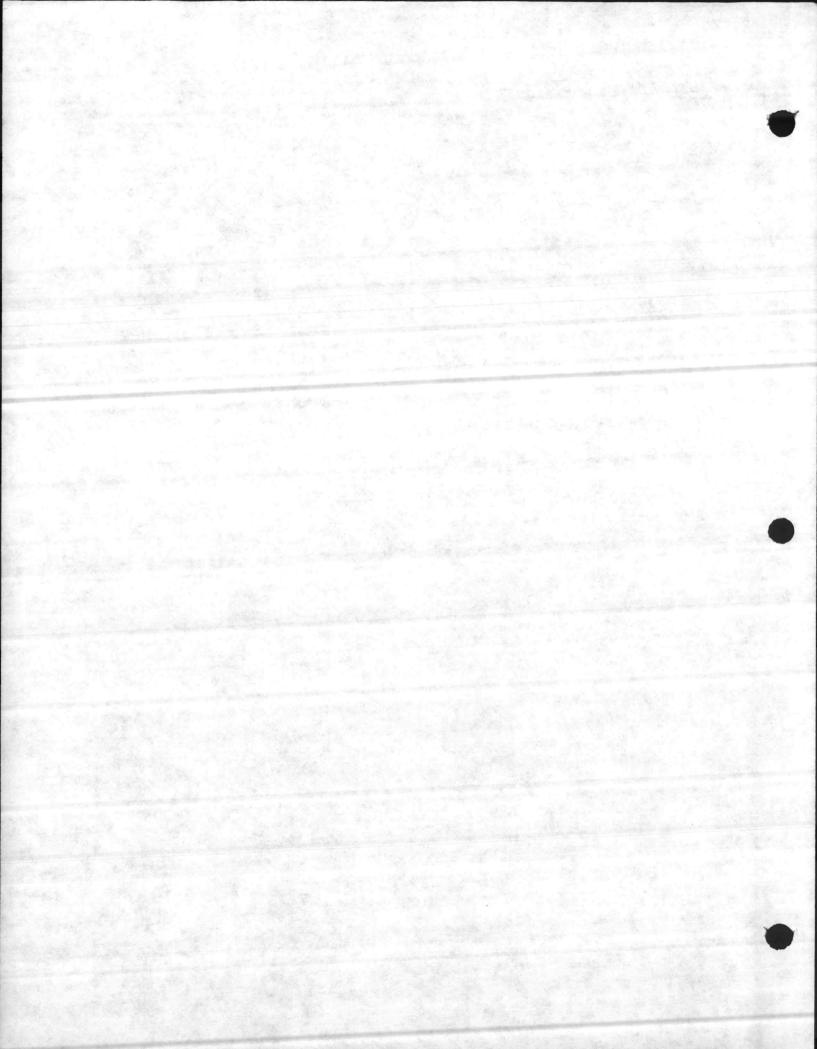


ARC ELECTRIC INCORPORATED

UNIVERSAL CONTROLS DIVISION

820-A Juniper Crescent • P.O. Box 1667 Chesapeake, Virginia 23320

FLOYD W. EVANS, III Operations Engineer Telephone (804) 420-4672



OPERATION AND MAINTENANCE MANUALS

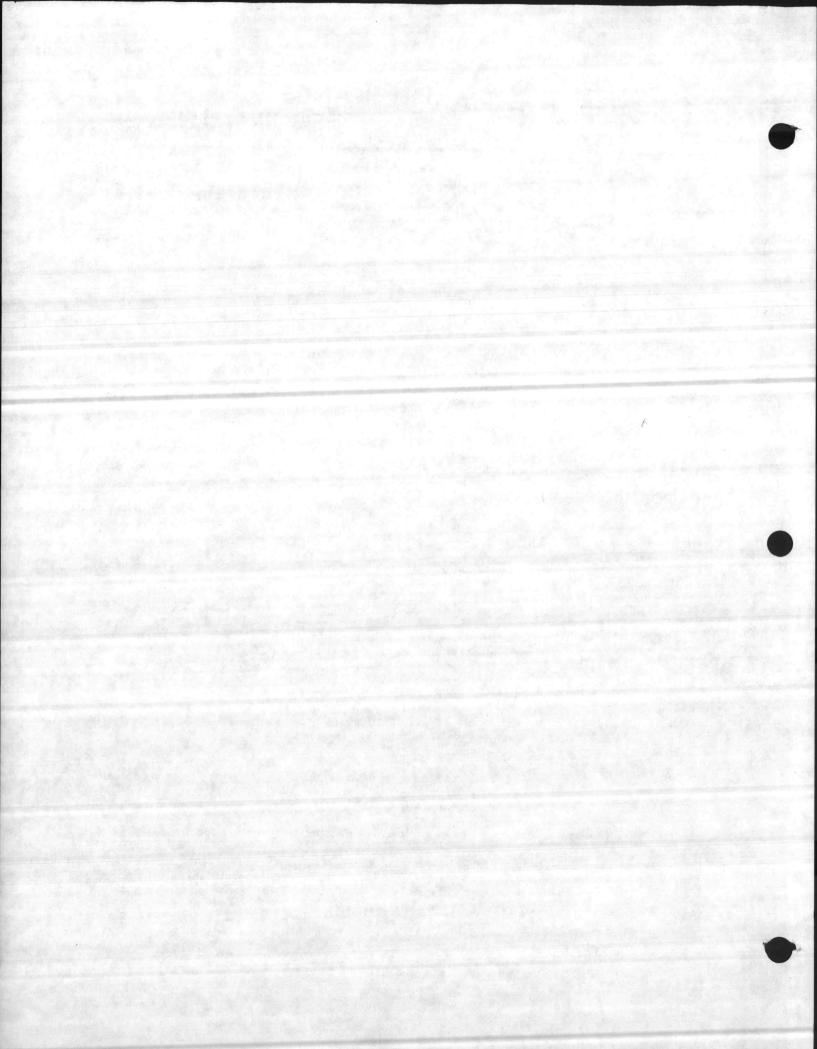
FOR

BACHELOR ENLISTED QUARTERS MCAS, NEW RIVER, N.C. N62470-85-C-5162

820-A Juniper Crescent Chesapeake, VA 23320 (804) 420-4672 • Jacksonville, NC (919) 347-7160

MAINTENANCE REQUIREMENTS

The items listed below are normal recommended maintenance procedures to be performed by the owner's maintenance staff.


EQUIPMENT	TYPICAL SERVICE REQUIRED	FREQUENCY
AIR COMPRESSOR(S)	Drain air volume tank.	Once a week
	Check crankcase oil level.	Twice monthly
	Drain and refill crankcase with recommended oil. Oil motor.	Three months
	Clean supply air intake filter. Check pressure regulator valves and air filter. Manually actuate safety valve.	Three months
CONTROL SYSTEM AIR DRYER (If included in system)	Inspect condenser coil, blow the dust off the coils and fans. Check temperature of condenser air for correct amount of heat transfer. Check automatic condensate trap on dryer.	Three months
THERMOSTAT & TEMPERATURE CONTROLLERS	Check calibration and throttling range.	Twice yearly
EP & PE SWITCHES	Clean and check for proper operation.	Twice yearly
PRESSURE	Check calibration and throttling range, examine pressure control piping for leaks.	Twice yearly
HUMIDISTATS	Check calibration and throttling range.	Twice yearly
DAMPERS	Lubricate bearings. Check all linkage for tightness and damper for proper close-off.	Twice yearly
ACTUATORS	Inspect stroke, positive positioner relay and actuator mechanism for accuracy.	Twice yearly
VALVES	Lubricate stem. Adjust packing and replace where necessary. Check actuator for stroke.	Twice yearly
	이야 하는 것이 같은 것이 같아요. 그는 것이 같아요. 이 가지 않는 것이 않는 것이 같아요. 이 가지 않는 것이 않는 것이 같아요. 이 가지 않는 것이 않는 않는 것이 않는 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 않는 않는 것이 않는 않는 것이 않는 않는 것이 않는	0
RELAYS	Check for switchover and operation.	Once a year
PNEUMATIC SWITCHES	Check for operation and leakage.	Once a year
In all cases, rep	place covers on controls and devices following each insp	ection.

If your control system is covered by a **Robert haw** PREVENTATIVE or GENERAL MAINTENANCE PROGRAM, many of the above items will automatically be performed under the agreement. Our local Robertshaw Branch Office will be pleased to furnish additional information or design a service program for your system.

CSD Form OT- 400 (Iss. 9-76)

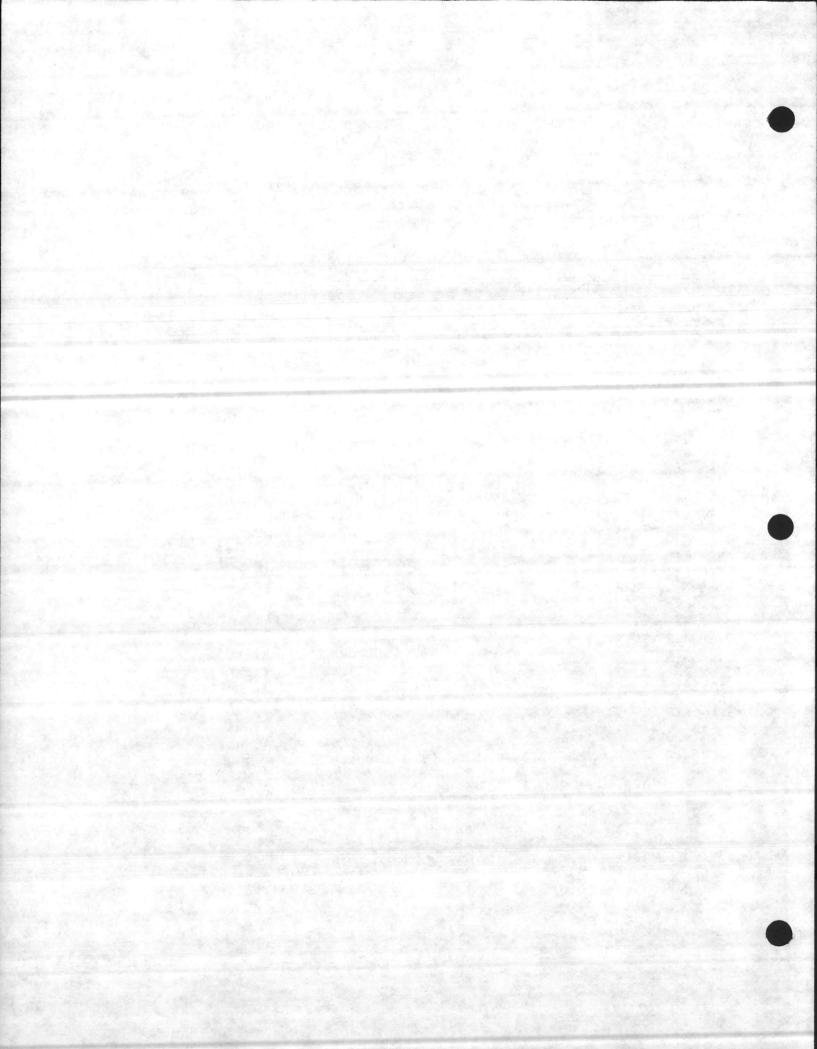
*

obertshaw

BEQ, NEW RIVER

CONTRACT NO. N62470-85-C-5162

CENTRAL SYSTEM CHANGEOVER CONTROL


System changeover from heating to cooling (and vice versa) shall be accomplished by a manual "summer/winter" switch mounted in the control panel located in the mechanical building. With the changeover switch in the "winter" position, no control air will be passed to diverting valves V-3 causing flow diversion to hot water converter, SC-1, and bypassing the chiller crossover bridges. When the changeover switch is in the "summer" position, 20 PSI control air will be supplied to diverting valve V-3 causing flow diversion from SC-1 to the chiller cross-over bridge. The 20 PSI air will be supplied to PE-2 which is wired to the receiver-controller of the chiller protection valve V-4. Valve V-4 will begin to open the port from the cross-over bridge when the temperature sensor in the location indicated senses 80 degrees Fahrenheit water. The port from the cross-over bridge will be fully open when the sensor senses 60 degrees Fahrenheit water. (See chiller control sequence).

CHILLER (C-1) CONTROL

The air-cooled water chiller (C-1) will have self-contained controls which will start the unit on a demand for cooling. Integral capacity controls will operate system unloaders to maintain the indicated chilled water temperature. A flow switch will prevent the chiller from starting unless there is a flow in the chilled water line. For system change-over from "heat" to "cool". See "Central System Change-Over Control".

CHILLER WATER PUMP (P-1) CONTROL

Pump P-1 will be controlled by a "hand-off-auto" switch. In the "auto" position, Pump P-1 will be energized by a P.E. switch activated by the summer/winter change-over switch. In the "hand" position, Pump P-1 will run continuously. Flow will be sensed by a flow switch and verified by a panel mounted pilot light.

Page 2 BEQ, New River Sequence of Operation

HOT WATER PUMP (P-2) CONTROL

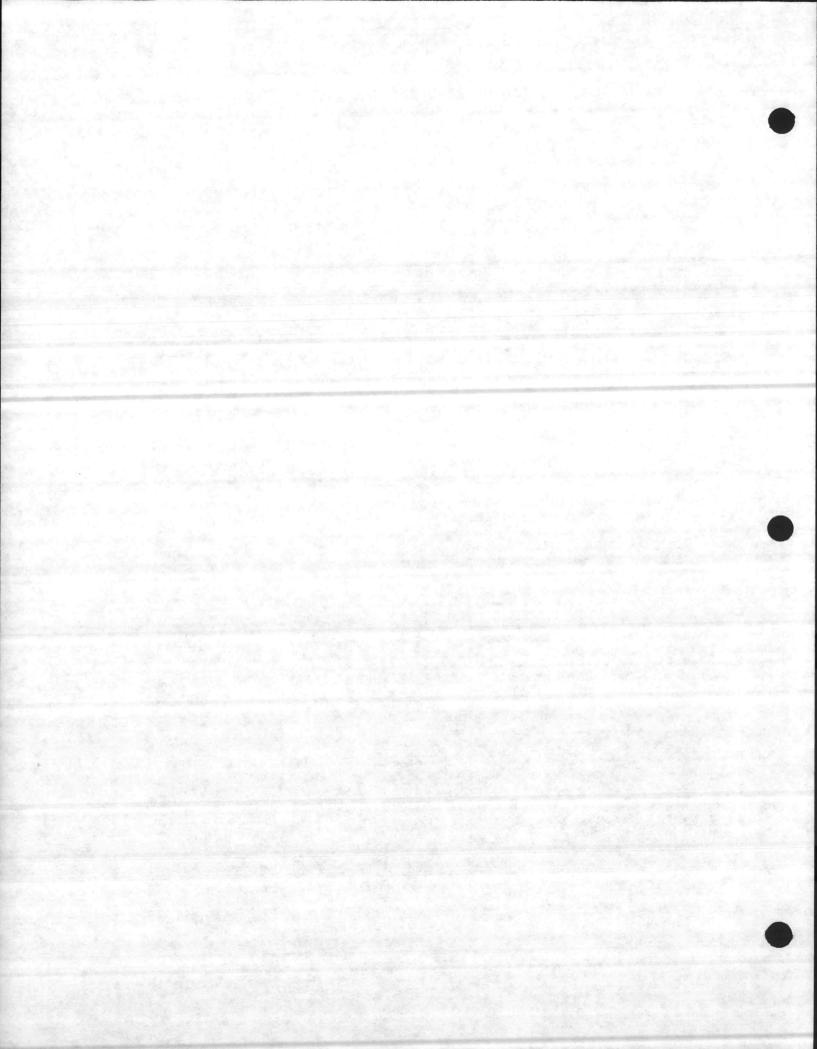
Pump P-2 will be controlled by a "hand-off-auto" switch. In the "auto" position, P-2 will be energized through a pneumaticelectric switch activated by the summer/winter change-over switch. In the "hand" position, Pump P-2 will run continuously. Pump energization will be indicated by a panel mounted pilot light.

DOMESTIC HOT WATER RECIRCULATING PUMP (P-4) CONTROL

Pump P-4 will be controlled by a "hand-off-auto" switch. In the "auto" position Pump P-4 will be energized when the recirculated domestic hot water temperature falls below 105 degrees Fahrenheit. When the temperature rises above the setpoint, the reverse will occur. In the "hand" position, Pump P-4 will run continuously. Flow will be verified by a panel mounted pilot light.

CHILLED WATER PUMP P-3 CONTROL

Similar to Pump P-1 control.


SUMP PUMP (P-5 & P-6) CONTROL

Pump P-5 will be controlled by a "hand-off-auto" switch. In the "auto" position, Pump P-5 will be enersized by a float switch set to close at a predetermined water level. In the "hand" position, Pump will be started manually. Pump P-6 will have same control sequence.

HOT WATER CONVERTOR (SC-1) CONTROL

When the "summer/winter" change-over switch is in the "winter" position, the hot water supply (HWS) temperature will be maintained by a panel-mounted controller (C-12) which will modulate the convertor control valve (V-1). V-1 will be indexed "closed" whenever the change-over switch is in the "summer" position. When the outside air temperature rises to 65 degrees Fahrenheit and above, V-1 will be fully closed. On a fall in outside air temperature below 65 degrees Fahrenheit, the reverse will occur.

2

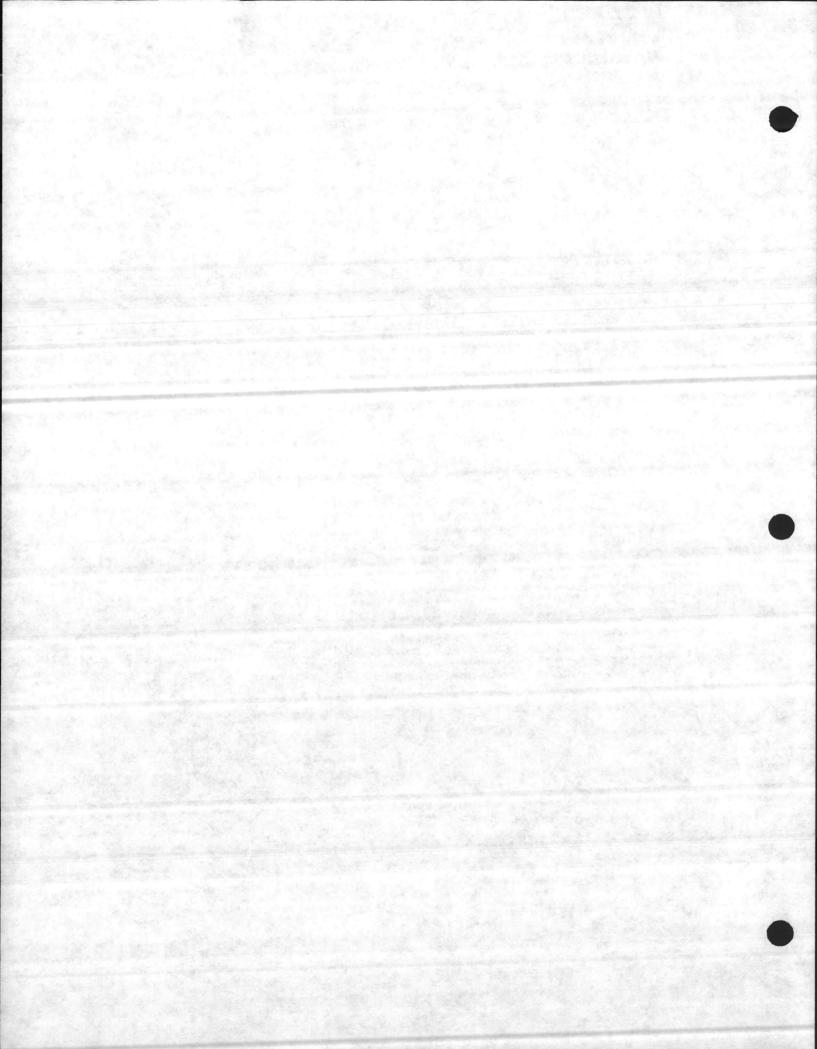
0

Pase 3 BEQ, New River Sequence of Operation

DOMESTIC HOT WATER HEATER (SC-2) CONTROL

The domestic hot water tank temperature will be controlled by a panel-mounted controller (C-6). The water temperature will be sensed by a sensor with its bulb in the hot water tank so that on a drop in tank water temperature below the controller will modulate "open" the steam control valve (V-2). On a rise in water temperature above the setpoint (V-2) will modulate "closed".

EXHAUST FAN (EF) CONTROL


Exhaust fans (EF-1, EF-7 and EF-8 will be energized by the light switches in their respective rooms. Exhaust fans EF-2, EF-3 and EF-4 will be interlocked with fan coil units FCU-1, FCU-3 and FCU-5, respectively. Exhaust fan EF-5 and its motor operated discharge damper will be energized by a wall-mounted thermostat with its setpoint at 85 degrees Fahrenheit. Exhaust fans EF-8 and EF-9 will be energized by wall-mounted thermostats with their setpoints at 80 and 90 degrees Fahrenheit, respectively. Exhaust fans EF-10, EF-11 and EF-12 will be interlocked with fan coil units FCU-2, FCU-4 and FCU-6, respectively.

ENCLOSED STAIRWELL VENTILATION CONTROL

Natural stairwell ventilation will be provided by the opening of O.A. intake louver and relief vent 2-position, motor operated dampers. The aforementioned dampers will energize fully open at 85 degrees Fahrenheit through the action of a wallmounted thermostat with an 85 degree Fahrenheit setpoint. Below the setpoint temperature, the reverse will occur.

FAN COIL UNITS

A heating cooling pneumatic thermostat at (RT-1) will control the fan coil unit valve (V-11,12,13,14,15 or V16). The changeover will be from the central control aquastat (AQ-2). Fan operation will be controlled by a fan switch. Unit outside air dampers will open whenever unit is running.

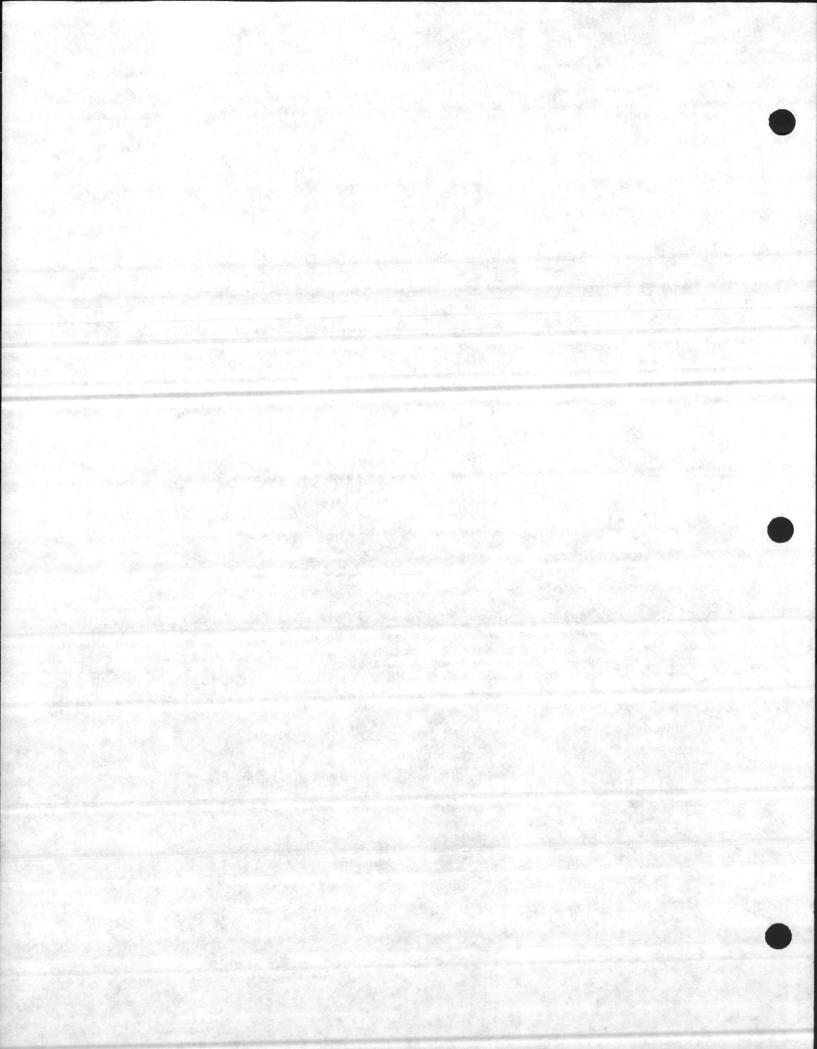
Page 4 BEQ, New River Sequence of Operation

LAUNDRY ROOM CONTROL

A two-stage heating/cooling thermostat (RT-2) will energize the exhaust fan anytime space temeprature exceeds 83 degrees F. and energize the unit heater fan whwnever the space temperature falls below 68 degrees F. When the room temperature falls below 80 degrees F., the exhaust fan will be de-energized. A strap-on aquastat (AQ-3) will prevent the unit heater from operating if the water temperature is below 80 degrees F. and close twoposition valve (V-17).

AIR HANDLER UNIT CONTROL (FOR EACH A.H. UNIT)

Units will be started and stopped manually. When energized N.C. O.A. (D-1) will open to its set position.


The AH unit and room controls will be indexed for heating or cooling from an aquastat (AQ-2) in the CW/HW supply piping from central system. When 75 degrees F. or above water temperature is sensed, the system will be indexed for heating. When 65 degrees F. or below water is sensed, the system will be indexed for cooling.

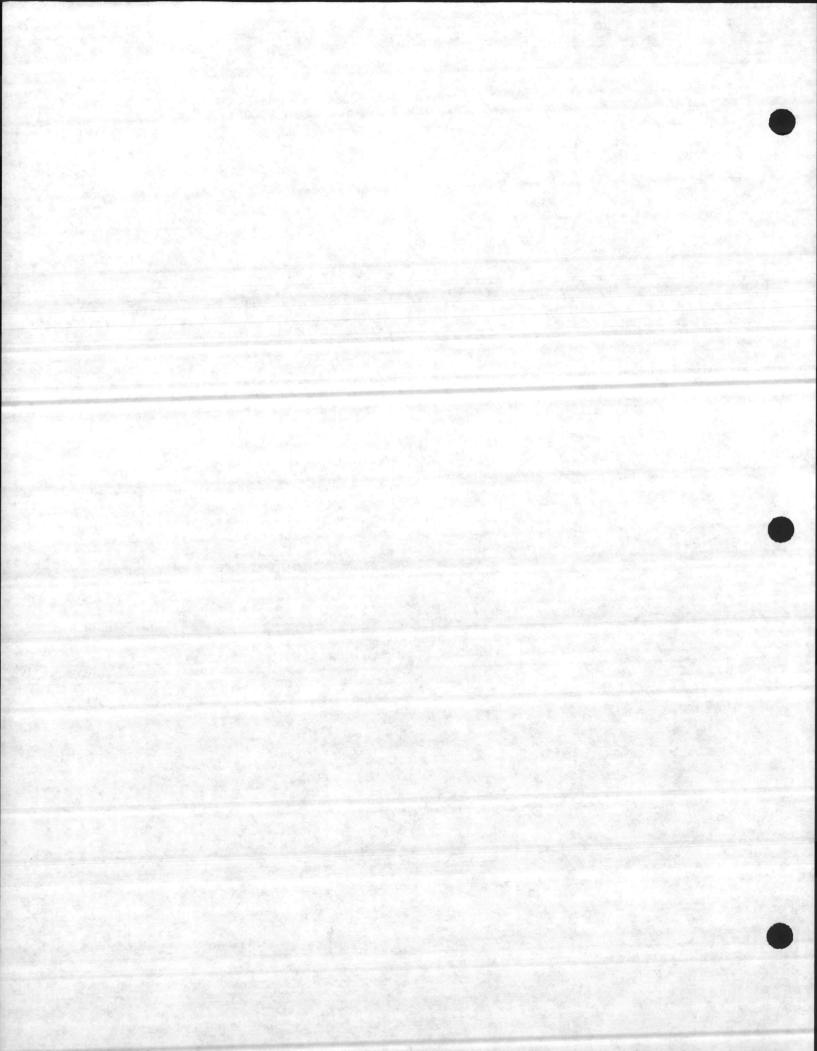
With AH units operating and system indexed for heating, the outside air sensor (OAT) will reset the discharge air temperature (SAT) over a predetermined schedule. On a fall in discharge temperature, controller (C-2) will reposition three-way or two-way value (V5 - V10) supplying hot water to the unit coil.

With the AH unit operating and system indexed for cooling, the discharge air controller (SAT) will be automatically set to maintain 59 degrees F. constant discharge air temperature at C-3) The return air sensor will be locked out along with (C-2).

A temperature low limit thermostat (LL) will shut the AH unit down at 38 degrees F.

A smoke detector (SD) will shut down if smoke is sensed.

Page 5 BEQ, New River Sequence of Operation

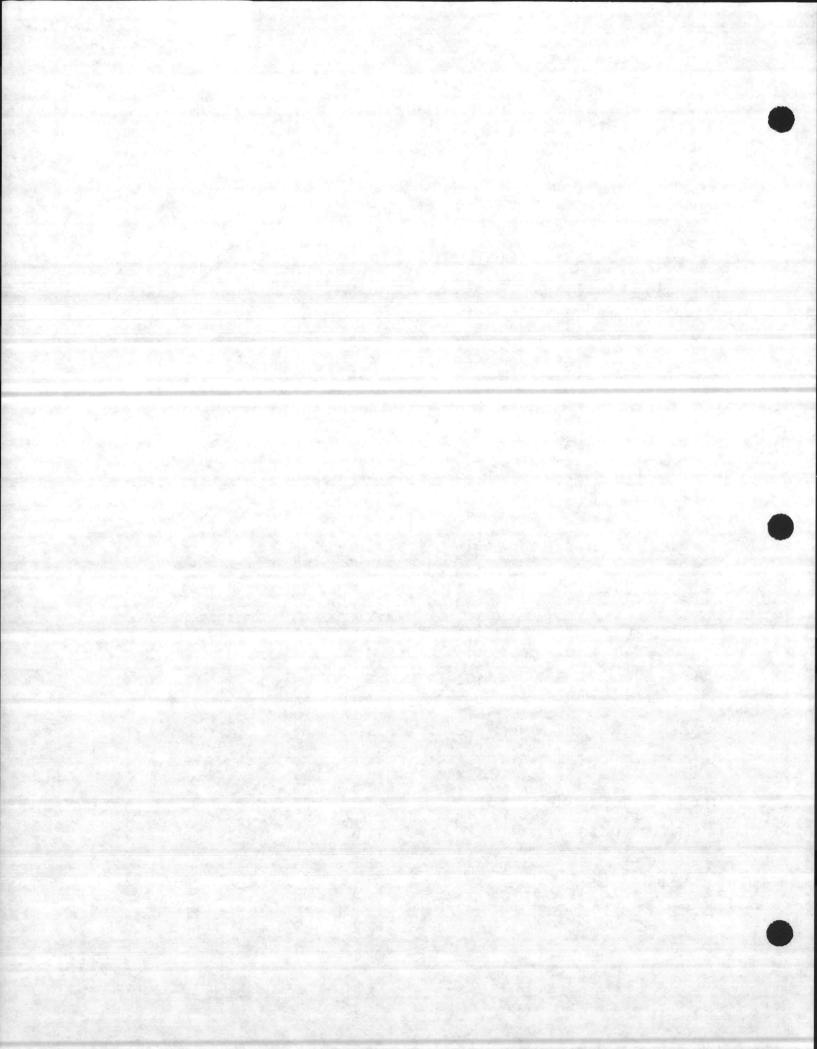

ROOM CONTROL

With the unit thermostat (UT-1) indexed for heating, the unit thermostat will on a fall in temperature modulate the tab supply air damper open simultaneously closing the room return air damper. With the thermostat indexed for cooling the thermostat will on a rise in temperature modulate to open the tab supply air simultaneously closing the room return. Indexing for heating and cooling will be automatic by central source. Unit thermostat will be mounted to sense terminal air blender return air as shown on drawings.

Unit fans will run continuously if the associated air handling unit is running and if the room switch is in the on position. Units can be disabled by either the room switch or by shutting down its respective air handling unit.

AH UNIT STATIC PRESSURE CONTROL

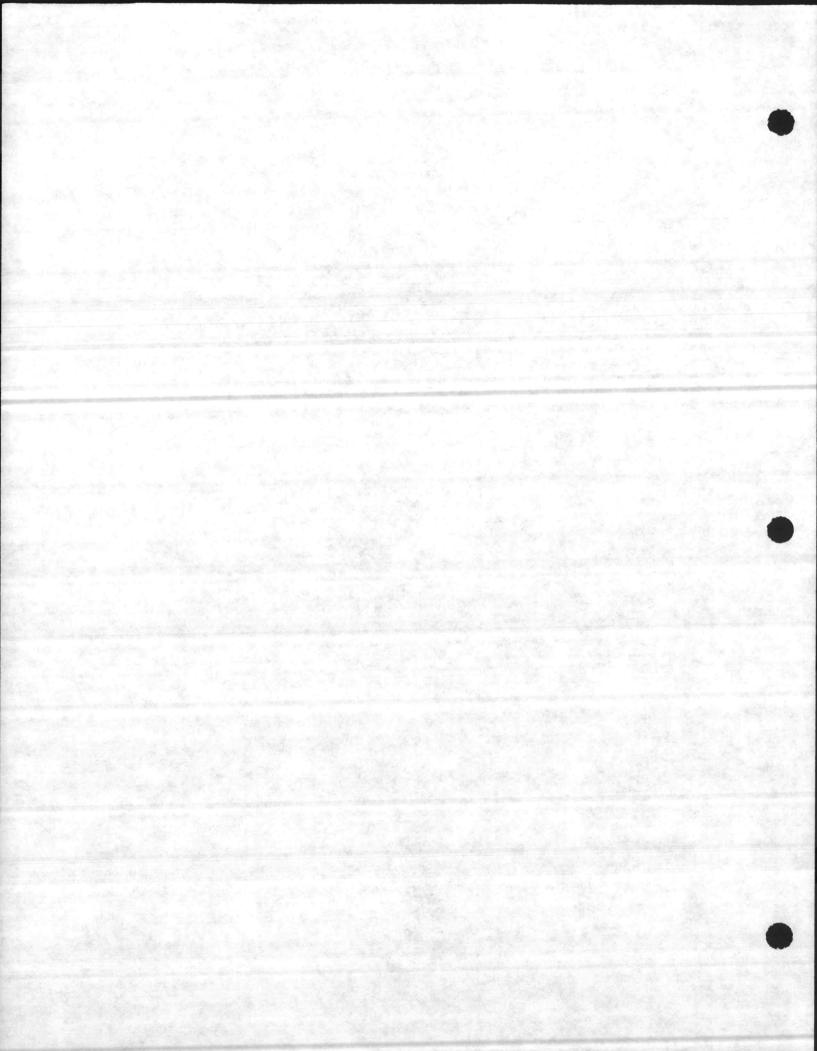
A static pressure control (SP) will be provided for each AH unit. On a rise in static pressure above the controller (C-5) setpoint (1 inch adj.) the controller will modulate (D-2) on the inlet vane on the AHU unit fan. The controller setpoint is adjustable.



