4 has been cancelled due to safety considerations related to flying the Space Shuttle to a different orbit from that of the International Space Station (which could provide a safe haven in an emergency). Hubble development funding will now go to support the development of a robotic spacecraft that will be launched on an expendable launch vehicle, rendezvous with the observatory, and deorbit the Hubble Space Telescope safely after the end of its useful science life. In addition, modification and upkeep of ground operations systems continue.

Link to the Hubble Homepage for more information. http://hubble.gsfc.nasa.gov/index.html.

PROGRAM MANAGEMENT

GSFC is responsible for HST project management, including mission and science operations. The HST program is governed by the GSFC Program Management Council. The Agency Program Management Council has oversight responsibility for the program. Enterprise Official is Dr. Edward Weiler, Associate Administrator for Space Science at NASA HQ. Theme Director and point of contact is Dr. Anne Kinney, Director of Astronomy and Physics at NASA HQ. This program is in full compliance with NPG-7120.5B.

TECHNICAL COMMITMENT

Technical Specifications	FY 2005 President's Budget	Change from Baseline
Mission Life	15+ years	
Science Instruments	up to 5	
Stellar Energy within 0.1 arcsec	70%	
Image Jitter	< .012 arcsec RMS/24 hr	
Pointing Error	< .03 arcsec	

Schedule	FY 2005 President's Budget	Change from Baseline
Retrieval Mission	CY10	

ACQUISITION STRATEGY AND PERFORMING ORGANIZATIONS

Changes since FY 2004 President's Budget: SM4 has been cancelled; deorbit mission to be carried out by an automated spacecraft. The HST program will require the acquisition of this module to deorbit the observatory safely at the end of its useful science life. The acquisition strategy and performing organizations are TBD. These changes will be reflected in NASA's Initial FY04 Operating Plan.

Current Acquisition	Actual*	Selection Method	Actual*	Performer	Actual*
Cooperative Agreement	0%	Full & Open Competition 55%		Industry	67%
Cost Reimbursable	93%	Sole Source	Sole Source 45% Government 1%		1%
Fixed Price	5%		100%	NASA Intramural	0%
Grants	1%			University	2%
Other	1%	Sci Peer Review	100%	Non Profit	30%
* as of FY03 direct procurement	100%	* as of FY03 direct procurement		* as of FY03 direct procurement	100%

Theme: Astronomical Search for Origins **Development:** Hubble Space Telescope

Future Acquisition - Major	Selection	Goals
Automated spacecraft for HST deorbit.	TBD	TBD

AGREEMENTS

Internal: 1. OSF Form 1628 between the Office of Space Flight (OSF) and the Office of Space Science (OSS) to provide launch services to conduct servicing missions, signed May 4, 1990. 2. OSF/Space Communications -- agreement between OSF and OSS to provide HST ground systems development, maintenance, and flight-related telecommunications services. Revision 7, September 21, 1990. External: NASA-ESA Memorandum of Understanding, dated October 7, 1977, and including Riders 1, 1A, 1B, and 2. Changes since FY 2004 President's Budget: None.

RISK MITIGATION

Top Risks	Υ	Overall	Υ	Cost	Υ	Schedule	Υ	Probability	Impact	Mitigation Plan
Propulsion								Medium	High	Under development
Module										
Development										

INDEPENDENT REVIEWS

Review Types	Performer	Last Review Date	Next Review Date	Purpose
Independent Implementation	IPAO/IRT	8/02	12/03	To ensure compliance with PCA-defined technical, cost and schedule thresholds.
Independent Science Review	HST-JWST Transition Panel	8/03	8/03	Review agency plans and to receive community input on the HST - JWST transition.

BUDGET/LIFE CYCLE COST

Budget	Prior	FY03	FY04	FY05	FY06	FY07	FY08	FY09	втс	Total Comments
Authority (\$										
FY2005 PRESBUD		228.6	<u>241.6</u>	<u>130.1</u>	122.8	<u>199.2</u>	<u>290.3</u>	<u>130.5</u>	<u>128.4</u>	
Development		140.7	139.8	29.7	23.7	98.7	189.7	31.6	128.4	
Operations		4.8	8.7	6.9	7.1	7.3	8.0	8.1		
Data Analysis		83.1	93.1	93.5	92.0	93.2	92.6	90.8		
Changes since		10.4	10.7	10.4	OF 1	120.7	1710	1120 E	224.2	
2004 PRESBUD		<u>+0.4</u>	<u>+2.7</u>	<u>-12.4</u>	<u>-25.1</u>	+30.7	<u>+71.2</u>	<u>+130.5</u>	<u>-324.2</u>	SM4 cancelled; plan for
Development		+1.8	+3.4	-13.3	-20.0	+35.9	+79.7	+31.6	-47.5	robotic deorbit mission
Operations		-0.3	-0.1	-0.1	-0.2	-0.3	-0.1	+8.1	-16.8	
Data Analysis		-1.1	-0.6	+1.0	-4.8	-4.9	-8.3	+90.8	-259.9	Programmatic reduction
FY2004 PRESBUD		<u>228.2</u>	<u>238.9</u>	<u>142.5</u>	<u>147.9</u>	<u>168.5</u>	<u>219.1</u>		<u>452.6</u>	
Development		138.9	136.4	43.0	43.7	62.8	110.0		175.9	
Operations		5.1	8.8	7.0	7.3	7.6	8.1		16.8	
Data Analysis		84.2	93.7	92.5	96.8	98.1	100.9		259.9	

