MEMORANDUM

August 11, 2004

FOR:	FCRPS Remand File
FROM:	Chris Ross, Paul Wagner
SUBJECT:	Analytical Approach and Method Used to Calculate Pool Survivals and Develop a Flow/Survival Relationship for Snake River Salmon and Steelhead

Snake River Spring/summer Chinook Salmon

An analysis was conducted to develop a quantitative relationship between flow and reservoir pool survival for listed spring chinook salmon stocks. The method consisted of examining the relationship between pool survival and flow for both the Snake River reach (Lower Granite to Ice Harbor Dam) and the lower Columbia River reach (McNary to Bonneville Dam). The pool survival data were derived from a retrospective SIMPAS modeling analysis. Only empirically derived reach survival estimates were used to calibrate SIMPAS over the 1994-2003 study period. For each year, route-specific dam passage and survival data were used to determine the individual dam survivals for that year. Dividing the empirical reach survival for each project by the dam survival provided a year specific pool survival estimate for each project. The year 1997 was taken out of the flow/survival analysis because high levels of debris at the dams occurred that year, which decreased juvenile fish survival at the dams but not necessarily in the pools. Since pool survival is derived from the reach survival estimate, which includes the dam, exclusion of the year 1997 was deemed appropriate.

The Snake River and lower Columbia River reach pool survival estimates were determined as the product of the four pool survivals of the respective project reaches. Flows used in the retrospective analysis were observed seasonal average flows for the years 1994-2003. Flows used in the reference operations were produced through hydrologic modeling using BPA's HYDSIM model. A regression analysis was performed using PRISM software to develop a relationship between the seasonal average flows and the composite pool survival values for each reach (Figure 1). For both the Snake River and lower Columbia River reaches, the best fit curve was a one-phase exponential association. In this analysis, it was assumed that zero flow equals zero survival when establishing the curve parameters. This assumption forces the curve of the relationship to pass through the 0,0 point on the x-y axis. The shape of the curve indicates there is a sharp rise in survival at a threshold level of flow, after which survival changes little with increasing flow.

The steps used to conduct the analysis follow the sequence of columns in Table 1. The sequence of calculations was:

- (1) Using the curve fitting function described above, annual juvenile spring chinook reach survival estimates (pools only) were calculated for both the proposed flows and reference flows for the lower Snake River and lower Columbia River reaches.
- (2) Individual pool survival estimates were obtained for the respective reaches by taking the fourth root of the reach survival estimates.
- (3) The annual reference operation pool survival values were divided by the proposed hydro operation pool survival values to obtain an adjustment factor for use in SIMPAS pool survival in the gap analysis.

Table 1. Flow and estimated survival (pools by reach and individual pools) of juvenile spring chinook by year for the lower Snake and lower Columbia River reaches. An adjustment to flow was made for the reduced travel time of juvenile migrants by operating John Day pool at elevation 552 feet. POOL SURVIVALS VS FLOWS Spring CH Spring CH

Chris Ross 8/11/04

	5		
Ex. Associa	ation	Flows per	BPA
	L Snake		L Columbia
YMAX	0.901	YMAX	0.9501
к	0.048	к	0.008375
HalfLife	14.44	HalfLife	82.76