FIELD - MATERIAL LIST ******************************

QTY	DESCRIPTION	CAT NO	MANUFACTURER	SPEC.#	LEGEND
****	*****				******
	ACTUATORS	M574-1211	ROBERTSHAW		
14	ACTUATORS	M572-5311		2.1.3.1	
6	TEMP. TRANS.	T150-1022	ROBERTSHAW	2.1.5	SAT
7	TEMP. TRANS.	T150-1054	ROBERTSHAW	2.1.5	OAT
1	TEMP. TRANS.	T150-1011	ROBERTSHAW	2.1.5	a state of the second second second
1	TEMP. TRANS.	T150-1031	ROBERTSHAW	2.1.5	T-1 6
1	TEMP. TRANS.	T150-1021	ROBERTSHAW	2.1.5	T-2
6	LOW LIMIT	T312-2	ROBERTSHAW	2.1.8.7	LL
1	THERMOSTATS	T675A1540	HONEYWELL		T-4
1	THERMOSTATS	T18-301	ROBERTSHAW	2.1.8	RT-1
3	THERMOSTATS	T35-301	ROBERTSHAW	2.1.8	RT-2
*186	THERMOSTATS	T34-3011	ROBERTSHAW		3/UT-1/2
186	DUCT MOUNTING BRACKET		ROBERTSHAW	2.1.8	UT
1	THERMOSTAT	TC-2974	BARBER COLEMAN		AQ-1
1	THERMOSTAT	T42B1027	HONEYWELL	2.1.13	
6	STATIC PRESS. TRANS.	P323-03	ROBERTSHAW	2.1.6.1	SP
6	DIFF. PRESS. SWITCH	R436		2.1.10.2	DP
2	VALVE	V6600-35307	ROBERTSHAW	2.1.2	V-7/10
4	VALVE	V6800-15307	ROBERTSHAW		12/14/16
2	VALVE	V6800-35307	ROBERTSHAW	2.1.2	V-8/9
2	VALVE	V6800-25307	ROBERTSHAW	2.1.2	V-11/13
2	VALVE	V6800-30307	ROBERTSHAW	2.1.2	V-5/6
1	VALVE	V6600-25307	ROBERTSHAW	2.1.2	V-15
1	VALVE	V6700-40307	ROBERTSHAW	2.1.2	V-1
1	VALVE	V6700-16307	ROBERTSHAW	2.1.2	V-17
1	VALVE	V6700-30307	ROBERTSHAW	2.1.2	V-2
2	BUTTERFLY VALVE	4" 3-WAY	VALVE ASSEMB.		V-3/4
1	FLOW SWITCH	FS4-3	MCDONALD MILL.		FS
***1	STEAM METER	2"	BIF	2.1.15	F9
6	SMOKE DETECTORS	MS110N	DETROIT CONTR.		SD
6	STATIC PRESS. PROBE	VOLU-PROBE 1	AIR MONITOR	2.1.6.1	30
7	P/E	R471-1	ROBERTSHAW	2.1.13	PE
9	E/P	R429-120	ROBERTSHAW	2.1.13	EP
3	E/P	225B-111CA	MAC	2.1.13	EP1
**1	THERMOSTAT	T318	ROBERTSHAW		AQ-2
9	PRV	N1-11B	ROBERTSHAW	2.2.1.5	PRV
12	CONTACT	1A656	FURNAS	2.3.2	C
3	DAMPERS PARELL. BLADE		RUSKIN	2.1.1	ч.
3	DAMPERS PARELL. BLADE		RUSKIN	2.1.1	
1	DAMPERS PARELL. BLADE		RUSKIN	2.1.1	
1	DAMPERS PARELL. BLADE		RUSKIN		
6	DAMPERS PARELL. BLADE		RUSKIN	2.1.1	
1	AIR COMPRESSOR	ACP-C6S-5200P	ACP	2.21	
1	AIR DRYER	8010	HANKINSON	2.2.1.3	
	that a station to	0010	DHIAV TROOM	2,2,1,3	

6

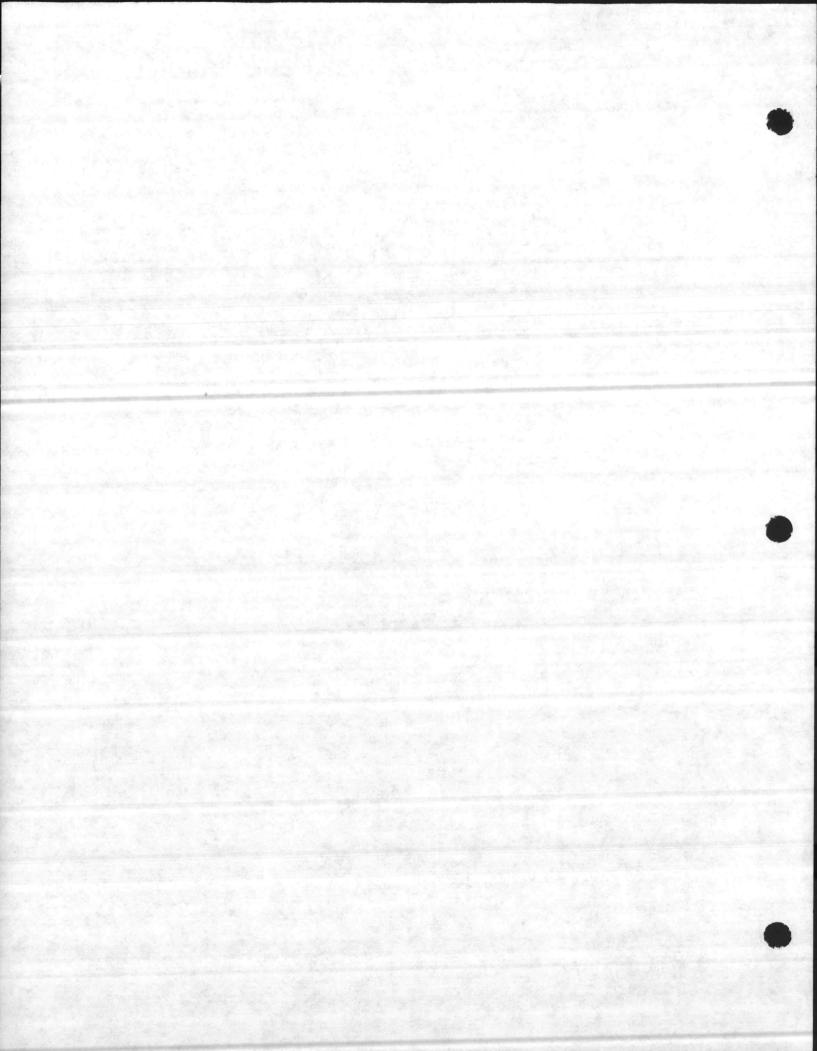

Pase 7 BEQ, New River

NOTE:

*We propose to use this thermostat with our UCDMB1 duct mounting bracket in place of the remote capillary type shown. We checked with other manufactures such as Honeywell, Johnson and Barber Coleman and could not find anyone with a two setpoint, pressure, direct and reverse acting deadband energy conservation thermostat with a remote capillary. We feel that our thermostat with duct mounting bracket meets the intent of the drawing by sensing the return air.

**We propose to use a aquastat (AQ-2, Page 1 of drawings) to change-over the main building controls from heating to cooling based on the primary chilled/hot water line temperature. This will cause controls to switch over only when the proper water temperature is available. This will prevent an over heating or cooling condition from happening by allowing the proper time to switch over.

***See attached booklet for steam and water meter cut sheets.


Page 8 BEQ, New River

PANEL - MATERIAL LIST *******************************

QTY	DESCRIPTION	CAT NO	MANUFACTURER	SPEC. #	LEGEND
****	****	****	****	*****	*****
1	PANEL ENCLOSURE	AB-1818665B	AUSTIN	2.1.16.5	DTC
15	RECEIVER CONTROLLER	P541RA	ROBERTSHAW	2.1.4	C3, 5, 6, 12, 13
6	RECEIVER CONTROLLER	P541	ROBERTSHAW	2.1.4	C-2
7	E/P RELAY	R527-110	ROBERTSHAW	2.1.13	C-1/10
6	DIVERTING RELAY	R504-2	ROBERTSHAW	2.1.13	C-4
12	GAGE	A252	ROBERTSHAW	2.1.9	G-1/G-2
1	ENCLOSURE	PCP-6	ROBERTSHAW	2.1.14	PCP6
1	SWITCH	S521	ROBERTSHAW	2.1.13	C-7
1	DIVERTING RELAY	R503-1	ROBERTSHAW	2.1.13	C-11
2	P/E RELAY	R571-1	ROBERTSHAW	2.1.13	C-8/9
	LIGHTS	81-1059	DIALIGHT	2.1.15	
	RELAYS	RH	IDEC	2.3.2	PR1,PCR

8

PISTON DAMPER ACTUATORS 2-,3-, AND 4-INCH STROKES

GENERAL DESCRIPTION

The M570-series piston damper actuators are used in pneumatic control systems to position automatic air dampers upon receipt of an air pressure signal from a control device. The piston actuator can be used for either gradual action or 2-position action applications.

Standard mounting is with right-angle bracket supplied; special mounting brackets are available for use in unit ventilators, fan coil units, and terminal boxes. The M573 and M574 models are optionally available with post mounting, and are also available with positive positioning relay.

MODEL	M572 *			
EFFECTIVE PISTON AREA:		M573	M574 45	
NORMAL STROKE:	$3 in^2 (19 cm^2)$	7 m ² (45 cm ²)		
MAXIMUM DAMPER AREA (@ 1000 FPM)	2" (51 mm)	3" 176 mm)	11 in ² (71 cm ²)	
Gradual operation:	3 ft ² (0.28 m ²)		4" (102 mm)	
Two position:		12 ft ² (1.1 m ²)	25 ft ² (2.3 m ²)	
AVAILABLE SPRING RANGES:	4.5 ft ² (0.42 m ²)	15 ft ² (1.4 m ²)	30 ft ² (2.8 m ²)	
NORMAL AIR PRESSURE:	3-12, 4-8, 5-10, 8-13, 10-15 psig (21-82, 28-55, 35-70, 55-90, 70-105 kPa)			
MAXIMUM AIR PRESSURE:	0-20 psig (0-138 kPa)			
AMBIENT TEMPERATURE RATING:	30 psig (207 kPa)			
DIAPHRAGM:	-20°F to 140°F (-29°C to 60°C)			
AIR CONNECTIONS:	Rolling Type			
DIMENSIONS:	3/16" DIA Nipple for ½" (6.35 mm) OD tubing			
OSITIVE POSITIONING RELAY	See dimensional drawings on reverse			
Normal main air pressure:		and the second		
Maximum pressure:	Not .	20 psig (138 kPa) 30 psig (207 kPa)		
Start point; adjustable	available			
Throttling range; fixed	on M572	3-13 psig (21-90 kPa)		

Ø

115.74-

M1572-DI, D2,+D3

D2

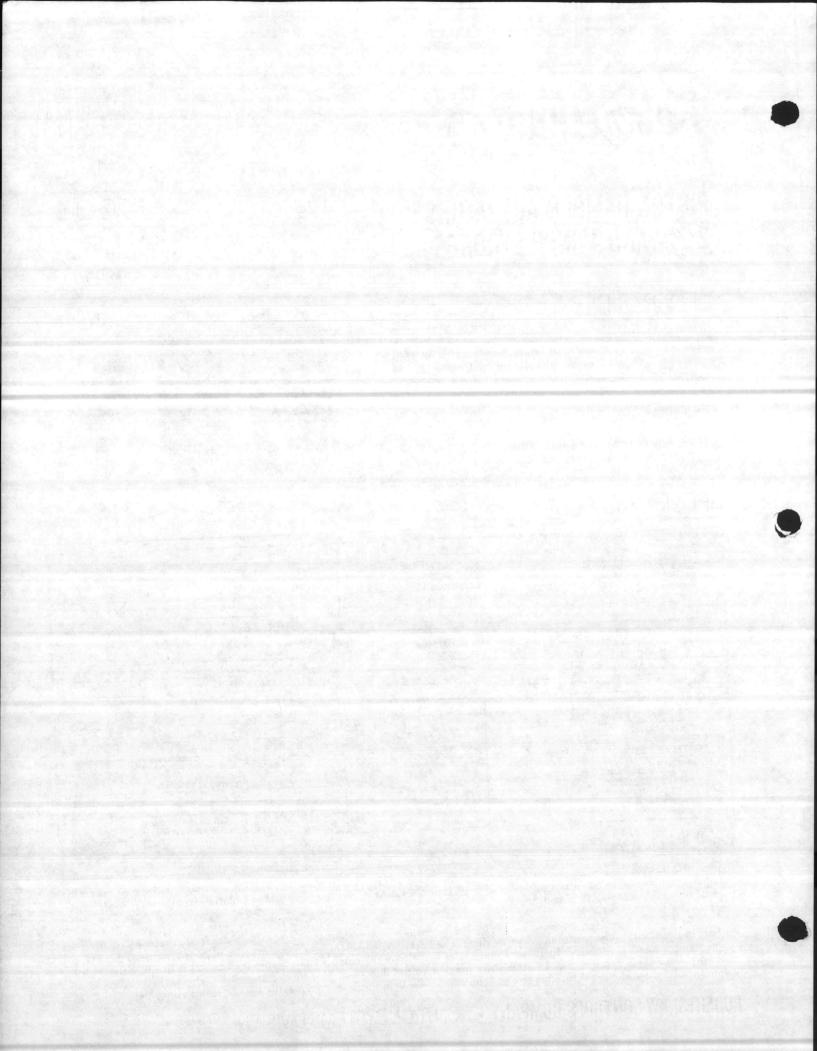
MODEL

M572

M573

M574

MUUNING


If possible, damper actuators should be mounted on the outside of a duct or air handling unit, as this type of mounting arrangement offers such advantages as ease of installation, ease of access for service, and isolation from internal duct condi-

The angle bracket actuator requires no additional mounting devices. Position the angle bracket so that one of the two cutouts in the front is adjacent to the damper shaft. The selection depends on whether clockwise or counter-clockwise rotation of the damper shaft is required. Install the crank arm loosely on the damper shaft before the bracket is firmly affixed to the ductwork. Use sheel metal screws to attach the bracket to the ductwork, line up the crank arm, check the position of the damper, and tighten the crank arm set screws. The actuator is then positioned to provide the 90° rotation normally required.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23251

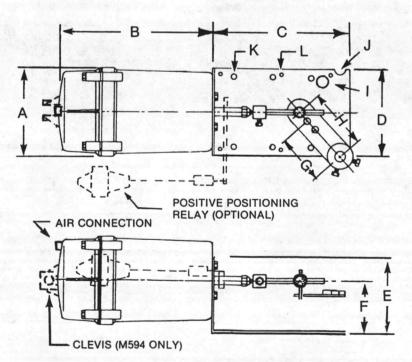
CDECIEICATIONIC

INSTALLATION INSTRUCTIONS

PISTON DAMPER ACTUATORS 3- AND 4-INCH STROKES

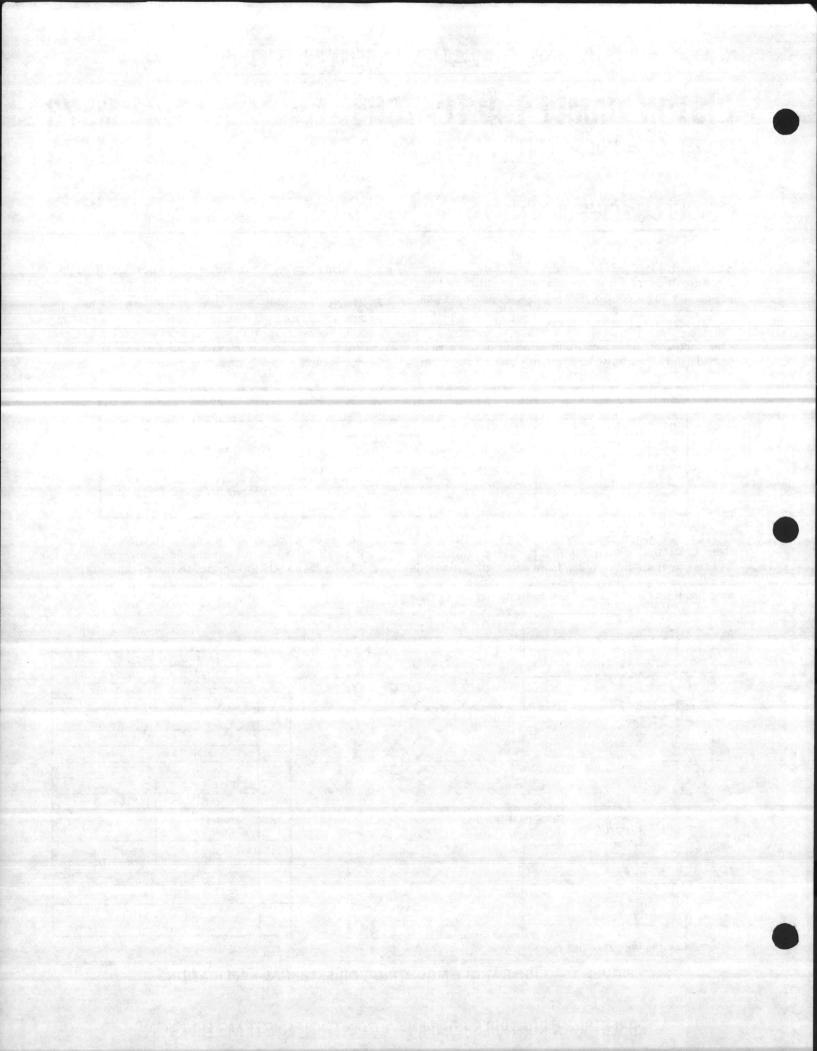
M573 M574 M594

GENERAL DESCRIPTION


The Models M573, M574 and M594 piston damper actuators are designed for use in pneumatic control systems to position an air control damper in response to a signal from a pneumatic controller. The M573 and M574 housings are glass filled Nylon; the M594 housing is cast zinc.

These actuators have a constant effective piston area to provide linear response to gradual signal changes, although they are also suitable for two-position operation.

All models are available with a right angle bracket for external mounting on a duct or with a post mounting bracket for internal mounting on a damper frame. They are also available with special hardware for OEM use. Positive positioning relays are optional on all models. See Figures 1 and 2 for actuator details.


MODEL	M573	M574 & M594	
PISTON AREA	7 sq. in. (45 cm²)	11 sq. in. (71 cm²)	
NOMINAL STROKE	3 in. (76mm)	4 in. (102mm)	
NOMINAL RATING (1000 FPM, 305 m/min)	Gradual: 12 sq. ft. (1.1 m ²) 2-Position: 15 sq. ft. (1.4 m ²)	Gradual: 25 sq. ft. (2.3 m²) 2-Position: 30 sq. ft. (2.8 m²)	
AIR CONNECTIONS (INCL. POSITIONER)	3/16" (4.8mm) nipple for 1/4" (6.4mm) O.D. tubing	M574: 3/16" (4.8mm) nipple for 1/4" (6.4mm) O.D. tubing M594: 1/8" FPT	

NOTE: When non-positioner actuators are "slaved" from a "master" actuator with a positioner, their control air signal should be taken from a toe fitting inserted into the factory connection between the "master" actuator positioner and the actuator housing (replacing the factory-installed in-line damping restrictor). In addition, all "slave" actuators should be ordered with 8 to 13 psig (55 to 90 kPa) springs to match those furnished with all positioner-model actuators.

	DIMENSIONS, INCHES (mm)			
	M573	M574 & M59		
Α	3-3/4 (95)	4-5/8 (117)		
В	6-3/4 (171)	7-7/8 (200)		
С	7-	1/4 (184)		
D	4.	1/2 (114)		
E	3	(76)		
F	2.	5/8 (67)		
G	2.12 (54)	NA		
н	NA	2.83 (72)		
1	2 Shaft Holes 9/16 (14) Dia.	NA		
J	NA	2 Shaft Notches 9/16 (14) Dia.		
к		nting Holes 2 (7) Dia.		
L	and the second	nting Holes 6 (5) Dia.		

FIGURE 1 — RIGHT ANGLE MOUNTING FOR EXTERNAL APPLICATIONS.

INSTALLATION INSTRUCTIONS [Continued]

AIR CONNECTION AIR CONNECTION CONNECTION POSITIVE POSITIONING RELAY (OPTIONAL)

	DIMENSIO	DIMENSIONS, INCHES (mm)				
	M573	M574 & M594				
A	3-3/4 (95)	4-5/8 (117)				
в	5-5/8 (143)	7-3/4 (197)				
С	9/16 (14)	9/16 (14)				
D	10-1/2 (267)	12-1/2 (318)				
E	3-1/4 to 4-1/8 (83 to 105)	3-3/8 to 4-1/8 (86 to 105)				
F	7/8 (22)					
G	11-5/8 (295)					
н	3 (76)					
1	2-1/2 (64)					
J	*, 8 Mounting Holes 9/32 (7) Dia.					
к	1 (25)					
L	Post Adjustment Slot 3-5/8 (92) Travel					

M573, M574 & M594

FIGURE 2 - POST MOUNTING FOR INTERNAL APPLICATIONS.

INSTALLATION

EXTERNAL MOUNTING: Whenever feasible, piston actuators operating air control dampers should be mounted on the external surface of ducts by means of right angle brackets (see Figure 3). By selection of the proper model number and suffix (see Model Number

Book), actuators of the proper size (effective area and stroke), spring range and positioner option can be obtained complete with the right angle bracket and the necessary linkage components for driving dampers with 1/2" (13mm) or 3/8" (10mm) shafts.

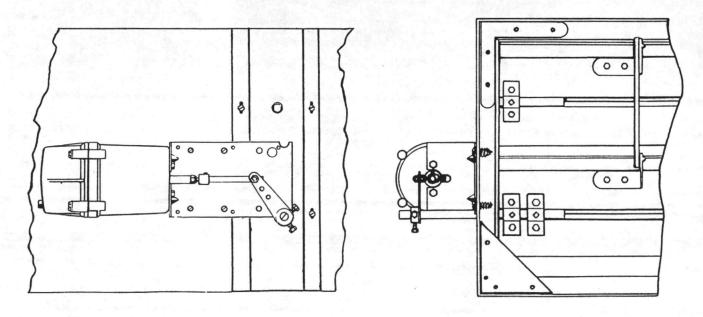
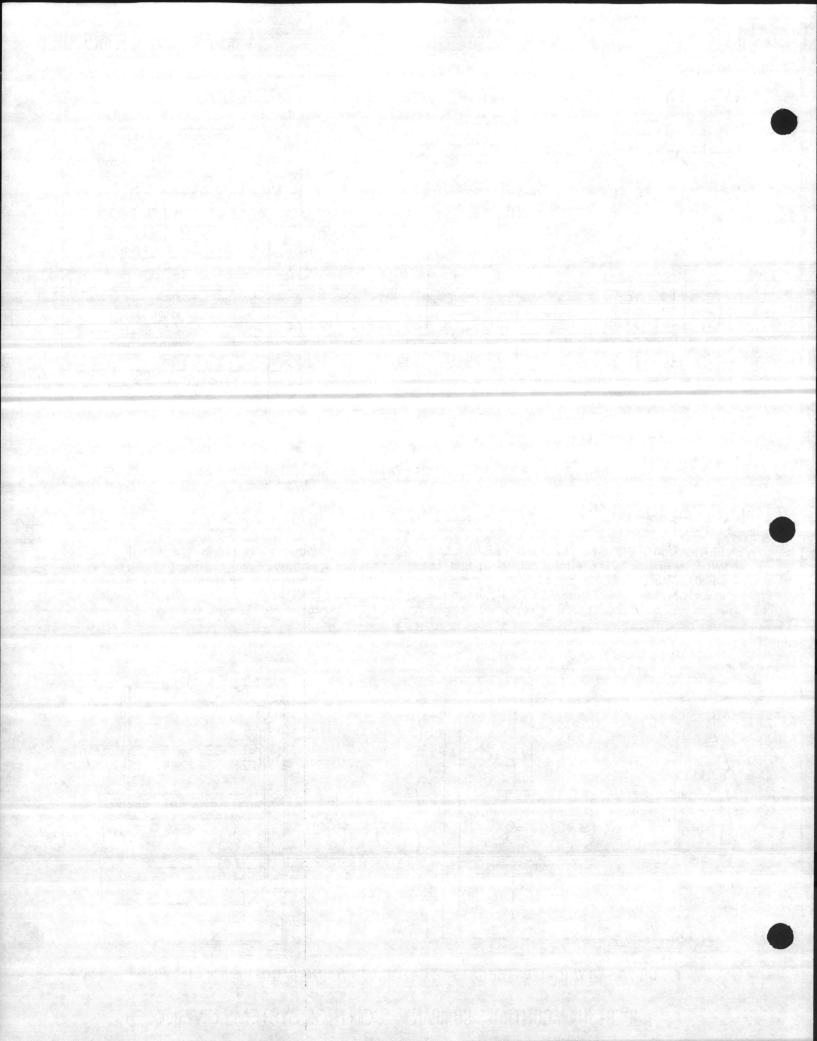



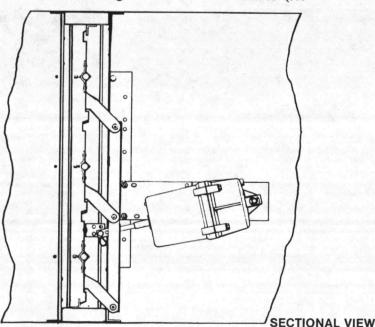
FIGURE 3 — TYPICAL EXTERNAL ACTUATOR MOUNTING (MODEL M574 SHOWN).

그는 그 사람들은 것이다. 한 것은 것은 것을 알려야 한 것을 것을 하는 것이다. 것은 것을 가지 않는 것을 수 있다. 이렇게 말 하는 것을 가지 않는 것을 수 있다. 이렇게 말 하는 것을 수 있는 것을 수 있는 것을 것을 수 있다. 이렇게 말 하는 것을 수 있는 것을 수 있다. 이렇게 말 하는 것을 수 있는 것을 수 있는 것을 수 있다. 이렇게 말 하는 것을 것을 수 있다. 이렇게 말 하는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 말 하는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 말 하는 것을 수 있다. 이렇게 말 하는 것을 수 있다. 이렇게 말 하는 것을 수 있다. 이렇게 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 하는 것을 수 있다. 이렇게 것을 수 있다. 이 같이 않는 것을 수 있다. 이 같이 않는 것을 수 있다. 이 같이 않는 것을 것을 수 있다. 이 같이 않는 것을 것 같이 않다. 이 같이 않는 것을 수 있다. 이 같이 같이 않는 것을 수 있다. 이 같이 않는 것을 수 있는 것을 수 있다. 이 같이 않는 것을 수 있다. 이 같이 않는 것을 수 있다. 이 같이 같이 않는 것을 수 있다. 이 같이 않는 것을 수 있다. 이 같이 않는 것을 수 있다. 이 같이 않는 것이 같이 않다. 것이 같이 않는 것이 않는 것이 않다. 이 같이 않는 것이 않는 것이 않는 것이 않다. 않는 것이 같이 않는 것이 않는 것이 않는 것이 않 것이 것 같이 않는 것이 같이 않는 것이 않이 않는 것이 않이 않이 않았다. 않는 것이 않는 것이 않는 것이 않이 않는 것이 않이 않는 것이 않이 않

When ordered properly, the control damper will have one or more shaft extensions for the required number of actuators. These extensions will be in their retracted or "stored" positions when shipped and must be extended and locked in position with their set screws or through bolts.

Next, the "normal" position of the damper blades (open or closed when signal air is removed and the actuator piston retracts) and direction of shaft rotation as the piston is extended must be determined to establish the mounting position of the actuator bracket. The standard right angle bracket has two locator holes ("dimension I" in Figure 1) for 3 inch (76mm) stroke actuators and two locator notches ("dimension J" in Figure 1) for 4 inch (102mm) stroke actuators; the choice of a locator being based on whether clockwise or counterclockwise rotation is required as the piston shaft is extended by increasing signal pressure.

The pre-assembled crank arm is then slipped over the damper shaft extension and, when properly positioned, the bracket is secured to the duct surface by driving sheet metal screws through its mounting holes, using care not to obstruct movement of the damper blades. If the duct is to be insulated, suitable standoff posts and bolts should be substituted for the sheet metal screws. (NOTE: 3 inch stroke actuators use the middle pivot hole of the crank arm; 4 inch stroke actuators use the outermost pivot hole.)


The final installation step of locking the crank arm to

INTERNAL MOUNTING: When necessary, piston actuators may be internally mounted on damper frames (see Figure 4). For these applications, the dampers must be fabricated with mounting brackets affixed to their frames and clevis lugs affixed to their blades (see the damper shaft extension should be done when control air is available or by means of a squeeze bulb:

- a. For a normally closed damper, apply air pressure to the actuator equal to the *low* end of its spring range, e.g.: 4 psig (28 kPa) for a 4 to 8 psig (28 to 55 kPa) spring, then close the damper blades against their stops; a slot in the end of the extension shaft indicates blade position. After assuring that it is parallel to the duct surface, secure the crank arm to the extension shaft by tightening the two hex head screws. When air pressure is removed from the actuator, its residual low end spring force will provide additional damper closeoff pressure.
- b. For a normally open damper, apply air pressure to the actuator equal to the *high* end of its spring range, e.g.: 8 psig (55 kPa) for a 4 to 8 psig (28 to 55 kPa) spring, then close the damper blades against their stops. Secure the crank arm to the drive shaft as described above. Signal pressure above the spring range will then provide additional closeoff force.

NOTE: The standard actuator hardware will rotate a damper 90° for full actuator stroke. If less rotation is desired (for either external *or* internal mounting applications), a stop collar (Model N800-1153) may be applied to the actuator shaft to limit its return stroke. Stroke stop screws (Model N800-188x series) are also available to limit actuator shaft extension.

Figures 5 and 6). The number and location of these items must be specified in advance to meet the actuator application requirements (size, quantity and normal damper position).

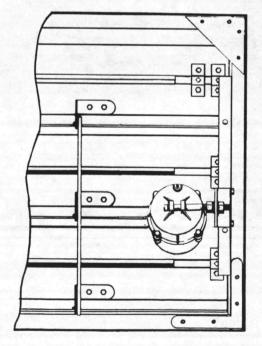
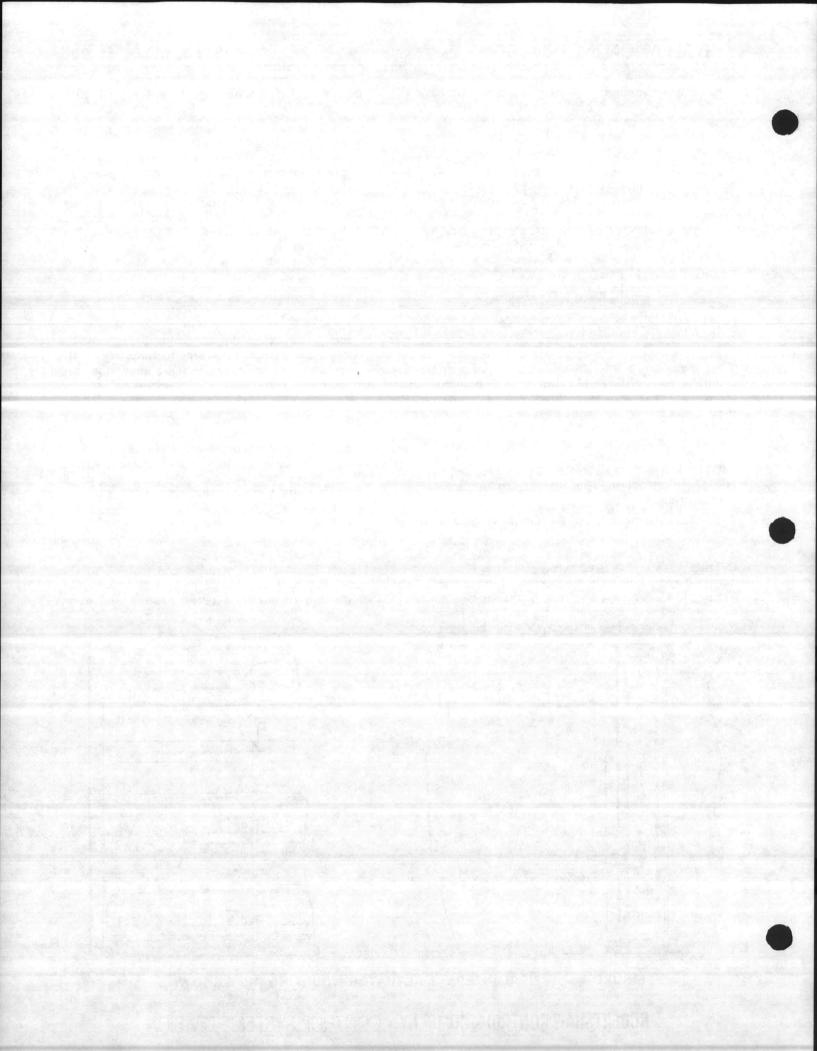



FIGURE 4 — TYPICAL INTERNAL ACTUATOR MOUNTING (M574 SHOWN).

INSTALLATION INSTRUCTIONS [Continued]

M573, M574 & M594

An actuator is field mounted by screwing its offset mounting plate to the proper holes in the mounting bracket and pinning its clevis to the clevis lug. The actuator post should be loosely connected through the adjustment slot in the mounting plate so that the actuator shaft is in line with the clevis lug.

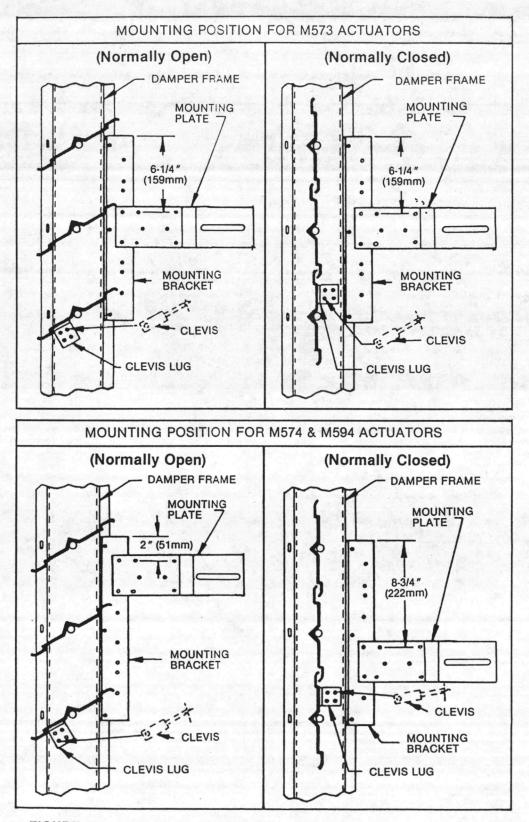
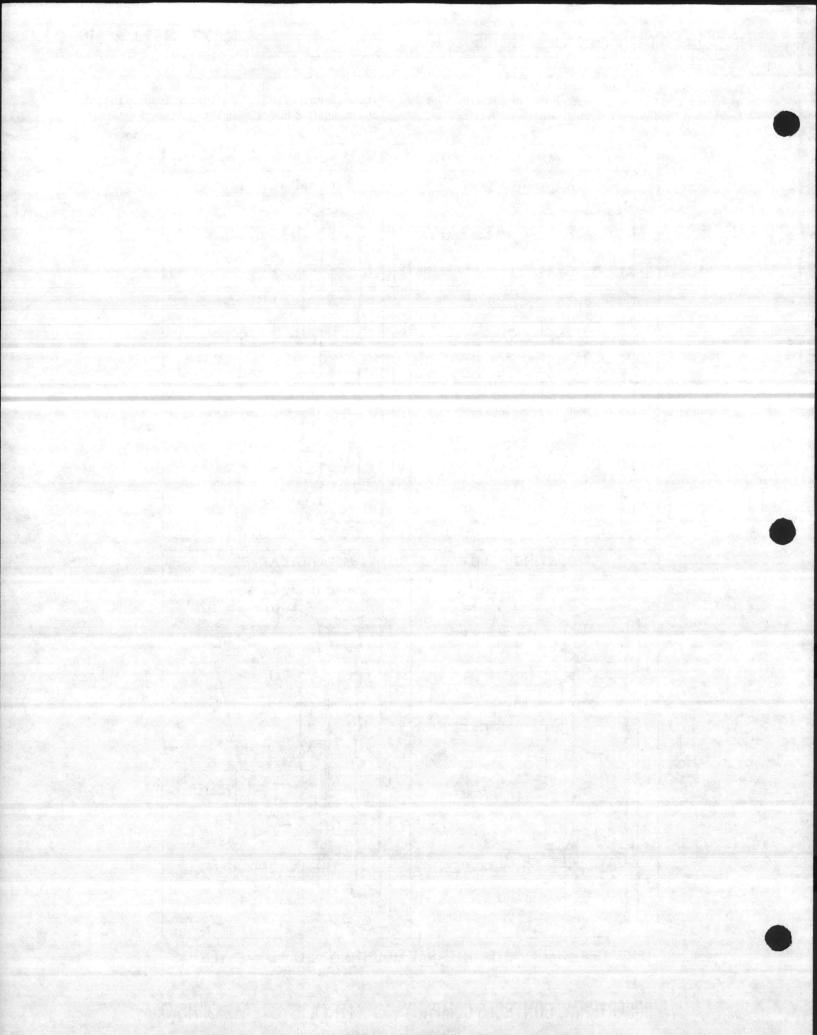



FIGURE 5 — ACTUATOR INTERNAL MOUNTING DETAILS — STYLE "A."

