

FCRPS 2004 Biological Opinion

Technical Presentation on 2004 FCRPS BiOp Sept. 2004

National Marine

Fisheries Service

Overview for Today

- Approach to Evaluating Jeopardy
- Updated Proposed Action
- Proposed Hydro Actions and the Reference
 Operation
- Proposed Non-Hydro Actions and the "gap"
- Net Effect of Actions and Jeopardy Determinations

National Marine

Fisheries Service

Draft Biological Opinion Schedule

- 2000 Biop remanded by Judge Redden
- Final is due by Court order on November 30th
- To meet schedule, comments requested by Oct 8th
- Technical meetings w/states and tribes in September
- Policy meetings w/states and tribes Oct 5, 8, 15

FCRPS Biological Opinion 2004

General Approach of the Biop

FCRPS Biological Opinion 2004

Orientation to the Biop - Key Sections

- Section 1.2 (p. 1-5): Overview of methods
- Section 5: Environmental Baseline
 Reference Operation description (p. 5-4)
- Section 6: Effects of Proposed Action
 - Methods (p. 6-1)
 - Results organized by ESU
 - Within ESU, by hydro, non-hydro, and net effects

Table 6.9 = summary (p. 6-46)

- Section 7: Cumulative Effects
- Section 8: Conclusions

Factors considered (p. 8-2,3)

Section 10: Incidental Take Statement

Application of Jeopardy Standard

- Draft Biop
 - Uses regulatory definition of "to jeopardize"
 - Proposed action cannot "appreciably reduce" the likelihood of survival and recovery of the ESU
 - Separates baseline effects of hydro system from proposed action hydro effects
 - Discretionary annual operations
 - "Reference operation"
 - Distinguishes between proposed action and other regional activities in environmental baseline and cumulative effects

NOAA Fisheries DRAFT

Steps in Analysis of Effects of Proposed Action (Part 1)

NOAA Fisheries DRAFT

Steps in Analysis of Effects of Proposed Action (Part 2)

Fisheries Service

Adverse Modification of Critical Habitat

- In addition to jeopardy determination, must also make adverse modification determination
- Three ESUs still have critical habitat
- Others will soon have proposed critical habitat
- Recent court decisions question NOAA's regulations for this determination
- Because we are still reviewing those decisions, no determination in this draft

FCRPS Biological Opinion 2004

Updated Proposed Action

- Why is there a UPA, instead of the RPA in the BiOp?
- Components of the UPA

ACTION AGENCIES PROPOSED ACTION

2010 Theoretical Survival	Reference Operation Survival	
al Gap	 1. Hydro-system Actions to benefit all listed fish through hydro-system Dam Improvements: Ice Harbor RSW (2005) Lower Monumental RSW (2006) * Little Goose RSW (2007) * The Dalles Physical Guidance Device (2007) McNary RSW (2008) * Reduce juvenile transport in April Continue fish spill operations Manage water for fish purposes 2. Predator Control Actions to benefit all listed fish through hydrosystem 	
Surviva	 Redistribute Caspian terns Increase Northern Pikeminnow rewards Investigate other actions 	
	 Other Actions Tributary actions targeted to Upper Columbia River listed fish informed by subbasin plans where feasible Estuary improvements that target Snake River fall Chinook, but also benefit all listed fish in lower river Safety net hatchery program targeted to Snake River Sockeye 	
2004 Current Survival	Hydro Proposed Actions Ongoing actions since 2000, including dam operations and structural improvements for juvenile and adult fish passage.	

Assessment to Guide Yearly Operations

Annual Planning and Assessment Cycle

Pre-Season Planning

Model Proposed Operation w/Anticipated Water Supply Configuration Changes, etc.