												Retrospectiv	ve
	Proposed					Reference						Reach Surv	
Flow	Flow	Survival	Survival	Year	Flow	Flow	Flow L. Col.	Survival	Survival	Survival L. Col.	JDA Survival	L. Snake	L. Col.
L. Snk. R.	L. Col. R.	L. Snk. R.	Lower Col.		L. Snk. R.	L. Col. R.	Adjusted	L. Snk. R.	L. Col. R.	Adjusted	Ratio	River	River
58.17	162.54	0.8458	0.7066	1994	60.73	161.39	188.56	0.8522	0.7042	0.7542	1.0711	0.6922	0.5432
95.06	245.74	0.8916	0.8288	1995	95.69	249.22	291.17	0.8919	0.8323	0.8672	1.0420	0.8482	0.7638
126.42	316.30	0.8989	0.8829	1996	126.32	324.57	379.21	0.8989	0.8874	0.9104	1.0259	0.8592	0.6726
145.37	401.32	0.9002	0.9171	1997	147.77	421.76	492.76	0.9003	0.9223	0.9348	1.0135	0.8266	0.6816
106.05	259.25	0.8955	0.8418	1998	107.51	272.17	317.99	0.8958	0.8529	0.8839	1.0363	0.8684	0.7391
114.16	311.02	0.8972	0.8799	1999	114.52	323.44	377.89	0.8973	0.8868	0.9100	1.0261	0.9223	0.8673
82.28	246.60	0.8836	0.8296	2000	82.84	256.18	299.31	0.8841	0.8389	0.8726	1.0402	0.8498	0.7676
56.28	159.90	0.8405	0.7011	2001	56.74	151.82	177.38	0.8419	0.6837	0.7350	1.0751	0.7670	0.5970
87.57	257.74	0.8875	0.8404	2002	86.50	269.32	314.66	0.8868	0.8505	0.8820	1.0370	0.9544	0.8754
75.58	195.89	0.8771	0.7659	2003	76.52	187.13	218.64	0.8781	0.7519	0.7979	1.0611	0.9582	0.8877
		Proposed						Reference		Retrospective			
		4th Root	4th Root					4th Root	4th Root	4th Root	4th Root		
		Survival Is	Survival Ic		Year			Survival Is	Survival lc	Survival Is	Survival Ic		
		0.9590	0.9168		1994			0.9608	0.9161	0.9121	0.8585		
		0.9717	0.9541		1995			0.9718	0.9551	0.9597	0.9349		
		0.9737	0.9693		1996			0.9737	0.9706	0.9628	0.9056		
		0.9740	0.9786		1997			0.9741	0.9800	0.9535	0.9086		
		0.9728	0.9578		1998			0.9729	0.9610	0.9653	0.9272		
		0.9733	0.9685		1999			0.9733	0.9704	0.9800	0.9650		
		0.9695	0.9544		2000			0.9697	0.9570	0.9601	0.9360		
		0.9575	0.9151		2001			0.9579	0.9093	0.9358	0.8790		
		0.9706	0.9575		2002			0.9704	0.9603	0.9884	0.9673		
		0.9677	0.9355		2003			0.9680	0.9312	0.9894	0.9707		
			Ratio of Re	eference to	Proposed			Ratio o	f Proposed 1	to Retro			
				Year		L. Snake	L. Col.		L. Snake	L. Col.			
				1994		1.001882	0.99916		1.051391	1.06794			
				1995		1.000078	1.00105		1.012559	1.02062			
				1996		0.999997	1.00127		1.011369	1.07039			
				1997		1.000025	1.00141		1.021544	1.07703			
				1998		1.000105	1.00328		1.007702	1.03304			
				1999		1.000018	1.00197		0.993129	1.00361			
				2000		1.000129	1.00279		1.009801	1.01962			
				2001		1.000389	0.99373		1.023151	1.04101			
				2002		0.999801	1.00300		0.981992	0.98984			
				2003		1.000299	0.99539		0.97812	0.96378			

Appendix D, Attachment 3 Hydro Flow/survival Memo

Snake River Steelhead

An analysis was conducted to develop a quantitative relationship between flow and reservoir pool survival for listed steelhead stocks. The method consisted of examining the relationship between pool survival and flow for both the Snake River reach (Lower Granite to Ice Harbor Dam) and the lower Columbia River reach (McNary to Bonneville Dam). The pool survival data were derived from a retrospective SIMPAS modeling analysis. Only empirically derived reach survival estimates were used to calibrate SIMPAS over the 1994-2003 study period. For each year, route-specific dam passage and survival data were used to determine the individual dam survivals for that year. Dividing the empirical reach survival for each project by the dam survival provided a year specific pool survival estimate for each project. The year 1997 was taken out of the flow/survival analysis, because high levels of debris at the dams occurred that year, which decreased juvenile fish survival at the dams but not necessarily in the pools. Since pool survival is derived from the dam survival estimate, exclusion of the year 1997 was deemed appropriate.

The Snake River and lower Columbia River reach pool survival estimates were determined as the product of the four pool survivals of the respective project reaches. Flows used in the retrospective analysis were observed seasonal average flows for the years 1994-2003. Flows used in the reference operations were produced through hydrologic modeling using BPA's HYDSIM model. A regression analysis was performed using PRISM software to fit a curve to the seasonal average flows and the composite pool survival values for each reach (Figure 2). In this analysis, it was assumed that zero flow equals zero survival when establishing the curve parameters. This assumption forces the curve of the relationship to pass through the 0,0 point on the x-y axis. The shape of the survival changes little with increasing flow. The best fit function for the Snake River and lower Columbia River reaches was a Boltzmann sigmoid curve. The sigmoid curve was considered to be an appropriate model to describe the relationship between flow and survival for this species in Williams *et al.* (2004).

