A Summary of Generation IV Non-Classical Nuclear Systems

Generation IV Roadmap TW-4, Non-Classical Concepts

Generation IV Roadmap Session II
ANS Winter Meeting Reno, NV
November 13, 2001
People Involved in this Work

- **TWG-4 Non-Classical Reactor Concepts Members**
 - Anghaie, Samim, Chair (Presenter)
 University of Florida, USA
 - Delpech, Marc,
 CEA, France
 - Forsberg, Charles,
 ORNL, USA
 - Garzenne, Claude,
 EDF, France
 - Herring, Steve,
 INEEL, USA
 - Klein, Andy,
 Oregon State University, USA
 - Lennox, Tom,
 NNC Limited, UK
 - Leroy, Maurice,
 EURATOM/JRC), Germany
 - Lewis, Dave, Technical Director
 ANL, USA
 - Park, Won Seok,
 KAERI, Korea
 - Peddicord, Lee,
 Texas A&M University, USA
 - Pickard, Paul,
 SNL, USA
 - Takano, Hideki,
 JAERI, Japan
 - Wilson, Paul,
 University of Wisconsin, USA
Classical vs Non-Classical – Coolant & Fuel

Coolant
- **NONE**!
 - Non-Conveacting
 - Organic
 - Molten Salt
 - Two Phase

Fuel Cycle
- Open
- Closed

or
- not integrated

- Fully integrated
Classical vs Non-Classical – Fuel Design

Classical

Solid Clad

Non-Classical

No Clad

Liquid

Gas or Vapor

Thin Film
Classical vs Non-Classical – Power

Carnot ΔT

300-1000 K

Power Cycle

Steam Rankine or Brayton

300-3000 K

Direct MHD Thermionic AMTEC Combined
Classical vs Non-Classical – Applications

Applications

- Electricity
- Medicine
- Space Travel

Hydrogen Production

Refining

Electricity
Non-Classical Reactor Concepts

• A total of 32 concepts gathered, among them 28 meet the Generation IV requirement of fission based self sustained criticality.

• Based on the primary design features, six “Concept Sets” are defined as:
 – 1. Liquid Core Reactors
 – 2. Gas Core Reactors
 – 3. Non-Conventional Coolant Reactors
 – 4. Non-Convection Cooled Reactors
 – 5. Direct Energy Conversion Reactors
 – 6. Modular Deployable Reactors

• Non-Classical reactor concepts feature higher potential to meet or exceed Gen IV performance goals at somewhat lower technology readiness level.
A Summary of Liquid Core Reactor Concepts

Innovative Approaches

Examples

1. Molten Salt Core

 HERACLITUS - Circulating fuel, natural thorium molten salt.
 MSBR - Molten Salt Breeder, liquid uranium and thorium fluorides.
 AMSTER - Actinides Molten Salt Transmuter

2. Liquid Metal Core

 LM-FR - Liquid Metal Equilibrium Fast Reactor, Mg-Pu Eutectic.
 MSBR - Molten Salt Breeder, liquid uranium and thorium fluorides.
Molten Salt Reactor

- **Primary Salt Pump**
- **Secondary Salt Pump**
- **Off-gas System**
- **NaBF₄–NaF Coolant Salt**
- **454°C**
- **704°C**
- **566°C**
- **621°C**
- **538°C**
- **Steam Generator**
- **Chemical Processing Plant**
- **Freeze Plug**
- **Critically Safe, Passively Cooled Dump Tanks (Emergency Cooling and Shutdown)**

Coolant Salt:
- LiF–BeF₂–ThF₄–UF₄

Fuel Salt:
- LiF–BeF₂–ThF₄–UF₄

Moderator:
- Graphite

Temperature:
- 538°C
- 566°C
- 621°C
- 704°C
- 454°C
A Summary of Gas Core Nuclear Systems

Innovative Approaches

Examples

1. GCR/VCR-MHD
 - UF_4 with either KF vapor Rankine cycle or He Brayton cycle.
 - Efficient MHD energy conversion with fission enhanced ionization.

2. GCR-Graphite Wall
 - Neutralizes high temperature wall corrosion.

3. Plasma/Vortex Flow
 - Varieties of vortex flow GCR’s, high T, diverse uses.
 - UF_6 or U vapor with He or Argon.
Gas Core Reactor Power System

Vapor Core Reactor with Combined Direct/Indirect Energy Conversion (VCR-DEC)

Thermodynamic Efficiencies and Power Outputs

- Total 70 MWe
- 70% η
Liquid and Gas/Vapor Core Reactor Properties

1. Significant advances can be made in conversion efficiency, diversification of energy products, resource utilization and waste minimization.