Annual Targets

Survival Standard and Operational Targets (Flow, Spill)

Post-Season Assessment

Evaluate that Year's Performance

Habitat Metrics in Updated Proposed Action

Tributary Habitat Performance Measures

- Streamflow: cubic feet per second of rate of water leased or purchased and/or conserved
- Entrainment: number of screen problems resolved
- Channel morphology: miles of access or complexity restored
- Riparian condition: miles of riparian habitat protected or enhanced

Estuary Habitat Performance Measures

- Species composition
- Stock population age/size structure
- Stock identity
- Temporal presence (the time when juveniles are present)

Reporting in the Draft BiOp

Annual plans and reports

- implementation plan
- water management plan
- progress report

Comprehensive evaluations: 2007, 2010

Proposed Hydro Actions and the Reference Operation

Flow objectives and reservoir operations:

- 1) P.A. -- Same spring/summer flow objectives and fed'l. reservoir draft limits as in 2000 BiOp, operate John Day reservoir at MIP from mid-April thru Sept.; operate reservoirs to URCs and refill by June 30; include all federal irrigation withdrawals
- 2) Ref. -- Higher spring/summer flow objectives with no fed'l.
 reservoir draft limits, refill by June 30, operate John Day reservoir at MOP from April-Sept., and no federal irrigation withdrawals
- 3) Results (P.A.-Ref.): little/no change in spring flows; -3.3 kcfs lower flows in Snake and -38 kcfs lower flows in Columbia river in summer; almost 12 kcfs higher flows during fall and winter

Comparison of Lower Granite Dam Discharge Under

the Reference Operation and the Proposed Action

Comparison of Priest Rapids Dam Discharge Under

the Reference Operation and the Proposed Action

Comparison of McNary Dam Discharge Under

the Reference Operation and the Proposed Action

Comparison of Bonneville Dam Discharge Under

the Reference Operation and the Proposed Action

Proposed Hydro Actions and the Reference Operation

- Spill for fish passage
 - 1) P.A. Same spring and summer spill operation as in 2000 BiOp
 - 2) Ref. provides 24-hour spill at generally higher levels in spring; no difference from P.A. in spill operations at Snake R. or MCN and TDA dams, but 24hour spill at generally higher levels at JDA and BON dams in summer.

Proposed Hydro Actions and the Reference Operation

Fish transport operations:

- 1) P.A. In spring and summer, same transport operations as in 2000 BiOp, except reduce collection/transport in early April.
- 2) Ref. In spring, lower flow threshold and reduce collection and transport during April; in summer, same transport operation as in P.A.

Proposed Hydro Actions and the Reference Operation

System configuration improvements:

- 1) P.A. 2004 improvements include RSWs at LWG and IHR, with a corner collector at BON-II. Long-term improvements include RSWs at all Snake R dams, and MCN, possibly JDA and forebay guidance device at TDA; add'l. fish bypass system, debris handling and screen improvements and/or outfall relocations; improvements in turbine operations; and new juvenile and adult PIT-tag detection facilities.
- 2) Ref. Same improvements as specified in the 2004 P.A.

NOTE: Other than projects with completion dates shown, actual construction and schedules for these features will depend on results of on-going research, regional collaboration and prioritization, and funding.

Gap Analysis - Snake River Yearling Chinook 2010 Proposed vs. Reference Operation

Gap Analysis - Snake River Steelhead 2004 Proposed vs. Reference Operation

Gap Analysis - Snake River Steelhead 2010 Proposed vs. Reference Operation

Gap Analysis - Snake River Subyearling Chinook 2010 Proposed vs. Reference Operation

Relative Difference - Total Survival w/o Transportation

National Marine

Fisheries

FCRPS Biological Opinion 2004

Properly defining environmental baseline for non-hydro

- Defining the action area as the area where offsetting mitigation is proposed
- Federal actions already consulted upon and therefore assumed to continue
- Continuing effects of all past actions (whether actions continuing or not)

FCRPS Biological Opinion 2004

Properly defining cumulative effect for non-hydro

To be considered in CE section, activities must be **Reasonably Certain To Occur** As evidenced by appropriations, work plans, permits issued, or budgeting; they follow a pattern of activity undertaken by the agency in the action area; or they are a logical extension of the proposed action.