Development: SOFIA

Purpose

Objectives	Performance Measures
5.8, 5.9	5ASO7,11,13

The SOFIA program extends the range of astrophysical observations significantly beyond that of previous infrared airborne observatories through increases in sensitivity and angular resolution. SOFIA will be used to study many different kinds of astronomical objects and phenomena, including: star birth and death; solar system formation; complex molecules in space; planets, comets, and asteroids in our solar system; nebulae and dust in galaxies; and black holes at the centers of galaxies.

OVERVIEW

SOFIA is an astronomical observatory consisting of a 2.5 meter aperture telescope permanently installed in a specially modified Boeing 747 aircraft. The aircraft, with its open-port telescope provided through a partnership with the German Aerospace Center (DLR), will provide routine access to nearly all of the visual, infrared, far-infrared, and submillimeter parts of the spectrum. It will operate from Moffett Federal Airfield in Northern California as well as from deployment sites in the Southern Hemisphere and elsewhere, as dictated by its astronomical targets. SOFIA will serve as a training ground for the next generations of instrument builders well into the 21st century, while producing new instrumentation important to NASA's future space observatories. SOFIA will have an active Education & Public Outreach Program, which will include flying educators along with astronomers.

Go to the SOFIA Homepage for more information: http://sofia.arc.nasa.gov/

PROGRAM MANAGEMENT

SOFIA is a single-project program with program responsibility delegated to the Ames Research Center. The Space Science Enterprise Program Management Council (PMC) has SOFIA governing responsibility. Enterprise Official is Dr. Edward Weiler, Associate Administrator for Space Science at NASA HQ. Theme Director and point of contact is Dr. Anne Kinney, Director of Astronomy and Physics at NASA HQ. This program is in full compliance with NPG7120.5B.

TECHNICAL COMMITMENT

The baseline for this technical commitment was made in 9/2000 and is detailed in the SOFIA PCA.

Technical Specifications	FY 2005 President's Budget	Change from Baseline
Effective aperture of telescope:	2.5 meters	
Telescope wavelength range:	0.3 to 1,600 microns	
Optical image quality:	80 % of visible wavelength encircled energy, from a point source within a 1.5 arcsecond diameter at the focal plane.	
Image stability of telescope:	1.1 arcsec root mean square (rms) at first science flight. 0.2 arcsec rms three years after first science flight.	
Operational capability:	Operate in observing configuration for 6 hours or more at altitudes of at least 41,000 feet. Provide 960 research hours per year beginning in the third year of operation.	
Science Instruments:	8 science instruments at beginning of operations, 15 after 5 years, up to 40 investigation teams per year.	

Schedule	FY 2005 President's Budget	Change from Baseline
Start of Formulation	Oct-91	
Start of Implementation	Mar-96	
Telescope Delivery for Installation	Sep-02	+10 mos
Operations Readiness Review	Mar-05	+28 mos
First Science Flight	Apr-05	+29 mos
Data Proprietary Period	1 year after receipt by investigators	
Observatory Operational Lifetime	20 years	

Development: SOFIA

ACQUISITION STRATEGY AND PERFORMING ORGANIZATIONS

Major acquisitions for SOFIA are: science investigations; aircraft systems and Operations Center development; MOU with the German Aerospace Center (DLR) for Telescope Assembly; and science operations (5 years with 5 year option). Seven instruments were selected for development in September 1997. Calls for proposal (CFPs) to be issued: science instrument development as needed; annually for observing time. Universities Space Research Association (USRA) selected in 1996 as prime contractor for the aircraft, operations center, and first 5 years of operations, with L3 Systems as the key subcontractor. Changes since FY 2004 President's Budget: United Airlines has dropped out of the partnership.