INSTALLATION INSTRUCTIONS [Continued]

M573, M574 & M594

Using control air or a squeeze bulb, complete the final installation step (similar to externally mounted actuators described above) as follows:

- a. For a normally closed damper, apply air pressure to the actuator equal to the *low* end of its spring range, close the damper blades against their stops and then tighten the post mounting nuts to lock the actuator to its mounting plate.
- b. For a normally open damper, apply air pressure to

the actuator equal to the *high* end of its spring range, close the damper blades against their stops and then tighten the post mounting nuts to lock the actuator to its mounting plate.

NOTE: If an actuator is furnished with a positive positioning relay, the final installation steps described above should be done with the positioner's output line disconnected and signal air applied directly to the actuator housing. (Positioner adjustment is described elsewhere.)

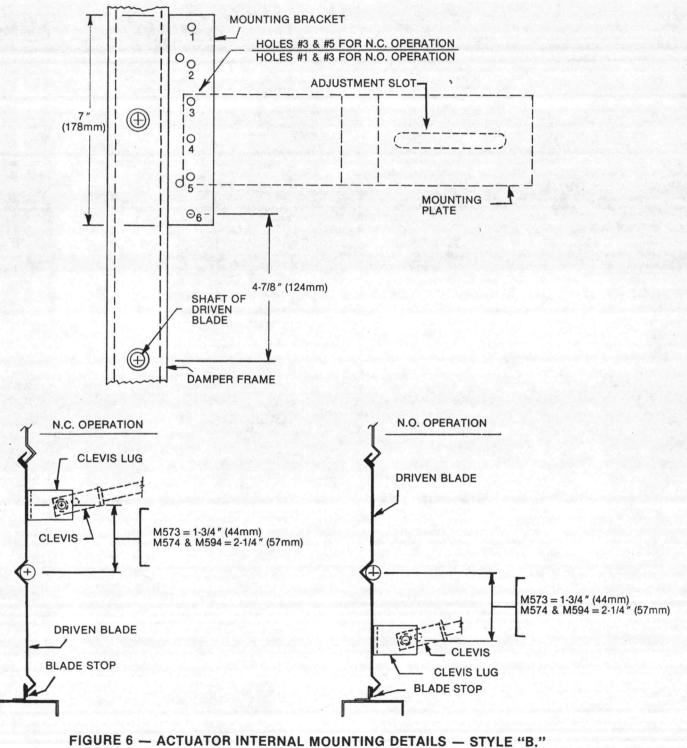
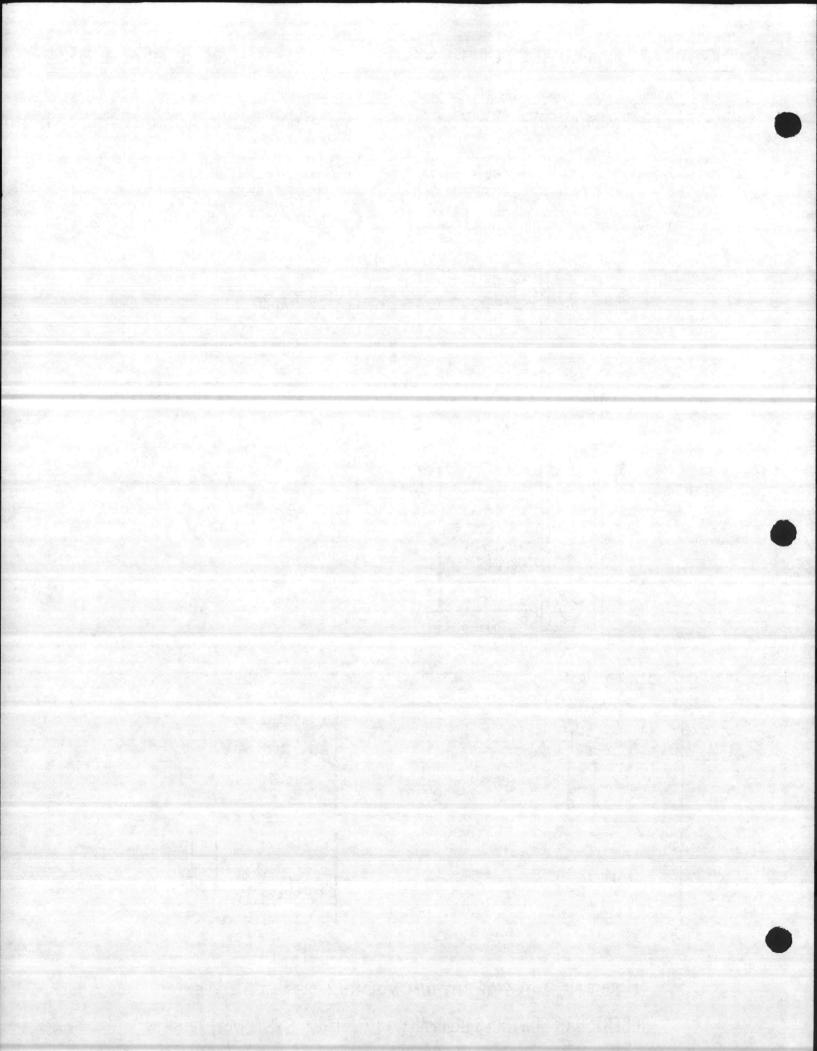



FIGURE 0 - ACTUATOR INTERNAL MOUNTING DETAILS - STILE "B."

CALIBRATION & ADJUSTMENT INSTRUCTIONS

PISTON DAMPER ACTUATORS 3-, 4- AND 6-INCH STROKES

CALIBRATION

These piston damper actuator models are available in a variety of sizes (strokes and effective areas), mounting hardware and spring ranges. All models (see Table I) are available with optional positive positioning relays fabricated of ABS plastic or cast zinc. Preferably, positioners should be ordered as factory installed by select-

ing the proper model number, but they may be field installed by separately ordering the desired positioner model, feedback arm and feedback spring. Positioners on actuators are furnished with 5 psi (34 kPa) span feedback springs installed and are calibrated for 8 to 13 psig (55 to 90 kPa) operation.

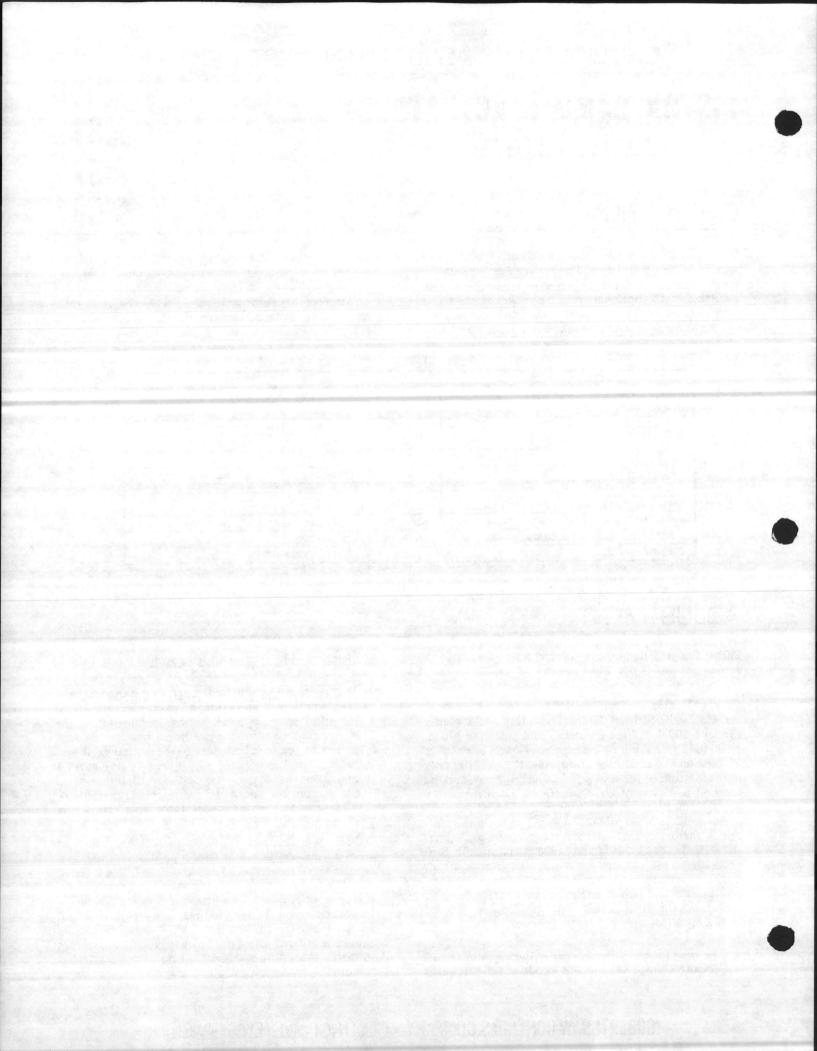
ACTUATOR MODEL		M556	M573	M574	M594
ACTUATOR MATERIAL		Contraction and Contraction	Glass Filled Nylon	and when the state	Cast Zinc
STROKE, INCHES (mm)		6 (152)	3 (76)	4 (1	02)
EFFECTIVE AREA	, SQ. IN. (cm²)	24.8 (160)	7 (45)	11 (71)	
N800-0551 POSITIONER, ABS PLASTIC	ACTUATOR MODEL SUFFIX	-1x	-1xxx	-1xxx	NA
	3 PSI (21 kPa) SPRING	N800-2272	N800-2270	N800-2271	
	5 PSI (34 kPa) SPRING	N800-2252*	N800-2250*	N800-2251*	
	10 PSI (69 kPa) SPRING	N800-2262*	N800-2260	N800-2261	
N800-0552 POSITIONER, CAST ZINC	ACTUATOR MODEL SUFFIX	-9x	-9xxx	-9xxx	-1xxx
	5 PSI (34 kPa) SPRING	N800-2256*	N800-2254*	N800-2253*	
	10 PSI (69 kPa) SPRING	N80-2266	N800-2264	N800-2263	
FEEDBACK ARM			N800-15	500*	

TABLE I

* Furnished with positioner-model actuator; other springs must be ordered separately.

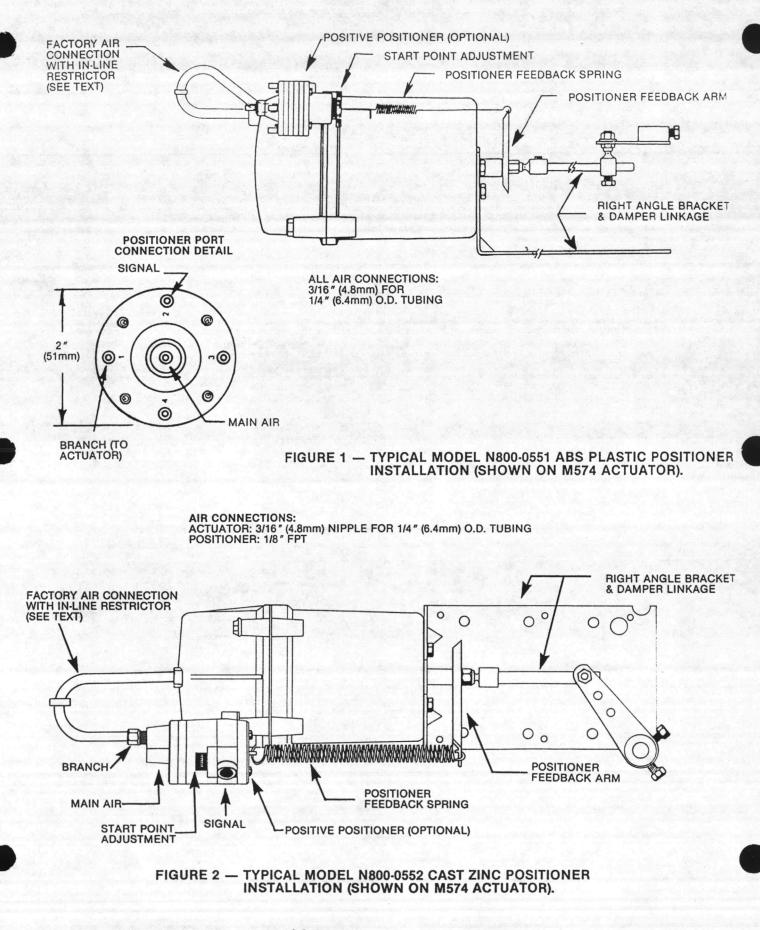
ADJUSTMENT

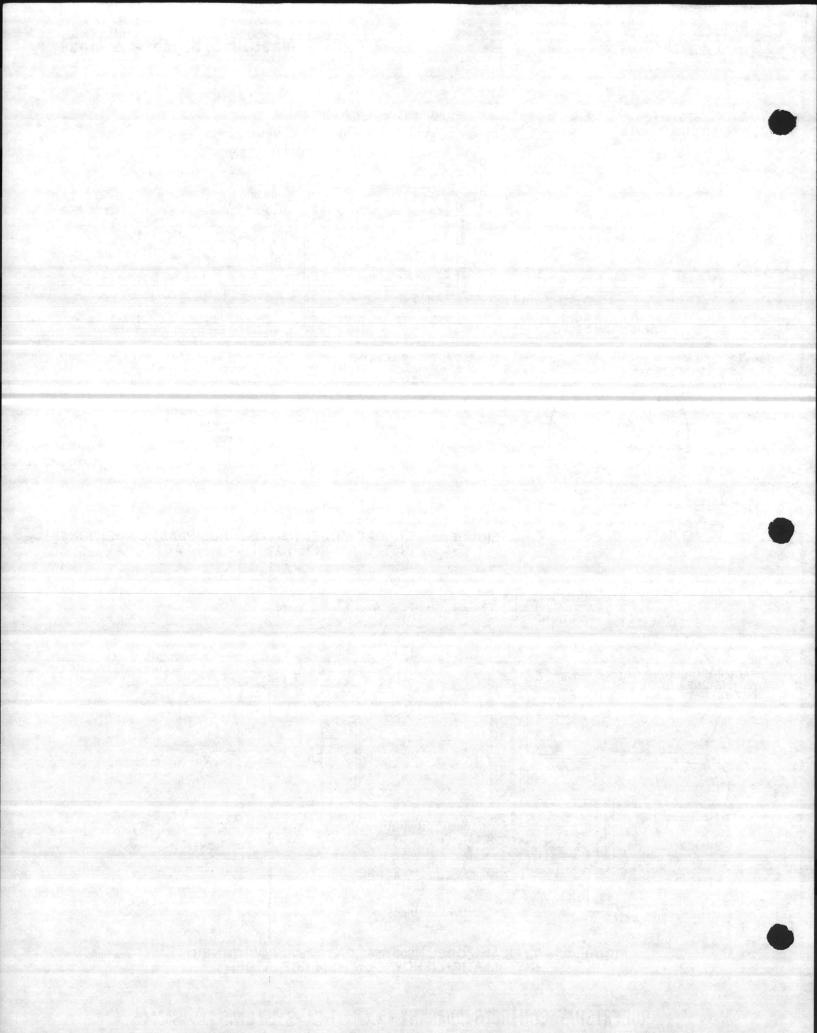
Spring Range: The range of the factory installed piston actuator spring is not adjustable.


Positive Positioner (Optional): Two models of positioners are used on these damper actuators, ABS plastic Model N800-0551 (see Figure 1) and cast zinc Model N800-0552 (see Figure 2). These positioners are similar in function and mounting arrangement; they differ only in the location of the start point adjusting screw and the location and type of air connections. Each requires a signal connection and a main air connection with a maximum pressure of 30 psig (207 kPa). The positioner output is factory-connected to the actuator signal port. (NOTE: On M573, M574 and M594 actuators, this connection is made through an in-line restrictor to damp possible oscillations due to the large air capacity of the positioner relay. It is not required on M556 actuators. The restrictor is included with positioners ordered separately.) Adjustments are as follows:

a. The span (or throttling range) of the actuator (signal pressure change required to produce full stroke) is

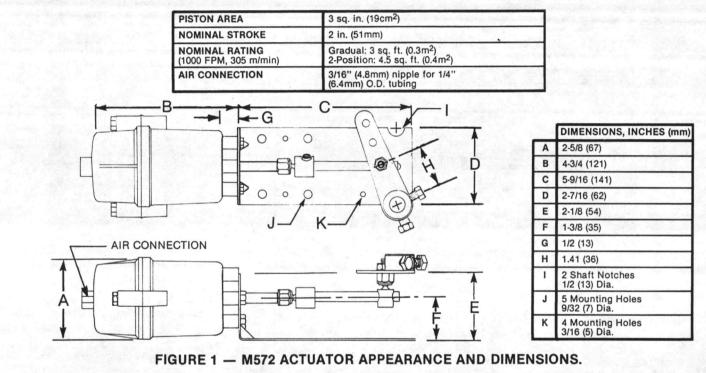
determined by feedback spring selection (see Table I) and is not further adjustable.


b. If the factory-calibrated operating range is not satisfactory or if an optional 3 psi (21 kPa) or 10 psi (69 kPa) span feedback spring is substituted, the stroke *start point* of the positioner may be adjusted by setting the signal pressure to the desired value and turning the "start point adjustment" (see Figures 1 and 2) by hand until the actuator shaft begins to move from its "normal" (zero pressure) position. The start point setting is adjustable from 3 to 12 psig (21 to 83 kPa).


NOTE: When non-positioner actuators are "slaved" from a "master" actuator with a positioner, their control air signal should be taken from a tee fitting inserted into the factory connection between the "master" actuator positioner and the actuator housing (replacing the restrictor on 3 inch (76mm) and 4 inch (102mm) stroke models). In addition, all "slave" actuators should be ordered with 8 to 13 psig (55 to 90 kPa) springs to match those furnished with all positioner-model actuators.

ADJUSTMENT (Continued)

M556, M573, M574 & M594

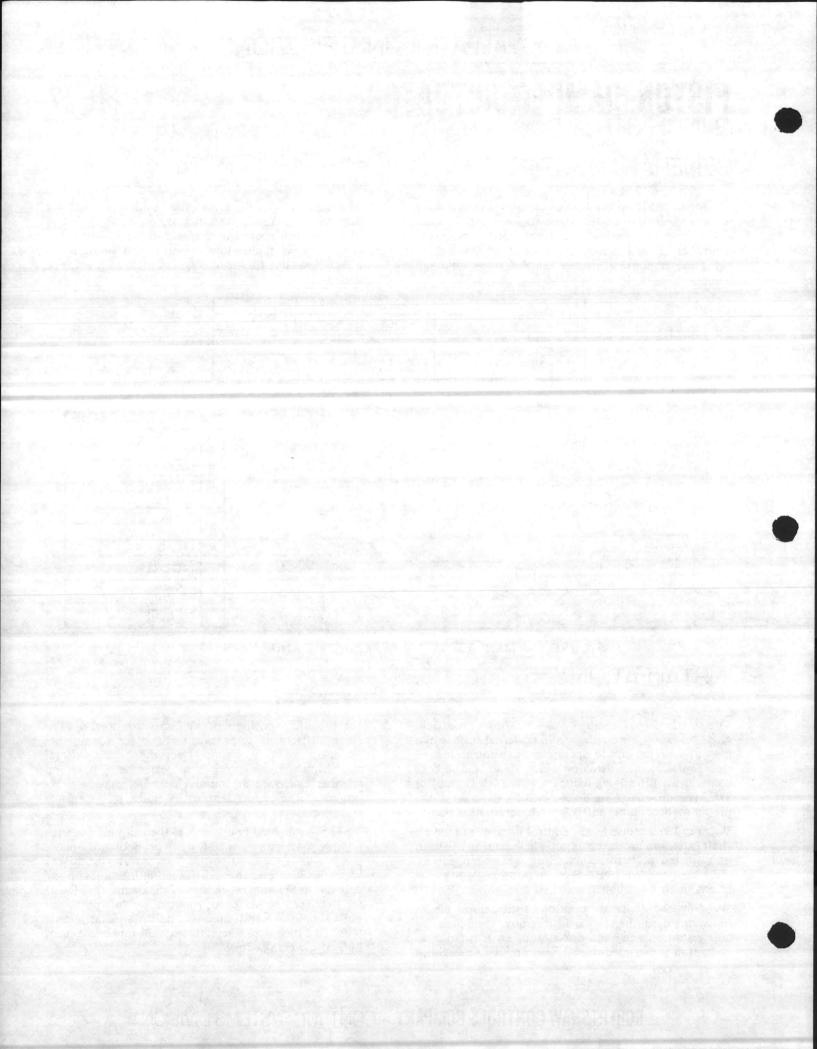

INSTALLATION INSTRUCTIONS

2 INCH STROKE

M572

GENERAL DESCRIPTION

The Model M572 piston damper actuator is designed for use in a pneumatic control system to position an air control damper in response to a signal from a pneumatic controller. It has a constant effective piston area to provide linear response to gradual signal changes, although it is also suitable for two-position operation. The standard M572 is furnished with a right angle mounting bracket for external use on ducts. It is also available with special hardware and a clevis-type end cap for OEM applications. Positive positioning relays are not available for the M572. See Figure 1 for actuator details.


INSTALLATION

The standard M572 actuator is furnished with a right angle bracket for mounting on the external surface of a duct or terminal box to operate an air control damper (see Figure 2). The actuator spring range and linkage components for driving dampers with 1/2" (13mm) or 3/8" (10mm) shafts are determined by selection of the proper model number suffix (see Model Number Book).

When ordered properly, the control damper will have a shaft extension for the actuator. The extension will be in its retracted or "stored" position when shipped and must be extended and locked in position with its set screws or through bolts.

Secondly, the "normal" position of the damper blades (open or closed when signal air is removed and the actuator piston retracts) and direction of shaft rotation as the piston is extended must be determined to establish the mounting position of the actuator bracket. The standard right angle bracket has two locator notches ("dimension I" in Figure 1) for the 2 inch (51mm) stroke linkage, the choice of a locator being based on whether clockwise or counterclockwise rotation is required as the piston shaft is extended by increasing signal pressure.

The pre-assembled crank arm is then slipped over the damper shaft extension and, when properly positioned, the bracket is secured to the duct surface by driving sheet metal screws through its mounting holes, using care not to obstruct movement of the damper blades. If the duct is to be insulated, suitable standoff posts and bolts should be substituted for the sheet metal screws. (NOTE: 2 inch stroke actuators use the innermost pivot hole of the crank arm.)

The final installation step of locking the crank arm to the damper shaft extension should be done when control air is available or by means of a squeeze bulb:

- a. For a normally closed damper, apply air pressure to the actuator equal to the low end of its spring range, e.g.: 4 psig (28 kPa) for a 4 to 8 psig (28 to 55 kPa) spring, then close the damper blades against their stops; a slot in the end of the extension shaft indicates blade position. After assuring that it is parallel to the duct surface, secure the crank arm to the extension shaft by tightening the two box head screws. When air pressure is removed from the actuator, its residual low end spring force will provide additional damper closeoff pressure.
- b. For a normally open damper, apply air pressure to the actuator equal to the high end of its spring range, e.g.: 8 psig (55 kPa) for a 4 to 8 psig (28 to 55 kPa) spring, then close the damper blades against their stops. Secure the crank arm to the drive shaft as described above. Signal pressure above the spring range will then provide additional closeoff force.

NOTE: The standard actuator hardware will rotate a damper 90° for the full actuator stroke. If less rotation is desired, a stop collar (Model N800-1151) may be applied to the actuator shaft to limit its return stroke.

* *

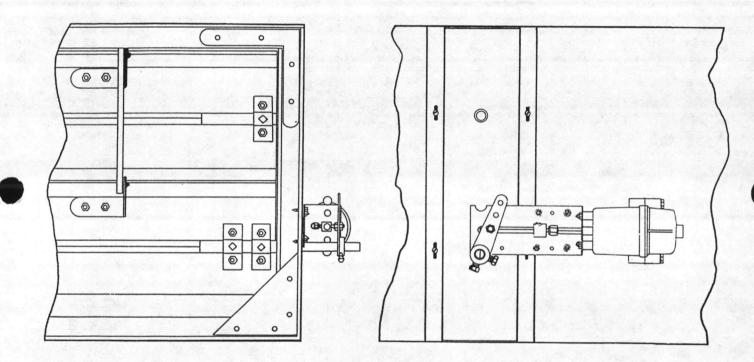
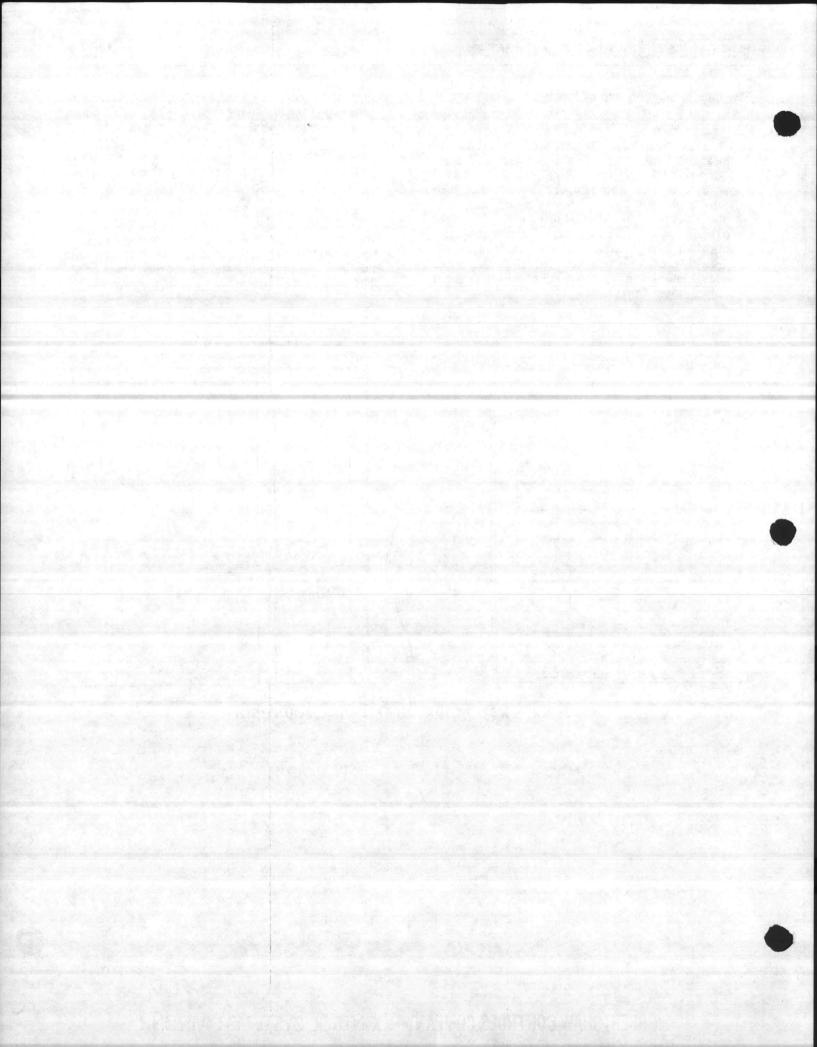



FIGURE 2 — M572 ACTUATOR EXTERNAL MOUNTING.

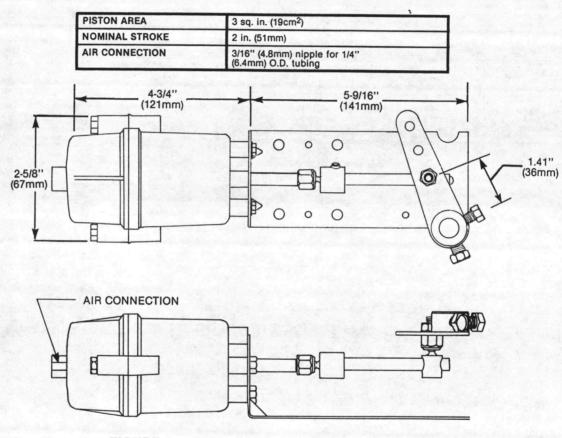
CALIBRATION & ADJUSTMENT INSTRUCTIONS

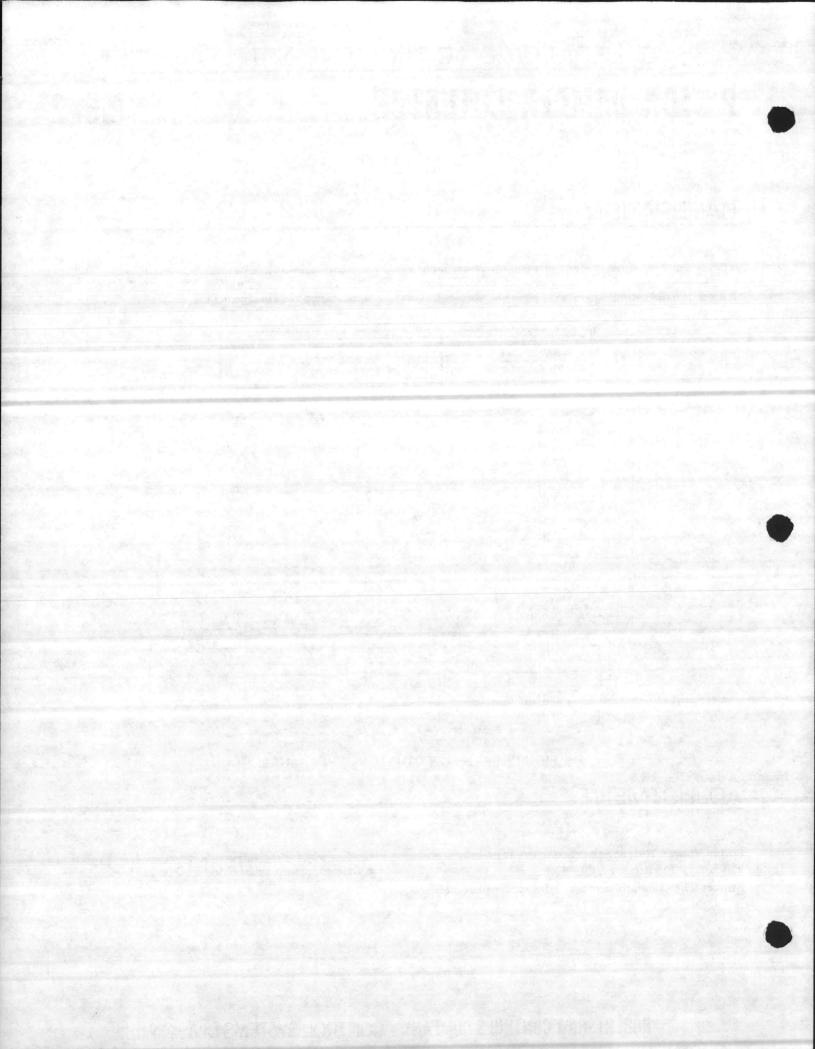
PISTON DAMPER ACTUATOR 2 INCH STROKE

M572

CALIBRATION

The Model M572 piston damper actuator is available only with a right angle mounting bracket, but with a selection of fixed spring ranges and linkage hardware. It is not available with a positive positioning relay and requires no factory calibration. See Figure 1 for actuator appearance and linkage details.




FIGURE 1 — M572 ACTUATOR APPEARANCE.

ADJUSTMENT

Spring Range: The range of the factory installed piston actuator spring is not adjustable.

Stroke: The standard actuator hardware will rotate a

damper 90° for the full actuator stroke. If less rotation is desired, a stop collar (Model N800-1151) may be applied to the actuator shaft to limit its return stroke.

PNEUMATIC TEMPERATURE TRANSMITTERS

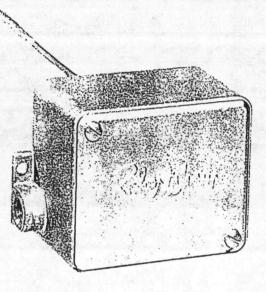
SAT+OAT

2.1.5

GENERAL DESCRIPTION

T150 pneumatic temperature transmitters are designed to measure air or fluid temperatures in pneumatic control systems and transmit a fixed-span, 3 to 15 psig signal to controlling and indicating devices, such as receiver controllers, receiver gauges and sensitive pressure switches. These transmitters are available with several types of sensing elements (rigid stem, averaging, remote bulb or a rigid coil for fast response) and various temperature ranges to meet most control system application requirements.

T150 transmitters are "one-pipe" devices requiring an externally restricted source of constant pressure control air. Their design features pneumatic feedback to assure accuracy and stability over a wide temperature span.


External mounting ears are provided for strain-free mounting on ducts or other flat surfaces. Separable wells are available for rigid stem elements for immersion sensing in fluid systems.

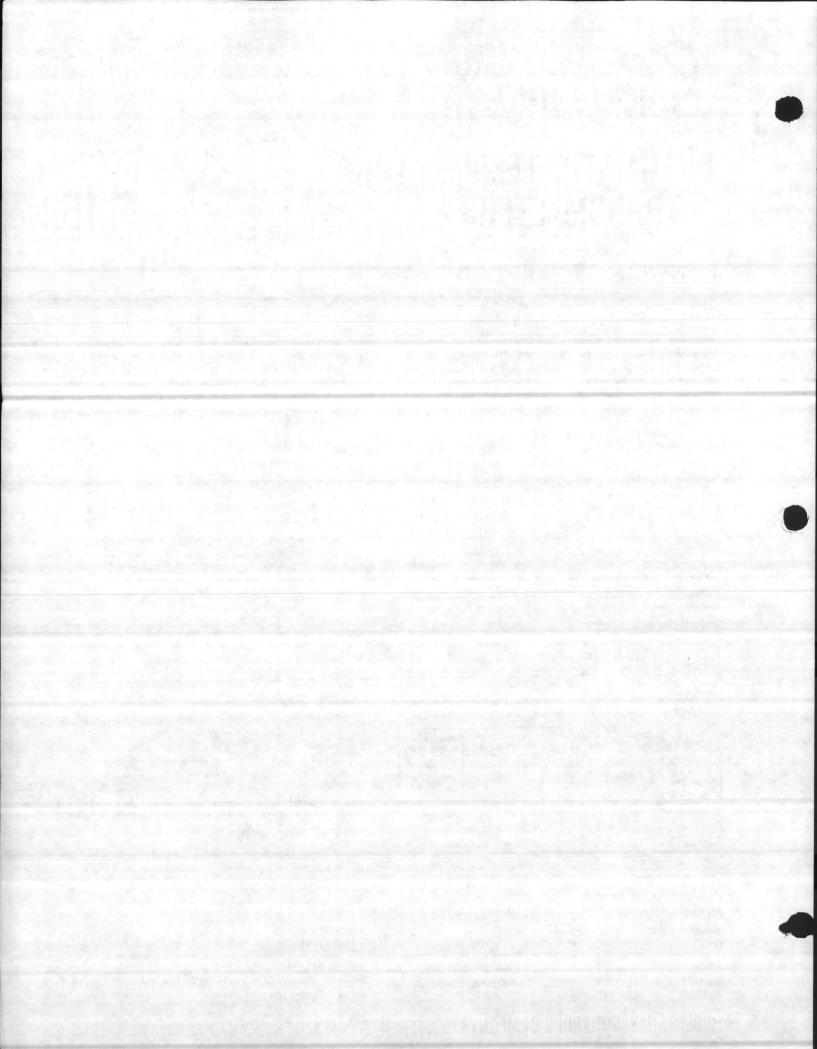
SPECIFICATION

Model Number: T150 Temperature Ranges, ^oF:

Rigid	Rigid	20-Foot	Remote-Bulb	Remote-Bulb
Stem	Coiled	Averaging	3' Capillary	9' Capillary
0 to 100 40 to 140 40 to 240 40 to 160	191	0 to 100 ⁻ 30 to 80 40 to 140	-25 to 125	-25 to 125 40 to 240

Action:	Direct acting, proportional
Adjustments:	None. Factory calibrated.
Supply Pressure:	20 psig ±0.5 psi.
Output Pressure:	3 to 15 psig
Maximum Air Pressure:	30 psig
Air Connection:	1/8"-27 female NPT
Maximum Ambient Temperature:	140 ⁰ F
Dimensions:	See Figure 1.
Weight:	15 oz. nominal
Construction: Copper element, ca plated steel cover.	st aluminum base, cadmium

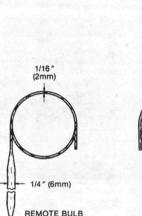
150


ACCESSORIES:

- 1. 100-17 copper well for 9' capillary remote bulb model.
- 2. 100-18 stainless steel well for 9' capillary remote bulb model.
 2. 100-25 capillary remote bulb
- 3. 100-25 copper well for rigid stem models
- 4. 100-49 stainless steel well for rigid stem models
- 5. 100-47 well adapter (Figure 3)
- N100-0010 (Red) restrictor tee (polyethylene tubing)
 N4-32 restrictor tee (copper or polyethylene tubing)
- SPECIFY WHEN ORDERING:
- 1. Model Number.
- 2. Sensing element type.
- 3. Temperature range.
- 4. Accessories.