FCRPS Biological Opinion 2004

Proposed Non-Hydro Actions and the "gap"

- Habitat
 - Tributary
 - Estuary
- Evaluating the UPA
 - Tributary
 - Estuary
- Estuary (Predation Terns)
- Predation fish
- Offset RM&E
- Hatcheries

Proposed Non-Hydro Actions and the "gap"

Habitat - Tributary

- Structured Qualitative approach to determining potential to increase numbers, reproduction, distribution through tributary actions.
- Used available information from subbasin plans, watershed assessments, NOAA Science Center assessments
- 5 steps in analysis
- VL, L, M, H ratings

FCRPS Biological Opinion 2004

Tributary Habitat - 5 steps in analysis Proposed Non-Hydro Actions and the "gap"

- 1. Compared current population status against estimates of historical population status to determine capacity of the population to increase
- 2. Used available assessments of historical and current tributary habitat conditions to evaluate if tributary habitat processes within the geographic area currently occupied by the population are degraded or impaired
- 3. Identified tributary habitat limiting factors considered most likely limiting to the anadromous salmonid population's abundance, productivity, distribution, or diversity
- 4. Steps 1 through 3 were integrated to derive an estimate of the capacity of the population (ecological improvement potential = EIP) to respond to improvements in habitat condition
- 5. Estimates of EIP adjusted based on practical constraints that may limit the ability to address limiting factors

Proposed Non-Hydro Actions and the "gap" Habitat ratings

Very low (VL): neutral or ancillary survival improvements

Low (L): < 2% survival improvements

Medium (M): = 2% - 24% survival improvements

High (H): = 25% - 100% survival improvements

Very High (VH): > 100% survival improvements $\frac{9}{17/2004}$

Proposed Non-Hydro Actions and the "gap"

Estuary Habitat

- Structured qualitative approach to determining potential to increase numbers, reproduction, distribution through estuary actions
- Used available information from subbasin plans, watershed assessments, NOAA Science Center assessments/tech memo
- By ESU, defined by Ocean vs. Stream type, assessed relative potential of limiting factors to affect status (all VSP parameters)
- Estimate of potential from estuary limiting factors by Ocean vs.
 Stream type

Potential Improvements from off site in the Estuary

The NWFSC evaluated the relative role of the following factors limiting salmonid viability in the estuary: water flow, availability of salmon habitats, toxics, and predation (primarily Caspian terns).

FCRPS Biological Opinion 2004

Assessment of **potential** from estuary actions by Ocean vs. Stream

Stream type ESU

	<u>Terns</u>	<u>Toxics</u>	<u>Habita</u>	<u>t Total</u>
Snake River Steelhead	9.6%	+L	+L	=~ 13.6%
Upper Columbia River Steelhead	22.5%	+L	+L	=~ 26.5%
Middle Columbia River Steelhead	19.5%	+L	$+ \Gamma$	=~ 13.5%
Lower Columbia River Steelhead	7.4%	+L	$+ \Gamma$	=~ 11.4%
Spring Chinook	3.3%	+L	+L	=~ 7.3%

FCRPS Biological Opinion 2004

Assessment of **potential** from estuary actions by Ocean vs. Stream

Ocean type ESU

Snake River fall chinook Lower Columbia River chum

Terns	Toxics	<u>Habitat</u>	<u>Total</u>
L (~2%)	+ M (>2-24%)	+ M (>2-24%)	=~ 6-50%
VL (~0%)	+ M (>2-24%)	+ M (>2-24%)	<i>=</i> ∼ 4-48%

Proposed Non-Hydro Actions and the "gap"

Evaluating the UPA

Tributary

- Habitat potential tables for UCR ESUs, MCR ESU, SR steelhead, spring/sum chinook ESUs
- UPA metric goals tables for above ESUs

Estuary

- UPA estuary habitat projects- Crims and Sandy

Evaluating the UPA- Tributary Habitat potential table for UCR spring/sum chinook ESU