Current Acquisition	Actual*	Selection Method	Actual*	Performer	Actual*
Cooperative Agreement	0%	Full & Open Competition	100%	Industry	75%
Cost Reimbursable	83%	Sole Source	0%	Government	0%
Fixed Price	0%		100%	NASA Intramural	9%
Grants	0%			University	11%
Other	17%	Sci Peer Review	100%	Non Profit	5%
* as of FY03 direct procurement	100%	* as of FY03 direct procurement		* as of FY03 direct procurement	100%

Future Acquisition - Major	Selection	Goals
None - all major acquisitions are in place.		

AGREEMENTS

Internal: The program is not dependent on other NASA activities outside of the control of the Associate Administrator for Space Science. External: Provision of the Telescope Assembly and support for observatory operations from the German Aerospace Center (DLR), according to NASA/DARA Memorandum of Understanding, signed December 1996. (Note: DARA was subsequently absorbed into DLR.) Changes since FY 2004 President's Budget: None.

INDEPENDENT REVIEWS

Review Types	Performer	Last Review Date	Next Review Date	Purpose
Independent Annual Review	IRT	6/02	11/03	Assure compliance with PCA defined technical, cost and schedule parameters.

Development: SOFIA

BUDGET/LIFE CYCLE COST

Budget Authority (\$millions)	Prior	FY03	FY04	FY05	FY06	FY07	FY08	FY09	втс	Total Comments
FY2005 PRESBUD	<u>271.4</u>	<u>46.6</u>	<u>54.4</u>	<u>52.5</u>	48.2	<u>56.8</u>	<u>58.8</u>	<u>59.8</u>		<u>648.5</u>
Development	271.4	46.6	54.4							372.4
Operations				33.4	28.3	37.7	39.1	40.1		178.6
Data Analysis				19.1	19.9	19.1	19.7	19.7		97.5
Changes since 2004										
PRESBUD		<u>-0.3</u>	<u>-0.3</u>	<u>+1.3</u>	<u>-7.1</u>	<u>-0.6</u>	<u>-0.9</u>	+59.8		<u>+51.9</u>
Development		-0.3	-0.3							Reserves moved -0.6 from Ops.
Operations				+0.5	-7.8	+0.2	-0.1	+40.1		+33.0 Added FY 09
Data Analysis				+0.7	+0.7	-0.7	-0.8	+19.7		+19.6 Added FY 09
FY2004 PRESBUD	<u>271.4</u>	<u>46.9</u>	<u>54.7</u>	<u>51.2</u>	<u>55.3</u>	<u>57.4</u>	<u>59.7</u>			<u>596.6</u>
Development	271.4	46.9	54.7							373.0
Operations				32.9	36.1	37.5	39.2			145.6
Data Analysis				18.4	19.2	19.8	20.5			77.9
Initial Baseline	271.4	38.0	38.9	<u>40.1</u>	41.3					429.7
Development	234.8	30.0	30.8	40.1	41.3					<u>429.7</u> 234.8
Operations	36.6	38.0	38.9	40.1	41.3					194.9

Development: Kepler

Purpose

Objectives	Performance Measures
5.9	5ASO2,10,13

The scientific goal of the Kepler mission is to explore the structure and diversity of planetary systems, with a special emphasis on detecting Earth-size planets in the habitable zones around other stars. The Kepler mission's specific objectives include: (1) determine the frequency of terrestrial and larger planets in or near the habitable zones of a wide variety of spectral types of stars; (2) determine the distribution of planet sizes and their orbital semi-major axes (half the longest diameter of the orbit); (3) estimate the frequency and orbital distribution of planets in multiple-stellar systems; and (4) determine the distributions of semi-major axis, albedo, size, mass, and density of short-period giant planets. The Kepler mission will continuously and simultaneously observe over 100,000 target stars.

OVERVIEW

The Kepler spacecraft will be launched into an Earth-trailing, heliocentric orbit similar to that of SST. Following a 30-day period during which the photometer and spacecraft are characterized, Kepler begins acquiring its scientific data. It is expected that "hot Jupiters" (giant gas planets) in short period orbits will be identified after the first month of observation. During the first year, terrestrial planets with orbital periods shorter than that of Mercury -- as well as a wide range of larger planets with similar periods -- should be detected. Finally, the anticipated identification of Earth-size planets in the habitable zones of other star systems will begin during the third year of the Kepler mission.

Link to the Kepler Homepage for more information: http://www.kepler.arc.nasa.gov/

PROGRAM MANAGEMENT

Kepler is a project in the Discovery Program with project responsibility delegated to the Principal Investigator (PI) at the Ames Research Center. The JPL Program Management Council (PMC) has Kepler governing responsibility. Enterprise Official is Dr. Edward Weiler, Administrator for Space Science at NASA HQ. Theme Director and point of contact is Dr. Anne Kinney, Director of Astronomy and Physics at NASA HQ. The program is in full compliance with NPG7120.5B.