ORDER FROM:

Local office of: CONTROL SYSTEMS DIVISION RQBERTSHAW CONTROLS COMPANY or office noted below.

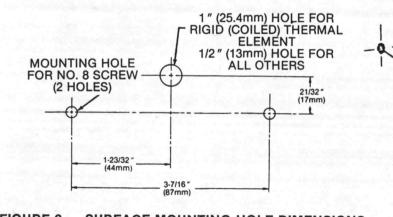

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23251

INSTALLATION INSTRUCTIONS PNEUMATIC TEMPERATURE TRANSMITTER GENERAL DESCRIPTION & DIMENSIONS

T150

T150 transmitters are "one-pipe" devices requiring an externally restricted source of constant pressure control air. These transmitters are available with several types of sensing elements (rigid stem, averaging, remote bulb or a rigid coil for fast response).

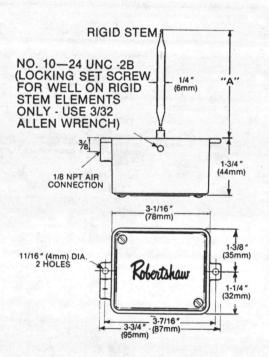
REMOTE BULB ELEMENT*

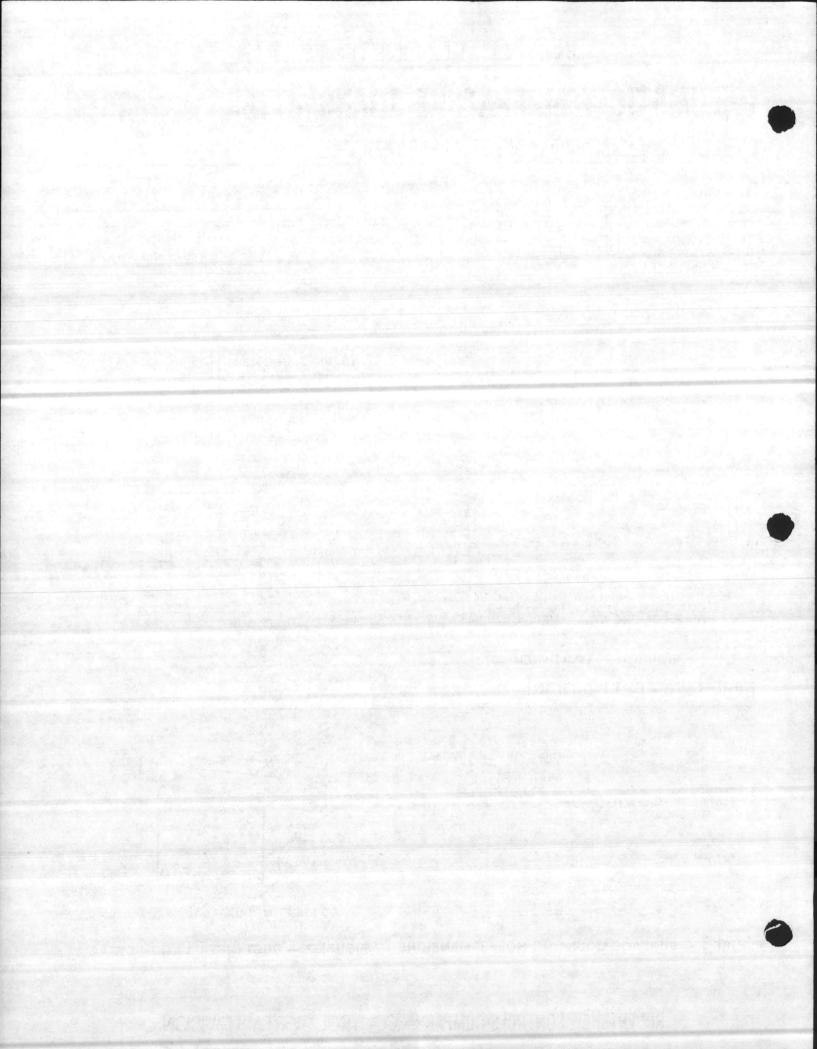

AVERAGING ELEMENT 20' LONG (7.3m) 3/4 " (19mm) RIGID (COILED) ELEMENT 9-13/16 " LONG (249mm)

IRIA

* NOTE: 9' CAPILLARY MODEL HAS 1/4" OD COPPER SLEEVE SILVER-SOLDERED TO BULB FOR USE WITH IMMERSION WELLS.

FIGURE 1 - T150 DIMENSIONS


DUCT INSTALLATION


GURE 2 - SURFACE MOUNTING HOLE DIMENSIONS FIGU

TEMPERATURE RANGE	DIM. "A"	
0 to 100 (-18° to 38°C), 40 to 140°F (4° to 60°C)	9-3/8" (238mm)	
-40 to 160 (-40° to 71°C), 40 to 240°F (4° to 116°C)		

No. 8 SHEET METAL SCREW (TYPICAL) FIGURE 3 – DUCT INSTALLATION DETAIL

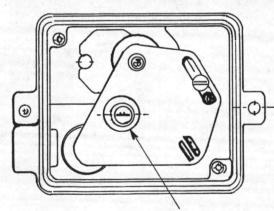
CALIBRATION & ADJUSTMENT INSTRUCTIONS

PNEUMATIC TEMPERATURE TRANSMITTER

T150

CALIBRATION

The Model T150 Temperature Transmitter measures a system temperature and transmits a proportional pneumatic signal to a calibrated receiver gauge and/or receiver controller. (See table I for complete model number descriptions.) It is a "one-pipe," force-balance transmitter which utilizes an external restrictor in its supply line. It is not intended to be field calibrated. If the output pressure does not correspond to Table II, check the following:

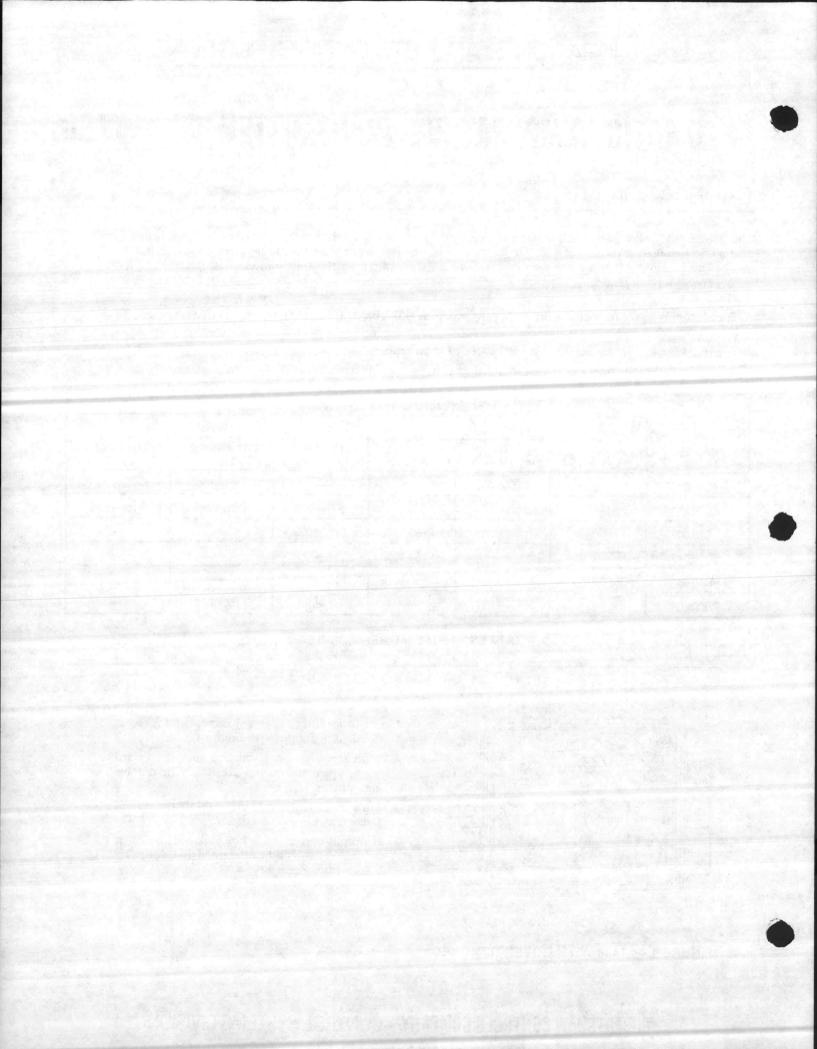

- 1. The air supply to the restrictor must be 20 psig ± 0.5 psi (138 kPa ± 3.4 kPa) and must be clean, dry and oilfree.
- 2. The restrictor and the device filter must be free of obstructions.

If, after completing the above checks, the transmitter output varies from Table II, see "Adjustments."

T150 MODEL NUMBERS								
TEMPERATURE	ELEMENT							
RANGE	RIGID 1/4 " x 9-3/8 "	RIGID 1/4″ x 7-1/16″	AVERAGING 20 FT.	COILED 10"	1/4" x 10-1/2" 9 FT. CAPILLARY	1/4" x 4" 3 FT. CAPILLARY		
-40°/160°	-	T150-1041	- 4		—	1		
-25°/125°			10 L 10		T150-1055	T150-1054		
0°/100°	T150-1021	-	T150-1022	T150-1023	-	_		
30°/80°		-	T150-1062	Karig <u>in</u> ang i	—	—		
40°/140°	T150-1011		T150-1012	T150-1013		—		
40°/240°		T150-1031	and the second	<u> </u>	T150-1035	_		

ADJUSTMENT

TABLE I - T150 MODEL NUMBERS



ADJUSTING SCREW "A"

FIGURE 1 — T150 WITH COVER REMOVED

Minor transmitter range adjustments may be accomplished as follows (see Figure 1):

- 1. With the cover removed, measure the sensed temperature and output pressure with suitable instruments.
- 2. Turn adjusting screw "A" to shift the output range (clockwise to increase).
- If output correction is not obtained, no other adjustment should be attempted and device replacement is necessary.

LOW LIMIT CONTROL **ELECTRIC**

GENERAL DESCRIPTION

The Model T312 Low Limit Controller is a twowire, line-voltage control used for low-temperaturelimit applications on heating coils, cooling coils, etc.

The control is responsive only to the lowest temperature along the 20-foot sensing element. The single-pole, single-throw contact block is used to open the circuit on a temperature drop. Controls are supplied with manual reset; however, automatic recycling can be provided if so specified.

A single scale on the side of the unit shows the "cut-off" setting. Adjustments can be made from the bottom of the case without removal of the cover, or from the top when the cover is removed.

After opening when the temperature drops to the low limit set point, the T312-1 will automatically re-close upon a subsequent temperature rise of 12°F. The T312-2 locks out upon opening at the set point and requires a subsequent temperature rise of at least 12°F before it can be manually reset.

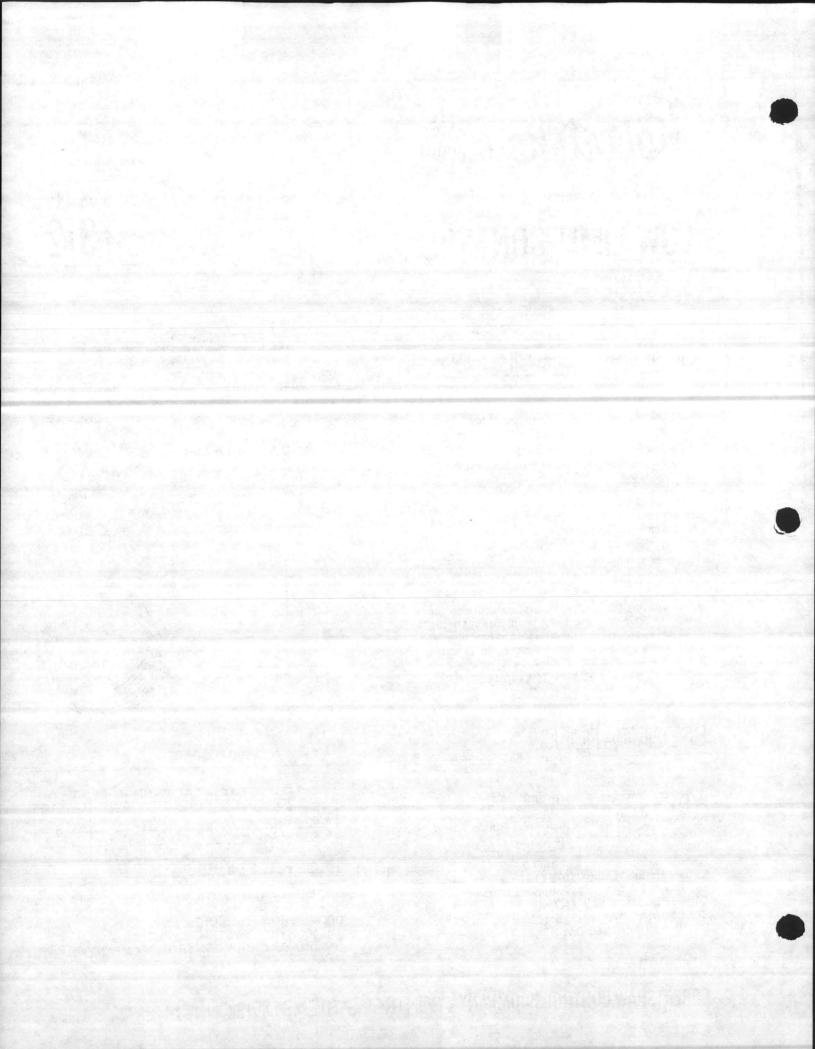
SPECIFICATIONS

MODEL NUMBER: T312-1 (less manual reset-opens low) T312-2 (with manual reset-opens low) CONTROL ACTION: Single-pole, single throw; circuit opens on temperature drop. ELEMENT: 1/8" x 20' (3.2 mm x 6.1 m) RANGE: 35 to 45°F (1.67 to 7.22°C) (cutout). Maximum temperature at bulb 250°F (121°C). MOUNTING BRACKETS: Supplied as standard. DIFFERENTIAL: 12°F (6.7°C). ELECTRICAL RATINGS: See Table 1. CONDUIT OPENING: One 1/2" (12.7 mm) conduit opening.

TABLE I ELECTRICAL RATINGS, S.P.S.T.

Motor Ratings	120 - Volts	208 - Volts	240 - Volts
A. C. Full-Load Amps	16	9.2	8
A. C. Locked Rotor Amps	96	55.2	48
Non-inductive Amps	16	9.2	8

ORDERING INFORMATION: SPECIFY: Model Number.


ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION P. O. BOX 27605 - RICHMOND, VIRGINIA 23261

2,1.8,7

INSTALLATION INSTRUCTIONS

LOW TEMPERATURE LIMIT CONTROLLER ELECTRIC

GENERAL DESCRIPTION

The model T312 electric low temperature limit controller is a line voltage device for limit applications on heating and cooling coils. It is responsive only to the lowest temperature along the 20-foot (6.1 meter) sensing element. The single-pole, single-throw contact is used to open an electrical circuit on a temperature drop. Two versions of this controller are available:

- T312-1: Contact opens if the sensed temperature drops to the setpoint. Contact recloses on a subsequent temperature rise to 12°F above the setpoint ("automatic reset").
- T312-2: Contact opens and locks out if the sensed temperature drops to the setpoint. Contact can be reclosed manually ("manual reset") only after a subsequent temperature rise of 12°F above setpoint.

See Table I for electrical ratings.

INSTALLATION

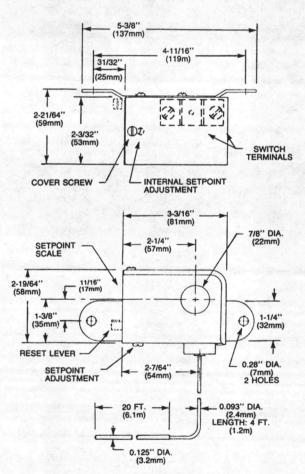


FIGURE 1 - MODEL T312 DETAILS.

TABLE 1 - ELECTRICAL RATINGS

Motor Ratings	120 - Volts	208 - Volts	240 - Volts
A. C. Full-Load Amps	16	9.2	8
A. C. Locked Rotor Amps	96	55.2	48
Non-inductive Amps	16	9.2	8

See Figure 1 for device details.

Sensing Element: The sensing element of a T312 low limit usually is horizontally serpentined across a duct on the downstream side of a coil (see Figure 2) so that it is exposed to all areas where low temperatures are likely to be encountered; it should be fastened at sufficient points to prevent element damage due to air movement or mechanical vibration. (Note that the 4-foot [1.2 meter] capillary extension is not significantly affected by ambient temperatures and should **not** be relied upon for low limit action.) It is recommended that extended vertical routing of the sensing element be avoided to prevent revaporization of the element "fill" under certain conditions. dutons.

Case: The T312 may be secured to a duct or other surface by means of two mounting holes in its integral bracket. The location of a "manual reset" device should permit convenient access to its reset lever.

Electrical: The electrical compartment is accessed by loosening a slotted, captive cover screw and swinging the cover from the case. Screw terminals with cup washers are provided for wire connections and a hole is provided in the front of the case for a conduit connection.

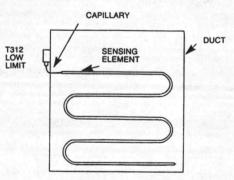
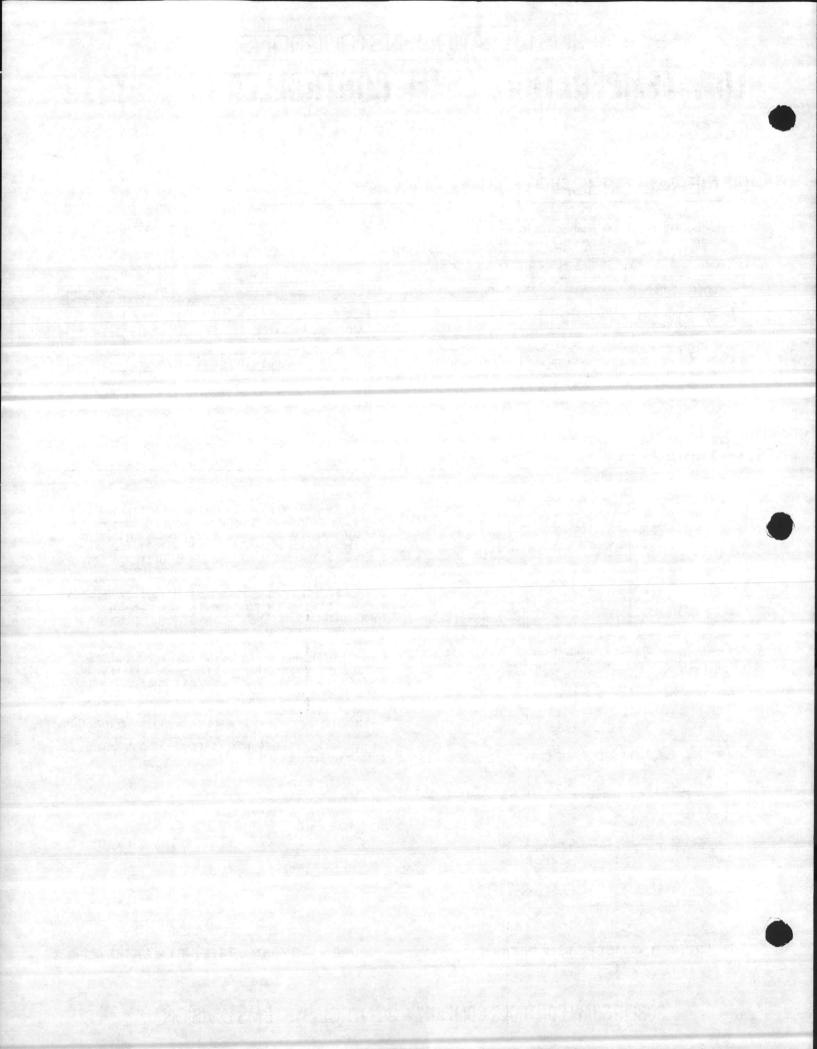



FIGURE 2 - TYPICAL T312 INSTALLATION.

T312

CALIBRATION & ADJUSTMENT INSTRUCTION LOW TEMPERATURE LIMIT CONTROLLER T312 ELECTRIC

CALIBRATION

The model T312 electric low temperature limit controller is a line voltage device for limit applications on heating and cooling coils. It is responsive only to the lowest temperature along the 20-foot (6.1 meter) sensing element. The single-pole, single-throw contact is used to open an electrical circuit on a temperature drop. Two versions of this controller are available:

- T312-1: Contact opens if the sensed temperature drops to the setpoint. Contact recloses on a subsequent temperature rise to 12 °F above the setpoint ("automatic reset").
- T312-2: Contact opens and locks out if the sensed temperature drops to the setpoint. Contact can be reclosed manually ("manual reset")

ADJUSTMENT

See Figure 1 for device appearance.

The switching **differential** of the T312 is fixed at 12°F above the setpoint (not field adjustable).

If the factory calibration is not suitable, the **setpoint** of the T312 may be field adjusted from 35 to 45 °F by turn-

only after a subsequent temperature rise of 12°F above setpoint. See Table 1 for electrical ratings.

The T312 setpoint is factory calibrated at 35 °F.

TABLE 1 - ELECTRICAL RATINGS

Motor Ratings	120 - Volts	208 - Volts	240 - Volts
A. C. Full-Load Amps	16	9.2	8
A. C. Locked Rotor Amps	96	55.2	48
Non-inductive Amps	16	9.2	8

ing a double-ended, slotted adjustment screw that is accessible from the bottom of the case with the cover in place or from the top of the device with the cover removed (one slotted, captive screw). The setpoint scale is visible from outside the left end of the case.

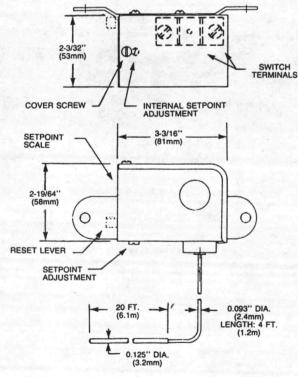
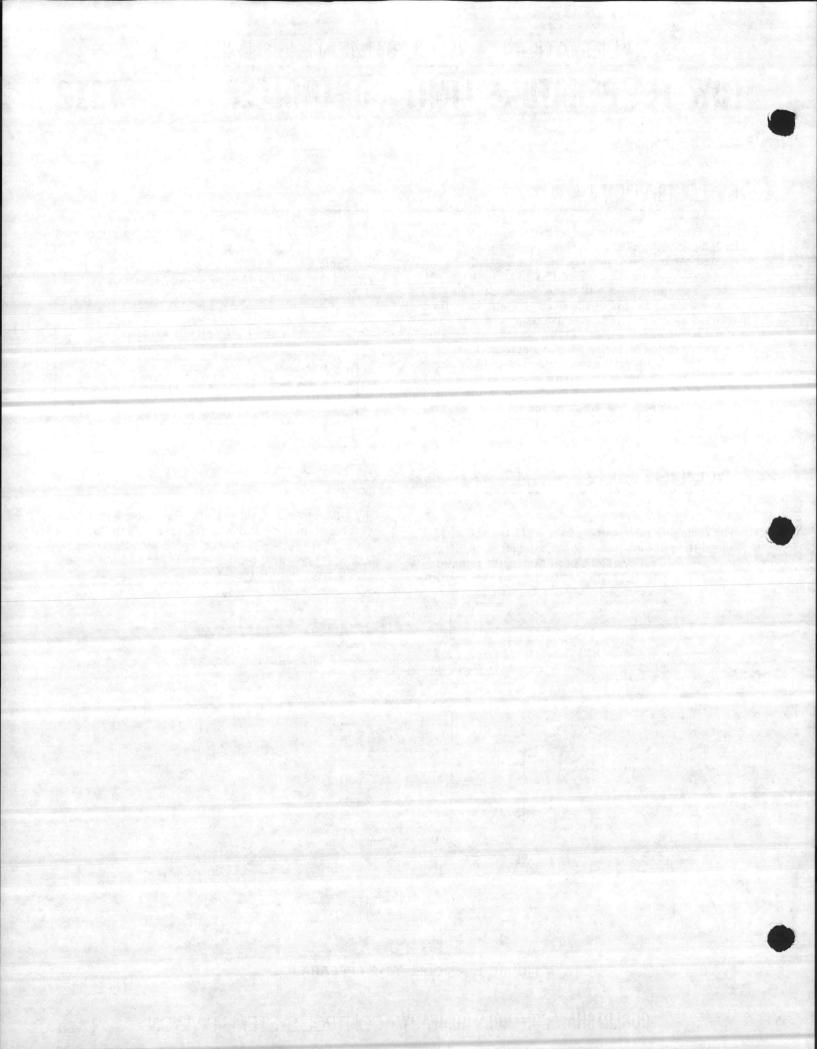



FIGURE 1 - MODEL T312 APPEARANCE.

Remote Bulb Temperature Controls

54B; T6064A,B continued

Order Number	Switch-	Control Temp. Range		Differential		Appli-
		F	C	F	C	cation
T6054B1003	1-spdt	60 to 80	16 to 27	0.8	0.4	Heating/ cooling
T6064A1003	2-spdt	60 to 80	16 to 27	0.8	0.4	Heating/ cooling
T6064A1011	2-spdt	60 to 80	16 to 27	0.8	0.4	Heating/ cooling
T6064B1001	2-spdt	55 to 85	13 to 29	3.0	1.7	Heating/ cooling

2.1.8.5

^aSwitches make R-W on temperature rise; make R-B on temperature fall.

T675A,B; T678A Controllers

Remote bulb thermostats regulate temperature of air or liquids in ducts, pipes, tanks, and boilers.

For applications requiring accurate temperature control of air or liquids where controller must be placed outside the sensing area. Typical uses include control of dampers and valves in heating, cooling, and heating-cooling systems. Fast response models available for use in return air duct operate approximately 4 times faster than standard models. Bulb Size: 1/2 x 4-3/16 in. [13 x 106 mm] for standard models, 1/2 x 3-9/16 in. [13 x 90 mm] available for 55 F to 175 F [13 C to 79 C] models. Approximate Dimensions: 5-5/8 in. [143 mm] high, 2 in. [51 mm] wide, 2-5/8 in. [67 mm] deep. Listed by Underwriters Laboratories Inc.; Canadian Standards Association certified—T675A, T678A.

ELECTRICAL RATINGS (A):

T675A adjustable differential models and T678A-

	120 Vac	240 Vac	
Full Load	8.0	5.1	
Locked Rotor	48.0	30.6	the state of the state of the state

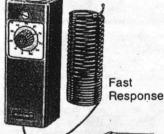
T675A nonadjustable differential models-125 VA at 120/208/240 Vac.

T675B-125 VA at 240 Vac pilot duty.

T678A-Maximum connected load: 2000 VA.

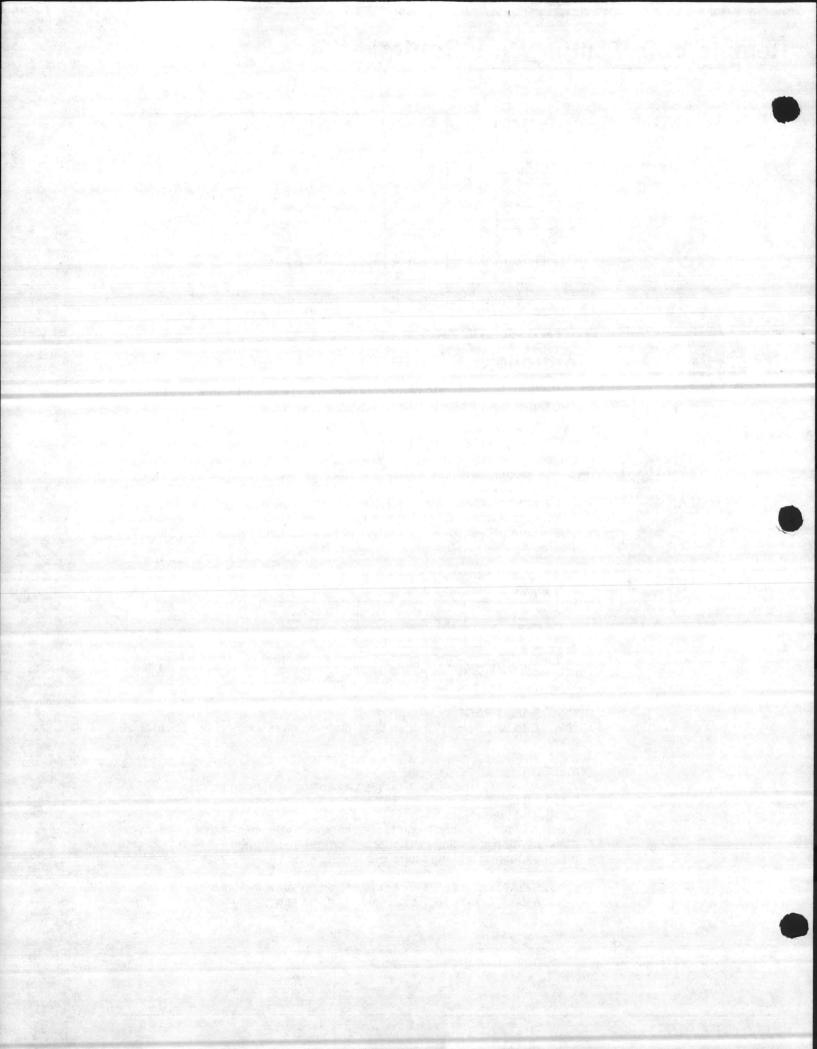
REPLACEMENT PART:

131524A Capillary Holder for mounting a fast-response sensing element in an air duct.


ACCESSORIES:

107324A Capillary Holder for mounting a sensing bulb in an air duct; 8-3/8 in. [213 mm] long.

311266D Duct Bulb Holder.


Immersion Well Assembly. To protect sensing bulb from mechanical or chemical damage when mounting in a boiler or storage tank; copper; 4-3/4 in. [121 mm] insertion length; includes tube clip for clamping capillary tube to immersion well.

112622AA, 1/2-14 NPT external threads on spud, includes 112721 clip. 112630AA, 3/4-14 NPT external threads on spud, includes 112720 clip.

Standard

Robertshaw &

2.1.8 RT-1

PNEUMATIC ROOM THERMOSTATS DIRECT AND REVERSE ACTING

GENERAL DESCRIPTION

The Model T18 and T19 Pneumatic Room Thermostats are designed for proportional control of pneumatic valves and damper actuators in environmental control systems. Their design incorporates a highly sensitive bimetal thermostatic element and a pilot-bleed relay with pneumatic feedback for accuracy and stability over the entire operating range.

Thermostat covers are available with thermometer and set point scale, thermometer only, set point scale only, or blank; with any cover, the external set point adjustment may be concealed with a clip-in plastic barrier.

The component parts are die cast aluminum, stainless steel and glass-filled Nylon. Diaphragms are fabric-reinforced Neoprene. Air lines are connected to the thermostat nipples with spring-reinforced plastic tubes and both main and branch connections are provided with internal filters.

GENERAL INSTRUCTIONS

A thermostat should be mounted where it will be affected only by the average room temperature. Free circulation of air must exist at the selected location. Avoid locations that are affected by drafts or by radiant heat from the sun, water pipes, air ducts, etc.

SPECIFICATIONS

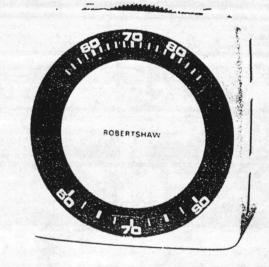
MODEL NUMBERS: Direct-acting, proportional

T18-301 (55° - 85° F): T18-305 (35° - 65° F): T18-306 - (75° - 105° F). Reverse-acting. proportional T19-301 (55° - 85° F): T19-305 (35° - 65° F): T19-306 (75° - 105° F).

SET POINT: adjustable by means of serrated thumbwheel.

THROTTLING RANGE: Adjustable from approximately 2°-12°F by T.R. Slide.

SUPPLY AIR PRESSURE: 20 psig (1.38 bar) operating. 30 psig (2.06 bar) maximum.


MAIN AIR CONSUMPTION: 15 SCIM (0.0147 m 3/hr)

CALIBRATION POINT: 9 psig (0.62 bar) branch pressure

THERMOMETER: Bimetal spiral with separate scale.

COVER TYPES: See table on rear of sheet.

STANDARD FINISH: Satin chrome painted aluminum cover.

MODE

T 18&T 19

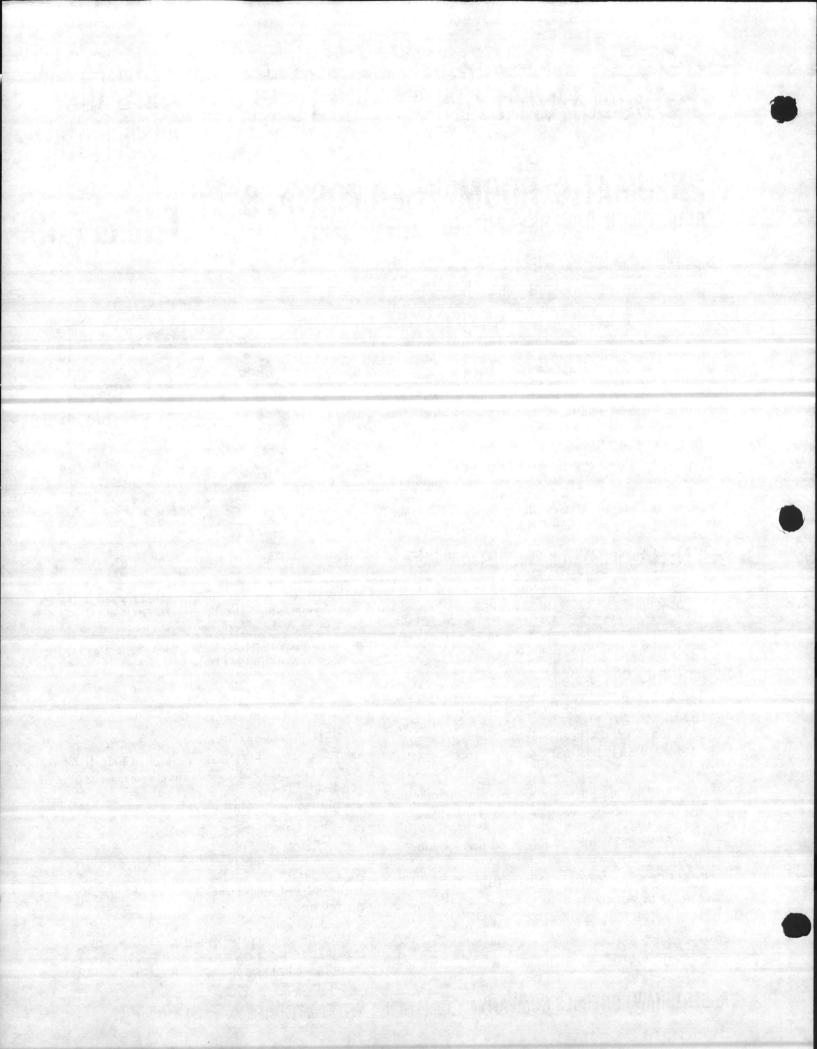
- Installation on outside walls should be avoided. If such a location is necessary, the thermostat should be mounted on an insulated backplate (accessory item).
- 3. Thermostats should be mounted AFTER WALL SUR-FACES HAVE BEEN FINISHED.

DIMENSIONS: See Figure 1.

WEIGHT: 2.7 ounces (76 g).

INSTALLATION FITTINGS: Tubing assembly 10-64 and selected rough-in and mounting hardware must be ordered separately.

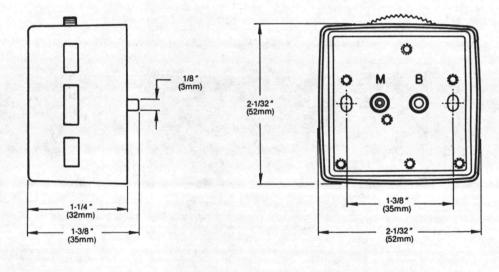
SPECIFY WHEN ORDERING:


- 1. Model Number
- 2. Cover type (see reverse).
- Limit Stops (pair) Model 10-59 (if required see Figure 3).
- 4. Concealed Adjustment Clip Model 10-72 (if required).