Population	Index of Potential to Increase Population	Primary Anthropogenic Limiting Factors	Ecological Intrinsic Potential	Intrinsic Potential Summary (practical constraints)
Wenatchee	Very High	Medium—Channel morphology, flood plain connectivity, flows	Medium	Medium
Entiat	Very High	High—Channel morphology	Medium	Medium
Methow	Very High	Medium—Flows, entrainment, channel morphology, water temperatures	Medium	Medium

FCRPS Biological Opinion 2004

UPA metric goals for UCR S/S Chinook

Table 5.—Updated Proposed Action, Upper Columbia Spring Chinook, Wenatchee, Entiat, and Methow Subbasin

Limiting Factor	Metric Measurement	Metric Goal in three years	Cumulative Metric Goal in six years
Entrainment	a. Number of screens addressed	5	10
Instream flow projects	a. Cubic Feet per Second (cfs) of water protected for instream flows	12 cfs	40 cfs
Channel Morphology	a. Miles of accessrestoredb. Miles complexityrestored	60 miles 5 miles	105 miles 10 miles
Riparian Protection/Enhancement	a. Number of milesprotectedb. Number of milesenhanced.	4 miles 6 miles	12 miles 12 miles

FCRPS Biological Opinion 2004

UPA metric goals for SR S/S Chinook and Steelhead

Table 3. US BOR Conservation Measures for Snake River Spring/Summer ChinookSalmon and Steelhead

Limiting Factor	Metric Measurement	3-Year Metric Goal
Entrainment	a. Number of screens addressed	10
Instream flow projects	a. Cubic feet per second (cfs) of water protected for instream flows	20
Channel Morphology	a. Miles of access restored	54
	b. Miles of complexity restored	0.25

FCRPS Biological Opinion 2004

UPA metric goals for Mid Columbia Steelhead

Table 9. US BOR Conservation Measures for Mid-Columbia Steelhead in theNorth Fork John Day, Middle Fork John Day, and Upper John Day subbasins

Limiting Factor	Metric Measurement	3-Year Metric Goal
Entrainment	a. Number of screens addressed	30
Instream flow projects	a. Cubic feet per second (cfs) of water protected for instream flows	7 cfs
Channel Morphology	a. Miles of access restored	24 miles
	b. Miles of complexity restored	3 miles

Proposed Non-Hydro Actions and the "gap"

Estuary -UPA estuary habitat projects

- Crims Island Protected 473 acres and will restore
 200 acres of intertidal marsh and riparian forest.
 Scheduled completion: 2006
- Sandy River The project will restore 90 acres of native hardwood riparian forest and 20 acres of a seasonally wet slough in the Sandy River Delta to complete a 250-acre block of regionally scarce floodplain habitat. *Scheduled completion: 2007*.

National Marine

Fisheries Service FCRPS Biological Opinion 2004

Proposed Non-Hydro Actions and the "gap"

- Estuary Predation (terns)
 - Potential to increase survival from total removal from East Sand Island
 - UPA proposes tern reduction consistent with the implementation of the preferred alternative in DEIS for the Tern management plan

National

Fisheries Service

Marine

FCRPS Biological Opinion 2004

Potential Improvements from off site in the Estuary

Stream-Type
Snake River Steelhead
Upper Columbia River Steelhead
Middle Columbia River Steelhead
Lower Columbia River Steelhead
Spring Chinook
Ocean-Type
Snake River fall chinook
Lower Columbia River chum

Terns	Toxics	<u>Habitat</u>	<u>Total</u>
6.6%	+L	+ 0	=~ 7%
15.4%	+L	+ 0	=~ 15%
6.6%	+L	+ 0	=~ 7%
5.1%	+L	+ 0	=~ 5%
2.3%	+L	+ 0	<i>=</i> ∼ 2%
<u>Terns</u>	Toxics	<u>Habitat</u>	<u>Total</u>
L	+M	+L	=~ 4%
VL	+M	$+ \Gamma$	<i>=</i> ∼ 2%

Proposed Non-Hydro Actions and the "gap"

Predation (fish)

- Expanded pikeminnow program (to 2001/2004 level)
- AA's calculation of 0.6% (L) improvement for all ESUs
- Other fish predator programs to be studied, piloted not counted towards gap

FCRPS Biological Opinion 2004

Proposed Non-Hydro Actions and the "gap"

- Hatcheries
 - What hatchery programs apply towards filling the "gap"
 - How much did they fill it for affected ESUs?