TECHNICAL COMMITMENT

The baseline for this technical commitment will be set at Confirmation Review.

Technical Specifications	FY 2005 President's Budget	
Photometer:	0.95-m aperture	
Primary mirror:	1.4 m dia., 85% lightweighted	
Detectors:	42 CCDs - 2200 x 1024 pixels	
Mass:	903 kg	
Power:	613 W	
Launch Vehicle	D2925-10L (Delta II)	
Mission lifetime:	4 years of flight	
Telemetry:	Ka-and X-band	

Schedule	FY 2005 President's Budget	Baseline	Change from Baseline
System Readiness Review:	10/03	10/03	
Preliminary Design Review:	10/04	10/04	
Critical Design Review:	08/05	08/05	
Launch:	10/07	10/07	

ACQUISITION STRATEGY AND PERFORMING ORGANIZATIONS

Ames Research Center (ARC) provides the Principal Investigator (PI), Deputy PI and some members of the science team. ARC acquires the other science team members through grants and contracts as appropriate. The Jet Propulsion Laboratory (JPL) provides the project management, mission assurance and project system engineering. Ball Aerospace and Technology Corporation provides the spacecraft, photometer and mission operations center. Changes since FY 2004 President's Budget: None.

Development: Kepler

Current Acquisition	Actual*	Selection Method	Actual*	Performer	Actual*
Cooperative Agreement	100%	Full & Open Competition	100%	Industry	95%
Cost Reimbursable	0%	Sole Source	0%	Government	0%
Fixed Price	0%		100%	NASA Intramural	5%
Grants	0%			University	0%
Other	0%	Sci Peer Review	100%	Non Profit	0%
* as of FY03 direct procurement	100%	* as of FY03 direct procurement		* as of FY03 direct procurement	100%

Future Acquisition - Major	Selection	Goals
None - all major acquisitions are in place.		

AGREEMENTS

Internal: The project is not dependent on other NASA activities outside of the control of the Associate Administrator for Space Science. External: None. Changes since FY 2004 President's Budget: None.

RISK MITIGATION

INDEPENDENT REVIEWS			

Review Types	Performer	Last Review Date	Next Review Date	Purpose
Confirmation Review	HQ/OSS		11/04	Approval to continue to Phase C/D.
	Discovery			
	Program			Critical Design Review; ATLO (Pre-
Independent Assessment	Offics		10/04	Environmental Review).

BUDGET/LIFE CYCLE COST

Budget Authority (\$ millions)	Prior	FY03	FY04	FY05	FY06	FY07	FY08	FY09	втс	Total Comments
FY2005 PRESBUD	<u>4.6</u>	<u>23.0</u>	<u>50.8</u>	<u>127.2</u>	<u>114.4</u>	<u>69.7</u>	<u>11.3</u>	<u>8.2</u>	<u>50.7</u>	<u>459.8</u>
Development	4.6	23.0	50.8	127.2	114.4	69.7				389.6
Mission Operations & Data Analysis							11.3	8.2	50.7	70.2
Changes since										
2004 PRESBUD	+0.2	<u>-2.5</u>	<u>-0.3</u>	<u>-6.4</u>	<u>+0.6</u>	<u>+7.6</u>	<u>-14.8</u>	+8.2	+50.7	<u>+43.4</u>
Development	+0.2	-2.5	-0.3	-6.4	+0.6	+7.6	-11.1			-11.7 MO&DA combined
Operations							-11.5			-11.5
Mission Operations & Data Analysis							+11.3	+8.2	+50.7	+70.2
Data Analysis							-3.6			-3.6
FY2004 PRESBUD	<u>4.3</u>	<u>25.5</u>	<u>51.1</u>	<u>133.6</u>	<u>113.8</u>	<u>62.1</u>	<u>26.1</u>			<u>416.4</u>
Development	4.3	25.5	51.1	133.6	113.8	62.1	11.1			401.4
Operations							11.5			11.5
Data Analysis							3.6			3.6

OPERATIONS

Purpose

Objectives	Performance Measures
5.8, 5.9	5ASO5-12,14

Maximize the scientific return from NASA's investment in spacecraft and other data collection sources by efficiently and reliably operating the data-collecting hardware that enables scientific discoveries.

OVERVIEW

ASO Operations currently supports the Hubble Space Telescope (HST) and the Far Ultraviolet Spectroscopic Explorer (FUSE). HST provides a state-of-the-art, orbiting observatory to study the history of the universe. FUSE studies physical processes governing the evolution of galaxies, as well as the origin and evolution of stars and planetary systems. The Spitzer Space Telescope (SST, formerly SIRTF) was launched in August 2003, and will study the formation of stars, galaxies and planets via spectroscopy, high-sensitivity photometry and imaging.