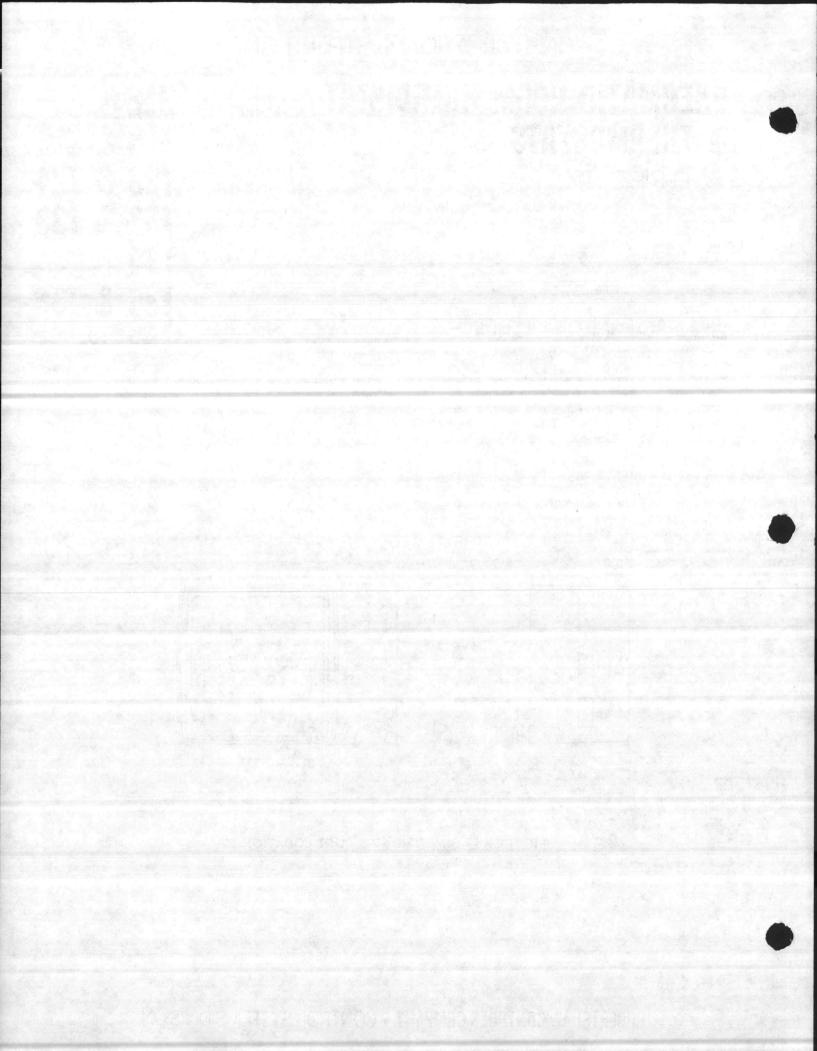
ORDER FROM:

Local office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 20 BOX 27606 - RICHMOND, VIRGINIA 23261

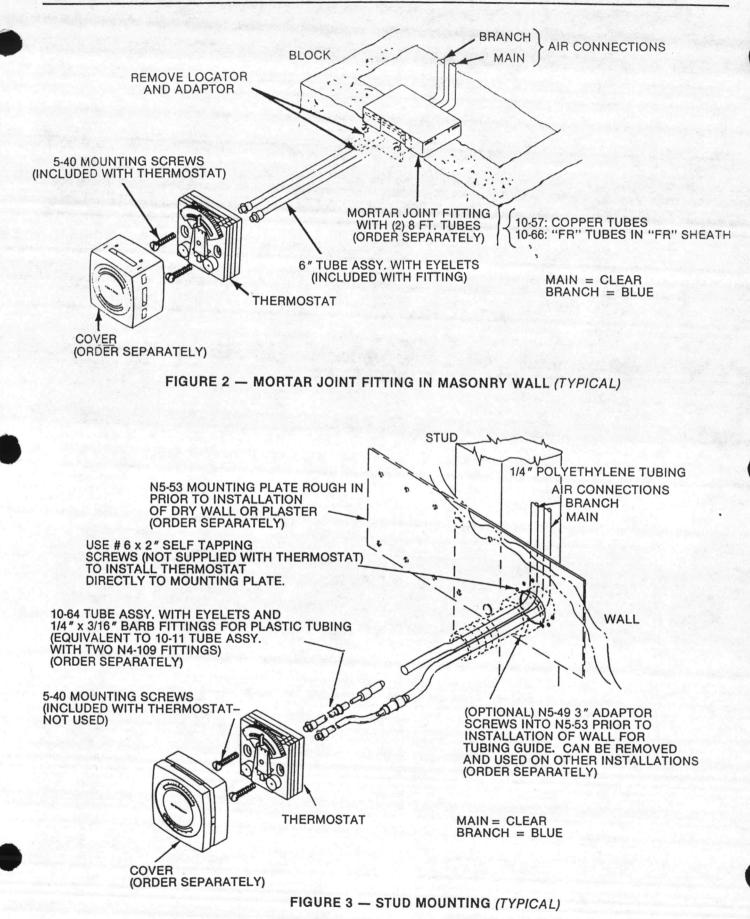

INSTALLATION INSTRUCTIONS

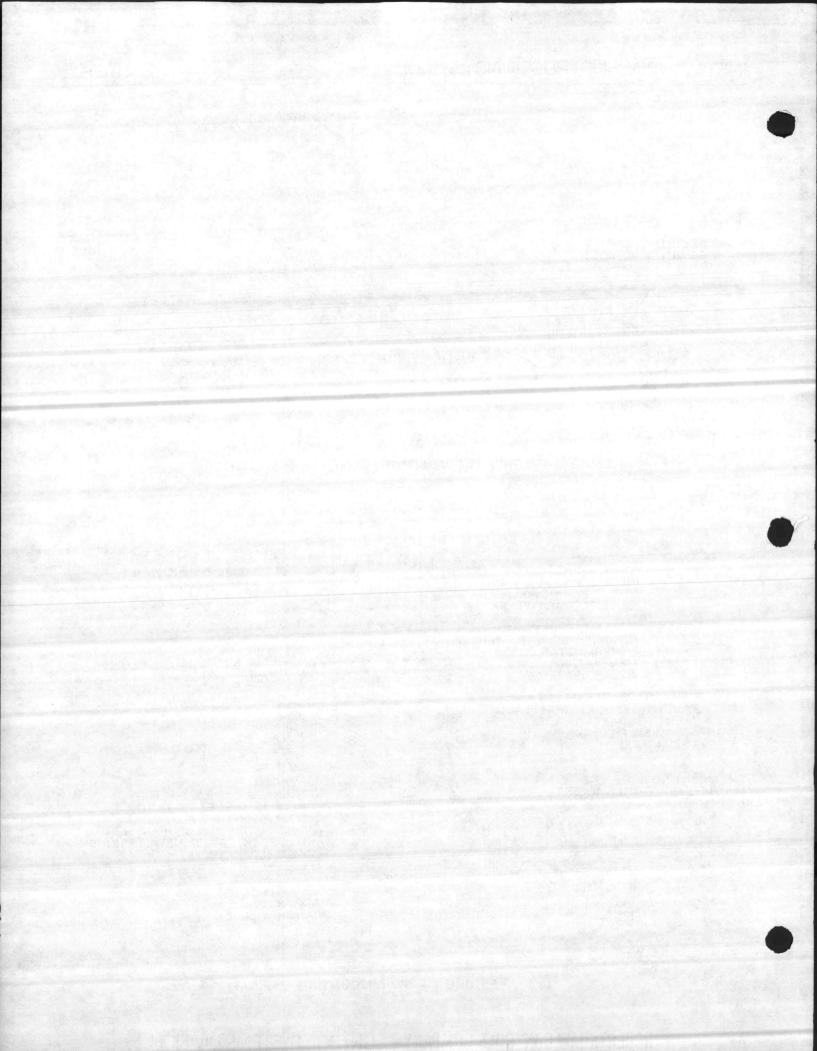
PNEUMATIC ROOM HUMIDISTAT & THERMOSTATS TWO-PIPE


H18 T18 & T19 T23 & T24 T32 & T33 T34 T35 & T36

GENERAL INSTRUCTIONS

- 1. A thermostat should be mounted where it will be affected only by the average room temperature. Free circulation of air must exist at the selected location. Avoid locations that are affected by drafts or by radiant heat from the sun, water pipes, air ducts, etc.
- 2. Thermostat installation on outside walls should be avoided. If such a location is necessary, the thermostat should be mounted on an insulated backplate (accessory item).
- 3. Humidistat should be located to sense average room humidity.
- 4. Thermostats and humidistats should be mounted AFTER WALL SURFACES HAVE BEEN FINISHED.




FIGURE 1 — DIMENSIONS & PORT LOCATIONS

INSTALLATION INSTRUCTIONS [Continued]

TWO-PIPE

CALIBRATION & ADJUSTMENT INSTRUCTIONS

PNEUMATIC ROOM THERMOSTATS DIRECT AND REVERSE ACTING

T18 (D.A.) T19 (R.A.)

CALIBRATION

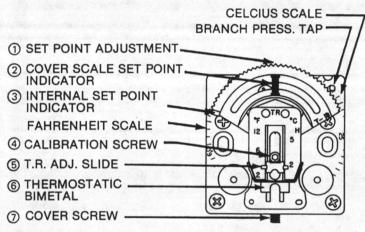
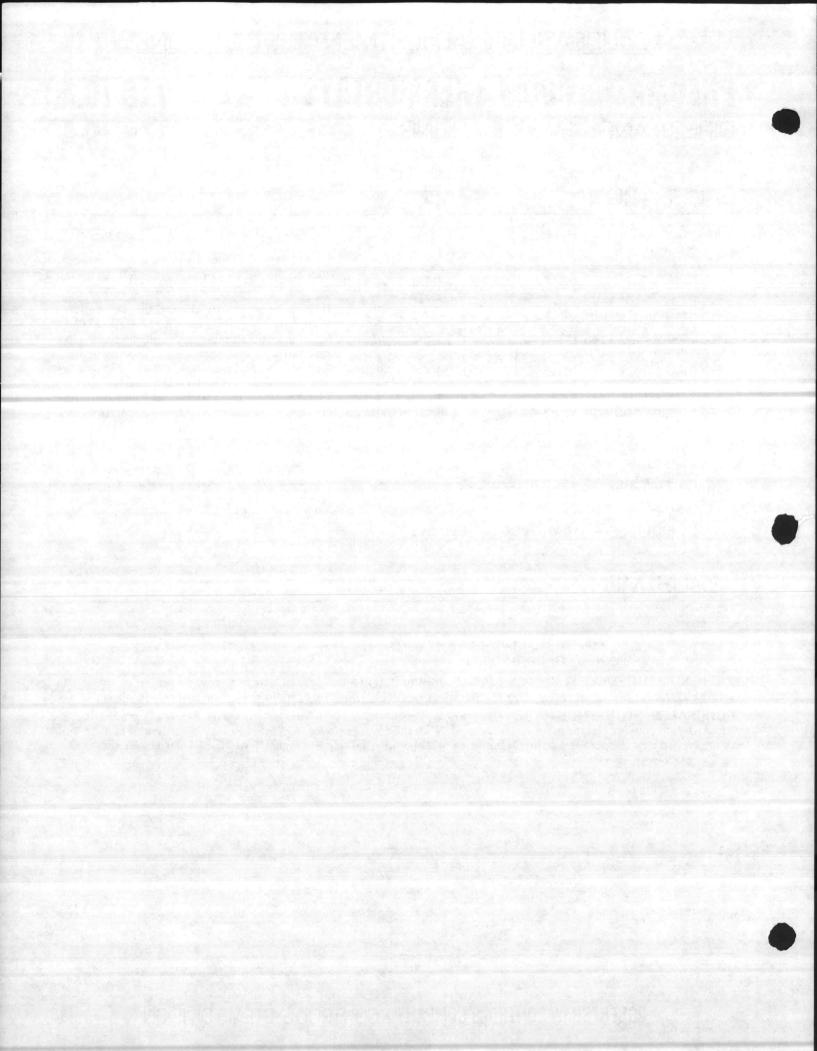


FIGURE 1 — T18 WITH COVER REMOVED

ADJUSTMENT


The T18 and T19 thermostats are factory calibrated with the throttling range set at 3 °F. and should not require calibration upon installation.

If it is necessary to change the calibration or change throttling range setting, install an adapter MCS-GA and suitable gauge in the branch pressure tap hole and measure the ambient temperature with an accurate thermometer. The temperature MUST BE WITHIN THE RANGE OF THE THERMOSTAT. Move the Set Point Adjustment (1) to the measured ambient temperature, using Internal Set Point Indicator (3). Taking care not to breathe on or hold hand near bimetal (6), use a 1/16" hex wrench (N2-4 Thermostat Wrench) to turn Calibration Screw (4) until the test gauge indicates 9 psig. Clockwise rotation increases the pressure. Move the Set Point Adjustment (1) to the desired temperature. The cover may now be installed using Cover Screw (7).

CAUTION: Set Point adjustment will be restricted if Limit Stops have been installed. DO NOT APPLY EXCES-SIVE FORCE AGAINST STOPS.

EXPOSED ADJUSTMENT. Rotate Set Point Adjustment (1) to the desired new temperature setting as indicated by the cover set point scale or to a "warmer" or "cooler" position as indicated by the cover scale labels.

CONCEALED ADJUSTMENT: Using Thermostat Wrench N2-4 (1/16" hex), turn Cover Screw (7) inward (clockwise) to provide clearance for cover removal. With the cover removed, rotate Set Point Adjustment (1) until the desired new temperature setting is indicated on either internal setpoint scale (°F or °C). Replace cover and lock in place with cover screw.

DEADBAND ROOM THERMOSTATS **DIRECT AND REVERSE ACTING**

GENERAL DESCRIPTION

The Model T35 and T36 pneumatic Deadband Room Thermostats are dual set point, direct and reverse-acting energy conservation thermostats designed for proportional control of pneumatic valves, damper actuators or other final control devices in environmental control systems where it is desirable to set up a temperature span within which the HVAC system USES NO ENERGY FOR EITHER HEATING OR COOLING BETWEEN SELECTED HEATING AND COOLING SET POINTS.

The high-capacity, two-pipe (main and branch), pilot-operated, relaytype design incorporates two highly sensitive bimetal thermostatic elements to produce the desired branch output changes at each end of the selected deadband. A phosphor bronze leaf spring is utilized to stabilize the desired (adjustable) deadband output pressure. Pneumatic feedback assures stability throughout the operating range.

Two separate and concealed set point dials are used to set the individual heating and cooling set points, thereby creating the desired "deadband" which will occur between the two selected set points.

When the thermostat's cover is removed, all calibrations and settings are accessible on the thermostat face, without removing the device from the surface on which it is mounted.

The component parts are die-cast aluminum, stainless steel, phosphor bronze and glass-filled nylon. Diaphragms are fabric-reinforced neoprene. Air lines are connected to the thermostat nipples with flexible plastic tubes. Both main and branch connections are provided with internal filters.

SPECIFICATIONS

- MODELS: T35-301; Proportional, Direct Acting T36-301; Proportional, Reverse Acting
- RANGE: 57° to 75°F (14-24°C) Heating 65° to 83°F (18-28°C) Cooling Each set point and deadband pressure individually adjust-able using 1/16" (1.6 mm) Allen wrench.
- THROTTLING RANGE: Approx. 1.5°F (.83°C) per set point when used with actuators having 5 psig (.35 bar) spring range, non-adjustable.
- SUPPLY AIR PRESSURE: 20 psig (1.4 bar) operating 30 psig (2.1 bar) maximum
- CALIBRATION POINTS: Heating: Output pressure equal to mid-range of heating actuator @ desired heating set point.
 - (Factory calibrated at 4 psig on T35, 10.5 psig on T36.) Cooling: Output pressure equal to mid-range of cooling actuator @ desired cooling set point. (Factory calibrated at 10.5 psig on T35, 4 psig on T36.) Deadband pressure: Midway be-

tween "closed" pressure of heating actuator and "startto-open" pressure of cooling actuator. (Factory set at 7 psig.)

DIMENSIONS: See reverse side.

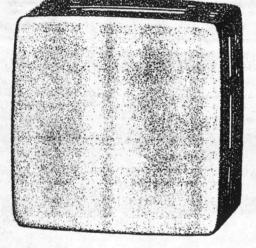
WEIGHT: 2.6 ounces (75 g)

INSTALLATION FITTINGS: If needed, tubing assembly 10-64 and selected rough-in and mounting hardware must be ordered separately.

MAIN AIR CONSUMPTION: 15 SCIM (0.0147 m3/hr)

SPECIFY WHEN ORDERING:

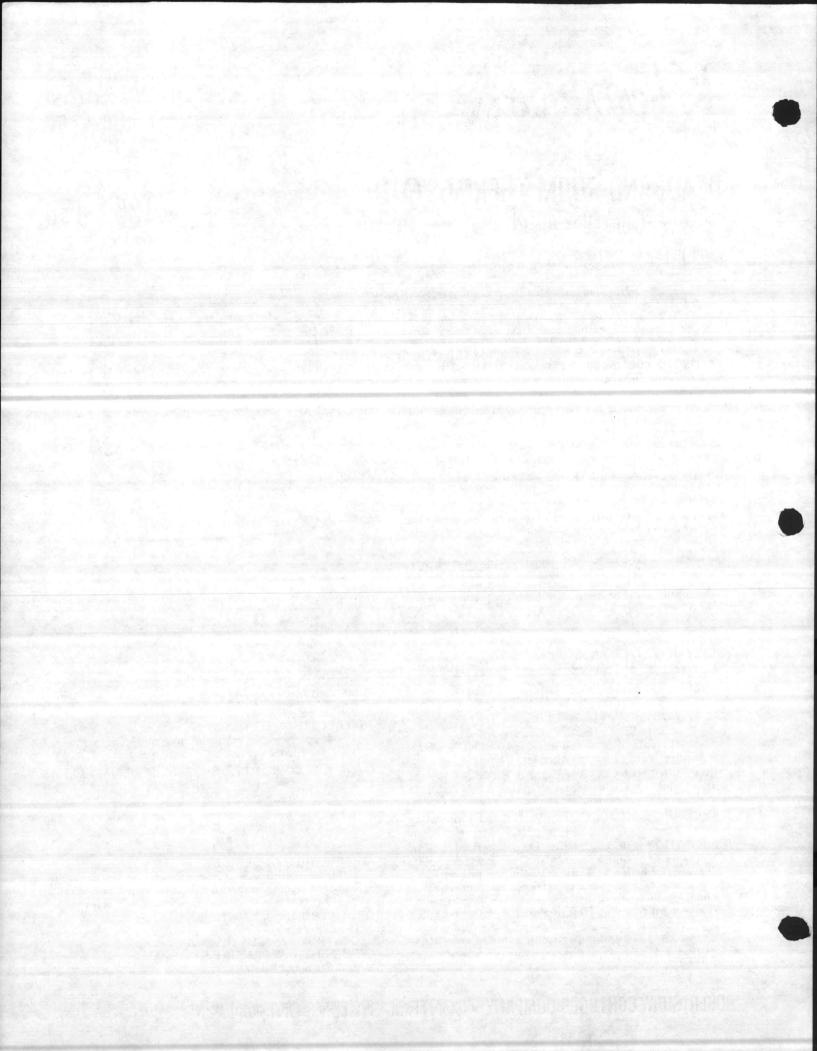
- 1. Model number.
- 2. Cover model number (blank cover is recommended.) Other covers with various finishes are available.


ORDER FROM:

Local office of

CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23261



2.1,8

RT-2

RT-3, UT-1+2

2,1,8

PNEUMATIC ROOM THERMOSTATS SUMMER-WINTER ENERGY CONSERVATION

GENERAL DESCRIPTION

The model T34 Pneumatic Room Thermostat is designed for proportional control of pncumatic valves and damper actuators in environmental control systems where a two-pressure air main is utilized for seasonal changeover of heating and cooling functions. Its design incorporates two highly sensitive bimetal thermostatic elements and a pilot-bleed relay with pneumatic feed-back for accuracy and stability over the entire operating range.

The Model T34 provides winter control (direct action) at 25 psig main air pressure and summer control (reverse action) at 16 psig. Direct and reverse action set points are factory calibrated at different temperatures: higher for summer operation, lower for winter operation, to conserve energy. Blank cover with 10-72 clip-in plastic barrier is recommended to prevent set point changes by unauthorized personnel.

The component parts are die-cast aluminum, stainless steel and glass-filled Nylon. Diaphragms are fabric-reinforced Neoprene®. Air lines are connected to the thermostat nipples with spring-reinforced plastic tubes and both main and branch connections are provided with internal filters.

GENERAL INSTRUCTIONS

1. A thermostat should be mounted where it will be affected only by the average room temperature. Free circulation of air must exist at the selected location. Avoid locations that are affected by drafts or by radiant heat from the sun, water pipes, air ducts, etc.

SPECIFICATIONS

- MODEL NUMBER: T34-3011 (with factory-installed 10-59 limit stops).
- ACTION: Direct (winter) and reverse (summer), proportional.
- SET POINT RANGE: 76 to 85°F summer; 44 to 74°F winter.
- THROTTLING RANGE: Approximately 2°F when used with actuator having 5 psi spring range.
- SUPPLY AIR PRESSURE: 25 psig (1.7 bar) for winter operation. 16 psig (1.1 bar) for summer operation. 30 psig (2.1 har) maximum. AIR CONSUMPTION: 30 SCIM.

CALIBRATION POINT: 9 psig (0.62 bar) branch pressure.

DIMENSIONS: See reverse side.

INSTALLATION FITTINGS: If needed, tubing assembly 10-64 and selected rough-in and mounting hardware must be ordered separately.

Installation on outside walls should be avoided. If such

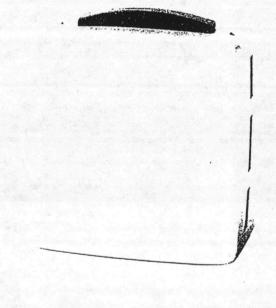
a location is necessary, the thermostat should be mounted on an insulated backplate (accessory item).

Thermostats should be mounted AFTER WALL SUR-

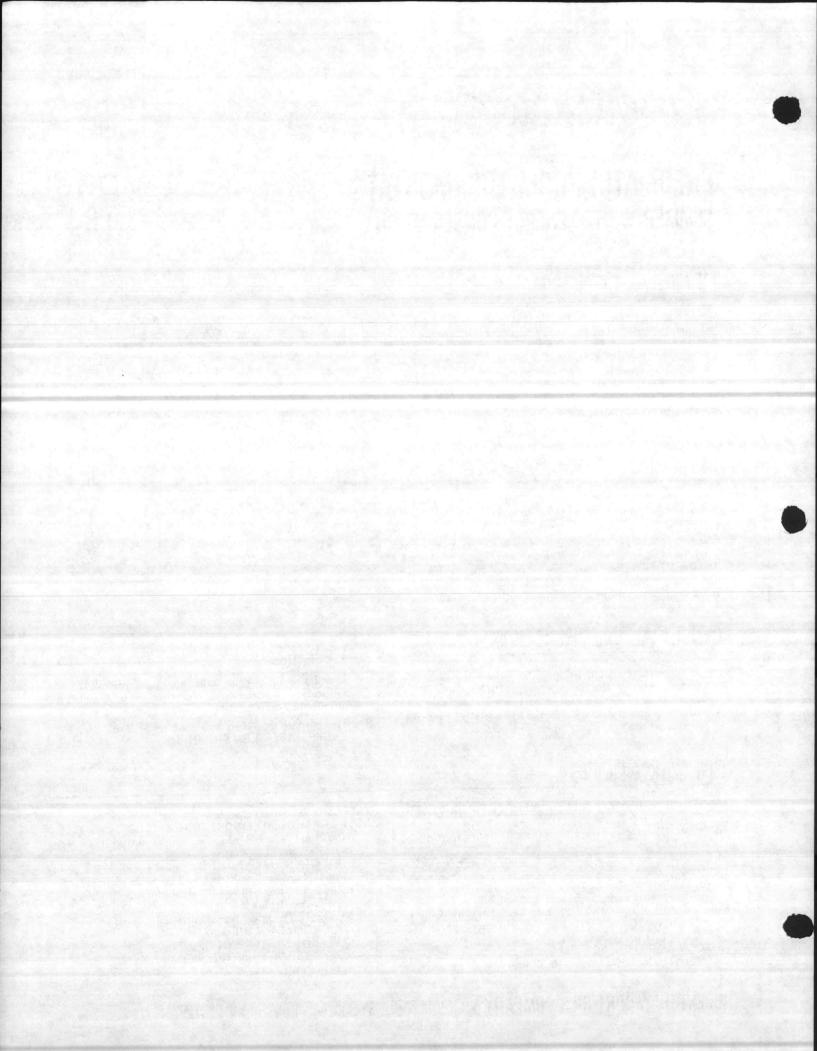
SPECIFY WHEN ORDERING: 1. Model number. 2. Cover Model Number (C2-42 is standard with satin-chrome paint finish. Brushed finishes in aluminum, bronze, and brass are available).

NOTE: 10-72 clip is factory-installed.

FACES HAVE BEEN FINISHED.


ORDER FROM: Local Office of

CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.


ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23261

2.

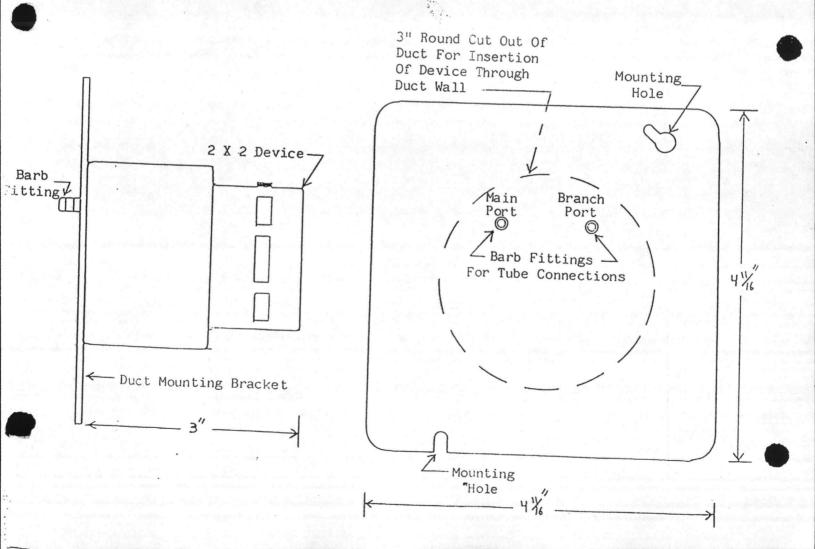
3.

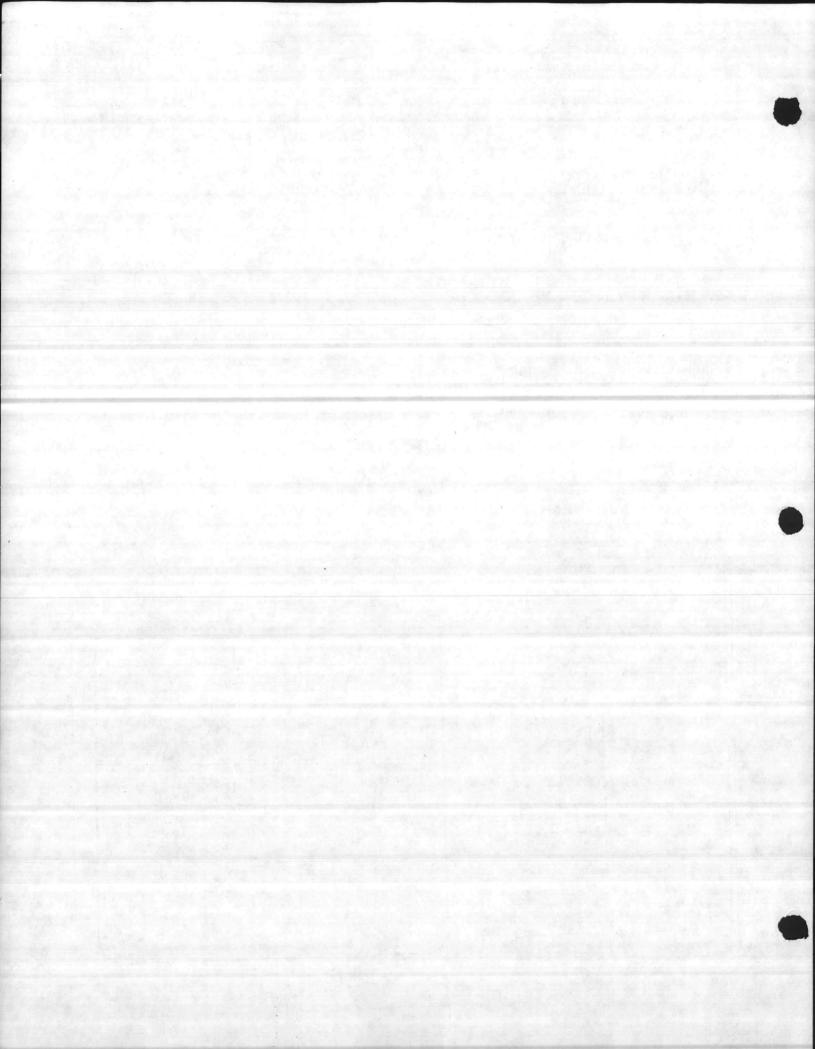
T34

UNIVERSAL CONTROLS CHESAPEAKE VA Robertshaw

USED W/ T34 ON (UT)UNIT THERMOSTATS

MOUNTING KITS

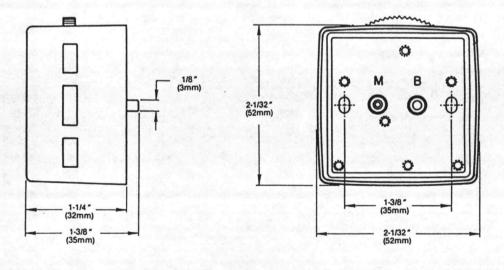

2.1.8


GENERAL DESCRIPTION

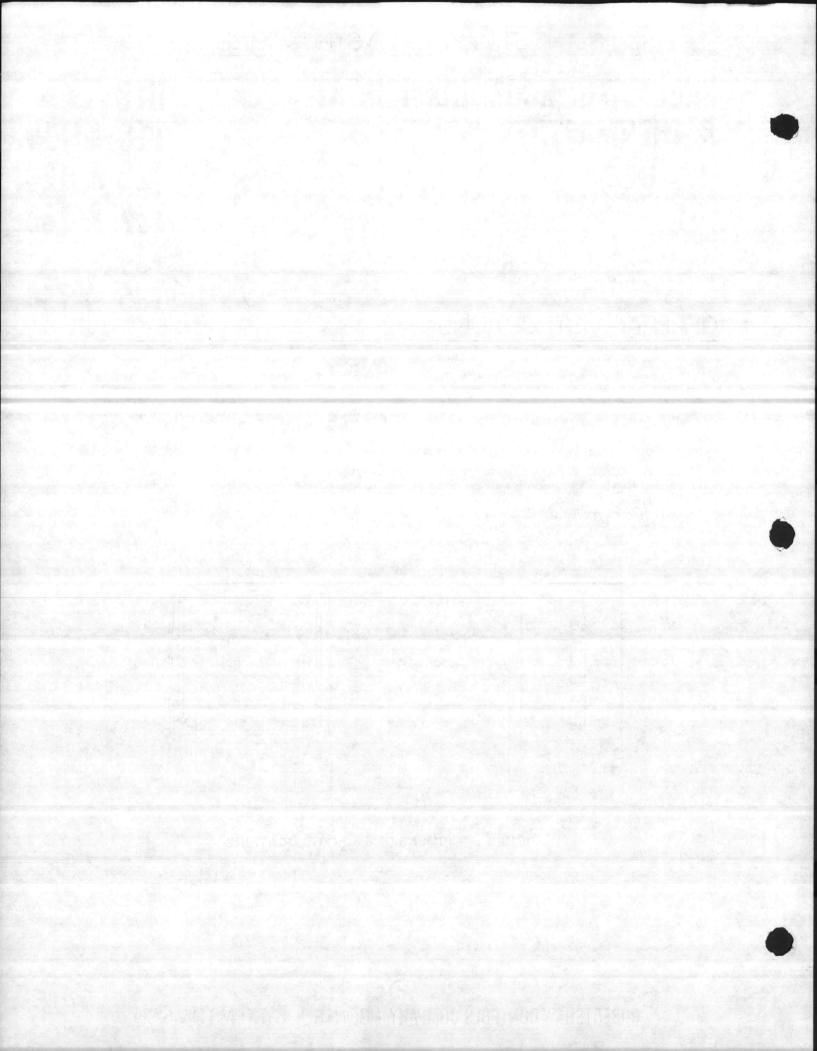
This duct mounting bracket is designed for use with 2 X 2 devices where duct mounting is required for the devices listed below.

DIMENSIONS AND APPEARANCE

This Model UCDMB1 kit is designed for use with the following devices: T12, T13, T18, T19, T23, T24, T32, T33, T34, T35, T53 and H18, H53.


INSTALLATION INSTRUCTIONS

PNEUMATIC ROOM HUMIDISTAT & THERMOSTATS TWO-PIPE


H18 T18 & T19 T23 & T24 T32 & T33 T34 T35 & T36

GENERAL INSTRUCTIONS

- 1. A thermostat should be mounted where it will be affected only by the average room temperature. Free circulation of air must exist at the selected location. Avoid locations that are affected by drafts or by radiant heat from the sun, water pipes, air ducts, etc.
- 2. Thermostat installation on outside walls should be avoided. If such a location is necessary, the thermostat should be mounted on an insulated backplate (accessory item).
- 3. Humidistat should be located to sense average room humidity.
- 4. Thermostats and humidistats should be mounted AFTER WALL SURFACES HAVE BEEN FINISHED.