The steps used to conduct the analysis follow the sequence of columns in Table 2. The sequence of calculations was:

- (1) Using the curve fitting function described above, annual juvenile spring chinook reach survival estimates (pools only) were calculated for both the proposed flows and reference flows for the lower Snake River and lower Columbia River reaches.
- (2) Individual pool survival estimates were obtained for the respective reaches by taking the fourth root of the reach survival estimates.
- (3) The annual reference operation pool survival values were divided by the proposed hydro operation pool survival values to obtain an adjustment factor for use in SIMPAS pool survival in the gap analysis.

Figure 2. Relationship between flow and survival for juvenile steelhead through Lower Snake River and Lower Columbia River reaches.

Table 2. Flow and estimated survival (pools by reach and individual pools) of juvenile steelhead by year for the lower Snake and lower Columbia River reaches. An adjustment to flow was made for the reduced travel time of juvenile migrants by operating John Day pool at elevation 552 feet. Steelhead POOL SURVIVALS VS FLOWS Steelhead

Boltzmann Sigmoid			Boltzmann	Sigmoid				Chris Ross
	L Snake			L Columbia				8/11/04
Bottom	0		Bottom	0				
Тор	0.8610		Тор	0.7744				
V50	49.16		V50	165.5				
Slope	14.00		Slope	42.29				
	Proposed					Reference		
Flow	Flow	Survival	Survival	Year	Flow	Flow	Flow L. Col.	Survival

Flow	Flow	Survival	Survival	Year	Flow	Flow	Flow L. Col.	Survival	Survival	Survival L. Col.	JDA Survival	L. Snake	L. Col.
L. Snk. R.	L. Col. R.	L. Snk. R.	Lower Col.		L. Snk. R.	L. Col. R.	Adjusted	L. Snk. R.	L. Col. R.	Adjusted	Ratio	River	River
58.17	162.54	0.5644	0.3737	1994	60.73	161.39	188.56	0.5989	0.3684	0.4902	1.3307	0.77227	0.740994
95.06	245.74	0.8297	0.6734	1995	95.69	249.22	291.17	0.8311	0.6804	0.7367	1.0827	0.897826	0.88674
126.42	316.30	0.8576	0.7531	1996	126.32	324.57	379.21	0.8575	0.7568	0.7695	1.0168	0.864072	0.788381
145.37	401.32	0.8601	0.7715	1997	147.77	421.76	492.76	0.8602	0.7726	0.7741	1.0019	0.909146	0.853708
106.05	259.25	0.8465	0.6983	1998	107.51	272.17	317.99	0.8479	0.7169	0.7539	1.0517	0.813498	0.839568
114.16	311.02	0.8528	0.7504	1999	114.52	323.44	377.89	0.8530	0.7563	0.7693	1.0172	0.837917	0.765436
82.28	246.60	0.7871	0.6752	2000	82.84	256.18	299.31	0.7897	0.6932	0.7430	1.0719	0.822026	0.790006
56.28	159.90	0.5377	0.3616	2001	56.74	151.82	177.38	0.5443	0.3251	0.4412	1.3571	0.340105	0.199445
87.57	257.74	0.8089	0.6958	2002	86.50	269.32	314.66	0.8051	0.7132	0.7523	1.0549	0.729446	0.529772
75.58	195.89	0.7477	0.5206	2003	76.52	187.13	218.64	0.7541	0.4841	0.6028	1.2451	0.816204	0.628736

					Retrospective	
Proposed			Reference		4th Root	4th Root
4th Root	4th Root	Year	4th Root	4th Root	Survival Is	Survival lc
0.8668	0.7818	1994	0.8797	0.7791	0.9374	0.9278
0.9544	0.9059	1995	0.9548	0.9082	0.9734	0.9704
0.9623	0.9316	1996	0.9623	0.9327	0.9641	0.9423
0.9630	0.9372	1997	0.9631	0.9375	0.9765	0.9612
0.9592	0.9141	1998	0.9596	0.9201	0.9497	0.9572
0.9610	0.9307	1999	0.9610	0.9326	0.9568	0.9354
0.9419	0.9065	2000	0.9427	0.9125	0.9522	0.9428
0.8563	0.7755	2001	0.8589	0.7551	0.7637	0.6683
0.9484	0.9133	2002	0.9472	0.9190	0.9242	0.8531
0.9299	0.8494	2003	0.9319	0.8341	0.9505	0.8905