Starting in FY 2005, the operations funding for the Far Ultraviolet Spectroscopic Explorer (FUSE), Kepler, and the Wide-field Infrared Survey Explorer (WISE) will be combined with the Data Analysis funding for those missions (see Enterprise summary section for more information).

For more information on HST, go to: http://hubble.gsfc.nasa.gov/index.html For more information on FUSE, go to: http://fuse.pha.jhu.edu/ For more information on Spitzer, go to: http://sirtf.caltech.edu/

PROGRAM MANAGEMENT

Enterprise official is Dr. Edward Weiler, Associate Administrator for Space Science. Theme Director and point of contact is Dr. Anne Kinney, Director of Astronomy and Physics at NASA HQ. HST and FUSE are managed by the Goddard Space Flight Center. SST is managed by the Jet Propulsion Laboratory. This program is in full compliance with NPG7120.5B.

TECHNICAL COMMITMENT

The baseline is documented in the Program Commitment Agreement for each ASO mission.

Technical Specifications	FY 2005 President's Budget	Change from Baseline
	All missions will meet Level I specifications as identified in the	
All missions	Program Plan.	

Mission	Launch Date	Comments
Far Ultraviolet Spectroscopic Explorer	June 1999	Mission extended.
Hubble Space Telescope	April 1990	Mission extended.
Spitzer Space Telescope	August 2003	Prime mission through February 2006.

ACQUISITION STRATEGY AND PERFORMING ORGANIZATIONS

The prime contractor for HST operations is the Consolidated Space Operations Contractor, Lockheed Martin Space Operations. FUSE operations are performed by the Johns Hopkins University. SST operations will be performed by the Jet Propulsion Laboratory. In FY03, direct procurement represented 100% of budget authority. Changes since FY 2004 President's Budget: None.

Current Acquisition	Actual*	Selection Method	Actual*	Performer	Actual*
Cooperative Agreement	0%	Full & Open Competition	100%	Industry	66%
Cost Reimbursable	100%	Sole Source	0%	Government	0%
Fixed Price	0%			NASA Intramural	0%
Grants	0%		100%	University	0%
Other	0%			Non Profit	34%
* as of FY03 direct procurement	100%	* as of FY03 direct procurement		* as of FY03 direct procurement	100%

OPERATIONS

Future Acquisition	Selection	Goals
Consolidated Space Operations Contract recompetition	late 2003	100% Full & Open Competition

AGREEMENTS

Internal: The program is not dependent on other NASA activities outside of the control of the Associate Administrator of Space Science. External: None. Changes since FY 2004 President's Budget: None.

INDEPENDENT REVIEWS

Review Types	Performer	Last Review Date	Next Review Date	Purpose
Senior Review	External panel	6/02	7/04	To consider mission extensions and funding levels for operating ASO spacecraft

BUDGET

Budget Authority (\$ millions)	FY 2003	FY 2004	FY 2005	Comme
FY2005 PRESBUD	<u>7.2</u>	<u>24.4</u>	<u>56.6</u>	
HST Operations	4.8	8.7	6.9	
SST Operations		14.2	16.3	
FUSE Operations	2.4	1.5		
Other			33.4	
Changes since 2004 PRESBUD	<u>-2.6</u>	<u>-0.2</u>		
HST Operations	-0.3	-0.1		
SST Operations	-3.2	-0.2		
FUSE Operations	+1.0			MO&DA co
FY2004 PRESBUD	<u>9.7</u>	<u>24.6</u>		
HST Operations	5.1	8.8		
SST Operations	3.2	14.4		
FUSE Operations	1.4	1.5		

RESEARCH

Purpose

Objectives	Performance Measures
5.8, 5.9	5ASO5-12,14-15

The research program provides fundamental data analysis for operating ASO missions including HST, SST, and FUSE. The research program also supports fundamental research and analysis vital to the successful completion of strategic goals and objectives.

OVERVIEW

The ASO research program supports ASO Research and Analysis (R&A) and the analysis of data (DA) from the ASO operating missions, and the science data tools and archives needed to perform the research. DA programs are tied to specific missions, which are focused on the achievement of specific strategic objectives. The scope of R&A programs is generally wider because they must provide the new theories and instrumentation that enable the next generation of flight missions. The alignment of Research programs with ASO strategic goals is ensured through two mechanisms. First, NASA Research Announcements soliciting R&A proposals contain explicit prioritization criteria with respect to Enterprise objectives. Second, the entire R&A program is reviewed triennially to assess scientific quality and productivity of the major components and to adjust plans to best support Enterprise goals. Data Analysis (DA) programs have traditionally been performed by mission instrument teams and interdisciplinary scientists competitively selected for an individual mission for the lifetime of that mission. The DA program also includes annual, open and competitive solicitations to all missions that can accommodate quest investigations.