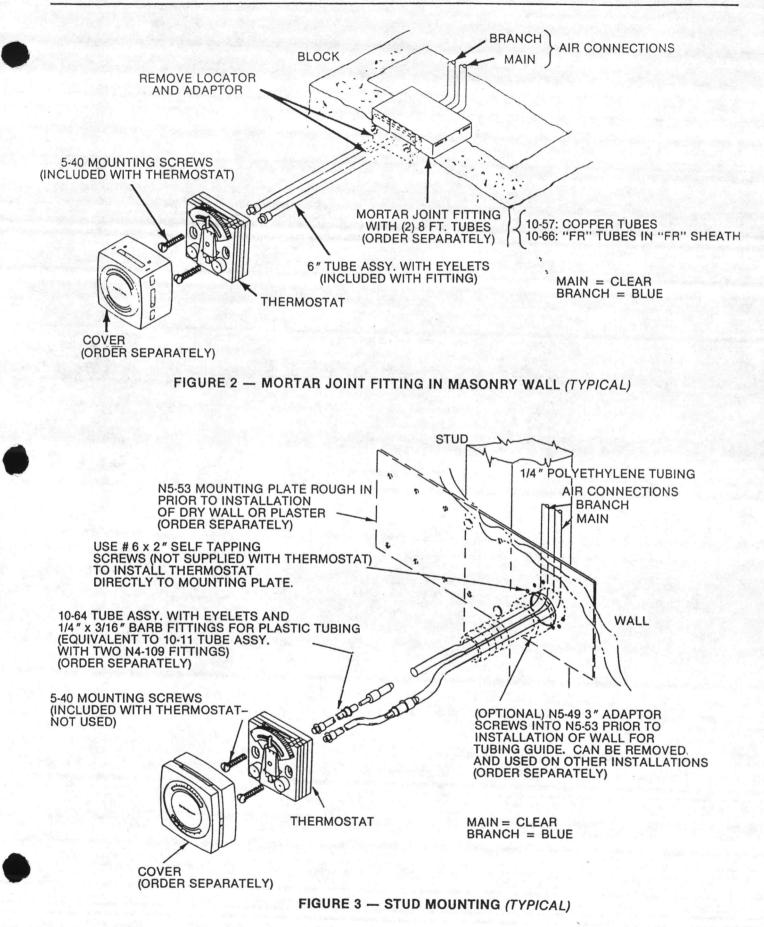
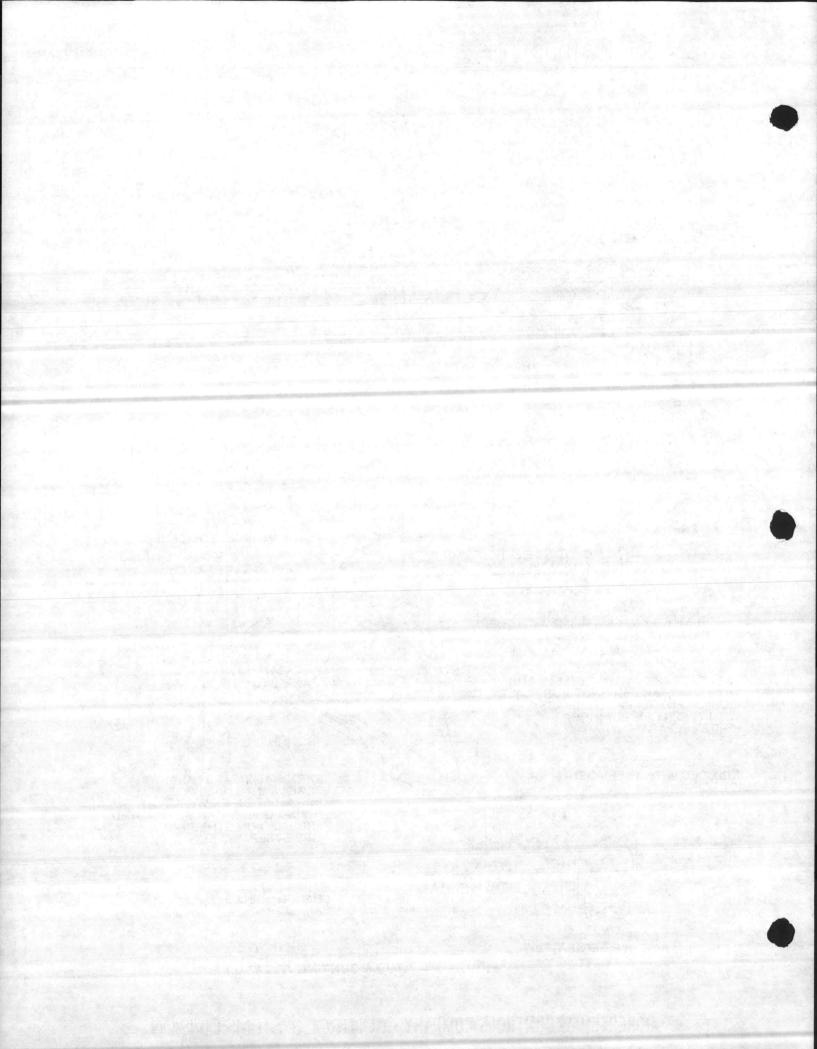


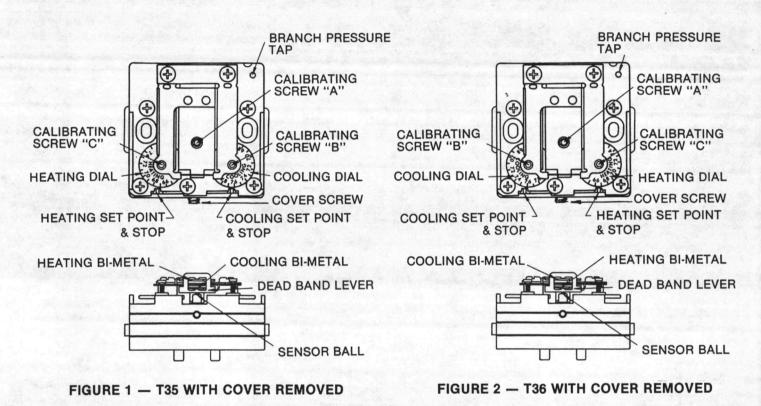
FIGURE 1 — DIMENSIONS & PORT LOCATIONS



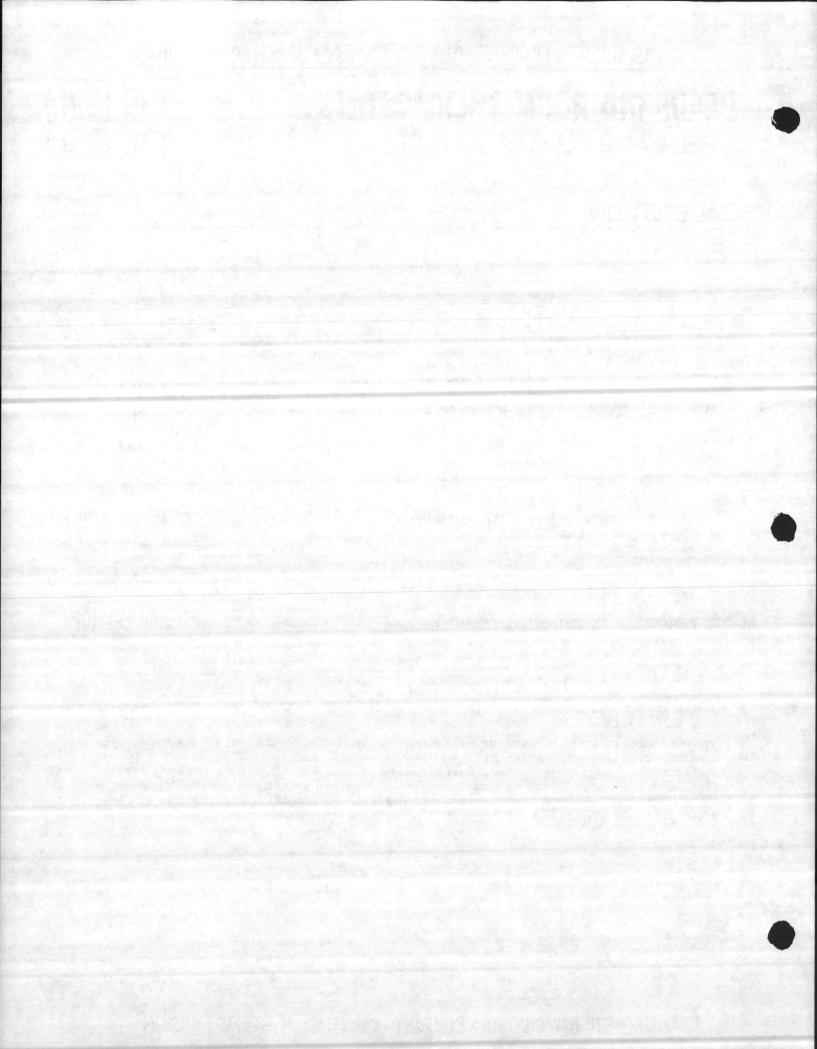
INSTALLATION INSTRUCTIONS [Continued]

TWO-PIPE

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION


CALIBRATION & ADJUSTMENT INSTRUCTIONS

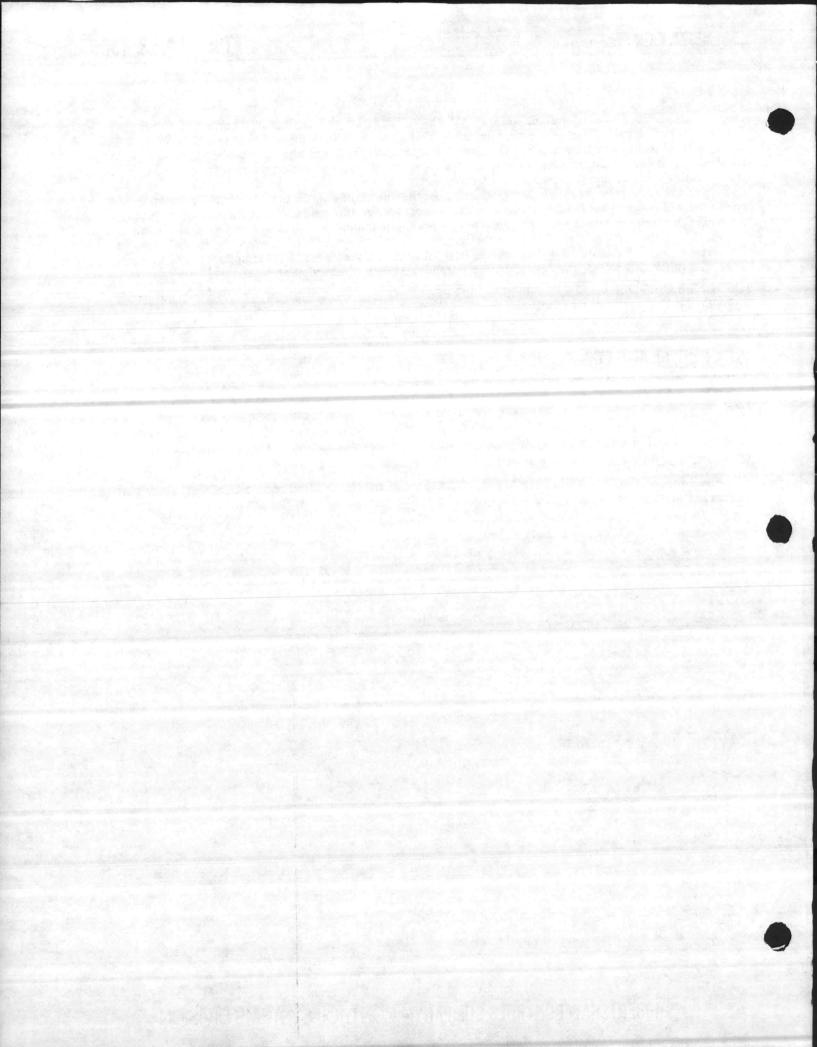
DEADBAND ROOM THERMOSTATS DIRECT AND REVERSE ACTING


T35 (D.A.) T36 (R.A.)

CALIBRATION

The T35 is factory calibrated to operate a 2-6# normally open heating actuator and an 8-13# normally closed cooling actuator in sequence; therefore, its "intermediate" pressure is factory set at 7 psig. Branch pressure is factory set at 4 psig when the heating dial is positioned at actual ambient temperature, and 10 1/2 psig when the cooling dial is positioned at actual ambient temperature.

The T36 is factory calibrated to operate an 8-13# normally-closed heating actuator and a 2-6# normally open cooling actuator in sequence; therefore, its "intermediate" pressure is factory set at 7 psig. Branch pressure is factory set at 10 1/2 psig when the heating dial is positioned at actual ambient temperature, and 4 psig when the cooling dial is positioned at actual ambient temperature. If it becomes necessary to check calibration or to change calibration to match other heating and cooling spring ranges, the procedure is as follows: For T35, refer to Figure 1; For T36, refer to Figure 2.


Insert a branch tap adapter MCS-GA and pressure gauge into the thermostat branch tap hole. Measure the ambient temperature, which must be between 65° and 75°F. Using the thermostat wrench (N2-4) turn the heating dial hex screw "C" to set the heating dial at 57 °F. Then turn the cooling dial to the 83 ° setting. This moves both bimetals away from the deadband lever which controls the intermediate or deadband pressure. Turn the deadband pressure adjustment screw "A" so the branch pressure equals the midpoint between the high end of the heating actuator and the low end of the cooling actuator, i.e., with a 2-6# heating actuator and an 8-13# cooling actuator, the pressure should be 7 psig. Next, position the heating dial so that the Branch output pressure equals the mid-range of the heating actuator at the ambient temperature read on the thermometer. If there is a difference between the temperature set point on the heating dial and actual ambient temperature, rotate the heating dial in the appropriate direction to the end stop. Then, "slipping" the screw inside the dial, continue rotating the screw the amount of difference previously observed between the ambient temperature and set point. Then, return the dial so that the desired branch output pressure is observed at ambient.

The cooling set point may now be calibrated in the same manner (Screw "B"). Finally, set both heating and cooling dials to the desired set points and re-install the cover.

ADJUSTMENT

NOTE: Concealed adjustment covers are used with the T35 and T36 thermostats. Using Thermostat Wrench N2-4 (1/16" hex), turn the Cover Screw inward (clockwise) to provide clearance for cover removal. HEATING AND COOLING SET POINTS

With the cover removed, use Thermostat Wrench N2-4 to rotate the Heating Dial and/or Cooling Dial until the desired heating and cooling set points are aligned with their respective indexes. Replace cover.

CALIBRATION & ADJUSTMENT INSTRUCTIONS

PNEUMATIC ROOM THERMOSTATS SUMMER-WINTER ENERGY CONSERVATION

T34

CALIBRATION

16 PSIG (110 kPa) MAIN R.A. (SUMMER) 25 PSIG (172 kPa) MAIN D.A. (WINTER)

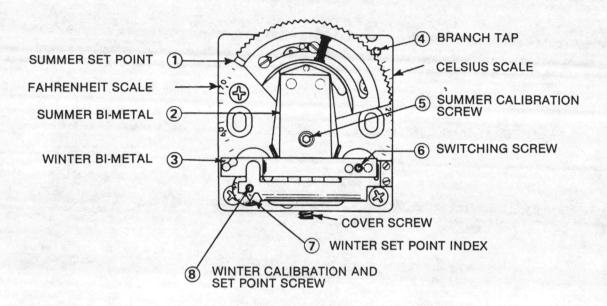
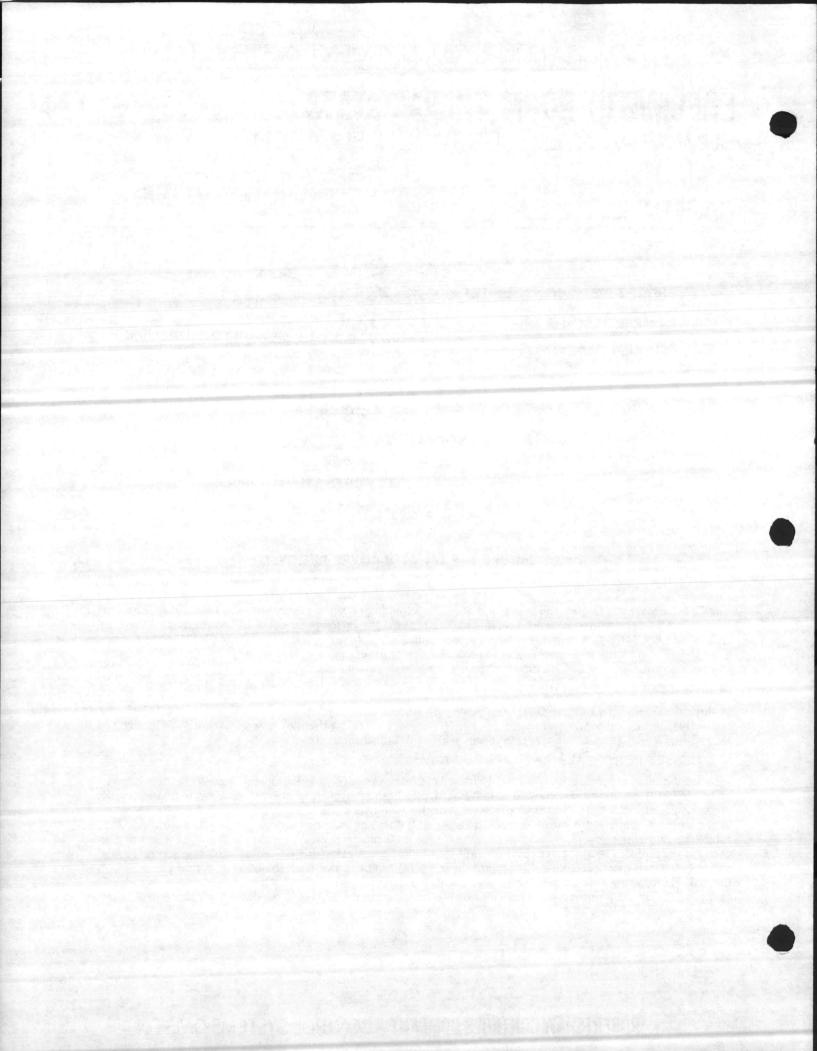


FIGURE 1 — T34 WITH COVER REMOVED

The T34 thermostat is factory calibrated and normally should not need to be recalibrated. If recalibration of the summer set point or winter set point becomes necessary, or if the switch point needs to be raised or lowered, install an adaptor MCS-GA, with a suitable 0-30 psi gauge, in the branch pressure tap hole (4). Measure the ambient temperature with an accurate thermometer. This temperature must be within the range of the thermostat. Caution: Do not breathe on or hold hand near the bimetals (2) and (3).


SUMMER SET POINT CALIBRATION (Reverse Action).

Position the summer set point cam (1) to coincide with ambient temperature. Set main air pressure to 16 psig and adjust the summer calibrating screw (5) using 1/16'' hex wrench (N2-4 thermostat wrench) until the branch tap gauge reads 9 ± 1 psig. Clockwise rotation increases the branch pressure.

WINTER SET POINT CALIBRATION (Direct Action).

Increase the main air pressure to 25 psig. Using a 1/16" hex wrench (N2-4 thermostat wrench) in the winter set point screw (8), position this screw to obtain 9 ± 1 psig branch pressure (clockwise rotation increases branch pressure, counter-clockwise decreases pressure). For the winter set point to be in calibration, dial (7) should indicate ambient temperature within ± 1 °F. If the dial (7) does not indicate ambient temperature within ± 1 °F, rotate the set point screw (8) (clockwise to increase the ambient temperature reading and counter-clockwise to decrease the ambient temperature reading) until the dial (7) goes against stop. Continue rotating screw (8) (dial will be restrained from rotating by stop) until the screw (8) can be turned back to obtain 9 ± 1 psig branch with the dial (7) indicating ambient temperature within ± 1 °F (more than one try may be required to accomplish this calibration). The set point screw (8) may now be used to position the dial (7) to the desired winter control point.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION

SWITCHING CALIBRATION.

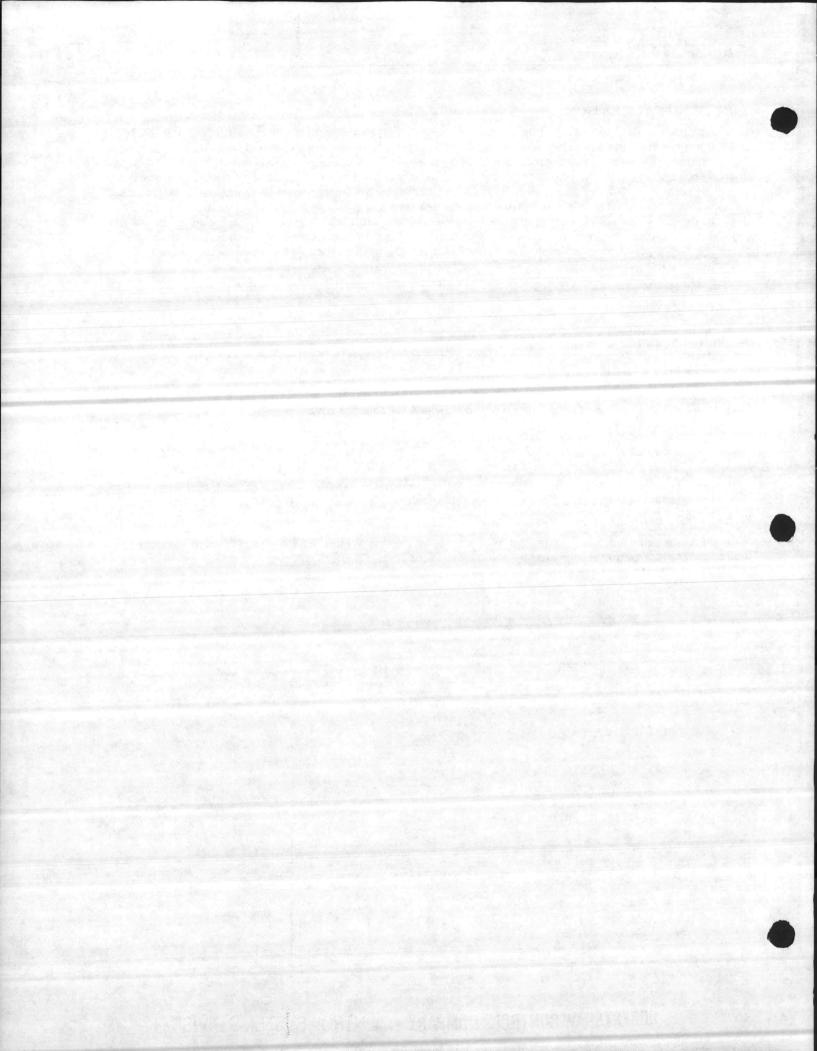
Set the main pressure to 15 psig. Position the summer set point (1) to 85 °F setting and the winter set point dial (7) to 44 °F setting. The branch pressure tap gauge should be reading approximately 15 psig. If not, recheck the summer set point calibration. Slowly increase the main pressure until the branch pressure drops to 0 psig. This is the main pressure at which the thermostat switches from summer control to winter control. If the main pressure at switching point is less than 17 psig or more than 21 psig, adjust the switching screw (6) counter-clockwise to raise switching point or clockwise to lower switching point 1/8 turn at a time and raise and lower the main pressure until the desired switching pressure is obtained (use the rise and fall of the branch pressure as an indication of switching). Caution: Do not force the calibration screws. If action is not obtained when screws are rotated, check for proper direction of rotation. The bimetals (2) and (3) may be raised and lowered, using the end of the calibrating wrench, to test action.

NOTE: ambient temperature must be between 65 and 75 °F when making this calibration.

ADJUSTMENT

NOTE: Concealed adjustment cover is used with the T34 thermostat. Using Thermostat Wrench N2-4 (1/16" hex), turn the Cover Screw inward (clockwise) to provide clearance for cover removal.

SUMMER SET POINT:


CAUTION: Set Point adjustment will be restricted if Limit Stops have been installed. DO NOT APPLY EXCES-SIVE FORCE AGAINST STOPS.

With the cover removed, rotate Summer Set Point Adjustment (1) until the desired new summer temperature setting is indicated on either internal Set Point scale (°F or °C). Replace cover and lock in place with cover screw.

WINTER SET POINT:

232

With the cover removed, use Thermostat Wrench N2-4 to rotate Winter Set Point Adjustment (8) until the desired new winter setting is indicated by Winter Set Point Index (7). Replace cover.

Robertshaw &

2,1,9

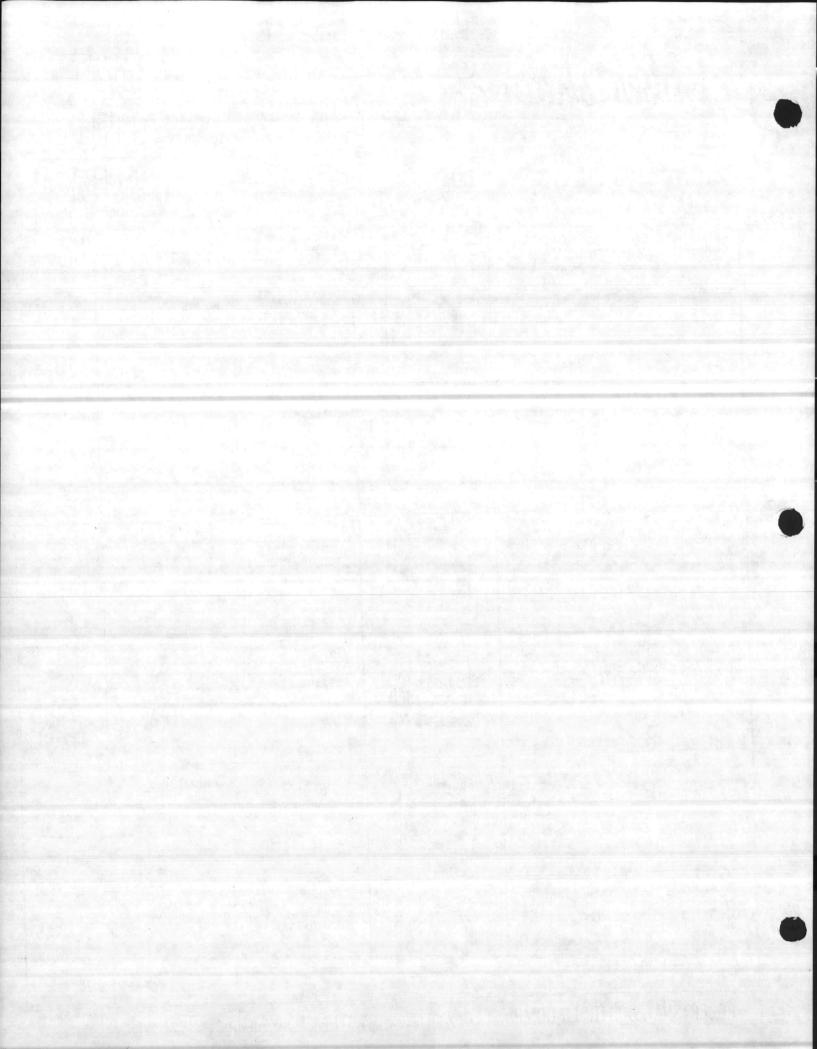
(, i ;:

Drawn aluminum covers fit Robertshaw thermostats, humidistats, and transmitters. Concealed adjustment models include a factory-installed 10-72 adjustment cover clip; the 10-72 is available separately and may be added to any model not so equipped.

Standard finish is satin-chrome enamel; brushed aluminum, brushed bronze, or brushed brass finishes are available for most models at extra cost. Select finish by appropriate suffix from table at right.
 SUFFIX
 FINISH

 -42
 Satin-chrome enamel

 -43
 Brushed aluminum


 -44
 Brushed bronze

 -45
 Brushed brass

COVERS	FOR	ROOM THERMESTAT	TS
		HUMIDISTATS, AN	VD
		TRANSA TTE	

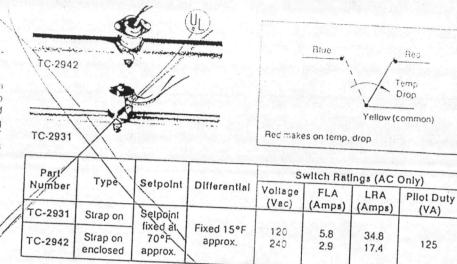
DESCRIPTION	1		TRANSMITTER
	ITEM	SPECIFICATIONS	CHECK
55-85°F set point scale; no thermometer; exposed adjustment. For use with the following: T12, T13, T18, T19, T23, T24, T27, T32, T33.		SCALE 55-85°F ADJUSTMENT EXPOSED THERMOMETER NO	C1-42 [] C1-43 []
			C1-4÷ 🗆
	C1-42		C1-45
Blank cover with concealed adjustment. For use with: T12, T13, T18, T19, T23, T24, T27, T32, T33, T34, T35, T36, T53.		SCALE NONE ADJUSTMENT CONCEALED THERMOMETER NO	
\checkmark	C2-42		C2-44
55.85°F set point scale; thermometer; exposed adjustment. For use with: T12, T13, T18, T19, T23, T24, T27. T32, T33.		SCALE 55-85°F ADJUSTMENT EXPOSED THERMOMETER YES	C3-42]
		110	C3-43 🗌
			C3-44 🗌
	C3-42		C3-45 🗆
55-85°F set point scale; thermometer; con- cealed adjustment. For use with: T12, T13, T18, T19, T23, T24, T27, T32, T33.	C442	SCALE 55-85°F ADJUSTMENT CONCEALED THERMOMETER YES	C4-42 □ C4-43 □ C4-44 □ C4-45 □
"Cooler-Warmer" set point scale; no thermom- eter; exposed adjustment. For use with: T12, T13, T18, T19, T23, T24, T27, T32, T33.		SCALE COOLER-WARMER ADJUSTMENT EXPOSED THERMOMETER NO	C5-42
			C5-43
-			C5-44 🗌 C5-45 🗔
Cooler Warm 1	C5-42		
'Cooler-Warmer'' set point scale; thermom- ter; exposed adjustment. For use with: T12, T13, T17, T18, T19, T23, T24, T27, T32, T33.		SCALE COOLER-WARMER ADJUSTMENT EXPOSED THERMOMETER YES	C6-42 🗆
이 것이 다른 것 모양 생기가 했다.			C6-43 🗆
	Contraction of the second		C6-44 🗆
 A state of the second se	C6-42	 Bernellers' and the second seco	C6-45 🗆

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. 0. 80X 27606 - RICHMOND, VIRGINIA 23261

ELECTRIC CONTROLLER CHANGEOVER THERMOSTATS, STRAP-ON

TC-2931 TC-2942

18


E

For summer-winter changeover in hydronic heating-cooling system.

Units are hermetically sealed and come with mounting springs for easy mounting on up to 1-1/2" pipe. TC-2942 is enclosed type and has 1/2" conduit adaptor. Fast responding bimetal metal actuates snap-acting SPDT with silver contacts. Three color coded 16 gauge leads 3" long. DImensions: 2" diameter × 1-1/2" high.

OPTIONS: TC-2931-205† with 3' cable for CP-5341

ACCESSORIES: None

(SP

TC-2974

1. 1. 1. 1. T

For hot water unit heater control and summer/winter changeover. May be used as either an open high control or as open low control.

Device is enclosed in steel case with 1/2" to 3/4" conduit opening on bottom. Liquid filled thermal element actuates heavy-duty SPDT switch with coded screw terminals. Graduated external setpoint adjustment marked in °F on one side and °C on the other. Shipped with metal strap and spring which will fit supply lines up to 4" O.D. Amblent LImits: -40 to 140°F for case. 260°F maximum bulb temperature. Dimensions: 4-5/8" high × 2-1/4" wide × 2-5/8" deep.

OPTIONS: None

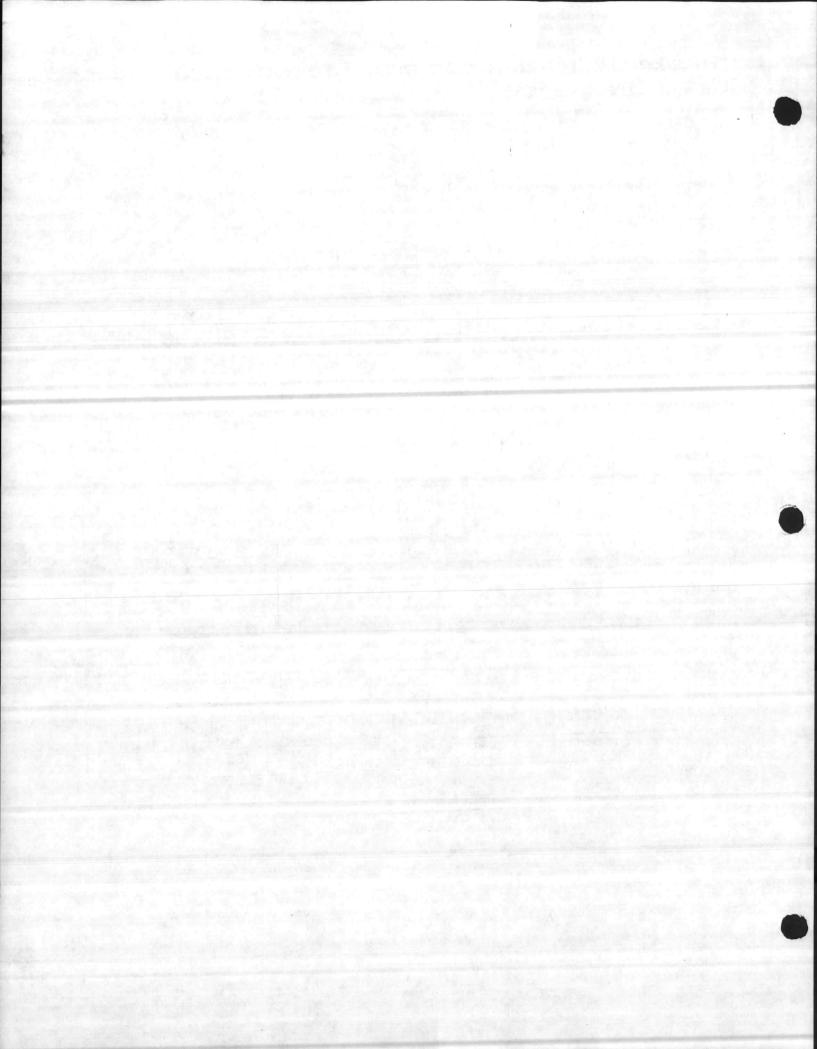
2.1.13

ACCESSORIES: None

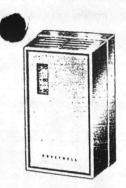
Brn makes on temp, drop

Red

Brn


Orn (common)

Temp


Drop

Part Number	Туре	Set Point* Adj. Range	Differential	Voltage	FLA	witch Rating	s (AC Only)	
TC-2974	Strap	50-210°F (10-99°C)	Fixed at 10°F	(Vac) 120	(Amps) 9.8	(Amps) 58.8		Non-Inductive (Amps)
'Unit dual mark	ed in °F ar	nd °C.	(5.5°C)	240	8	48.0	360	22

AQI

Line Voltage and Proportional Thermostats

T92 Proportional Thermostat

Low voltage, 3-wire proportional controller for valve motors, damper motors, and balancing relays used in heating or cooling applications.

Bellows element adjusts 2 potentiometers in proportion to temperature changes to regulate motor operation. Removable setting knob prevents unauthorized tampering with set point. Electrical Rating: 24 V to 30 V. Potentiometer Resistance: 135 ohms. Mounting: Furnished screws fasten through three mounting holes to wall, or to adapter plate for outlet box mounting. Calibration Point: 3 F [1.7 C] below set point to offset internal heat from operation. Approximate Dimensions: 5-11/16 in [144 mm] high, 3-3/8 in. [86 mm] wide, 2-5/8 in. [67 mm] deep.

REPLACEMENT PART: 130224 Set Point Knob.

ACCESSORIES:

23394B Guard, metal, locking. 138541A Mounting Plate—23394B to outlet box. See Thermostat Guards in RESIDENTIAL CONTROLS section, pages 373-374.

/		and the second	19.00	· · · ·	Throttling F	lang	ge			and the South	
	Order	Scale Range		Low			Med		gh		
;	Number	F	C	F	C	F	С	F	С	Potentiometers	
	T92E1029	63 to 87	17 to 31	1.5 to 6.5	0.8 to 3.6	-	-	-	-	2 (for unison or sequence control)	

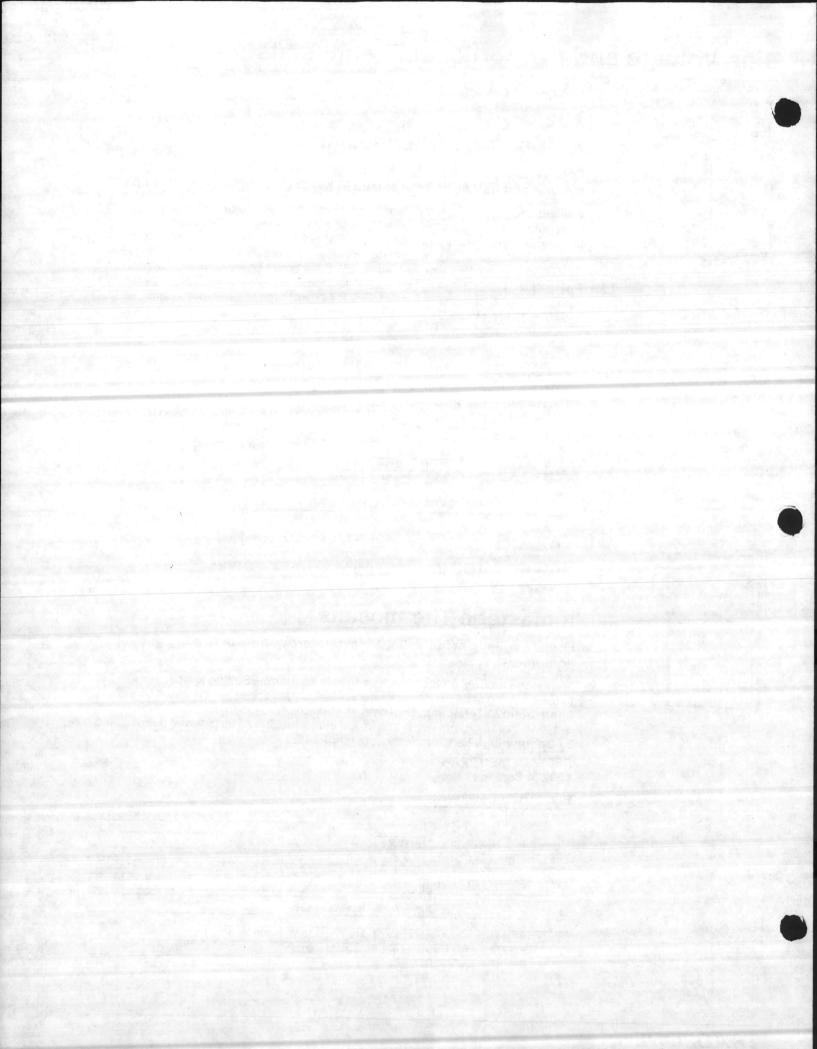
2.1.13

T42A,B Single Stage, T42G-P Multistage Thermostats

For line voltage or low voltage temperature control of heating or cooling equipment.