FCRPS Biological Opinion 2004

Net Effect of Actions and Jeopardy Determinations

- Basic methods
- Translation from qualitative to quantitative (table)
- Net effects results Table 6.9
- Jeopardy determinations key considerations for selected ESUs

FCRPS Biological Opinion 2004

Table 6.1. Qualitative Categories for Potential Improvements in VSP Characteristics

Ranking	Description
"Very Low"	Little or no potential for improvement; very high risk that these activities would not result in any beneficial effects.
"Low"	Small potential for improvement, possibly on the order of a percentage or two relative change in survival rate or abundance (i.e., possibly up to 1.01-1.02 times the current survival rate or abundance level).
"Medium"	Significant potential for improvement in population status, perhaps as high as a 24% improvement in survival rate or abundance (i.e., up to 1.24 times current survival rate or abundance level).
"High"	Potential for improvement is high, possibly resulting in a doubling of survival rate or abundance (i.e., up to 2 times current survival rate or abundance level).
"Very High"	Potential for improvement is very high, possibly resulting in more than a doubling of the current survival rate or abundance level.

Table 6.9

ESU	Major Population Groups (MPGs)	Year	(-) Relative Hydro Survival Gap (% survival difference and qual. est. including habitat effects)	(+) Estuary Habitat	(+) Tributary Habitat	(+) Fish Predation	(+) Bird Predation	(+) Hatchery	(+) Combined Non- hydro Improve- ment	(=) MPG Net Effect	ESU Net Effect
SR Spring/ Summer Chinook	All	2004 2010	-1.5% L +.3%	0	VL VL (for a few pop- ulations)	L L	0 L	0	L- M	Reduce NC - Improve	Reduce (short- term)
SR Fall Chinook	Only One Note: The hy its ent takes t	2004 2010 ydro surv ire migrat	-12.7% M -5.4% M ival gaps shown in tion and is not trans rtion of affected fis	0 L this assess sported. Me h into consi	0 0 nent are for al asures to fill t ideration.	L L pout half of th he gap apply	0 L e SR Fall Chi to the entire F	0 0 inook ESU wl ESU. The "NO	L M nich remains	Reduce NC in-river for ion in 2010	Reduce (short- term)
UCR Spring Chinook	Only One	2004 2010	-6.6% M -1.2% L	0	VL L-M	L L	0 L	0 0	L M	Reduce NC	Reduce (short- term)
LCR Chinook	Cascade Spring MPG (0 dams)	2004 2010	VL VL	0	0 0	0 0	0 L	0 0	0 L-M	NC NC - Improve	
	Gorge Spring MPG (1 dam)	2004 2010	-0.8% L -0.4% L	0 0	0 0	L L	0 L	0	L L-M	Reduce NC - Improve	Reduce (short-
	3 Fall MPGs (0 dams) Gorge Fall	2004 2010 2004	L L -1.4% L	0 L 0	0 0 0	0 0 L	0 L 0	0 0 0	0 L L	Reduce NC Reduce	term)
UWR Chinook	All	2010 2004 2010	-1.3%L VL VL	L 0 0 (for yearlings)	0	00	L 0 L	0	L-M 0 L	NC NC NC -	NC
SR Steelhead	All	2004 2010	-0.2% L +0.7%	0	VL VL (for a few pop- ulations)	L L	0 M	0	L M	NC - Improve	NC