Starting in FY 2005, the operations funding for the Far Ultraviolet Spectroscopic Explorer (FUSE), Kepler, and the Wide-field Infrared Survey Explorer (WISE) will be combined with the Data Analysis funding for those missions (see Enterprise summary section for more information).

OSS Research Opportunities Site http://research.hq.nasa.gov/code_s/code_s.cfm Space Science Missions Site http://spacescience.nasa.gov/missions/index.htm Hubble Site http://hubble.stsci.edu/

PROGRAM MANAGEMENT

NASA Headquarters is responsible for the ASO research program. Enterprise official is Dr. Edward Weiler, Associate Administrator for Space Science at NASA HQ. Theme Director and point of contact is Dr. Anne Kinney, Director of the Astronomy and Physics Division at NASA HQ. This program is in full compliance with NPG7120.5B.

TECHNICAL COMMITMENT

Research baselines are consistent with those defined in individual Research Announcements released by OSS. Data Analysis baselines are defined by the program PCA or equivalent document.

Technical Specifications

The NASA Strategic Plan incorporates results of the Office of Space Science Strategic Planning process, which specifies goals, strategic objectives and research focus areas. The OSS Strategic Plan draws from the Astronomy and Physics Decadal Survey (NRC) and road mapping activities by the Astronomical Search for Origins Subcommittee of the Space Science Advisory Committee. All research proposals, selection processes and review of elements of the ASO research program use these strategic items as a guide.

Schedule	FY 2005 President's Budget	Change from Baseline
Data Analysis Senior Reviews	Every two years	
R & A Research Opportunities In		
Space Science (ROSS)	Yearly in February	

ACQUISITION STRATEGY AND PERFORMING ORGANIZATIONS

The Research and Analysis (R&A) and Data Analysis (DA) programs make awards following peer reviewed competitions under NASA Research Announcements (NRA), Announcements of Opportunity (AO) and Cooperative Agreement Notices (CAN). In FY 2003, direct procurement represented 100% of budget authority. Changes since FY 2004 President's Budget: None.

RESEARCH

Current Acquisition	Actual*	Selection Method	Actual*	Performer	Actual*
Cooperative Agreement	1%	Full & Open Competition	98%	Industry	3%
Cost Reimbursable	32%	Sole Source	2%	Government	4%
Fixed Price	7%			NASA Intramural	7%
Grants	49%		100%	University	71%
Other	11%			Non Profit	15%
* as of FY03 direct procurement	100%	* as of FY03 direct procurement		* as of FY03 direct procurement	100%

Future Acquisition	Selection	Goals
Annual HST call for proposals	April 2004	100% Science Peer Review
Annual R&A research announcement	Late 2004	100% Science Peer Review

AGREEMENTS

Internal: The program is not dependent on other NASA activities outside of the control of the Associate Administrator for Space Science. External: HST Data Analysis involves agreements with the European Space Agency. Changes since FY 2004 President's Budget: None.

INDEPENDENT REVIEWS

Review Types	Performer	Last Review Date	Next Review Date	Purpose
MO&DA Senior Review	Sr. Review committee	6/02	6/04	Recommend approval and funding level for extending science investigations.
R&A peer review	Peer review	7/03	7/04	To review ASO proposals responding to the annual R&A announcement.

BUDGET

Budget Authority (\$ millions)	FY 2003	FY 2004	FY 2005	Comments
FY2005 PRESBUD	<u>119.1</u>	<u>197.8</u>	232.3	
ASO R&A	23.6	29.3	37.6	
ASO Mission Operations & Data Analysis	95.5	168.5	194.7	
Changes since 2004 PRESBUD	<u>-29.3</u>	<u>-1.1</u>		
ASO R&A	+0.2			
ASO Mission Operations & Data Analysis	+95.5	+168.5		Reflects MO&DA combination
ASO Data Analysis	-125.1	-169.7		
FY2004 PRESBUD	<u>148.4</u>	<u>198.9</u>		
ASO R&A	23.3	29.3		
ASO Data Analysis	125.1	169.7		

Theme: Astronomical Search for Origins Technology and Advanced Concepts

Purpose

Objectives	Performance Measures
5.8, 5.9	5ASO3,5-12

The ASO Technology and Advanced Concepts program includes future missions in formulation, and the development of advanced technologies needed for specific science missions. This process begins with mission studies - the first phase of flight program development. In this phase, scientists work collaboratively with technologists and mission designers to develop the most effective alignment of technology development programs with future mission requirements. This collaboration enables intelligent technology investment decisions through detailed analysis of the trade-offs between design considerations and cost. In ASO, future missions will seek to detect and characterize distant planetary bodies around other stars, probe ever farther into the deepest reaches of space with increasing resolution, and bring us new understanding of the nature of matter and energy. Technologies critical to the success of these missions include interferometry, high performance sensors, lightweight large-aperture reflectors, cryocoolers for infrared detectors, and autonomous information technology.