Multistage models control 2 or 3 circuits in sequence. Setting knob is removable to lock setting at desired temperature. Mercury switches are actuated by vapor-filled bellows element. Die-cast metal cover. Approximate Dimensions: 5-11/16 in. [144 mm] high, 3-3/8 in. [86 mm] wide, 2-1/8 in. [54 mm] deep. Listed by Underwriters Laboratories Inc. (except T42B).

REPLACEMENT PART: 130224 Setting Knob.


ELECTRICAL RATINGS:

이 아이는 것 같은 것을 가지?	al fair a	Inductiv	e Load		1997
Model	ac		d	c	
Number	120 V	240 V	115 V	230 V	
T42A	7.4	3.7	2.4	1.2	-
T42B	2.0	1.0	2.0	1.0	
T42G,H,J,K,L,M,N,P	1.0	0.5	1.0	0.5	-
and the second	1000	Resisti	ve Load	A STATE	
	a	C	d	c	
	120 V	240 V	115 V	230 V	
T42G,H,J,K,L,M,N,P	2.0	1.0	2.0	1.0	

continued next page

158

Line Voltage and Proportional Thermostats

T42A,B T42G-P continued

ACCESSORIES: 23394B Guard, metal, locking. 138541A Mounting Plate—23394B to outlet box. See Thermostat Guards in RESIDENTIAL CONTROLS section, pages 373-374.

Order	North States	-		A STATE AND A STATE	Differential	in the state of the	S. Salara Sec.
Number	Cantal		nge	Per	Interstage		
	Control	F	C	F	C	F	
T42A1052	1-stage heat	40-80	4-27	2.0-3.0, fixed	1.1-1.7, fixed	-	C
T42B1027	1-stage cool	60-100	16-38	2.0-3.0, fixed	1.1-1.7. fixed		-
T42B1035	1-stage cool	40-80	4-27	2-5, fixed	1.1-2.8. fixed	-	-
T42G1026	3-stage cool	60-100	16-38	3.0	1.7		-
T42H1073	2-stage heat	60-100	16-38	1.0 ^a		2.0ª	1.1ª
T42H1081	2-stage heat	40-80	4-27	1.0 ^a	0.5	1.0-5.0	0.6-2.8
T42H1099	2-stage heat	60-100	16-38	1.0ª	6.0	1.0-5.0	0.6-2.8
T42J1078	2-stage cool	60-100	16-38	3.0	0.6ª	1.0-5.0	0.6-2.8
T42J1094C	2-stage cool	59-95	15-35		1_#	1.0-5.0	0.6-2.8
T42K1084	1-stage heat	60-100		3.0	1.7	1.0-5.0	0.6-2.8
	1-stage cool	60-100	16-38	1.0	0.6	1.0-5.0	0.6-2.8
T42K1092			1	3.0	1.7		0.0-2.0
1421(1092	1-stage heat	40- 80	4-27	1.0	0.6	1.0-5.0	0000
740144000	1-stage cool	de la constante	and the second second	3.0	1.7	1.0-5.0	0.6-2.8
T42M1023	3-stage heat	60-100	16-38	2.0	1.1	2.0a	
T42M1031	3-stage heat	40-80	4-27	2.0	1.1		1.1ª
T42N1020C	2-stage heat	59-95	15-35	2.0	1.1	2.0a	1.1ª
	1-stage cool		1999 S. 1993			2.0a	1.1a
T42N1038	2-stage heat	60-100	16-38	2.0	11		and the second
	1-stage cool			2.0	1.1	2.0a	1.1a
T42P1018	1-stage heat	60-100	16-38	2.0	1.1		•
	2-stage cool	40			1.1	b	b

Nonadjustable.

^b2 F [1.1 C] between cool stages; 5.5 F [3.1 C] between cool stage 1 and heat stage.

^CCelsius model.

T921A-E Proportioning Thermostats

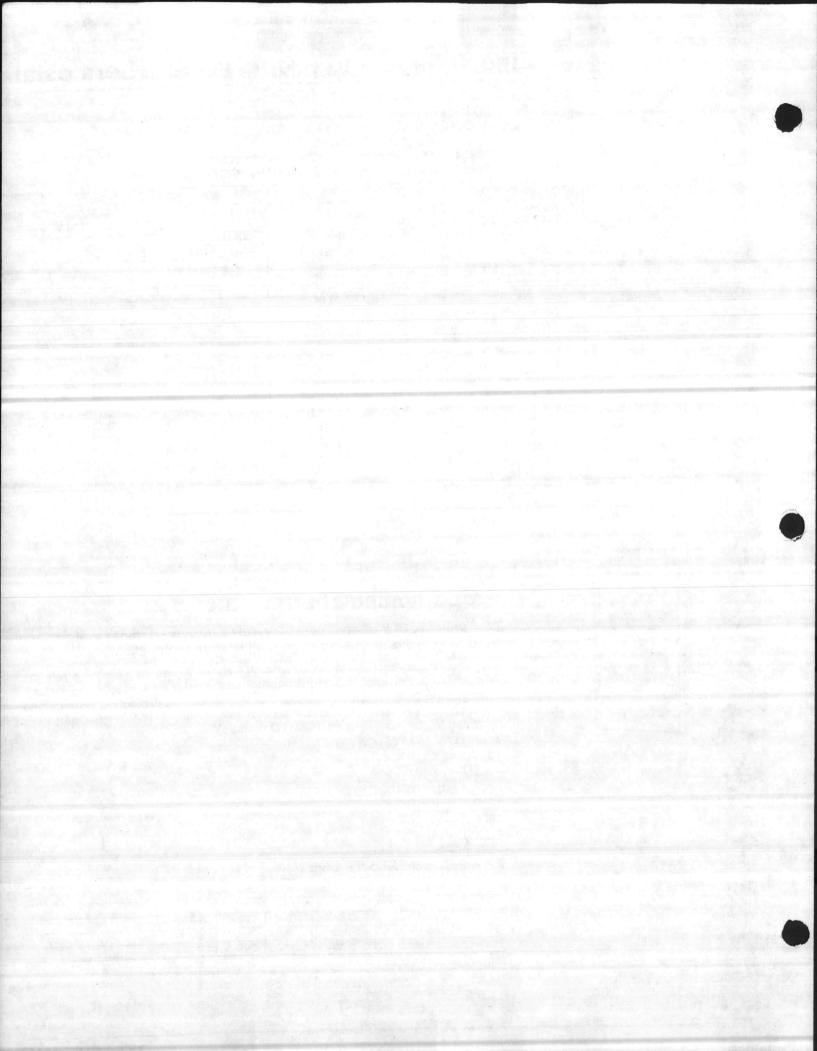
Low voltage, 3-wire controllers for valve motors, damper motors, and balancing relays in heating or cooling system applications.

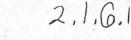
Bellows element adjusts the potentiometer slider to regulate motor operation. Removable setting knob prevents unauthorized tampering with set point. Refer to the ordering table below for application of models. Approximate Dimensions: 5-11/16 in [144 mm] high, 3-3/8 in. [86 mm] wide, 2-1/4 in. [57 mm] deep (2-11/16 in. [68 mm] deep on T921C,D models). AUXILIARY SWITCH DIFFERENTIAL:

T921C—2 F [1.1 C]. T921D—1 F [0.6 C].

REPLACEMENT PARTS: 130224 Setting Knob. 100655A-01370 Cover.

ELECTRICAL RATINGS:


Voltage-24 to 30 Vac.


Auxiliary Switch Contact Ratings (A)-

T92C	R	-W	R	-B	1.28
T92D	R	-В		-W	
	120 V	240 V	120 V	240 V	 Sec.
Full Load	8	4	4	2	
Locked Rotor	48	24	24	12	 S

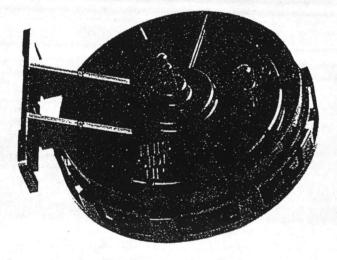
Pilot Duty-125 VA.

continued next page

DIFFERENTIAL PRESSURE TRANSMITTER

Robertshaw &

SP



GENERAL DESCRIPTION

These transmitters are used to sense and transmit differential pressure across fans, coils, filters, or between two reference points, to a remote location and can be used to sense either static or velocity pressure differentials. They may be used with receiver-controllers, receiver gauges, and/or sensitive switching pneumatic relays and pressure switches.

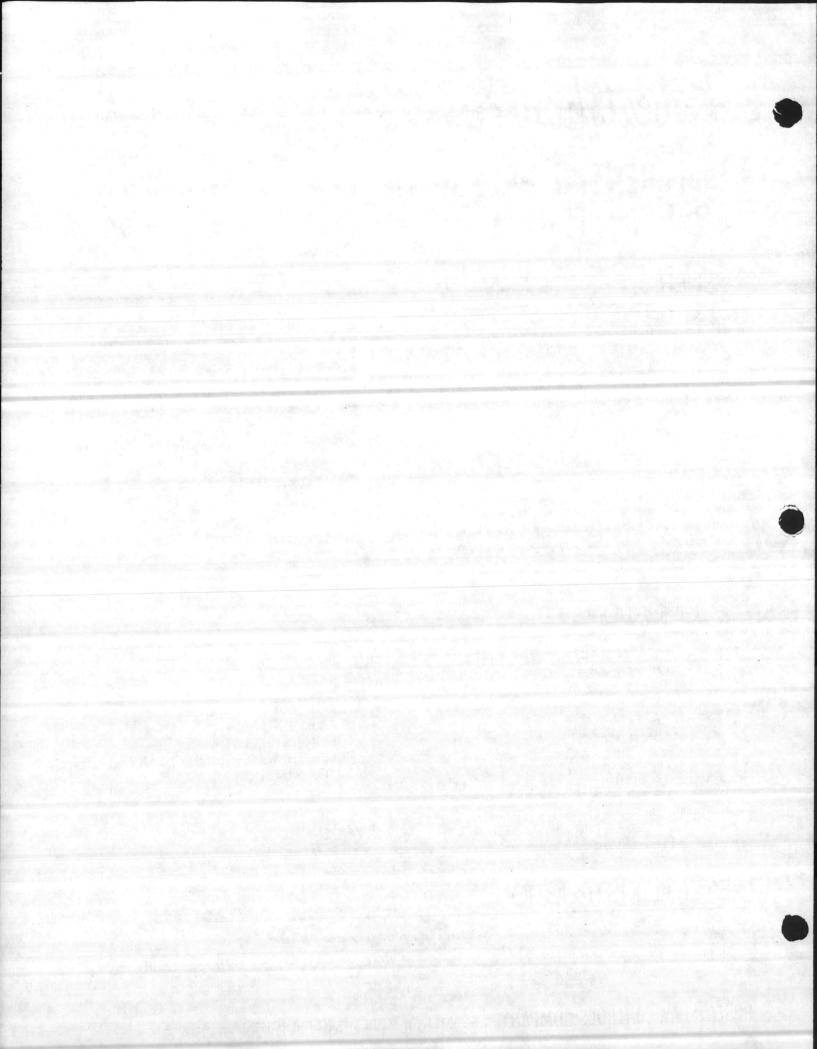
These devices are one-pipe force-balance transmitters with pneumatic feedback and require an external restrictor in the supply line.

The P323 differential pressure transmitter is made in several ranges, as noted below. The transmitter must be ordered in the range to fit the desired application, since there is no range adjustment supplied.

SPECIFICATIONS

MODEL	DIFFERENTIAL PRESSURE RANGE	
	(static or velocity)	
P323-002	50.05" to +0.20" H ₀ 0	
	$(0.13 \text{ to } +0.51 \text{ cm H}_{-}0)$	
£323-01	0.5"-to +0.5" H ₂ 0	
	$(-1.27 \text{ to } +1.27 \text{ cm H}_{0}0)$	
P323-03	0" to 3" H ₂ 0	
	$(0 \text{ to } 14.22 \text{ cm H}_0)$	
P323-10	<u>0" to 10" H20</u>	
	$(0 \text{ to } 25.4 \text{ cm H}_00)$	
AIR PRES	SURE: 20 psig (138 kPa) operating	
	30 psig (207 kPa) maximum	
OUTPUT:	3-15 psig (20.7-103.5 kPa) for stated span.	
	/ the optimity	

DIMENSIONS: See Figure 1. WEIGHT: 8 ounces (227 g). ORDERING INFORMATION: Specify: Model Number ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY


or office noted below.

GENERAL INSTRUCTIONS

1. To be used with clean, dry control air only. Do not use on any other medium.

2. This transmitter must be mountéd in a horizontal position. Be sure the correct side is up as noted on the device.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. D. BOX 27606 - RICHMOND, VIRGINIA 23251

INSTALLATION INSTRUCTIONS

DIFFERENTIAL PRESSURE TRANSMITTER AIR SENSING

P323

GENERAL DESCRIPTION & DIMENSIONS

P323 transmitters are "one-pipe" devices requiring an externally restricted source of constant pressure control air.

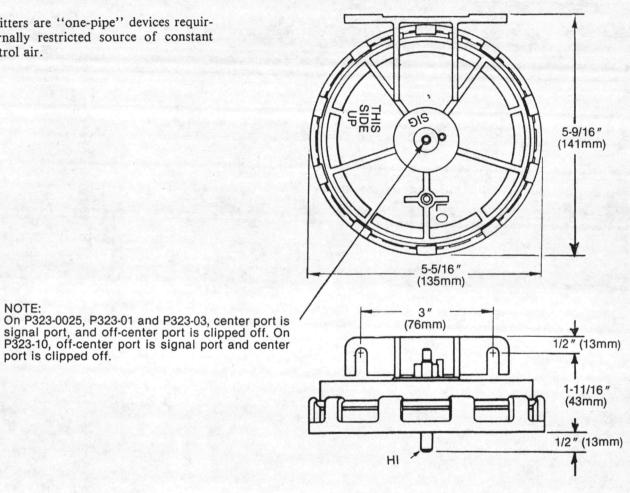
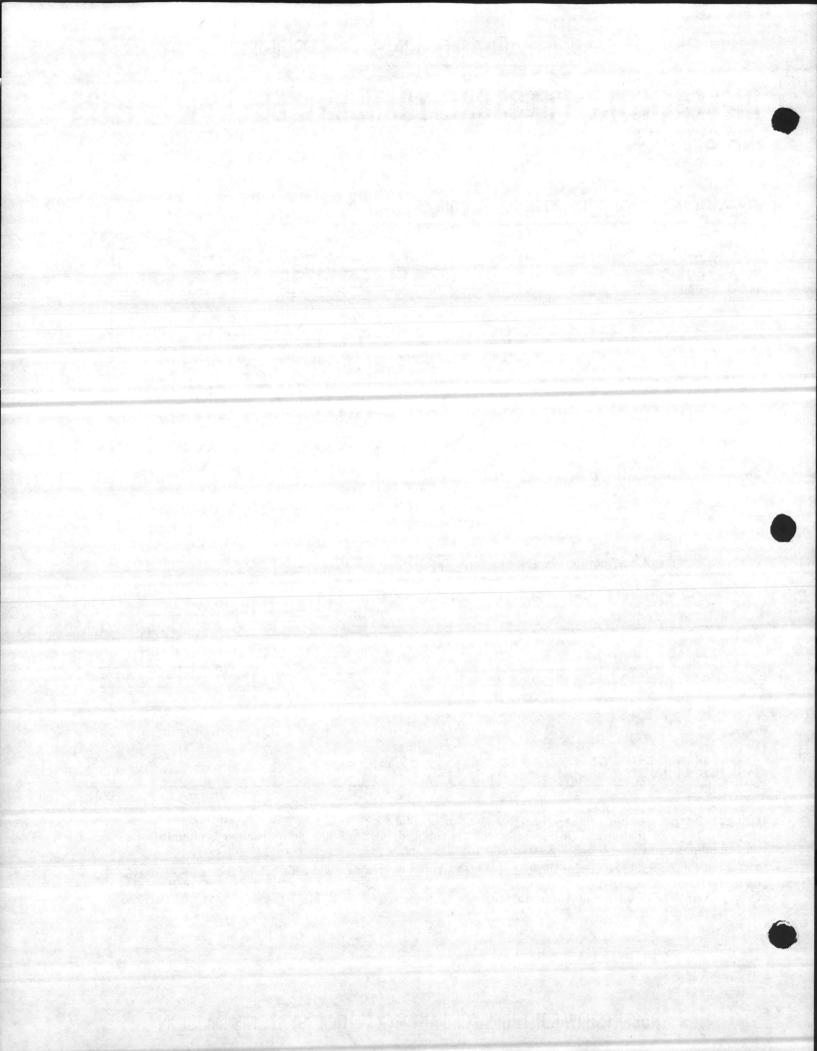


FIGURE 1 — P323 DIMENSIONS


MOUNTING

NOTE:

port is clipped off.

Using the integral mounting flange, the unit may be mounted using two machine screws or self-tapping screws (two No. 10 x 5/8" pan-head self-tapping screws are supplied). Be sure that the transmitter is mounted in a horizontal position with THIS SIDE UP on the top.

The sensing lines should be kept as short as possible and must be completely leak-free. 1/4" tubing may be used up to 200 feet; 3/8" tubing for 200-500 feet maximum. Sensing line port connections are designed to receive 3/8" O.D. polyethylene or other suitable flexible tubing.

DIFFERENTIAL PRESSURE TRANSMITTER AIR SENSING

P323

CALIBRATION

The Model P323 Temperature Transmitter measures either static or velocity pressure differentials and transmits a proportional pneumatic signal to a calibrated receiver gauge and/or receiver controller. (See Table I for complete model number descriptions.) It is a "one-pipe," force-balance transmitter which utilizes an external restrictor in its supply line. It is not intended to be field calibrated. If the output pressure does not correspond to Table II, check the following:

- 1. The air supply to the restrictor must be 20 psig ± 0.5 psi (138 kPa ± 3.4 kPa) and must be clean, dry and oil-free.
- 2. The restrictor and the device filter must be free of obstructions.
- If, after completing the above checks, the transmitter output varies from Table II, see "Adjustments."

Number	Input Pressure Range
P323-0025	-0.05" to 0.20" wg
P323-01	-0.5" to +0.5" wg
P323-03	0" to 3" wg
P323-10	0" to 10" wg

TABLE I — P323 MODEL NUMBERS

ADJUSTMENT

The P323 set points may be adjusted slightly as outlined below:

For adjustment of "zero": Remove the high pressure input line and insert a 3/32" hex wrench into the hipressure input port. Turn the adjusting screw clockwise to increase output, counterclockwise to decrease output. High input is the center hole on the side marked "THIS SIDE DOWN."

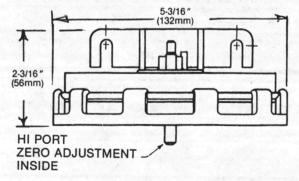
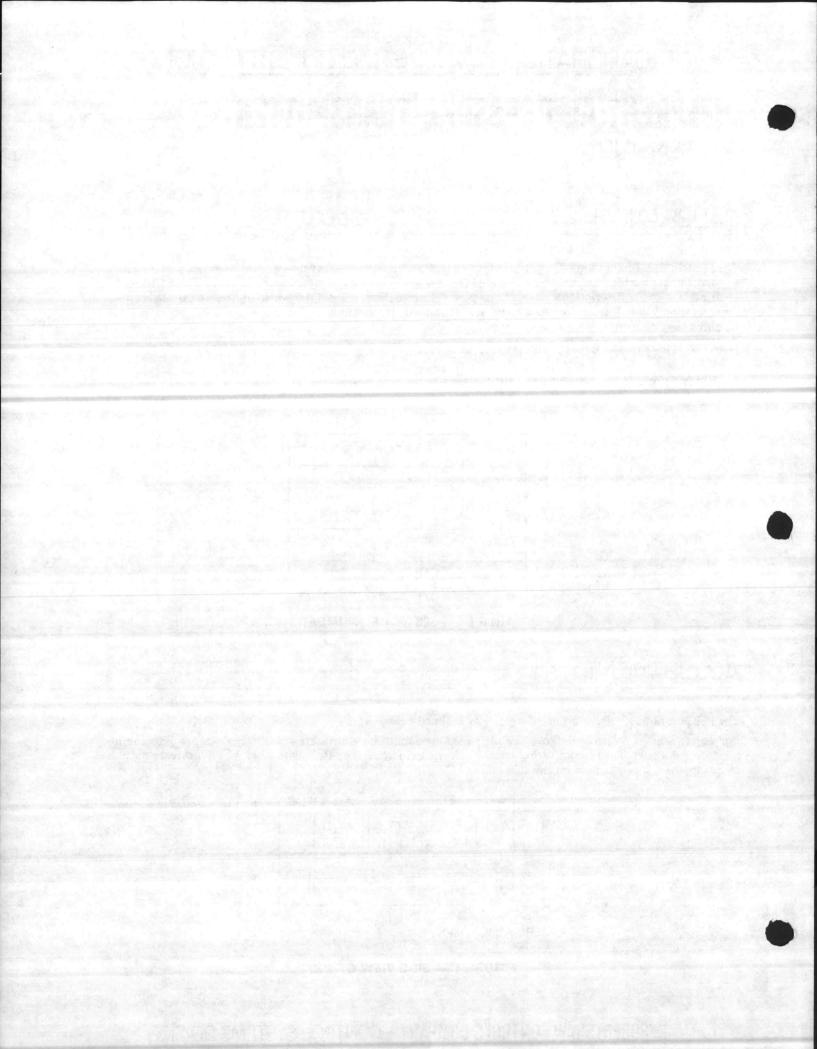
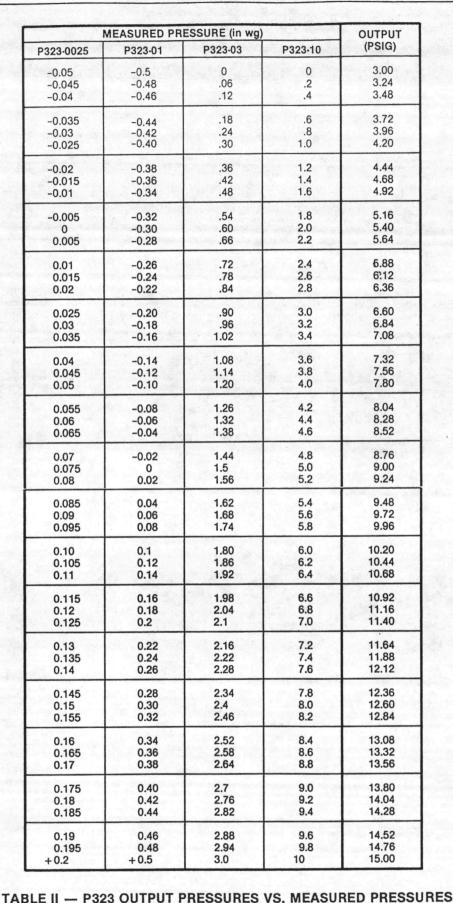
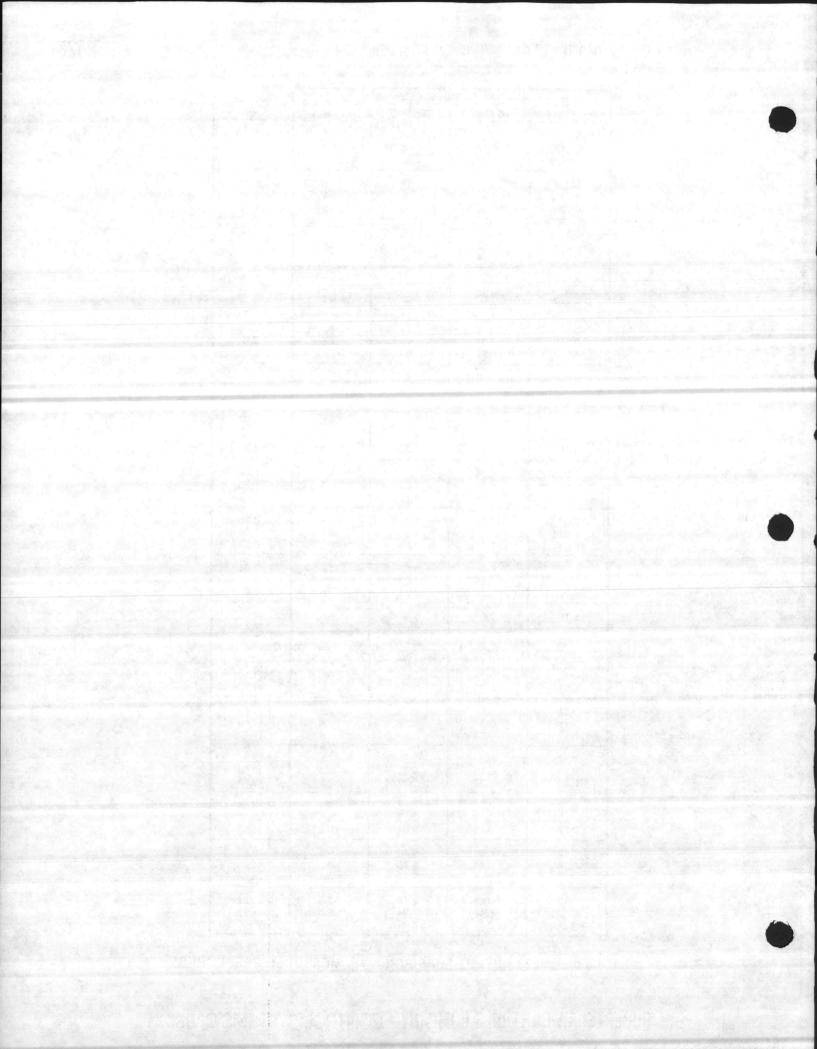
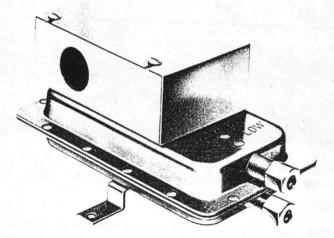




FIGURE 1 — SIDE VIEW OF P323


CALIBRATION & ADJUSTMENT INSTRUCTIONS (Continued)

P323

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION


E E MODE R436

DIFFERENTIAL PRESSURE SWITCH

GENERAL DESCRIPTION

The R436 Differential Pressure Switch is a sensitive and reliable device for remotely sensing the operation of fans or blowers associated with ducted ventilating systems, and for sensing static pressure drop across filters. Pressure differentials as small as 0.05" WC are sufficient to actuate the SPDT contacts, which in turn operate remote status indicators, alarms, or control circuits of other devices.

The R436 is field-adjustable over a wide range of pressures, and is relatively insensitive to temperature extremes. It is recommended for any differential pressure application within its operating range.

SPECIFICATIONS

MODEL NO.: R436

- CONTROL SET POINT: Field adjustable.
- SET POINT RANGE: 0.05" ± 0.02" to 12" WC (0.13 mbar ± 0.05 mbar to 29.9 mbar)
- DIFFERENTIAL: 0.02" WC (0.05 mbar), with slight increase at higher operating pressures.

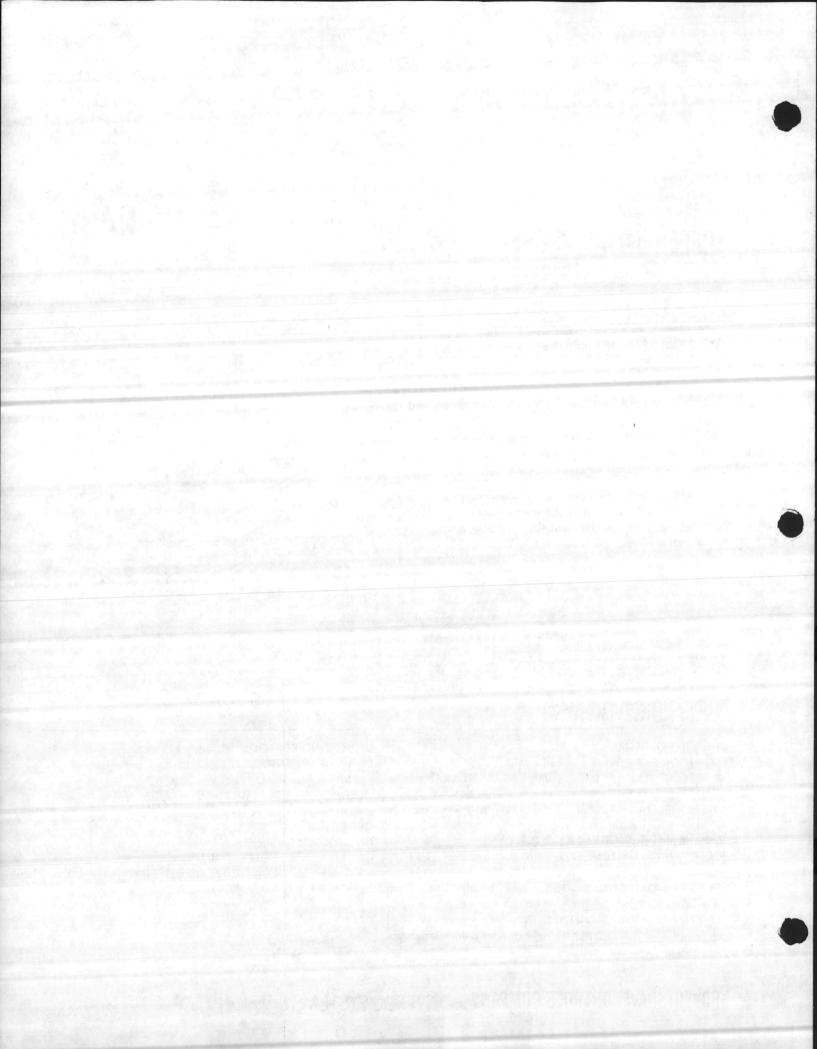
MAXIMUM PRESSURE: 0.5 psig (34.5 mbar)

- **ELECTRICAL SWITCH:** SPDT, 300 VA pilot duty at 115 to 277 V ac; 10 A non-inductive to 277 V ac.
- ELECTRICAL CONNECTIONS: screw terminals with cup washers.
- SAMPLING LINE CONNECTIONS: connectors supplied accept 1/4" (.635 cm) OD rigid or semi-rigid tubing; slipon tubing adapters available.

OPERATING POSITION: diaphragm vertical.

- CONDUIT OPENING: 7/8" (2.22 cm) diameter for 1/2" (1.27 cm) conduit.
- **OPERATING TEMPERATURE RANGE:** -40°F to 180°F. (-40°C to 82°C).

ORDERING


INFORMATION: Specify: Model Number

21,1012

ORDER FROM: Local Branch Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23261

DIFFERENTIAL PRESSURE SWITCH

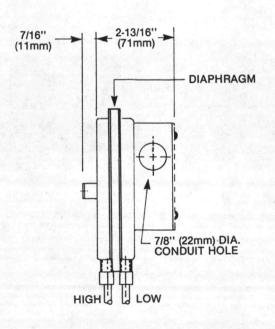
R436

GENERAL DESCRIPTION

The Model R436 differential pressure switch is designed to sense the difference between two air pressures within its range and transfer the contacts of a single-pole, double-pole electrical switch at its setpoint (adjustable). The switch contacts will make common (C) to normally closed (NC) when the sensed pressure difference is less than the setpoint and make common to normally open (NO) when the difference is greater than the setpoint plus a fixed differential.

INSTALLATION

See Figure 1 for device details.


Mounting: The R436 has an integral bracket with two mounting holes. It should be mounted with the diaphragm in a vertical plane, but the case may be rotated to any convenient position.

Sensing Tubes: The R436 is furnished with compression fittings for 1/4" (6.4mm) O.D. rigid or semi-rigid tubing and the fittings can be adapted to accept flexible The R436 is commonly used from remote monitoring of the status of fans and filters in air handling systems. The sensed pressures should not exceed 0.5 psig (27" or 686mm wg). See Table I for electrical switch ratings.

	TABLE I
R436 ELEC	CTRICAL SWITCH RATINGS
Non-Inductive	10 amp to 277 VAC
Pilot Duty	300 VA, 115 to 277 VAC

tubing. The "HIGH" port should be connected to the most positive or the least negative of the two pressures being sensed.

Electrical: The electrical switch of the R436 has screw terminals with cup washers. It is accessed by loosening two slotted screws and sliding the cover from the electrical enclosure, which has an opening for a conduit connection.

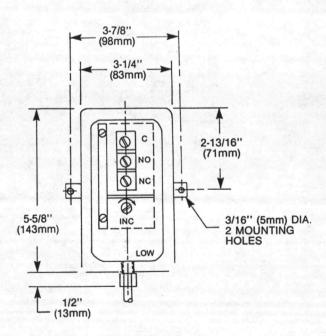
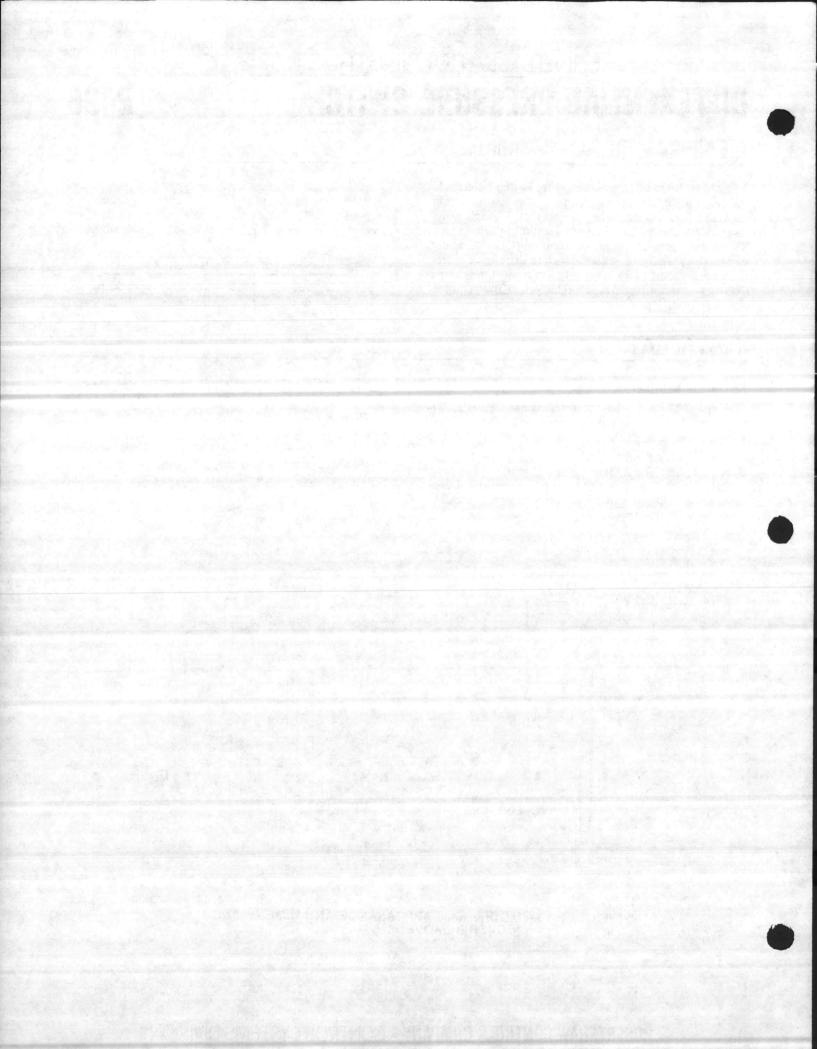



FIGURE 1 — MODEL R436 APPEARANCE AND DIMENSIONS (COVER REMOVED).

CALIBRATION & ADJUSTMENT INSTRUCTIONS

DIFFERENTIAL PRESSURE SWITCH

R436

The Model R436 differential pressure switch is designed to sense the difference between two air pressures within its range and transfer the contacts of a single-pole, double-pole electrical switch at its setpoint (adjustable). The switch contacts will make common (C) to normally closed (NC) when the sensed pressure difference is less than the setpoint and make common to normally open (NO) when the difference is greater than the setpoint plus a fixed differential.

The R436 is commonly used for remote monitoring of

ADJUSTMENT

CALIBRATION

The switching **differential** of the R436 is not field adjustable. It increases with increasing setpoint, from 0.02" (0.5mm) wg at the minimum setting to approximately 0.8" (20mm) wg at the maximum setting.

The setpoint of the R436 may be adjusted from 0.05" (1.3mm) wg to 12" (305mm) wg by means of a knurled

the status of fans and filters in air handling systems. The sensed pressures should not exceed 0.5 psig (27" or 686mm wg). See Table I for electrical switch ratings. The R436 is not factory calibrated.