Ratio of Reference to Proposed

Year	L. Snake	L. Col.	L. Snake	L. Col.
1994	1.014928	0.996455	0.92462	0.84268
1995	1.000397	1.002592	0.980478	0.93351
1996	0.999993	1.001225	0.998111	0.98862
1997	1.000041	1.000362	0.986234	0.97500
1998	1.00042	1.006573	1.009976	0.95499
1999	1.000061	1.001985	1.004408	0.99504
2000	1.000835	1.006604	0.989207	0.96150
2001	1.003027	0.973759	1.121342	1.16038
2002	0.99881	1.006173	1.026198	1.07054
2003	1.002137	0.981998	0.978335	0.95392

Retrospective Reach Survival

Ratio of Proposed to Retro

Snake River Fall Chinook Salmon

An analysis was conducted to develop a quantitative relationship between flow and reservoir pool survival for listed fall chinook salmon stocks. The method consisted of examining the relationship between pool survival and flow for both the Snake River reach (Lower Granite to Ice Harbor Dam) and the lower Columbia River reach (McNary to Bonneville Dam). The pool survival data were derived from a retrospective SIMPAS modeling analysis. Only empirically derived reach survival estimates for the Snake River reach were used to calibrate SIMPAS over the 1995-2001 and 2003 study period. Empirical reach survival estimates were not available for 1994 or 2002 for either reach. For each remaining year, route-specific dam passage and survival data were used to determine the individual dam survivals for that year. Dividing the empirical reach survival for each project by the dam survival provided a year-specific pool survival estimate for each project. No empirical reach survival data were available below Lower Monumental Dam in 1995 and 1996. Therefore, these years were not included in the lower Snake River section of the analysis. No empirical survival data were available in the lower Columbia River reach for any year. Thus, to complete the system-wide analysis, the lower Snake River survival rates were extrapolated from the lower Columbia reach using a survival-per-mile method. In addition, the year 1997 was taken out of the flow/survival analysis for both the lower Snake and lower Columbia reaches, because there were high levels of debris at the dams that year, which decreased juvenile fish survival at the dams but not necessarily in the pools. Since pool survival is derived from the dam survival estimate, exclusion of the year 1997 was deemed appropriate.

The Snake River and lower Columbia River reach survival estimates were determined as the product of the four pool survivals of the respective river reaches. Flows used in the retrospective analysis were observed seasonal average flows for the years 1995-2001 and 2003. Flows used in the reference operations were produced through hydrologic modeling using BPA's HYDSIM model. A regression analysis was performed using PRISM software to fit a curve to the seasonal average flows and reach survival values (Figure 3). For the Columbia River reach, the best fit curve was a one-phase exponential association. The assumption that zero flow equals zero survival was used when establishing the curve parameters. This assumption forces the curve of the relationship to pass through the 0,0 point on the x-y axis. The shape of the curve indicates there is a sharp rise in survival at a threshold level of flow, after which survival changes little with increasing flow. The best fit function for the Snake River reach was a Boltzmann sigmoid curve. The Sigmoid curve was considered to be an appropriate model to describe the flow-survival relationship for subyearling fall chinook salmon in the lower Snake River (Smith *et al.* 2002).

This analysis was specific to juvenile fall chinook that exhibit a subyearling life history. Both a yearling and subyearling life history have been demonstrated by juvenile Snake River fall chinook salmon (Smith *et al.* 2002). Little specific information is known about the yearling life history of these fish at this time. However, it appears that those fish that exhibit the yearling life history make up a substantial percentage of the adult returns to Lower Granite Dam (Connor *et al.* 2004). Given the existence of the yearling life history, the empirical reach survival data for Snake River fall Chinook could be providing conservative survival estimates, because it assumes that fish not observed at downstream projects are mortalities, when these fish could have survived and moved downstream later as yearling migrants.

The steps used to conduct the analysis follow the sequence of columns in Table 3. The sequence of calculations was:

- (1) Using the curve fitting function described above, annual juvenile fall chinook reach survival estimates (pools only) were calculated for both the proposed flows and reference flows for the lower Snake and Columbia River reaches.
- (2) Individual pool survival estimates were obtained for the respective reaches by taking the fourth root of the reach survival estimates.
- (3) The annual reference operation pool survival values were divided by the proposed hydro operation pool survival values to obtain an adjustment factor for use in SIMPAS pool survival in the "gap" analysis.

Figure 3. Relationship between flow and survival for juvenile Snake River fall chinook salmon through lower Snake River and lower Columbia River reaches.

Table 3. Flow and estimated survival (pools by reach and individual pools) of juvenile fall chinook by year for the lower Snake and lower Columbia River reaches. An adjustment to flow was made for the reduced travel time of juvenile migrants by operating John Day pool at elevation 552 feet.