OVERVIEW

ASO projects in this phase of implementation during FY 2005 include the Space Interferometry Mission (SIM) and the ground-based Keck Interferometer, as well as various smaller efforts, such as the Large Binocular Telescope Interferometer (LBTI). Technology and Advanced Concepts also includes funding for the Wide-field Infrared Survey Explorer (WISE), selected as a new Explorer in FY 2003 and currently in pre-development. In keeping with the Search for Origins theme, technology development from these missions will serve as stepping stones for eventual launch of the Terrestrial Planet Finder (TPF). Projects comprising the Navigator Program (including the Space Interferometry Mission, the Terrestrial Planet Finder, and the Keck Interferometer) will seek to detect and characterize Earth-like planets, understand the formation and distribution of planetary systems in our galaxy, and contribute to understanding the formation and evolution of stars, planets and galaxies. For example, by observing thousands of stars, SIM will detect planets through high-resolution and starlight nulling imagery, and serve as a science and technological pathfinder for TPF.

PROGRAM MANAGEMENT

Program responsibility has been delegated to the Jet Propulsion Laboratory (JPL) for the Navigator Program. The Agency Program Management Council (PMC) has governing responsibility for flight projects; at the time of Systems Requirements Review, the Enterprise Governing Program Management Council has oversight for Navigator ground-based projects. Enterprise official is Dr. Edward Weiler, Associate Administrator for Space Science at NASA HQ. Theme Director and point of contact is Dr. Anne Kinney, Director of Astronomy and Physics at NASA HQ. With the minor exceptions noted in the Navigator Program PCA, this program is in full compliance with NPG7120.5B.

TECHNICAL COMMITMENT

Project technical baselines are defined by the individual Formulation Authorization Document (FAD), Program Commitment Agreement (PCA) or equivalent documentation.

Mission	Launch Date	Comments
Space Interferometry Mission (SIM)	Dec. 2009	
Terrestrial Planet Finder (TPF)	TBD	
Keck Interferometer	Operational through 2020	

ACQUISITION STRATEGY AND PERFORMING ORGANIZATIONS

Navigator acquisition strategy relies on the capabilities of JPL, universities, and other NASA Centers to develop "first application" technologies. Additionally, the program will develop strategic collaborations with appropriate technical entities to acquire proven hardware and promote technology transfer. Where an industrial firm has a unique capability, it may be engaged to develop first technology applications. Current Navigator participants include Lockheed-Martin Missles and Space, TRW Space and Electronics Group, Ball Aerospace and Technologies, Boeing-SVS, Eastman Kodak, Goodrich Coorporation, CalTech, University of Arizona, MIT, California Association for Research in Astronomy (CARA), Princeton University and others. Changes since FY 2004 President's Budget: None.

Theme: Astronomical Search for Origins **Technology and Advanced Concepts**

Current Acquisition	Actual*	Selection Method	Actual*	Performer	Actual*
Cooperative Agreement	4%	Full & Open Competition	80%	Industry	12%
Cost Reimbursable	74%	Sole Source	20%	Government	0%
Fixed Price	4%		100%	NASA Intramural	16%
Grants	1%			University	64%
Other	17%			Non Profit	8%
* as of FY03 direct procurement	100%	* as of FY03 direct procurement		* as of FY03 direct procurement	100%

Future Acquisition	Selection	Goals
Space Interferometry Mission (SIM)	Late 2005	Full and Open Competition

AGREEMENTS

Internal: The program is not dependent on other NASA activities outside of the control of the Associate Administrator of Space Science. External: Memorandum of Understanding (MOU) exists between TPF and the European Space Agency's (ESA) Darwin mission. Changes since FY 2004 President's Budget: None.

INDEPENDENT REVIEWS

Review Types	Performer	Last Review Date	Next Review Date	Purpose
Independent Implementation				To ensure compliance with defined technical, cost and schedule thresholds (PCAs,
Reviews	IRT/IPAO	8/03	11/03	Roadmaps).