LICD Staallage 1	01	2004	-8.6% M	0	VL	L	0	0	L	Reduce	Reduce
UCR Steelnead	Only One	2010	-3.1% M	0	L-M	L	М	0	М	NC	(short- term)
	2 MPGs	2004	-0.3 to 0% L	0	0	L	0	0	L	NC	
	(1-2 dams)	2010	-0.3 to +1.6% L	0	0	L	М	0	М	NC- Improve	Reduce
MCR Steelhead	John Day	2004	-0.5% L	0	VL	L	0	0	L	NC	(short-
	MPG (3 dams)	2010	+2.2%	0	VL	L	М	0	М	Improve	term)
	2 MPGs	2004	-8.6% M	0	0	L	0	0	L	Reduce	
	(mostly 4 dams)	2010	-3.1% M	0	0	L	М	0	М	NC	
UWR Steelhead	A11	2004	VL	0	0	0	0	0	0	NC	NC
e wit Steemedd	7 111	2010	VL	0	0	0	М	0	М	NC	ne
	2 MPGs	2004	VL	0	0	0	0	0	0	NC	
I CR Steelhead	(0 dams)	2010	VL	0	0	0	М	0	М	NC	NC
Lett Steemedu	2 MPGs	2004	-0.3% L	0	0	L	0	0	L	NC	1.00
	(mostly 1 dam)	2010	+0.3%	0	0	L	М	0	М	NC	
	1 MPG (1/2	2004	L	0	0	L	0	0	L	NC	Paduca
CR Chum	pops 1 dam)	2010	L	L	0	L	VL	0	L-M	NC	(short-
ertenum	2 MPGs	2004	L	0	0	0	0	0	0	Reduce	term)
	(0 dams)	2010	L	L	0	0	VL	0	L	NC	teriii)
	2 MPGs	2004	VL	0	0	0	0	0	0	NC	
	(0 dams)	2010	VL	0	0	0	L-M	0	М	NC	
LCR Coho	1 MPG (2/3	2004	L	0	0	L	0	0	L	NC	NC
r . po	pops 1 dam)	2010	L	0	0	L	L-M	0	М	NC - Improve	
SD Soaltova	Only One	2004	L	0	0	L	0	Н	L	Reduce	Reduce
SK SUCKEYE	Only One	2010	L (close to VL)	0	0	L	0 (no info)	VL	L	NC	term)

Factors Considered For "Appreciably Reduce" Determination

- # major population groups (MPG) in ESU
- Proportion of MPGs with reduced numbers, reproduction, or distribution
- Magnitude of reduction(s) for MPG(s)
- Range-wide status of ESU
- Status in action area
- Cumulative effects
- ♦ Uncertainty

ESU	ESU Net Effect - Change in Numbers, Reproduction, or Distribution?	ESU Jeopardy Determination - Appreciable Reduction in Likelihood of Survival and Recovery?	ESU Adverse Modification Determination
SR Spring/ Summer Chinook	Reduce (short-term)	No Jeopardy	Not addressed pending review of recent Court decisions
SR Fall Chinook	Reduce	No Jeopardy	Not addressed pending review of recent Court decisions
UCR Spring Chinook	Reduce (short-term)	No Jeopardy	N/A
LCR Chinook	Reduce (short-term)	No Jeopardy	N/A
UWR Chinook	No Change	No Jeopardy	N/A
SR Steelhead	No Change	No Jeopardy	N/A
UCR Steelhead	Reduce (short-term)	No Jeopardy	N/A
MCR Steelhead	Reduce (short-term)	No Jeopardy	N/A
UWR Steelhead	No Change	No Jeopardy	N/A
LCR Steelhead	No Change	No Jeopardy	N/A
CR Chum	Reduce (short-term)	No Jeopardy	N/A
LCR Coho	No Change	No Jeopardy	N/A
SR Sockeye	Reduce (short-term)	No Jeopardy	Not addressed pending review of recent Court decisions

Table 8.1. Summary of conclusions.