POOL SURVIVALS VS FLOWS SR Fall CH

Boltzmanr	n Sigmoid	Exponentia	al Association	Chris V. Ross 8/12/2004	
	L Snake		L Columbia		
Bottom	0	YMAX	0.6671		
Top V50	0.4632 28.68	К	0.01319		
Slope	3.568				
	Proposed			Reference	

	Proposed					Reference						Reach Surv
Flow	Flow	Survival	Survival	Year	Flow	Flow	Flow L. Col.	Survival	Survival	Survival L. ColJ	DA Survival	L. Snake
L. Snk. R.	L. Col. R.	L. Snk. R.	Lower Col.		L. Snk. R.	L. Col. R.	Adjusted	L. Snk. R.	L. Col. R.	Adjusted	Ratio	River
43.4	139.1	0.4558	0.5606	1995	47.2	178.7	208.78	0.4606	0.6039	0.6246	1.0343	0.538663
54	188.1	0.4628	0.6113	1996	57.9	213.4	249.32	0.4631	0.6271	0.6422	1.0241	0.394608
59.7	196.3	0.4631	0.6170	1997	64.8	220.0	257.04	0.4632	0.6305	0.6446	1.0225	0.134569
44.1	136.1	0.4571	0.5563	1998	47.6	177.7	207.61	0.4609	0.6031	0.6240	1.0346	0.472394
47.9	182.4	0.4611	0.6069	1999	54.5	209.6	244.88	0.4629	0.6251	0.6407	1.0250	0.471207
35.2	131	0.3990	0.5486	2000	37.8	177.3	207.15	0.4298	0.6027	0.6237	1.0347	0.336511
27.3	115.1	0.1874	0.5209	2001	26.9	166.0	193.95	0.1750	0.5924	0.6154	1.0389	0.105733
35.6	128.9	0.4050	0.5453	2003	39	175.2	204.69	0.4369	0.6009	0.6223	1.0355	0.383993
		Proposed						Reference		Retrospective		
		4th Root	4th Root					4th Root	4th Root	4th Root	4th Root	
		Survival Is	Survival Ic			Year		Survival Is	Survival Ic	Survival Is	Survival Ic	
		0.8217	0.8653			1995		0.8238	0.8815	0.8567	0.8668	
		0.8248	0.8842			1996		0.8249	0.8899	0.7926	0.8763	
		0.8249	0.8863			1997		0.8250	0.8911	0.6057	0.7472	
		0.8223	0.8636			1998		0.8240	0.8812	0.8290	0.9266	
		0.8240	0.8826			1999		0.8248	0.8892	0.8285	0.8502	
		0.7948	0.8606			2000		0.8097	0.8811	0.7616	0.8976	
		0.6579	0.8496			2001		0.6468	0.8773	0.5702	0.7540	
		0.7977	0.8593			2003		0.8130	0.8805	0.7872	0.9027	

Ratio of Reference	ce to Proposed	Ratio of Proposed to Retro				
Year	L. Snake	L. Col.	L. Snake	L. Col.		
1995	1.002621	1.018789	0.95912011	0.998206		
1996	1.000138	1.006414	1.04066466	1.009027		
1997	1.000032	1.005404	1.36203315	1.186165		
1998	1.002058	1.020397	0.99182263	0.932043		
1999	1.000962	1.007389	0.9945885	1.038210		
2000	1.018773	1.023819	1.04351657	0.958837		
2001	0.983079	1.032666	1.15376527	1.126759		
2003	1.019126	1.024609	1.01338786	0.951966		

.

Retrospective

L. Col. River 0.564634 0.589709 0.311685 0.737158 0.522399 0.64903 0.323188 0.663918

Literature Cited

Connor, W. P., J.G. Sneva, K. F. Tiffan, R. K. Steinhorst, and D. Ross. In press. Two alternative juvenile life histories for fall chinook salmon in the Snake River basin. Accepted for publication in Transactions of the American Fisheries Society on 9 August, 2004.

Smith, G. S, W. D. Muir, R. W. Zabel, E. E. Hockersmith, G. A. Axel, W. P. Connor, B.D. Arnsberg. Survival of hatchery subyearling fall chinook salmon in the free-flowing Snake River and Lower Snake River Reservoirs, 1998 – 2001. Report of research to: U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Contract DE-AI79-93BP10891, Project 93-29. September 2002.

Williams, G. W., S. G. Smith, R. W. Zabel, W. D. Muir, M. D. Scheuerell, B. P. Sandford, D. M. Marsh, R. McNatt, S. Achord. Draft report on: Effects of the Federal Columbia River power system on salmon populations. Fish Ecology Division, NOAA. July 2004