BUDGET

Budget Authority (\$ millions)	FY 2003	FY 2004	FY 2005
FY2005 PRESBUD	<u>104.8</u>	<u>178.5</u>	302.9
SIM	42.3	71.4	155.1
TPF	34.4	43.9	52.5
Keck	10.4	9.7	12.4
Other	17.7	53.5	82.9
Changes since 2004 PRESBUD	<u>-52.7</u>	<u>+21.9</u>	
SIM	+2.8	-8.4	
TPF	+14.7	-0.3	
Keck	+1.1	-0.1	
Other	-4.0	+30.8	
Starlight	-67.3		
FY2004 PRESBUD	<u>157.5</u>	<u>156.6</u>	
SIM	39.5	79.8	
TPF	19.7	44.2	
Starlight	67.3		
Keck	9.3	9.8	
Other	21.7	22.7	

Technology and Advanced Concepts: James Webb Space Telescope

Purpose

Objectives	Performance Measures
5.8	5ASO4-7

The James Webb Space Telescope (JWST) is the planned successor to the Hubble Space Telescope (HST), extending the discoveries made by HST into the infrared, where the highly redshifted early universe must be observed, where cool objects like protostars and protoplanetary disks emit strongly, and where dust obscures shorter wavelengths. Taking full advantage of technological advancements in lightweight deployable optics and infrared detectors, JWST will be the only facility capable of observing predicted first light objects (protogalaxies, supernovae, and black holes) at redshifts out to 20, when the universe was just 180 million years old.

OVERVIEW

JWST will be deployed with a segmented mirror and actuators to adjust the optical system, carrying three instruments and a fine guidance camera with science capabilities. These instruments will provide imaging, spectroscopy, and coronagraph, all optimized for ultimate sensitivity due to the faintness of the first light objects. JWST will be launched to orbit around Lagrange point L2, the gravitational balance point in which it will move around both Sun and Earth once per year with minimal fuel consumption. While in orbit, a multi-membrane shield will protect the telescope from radiation.

The JWST science program will address the questions: How did we get here?, Are we alone? To answer these questions, JWST research will explore four themes: First Light, Assembly of Galaxies, Origins of Stars and Planetary Systems, and Planetary Systems and the Origins of Life.

Following selection of a prime contractor (Northrop Grumman Space Technology), the JWST project underwent a major replan led by NASA and NGST, involving our international partners (the European and Canadian Space Agencies), the instrument teams, and the Space Telescope Science Institute (STScI). Significant outcomes from this effort included baselining the mirror area at 25 square meters, maintaining all original science instruments, and scheduling launch for August 2011. JWST has now received confirmation to proceed to the preliminary design phase of development (Phase B).

PROGRAM MANAGEMENT

Program responsibility for JWST has been delegated to Goddard Space Flight Center. The Agency Program Management Council (PMC) has oversight responsibility for the project. Enterprise Official is Dr. Ed Weiler, Associate Administrator Space Science at NASA HQ. Theme Director and point of contact id Dr. Anne Kinney, Director of Astronomy and Physics at NASA HQ. This project is in full compliance with NPG7120.5B.

TECHNICAL COMMITMENT

Project technical baseline is defined by the Formulation Authorization Document (FAD).

Mission	Launch Date	Comments
James Webb Space Telescope	Aug. 2011	
(JWST)		

ACQUISITION STRATEGY AND PERFORMING ORGANIZATIONS

The observatory prime contractor is Northrop Grumman Space Technology, teamed with Ball, Kodak and Alliant Techsystems; the instrument complement is being provided under an Announcement of Opportunity. The Space Telescope Science Institute is the contractor for science and operations.

Current Acquisition	Actual*	Selection Method	Actual*	Performer	Actual*
Cooperative Agreement	0%	Full & Open Competition	80%	Industry	50%
Cost Reimbursable	100%	Sole Source	20%	Government	0%
Fixed Price	0%		100%	NASA Intramural	0%
Grants	0%			University	50%
Other	0%	Sci Peer Review	100%	Non Profit	0%
* as of FY03 direct procurement	100%	* as of FY03 direct procurement		* as of FY03 direct procurement	100%

Future Acquisition	Selection	Goals
None major acquisitions are in place.		

Technology and Advanced Concepts: James Webb Space Telescope

AGREEMENTS

In work.

BUDGET

Budget Authority (\$ millions)	FY 2003	FY 2004	FY 2005	Commen
FY2005 PRESBUD	<u>95.7</u>	<u>253.1</u>	<u>318.1</u>	
James Webb Space Telescope	95.7	253.1	318.1	
Changes since 2004 PRESBUD	<u>-30.6</u>	<u>-1.5</u>		
James Webb Space Telescope	-30.6	-1.5		
FY2004 PRESBUD	<u>126.3</u>	<u>254.6</u>		
James Webb Space Telescope	126.3	254.6		