1. Excellent non-proliferation characteristics due to one to two orders of magnitude lower fuel inventory and plutonium buildup.

3. Minimized source term due to online separation and removal of fission products and ultralow equilibrium concentration of minor actinides.

4. Gas/vapor core reactors could potentially eliminate the need for Offsite Emergency Planning, which is a key safety goal for the Gen IV reactors.

5. Many technology challenges; high temperature materials, energy conversion, dynamics and control, remote operation, fuel chemistry and fuel handling, fission product separation, and safety.
A Summary of Non-Conventional Cooled Reactor Concepts

Innovative Approaches

Examples

1. AHTR - Advanced High T Reactor
 Graphite Matrix - Molten Salt Cooled.
 High temperature diverse uses.

2. OCR - Organic Coolant Reactors
 Cheaper efficient cooling, reduced costs.

3. FSEGT - Sodium Evaporation
 Fast reactors, sodium evaporation cooling.
 Unique sodium vapor gas turbines.
AHTR, Molten Salt Cooled Reactor

Passive Decay Heat Removal

Molten Salt (Example: 2LiF-BeF₂)

Air In

Hot Air Out

Radiation and Conduction Heat Transfer

≥1000°C

Control Rods

Fuel (Graphite: Similar to HTGR Fuel)

Reactor

Energy Conversion Options

Conversion Options
- Hydrogen from water
- Electricity
 - Brayton Indirect Cycle
 - Direct Thermo-Electric

Cooling Water

Energy Conversion Options

Hydrogen from water
Electricity
- Brayton Indirect Cycle
- Direct Thermo-Electric
Non-Conventional Cooled Reactor Properties

1. Molten Salt Cooled Reactors

 Significant advances can be made in conversion efficiency, and diversification of energy products.

 High temperature operation at low pressure, low power density, high heat capacity.

 High temperature materials, fuel design, molten salt to water heat exchanger, mixed nuclear/hydrogen safety issues.

2. Organic Cooled Reactors

 High conversion ratio, superior coolant properties, low pressure operation, lower cost coolant (compared to CANDU).

 Fuel (UC) reaction with water and air, coolant flammability, coolant fouling, coolant radiolysis, reactivity coefficients.
A Summary of Non-Convection Cooled Concepts

Innovative Approaches

Examples

Non-Convection Cooled Reactor Properties

Low fuel inventory, static energy conversion, small scale power applications, remote site applications.

High temperature fuels and materials, lifetime of energy conversion unit, dynamics and control, fuel cycle.
A Summary of Direct Energy Conversion Reactor Concepts

Innovative Approaches

Examples

1. QSMC - Quasi-Spherical Fission Magnetic Cell
 Direct conversion of fission fragment energy. Cells coated with thin film of fissionable fuel. Radiation cooling.

2. FFMC - Fission Fragment Magnetic Collimator
 Magnetically guided fission fragment trajectories. Thin films of UO$_2$. Heavy water coolant.
Direct Energy Conversion Schematics

- Venetian blind collector
- Array of fission cells

- Tubes w/Thin Layer U-235 Fuel
- Collector 1 (+3.1 MV)
- Collector 2 (+4.4 MV)
- Electron Grid (-3 keV)
- Ground Grid (0 keV)
- Coolant Manifold
- Magnets
- MYLAR INSULATOR
- Support Wire
- POTTING MATERIAL
Direct Energy Conversion Reactor Properties

1. Low fissile inventory, proliferation resistant, no moving parts, no coolant, no flow, barely critical.

2. Hard to make critical, large systems, very low burnup, magnet design, direct energy conversion.
A Summary of Modular Deployable Reactor Concepts

Innovative Approaches

Examples

1. MMDR - Multi-Modular Deployable Reactor
 Modular construction, factory built.
 Transportable, easily assembled

2. SPS - Submersible Power Station
 Transportable, modular undersea siting.
 Coastal siting niche.

2. DORC - Distantly Operated Reactor Complex
 Remotely operated.
 Liquid metal cooled.
Modular Deployable Nuclear Systems
Summary

1. Despite many technology gaps and data uncertainties, there is no lack of innovation and revolutionary ideas in Non-Classical reactor concepts.

2. Several concepts such as gas/vapor core reactors offer promising advances toward the Gen IV goals for sustainability, safety, and economy, and have potential for making significant inroads toward achieving the optimum utilization of nuclear energy.

3. Gas/vapor core reactors set the upper performance potential in sustainability and safety with no insurmountable technology challenge.

4. Evaluations of modular deployable concepts are underway.

5. Direct energy conversion and non-convective cooled nuclear reactor systems are eliminated from further evaluation process.