	TABLE I
R436 ELECT	RICAL SWITCH RATINGS
Non-Inductive	10 amp to 277 VAC
Pilot Duty >	300 VA, 115 to 277 VAC

and slotted knob located under the enclosure cover (clockwise increases setpoint, see Figure 1). The knob is not scaled; the setpoint value must be determined by separate measurement of the pressure difference between the two sensing ports.

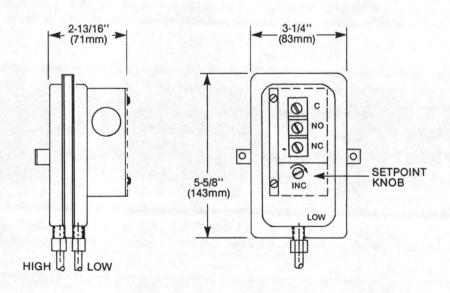
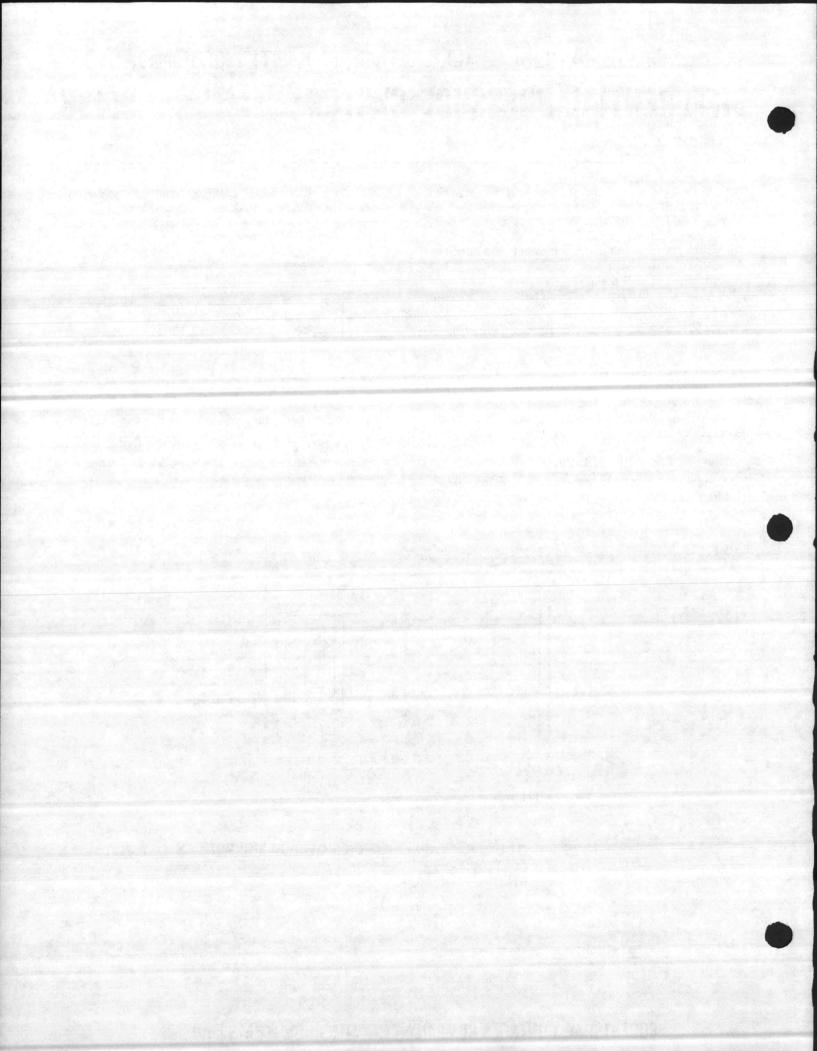
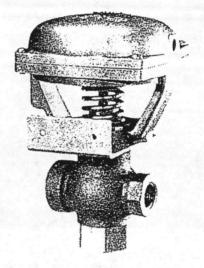



FIGURE 1 — MODEL R436 APPEARANCE (COVER REMOVED).

2,1,13

DATA Sheet Model V60


AIR SWITCHING VALVE 3-WAY

GENERAL DESCRIPTION

This value is especially designed to alternately switch either of two different air pressures to a common main and is available in $\frac{1}{2}$ " and $\frac{3}{4}$ " sizes having a quick-opening flow characteristic.

Spring-loaded packing with two U-Cups and two expanders provides a positive self-adjusting seal around the stainless steel stem.

The valve is operated by a pneumatic actuator, which includes a die-cast aluminum yoke and case and a molded rubber diaphragm.

SPECIFICATIONS

VALVE ASSEMBLY

ACTION: Top Port Normally Closed. Bottom Port Normally Open.

FLOW CHARACTERISTIC: Quick Opening.

RATING: 300 psi. (20.7 bar)

BODY: Pattern: 3-Way. Sizes: 1/2" and 1/4" NPT (12.7 and 19 mm). Connections: Female NPT. Material: Brass. Seat: Brass.

PACKING: Two spring-loaded rubber U-Cups.

VALVE TRIM: Disc: Buna-N O-Ring. Stem: Stainless Steel.

ACTUATOR ASSEMBLY

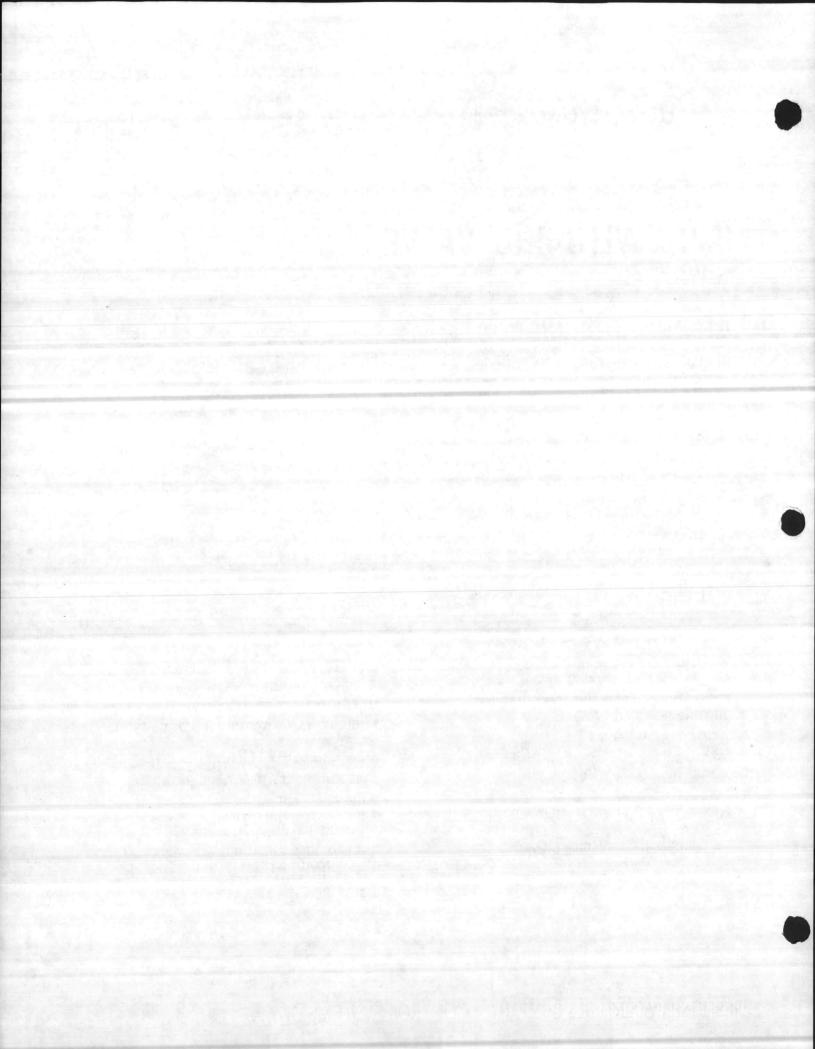
SIZE: 10 sq. in. (64.5 cm²) effective area.

ACTUATOR RANGE: Two-Position.

MAXIMUM AIR PRESSURE: 30 psi. (2.1 bar)

AMBIENT TEMPERATURE RATING: 250°F. (121°C) Maximum.

DIAPHRAGM: Molded Rubber.

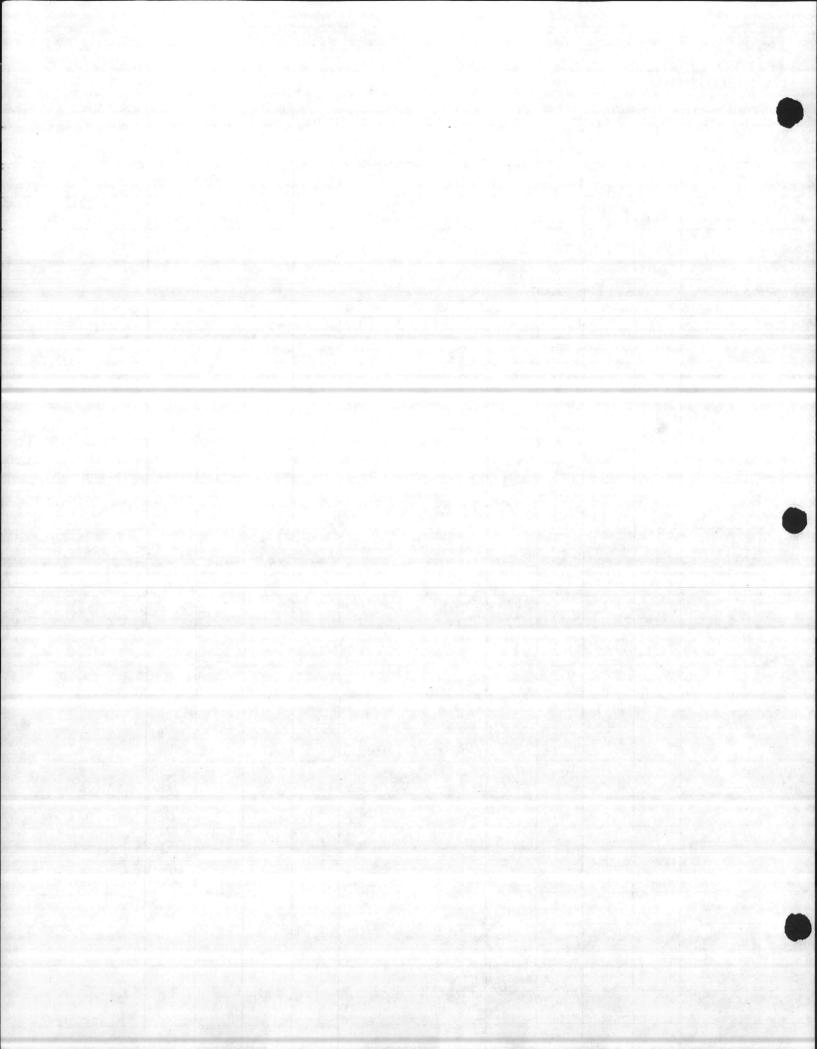

CASE AND YOKE: Dic-cast Aluminum.

SPRING: Alloy Steel, Cadmium plated.

ORDERING INFORMATION: SPECIFY: Complete Model No.

ORDER FROM: Local office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P 0 80X 27606 - RICHMOND, VIRGINIA 2325



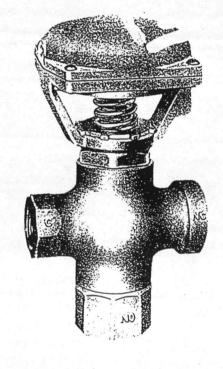
Robertshaw

JOB NO. 2750 JOB NOME<u>BEQ NER RIVER</u> GHEET 181

ONTROL SYSTEMS DIVISION

			VA	LVE	SCHEDULE				dil Saldar A			
UHIT *	HEDTING VOLVE					COOLING VOLVE						
	GPM	#/HR	N	SIZE	VOLVE HD.		GPM	CV	SIZE	VOLVE w		
STEAM CONVER, SC-1		1490	40	2"	V=700-40307 (V-1)							
STEAM CONVER. SC-2		84C	17	1	V6700-30307 (V-2)		. See .					
CHANGEOVER		244.5	280	4″	3 WAY BUTTERFLY (V-3) 3 WAY							
CHARGEOVER CI		233.7	280	4″	3 INAY BUTTERFLY (V-4)			에 아파 모네. [41] (영화)				
AHU-1		29.5	17	14	V6800-30307 (V-5)							
2		29,5	17	174"	V6800-30307 (V-6)			2.5				
3		31,5	25		V6600-35307 (V-7)							
4		33,9	25	13	V6800-35307 (V-E)					1 A.		
5		33.9	25		Y6800-35307 (V-9)							
ė	and a start	36.5	2,5	11/2	V6600-35307 (V-10)	elle - generalis						
FCU-1		11.4	9.3	1	V6800-25307 (VII)							
2		5,3	4,6	3/4	V6800-15307 (V-12)							
3		11.4	9.3	1	V6800-25307 (V13)							
4		5,3	4,6		V6800-15307 (V.14)							
5		11.1	9.3	1	VEECC - 25 307 (1-15)							
6		5,2	4.6	3/4	V6800-15307 (V.)				a a se di ta			
HEATING SYSTEM VALVE		5.2	57	3/4"	V6800-15307 (V-16) V6900-16307 (V-11)							
			2									
								¥ <				
i yanta aranda, ayaya 18 a.a. 1991 ta 19 in Stabil - ayaya 19				and a second	alfon fan gele anderer i en alfon en a Anderer yn alfon en a Andere en alfon en alf	e e berek						
		rados Science e de Registrativa de Ara		1				de seu s L'étaise		nanagalan bergerakan katalan salah sa		

DIAPHRAGM CONTROL VALVE **3-WAY MIXING**



GENERAL DESCRIPTION

This valve is especially designed for the control of either hot water or chilled water, and is available in sizes 1/2" through 2" with linear flow characteristics.

Two spring-loaded U-cups and two expanders provide a positive self-adjusting seal around the valve stem. Service life of the seal is greatly extended by the use of a stainless steel stem.

The valve is operated by a pneumatic actuator, which includes a die-cast aluminum yoke and case and a molded rubber diaphragm.

2,1,2

SPECIFICATIONS

VALVE ASSEMBLY

ACTION: Top port normally closed. Bottom port normally open.

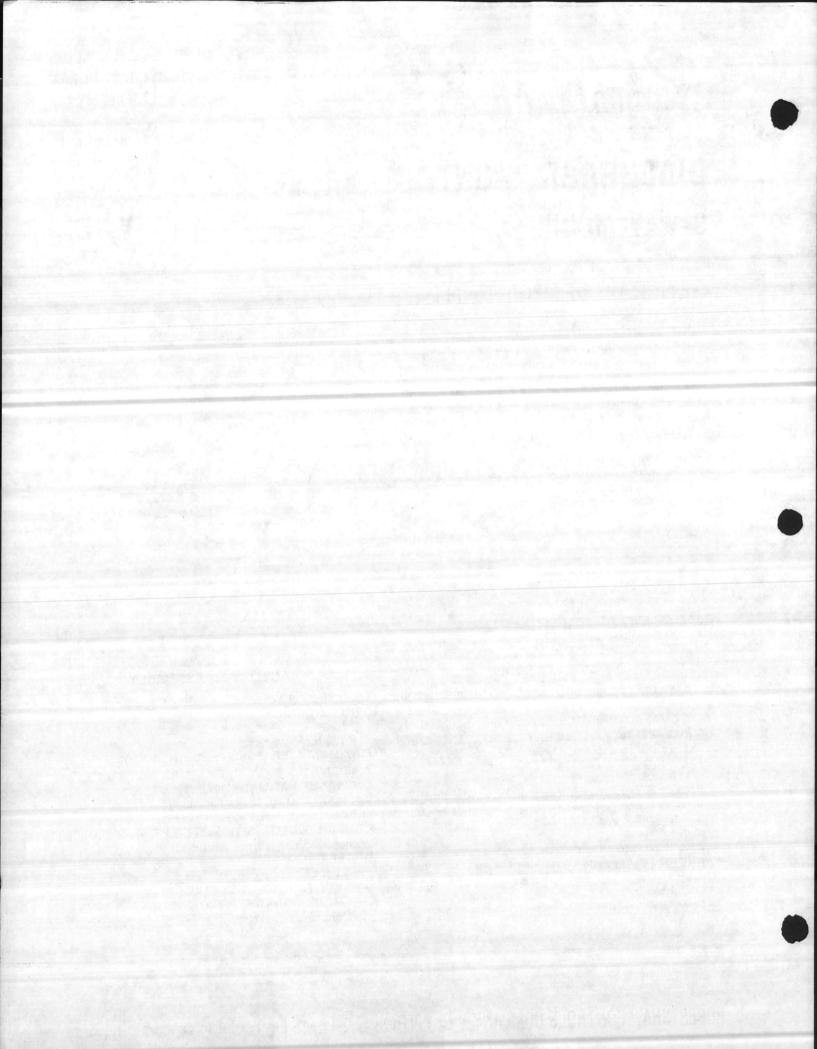
FLOW CHARACTERISTICS: Linear (Constant total flow).

RATING: ½ & ¾" sizes, 250 psi (17.2 bar), 35° to 250°F (1.6° to 121°C) water. 1" through 2" sizes, 300 psi (20.7 bar), 35° to 250°F (1.6° to 121°C) water. BODY:

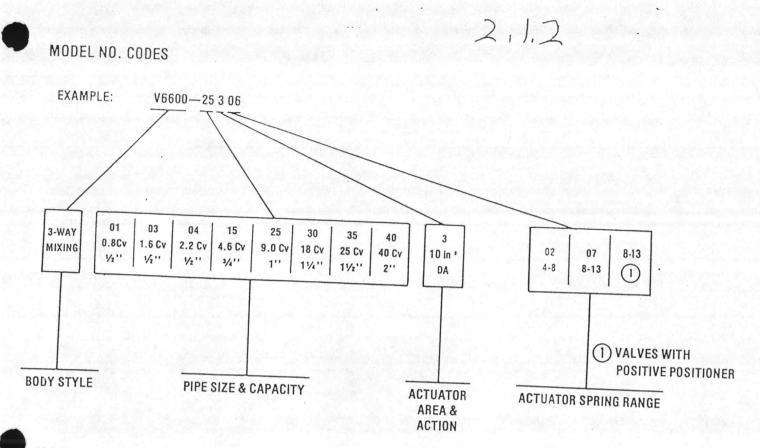
Pattern: 3-Way (integral bonnet on 1/2" and 1/4" sizes). Sizes: 1/2" through 2" (23.7 through 50.8 mm) NPT. Connections: Female NPT.

Material: Brass.

Seat: Brass, integral with body.

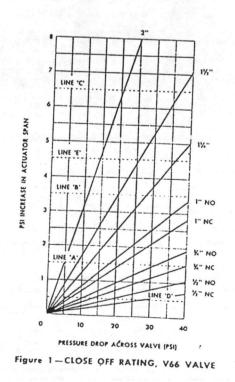

PACKING: Two spring-loaded rubber U-cups. VALVE TRIM:

Plug: Brass.


Stem: Stainless steel.

ACTUATOR ASSEMBLY SIZE: 10 sq. in. (64.5 cm²) effective area. SPRING RANGES: 4-8 psi (.28-.55 bar) 8-13 psi (.55-.90 bar) MAXIMUM AIR PRESSURE: 30 psi (2.1 bar) AMBIENT TEMPERATURE RATING: 225°F (107°C) max. DIAPHRAGM: Molded rubber. CASE AND YOKE: Die-cast aluminum. SPRING: Alloy steel, cadmium plated. ORDERING INFORMATION: SPECIFY: Model No. V6600. size and spring range or positioner. ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

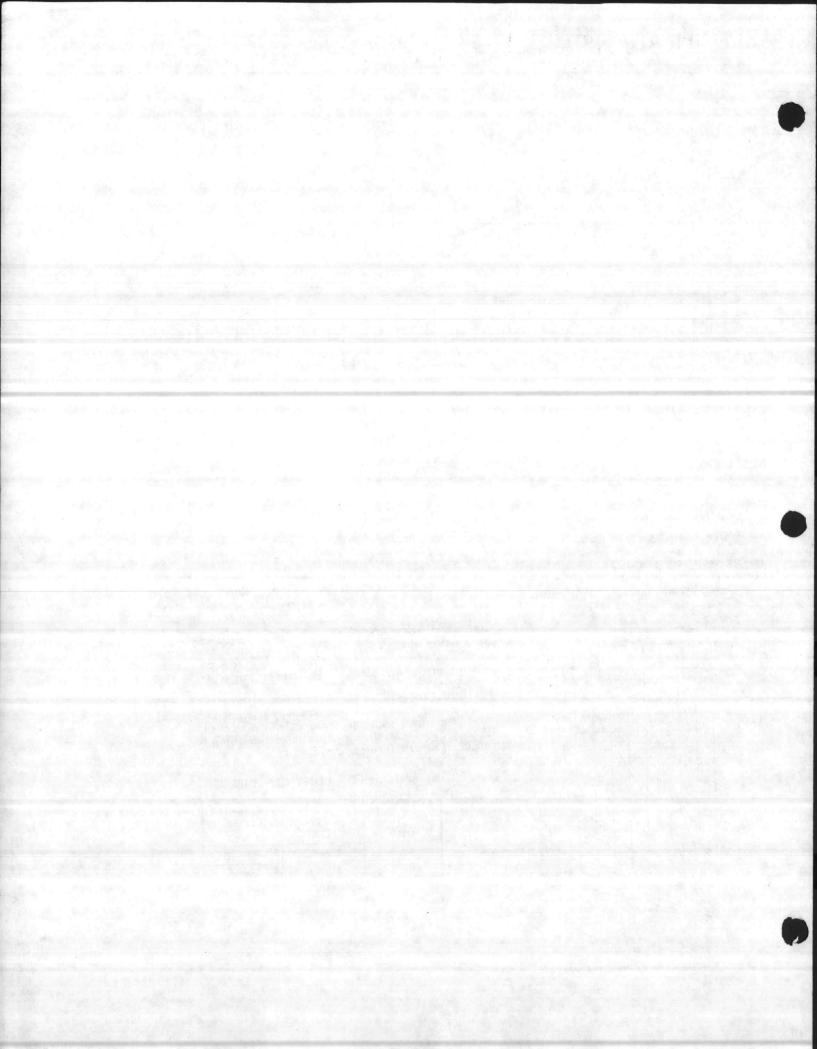
ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27605 - RICHMOND, VIRGINIA 232



SPECIFICATIONS (Continued)

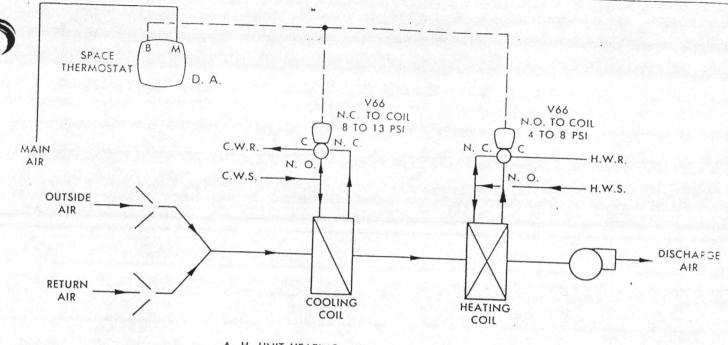
CLOSE OFF RATINGS

Pressure drop acting against the unbalanced area of the valve produces a thrust. When the pressure in the normally-open port is greater than the pressure in the normally-closed port, the additional thrust must be compensated for by additional signal pressure applied at the top limit of the actuator range.



Conversely, when the pressure in the normally-closed port is greater than the pressure in the normally-open port, the additional thrust must be compensated for by a decrease in signal pressure at the low limit of the actuator range. (See Fig. 1)

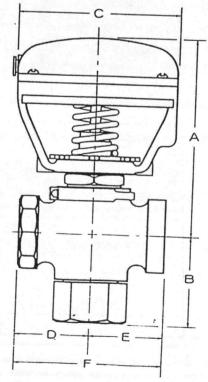
For tight close off the valve must not be operated at pressure drops greater than those designated by the intersections of the valve size curves with the appropriate line selected from Table III (See Fig. 1). Maximum allowable pressure drop for any valve (including other actuator ranges) is 40 psi.


Table III --- CLOSE OFF LINES

ACTUATOR RANGE (psi)	NORMALLY- OPEN PORT	NORMALLY- CLOSED PORT
4 - 8	Line C	Line B
8 - 13	Line A	Line C

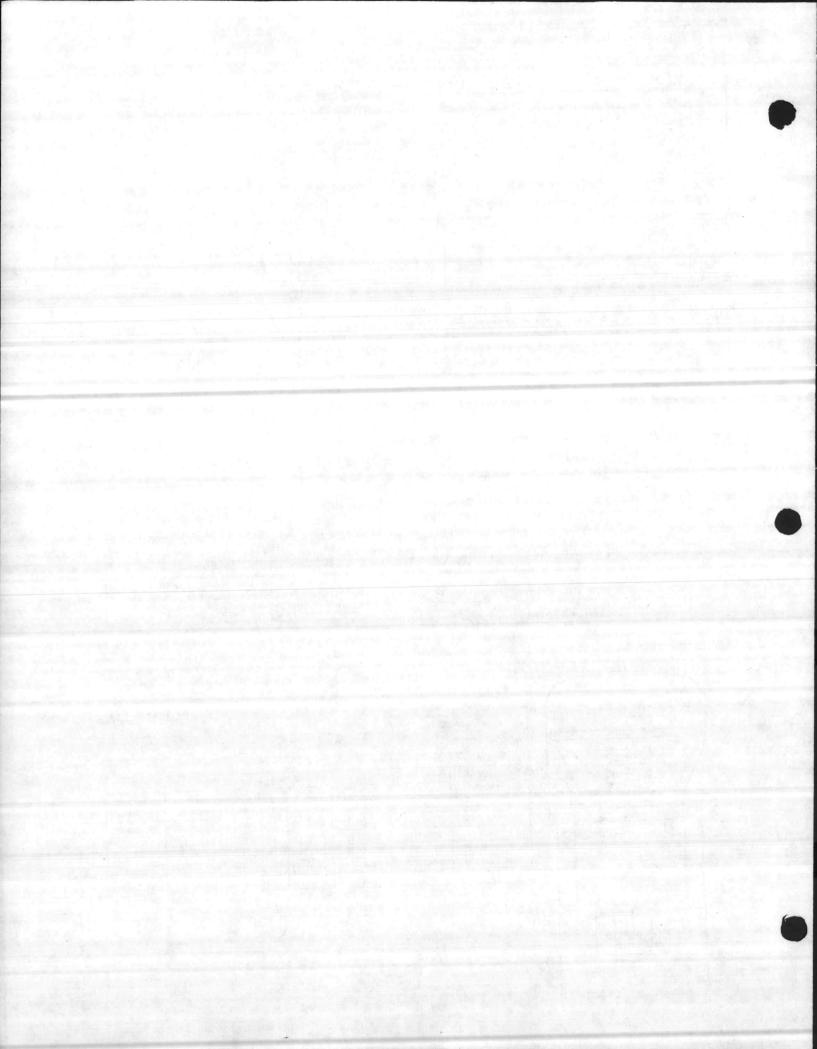
TYPICAL APPLICATION

2,1,2


A. H. UNIT HEATING AND COOLING COIL CONTROL

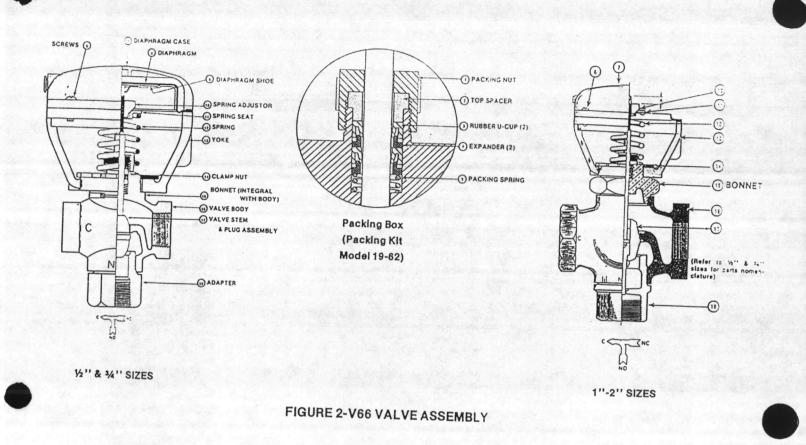
INSTALLATION

Control valves are sized to the demand of the system to be controlled and are frequently smaller than supply lines. They should be installed as close as possible to the coil being controlled. Preferably, a control valve should be installed in the vertical position so the actuator will be over the valve, but can be installed in any position if necessary.


When installing a valve, these simple precautions should be taken:

- 1. Install a pipeline strainer just ahead of the valve.
- 2. Allow sufficient clearance that the valve may be easily serviced if necessary.
- A minimum clearance of 3½" must be allowed between the extreme top of the actuator and the nearest obstruction. This permits removal of actuator yoke and parts required to replace packing.

SIZE.	al second and	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DIMENSIO	NS — in. (mm)			
in. (mm)	A	8	C	D	6		WEIGHT
Ya(12.7)	4% (116)	1'%(49.2)	4%(110)	11/ /24 01	E	F	LBS. (KG)
%(19.05)	4"% (120)			1%(34.9)	1%(34.9)	2%(69.9)	3.1 (1.41
		21/22(56.3)	4%(110)	1'%1(40.5)	1'1/12 (40.5)	3% (55.6)	3.4 (1.55)
1 (25.4)	5"/150)	3%(85.7)	4% (110)	2%(63.5)	21/2(63.5)		
1%(31.8)	5"%:(150)	3%(85.7)	4% (110)	2%(65.1)		5 (127)	6.9 (3.14)
11/2(38.1)	5"%:(150)	3%(85.7)			2% (65.1)	5%(130)	8.0 (3.64)
2 (50.8)			4% (110)	2% (65.1)	21/165.1)	5%(130)	8.0 (3.64)
- 100.01	61/160)	3"/**(96.1)	41/110)	3%(85.7)	3%(85.7)	6%(171)	16.3 (7.41


-- 3 ---

MAINTENANCE AND REPAIR

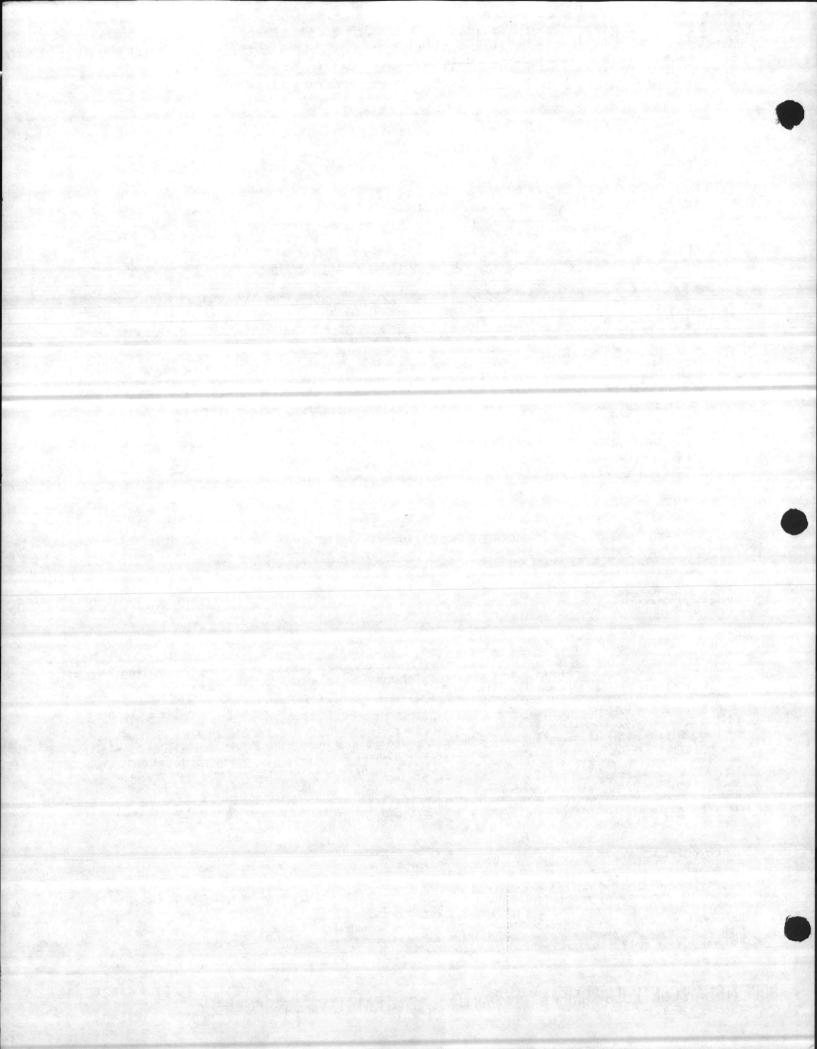
The V66 requires very little maintenance after proper installation. It is recommended that field repairs be limited to the following

21,2

PACKING REPLACEMENT

If valve stem leakage is encountered, replace the U-cup packing as follows:

- 1. Remove clamp nut (14) and lift yoke (13) and assembled parts (7, 8, 9) off valve.
- 2. Measure dimension "A" from end of stem and plug assembly (17) to top of spring adjustor (10) and record. During reassembly of the valve, this dimension must be reset $\pm 1/64$ " so as not to change the actuator range. Remove spring adjustor (10), spring seat (11), and spring (12).
- 4. Remove packing nut (1), spacer (2), U-cup packing (3), expanders (4), and packing spring (5). Be sure that the packing cavity
- 5. Drop packing spring (5) and expander (4) over stem into bottom of packing box. Apply a bead of valve seal lubricant (accessory number N6.3) around the valve stem and push one U-cup (3) over stem into packing box, thereby lubricating inside diameter of the packing and filling the annular groove in the packing with lubricant. Repeat this procedure with another expander (4) and U-cup (3) packing, taking care with U-cup not to damage the sealing lip. Drop top spacer (2) over stem and screw on pack-
- 6. Reassemble spring (12), spring seat (11), and spring adjustor (10). Reset dimension "A" as recorded in step 2 above. 7. Replace yoke and assembled parts (7, 8, 9) on valve body (16) and lock in place with clamp nut (14). Make sure that end of stem is engaged in shaped hole in center of diaphragm shoe (9) during this operation.


VALVE PLUG REPLACEMENT

If indications of excessive valve seat leakage are encountered, the Stem and Plug Assembly (17) may be replaced. The packing should be replaced any time the stem and plug assembly is replaced. Replacement of parts is accomplished as follows:
Perform steps 1 through 4 under "Packing Replacement" above.
Remove adapter (18) from valve body (16). Remove old stem and plug assembly (17).

- Insert new stem and plug assembly into valve body (16) and replace adapter (18).
 Perform steps 5, 6, and 7 as listed under "Packing Replacement."

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23261

-4-

INSTALLATION INSTRUCTIONS

DIAPHRAGM CONTROL VALVE 3-WAY MIXING

GENERAL DESCRIPTION

В

1-15/16 (49)

2-7/32 (56)

3-3/8 (86)

3-3/8 (86)

3-3/8 (86)

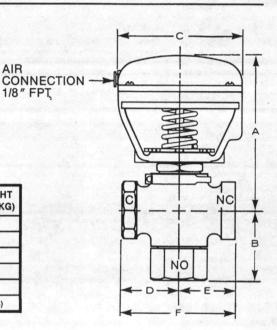
3-25/32 (96)

Model V6600 3-way pneumatic valves are designed for mixing control of hot or chilled water and have linear flow characteristics for constant total flow. Port connections are threaded (FPT).

Actuators are 10 sq. in. (64.5 cm²). Position indicators and positive positioners are optional.

С

4-5/16 (110)


4-5/16 (110)

4-5/16 (110)

4-5/16 (110)

4-5/16 (110)

4-5/16 (110)

V66

V66 DIMENSIONS	AND WEIGHTS
DIMENSIONS	— in. (mm)

D

1-3/8 (35)

2-1/2 (64)

2-9/16 (65)

2-9/16 (65)

3-3/8 (86)

1-19/32 (40)

E

1-3/8 (35)

2-1/2 (64)

2-9/16 (65)

2-9/16 (65)

3-3/8 (86)

1-19/32 (40)

F

2-3/4 (70)

3-3/16 (81)

5-1/8 (130)

5-1/8 (130)

6-3/4 (171)

5 (127)

INSTALLATION

A

4-9/16 (116)

4-23/32 (120)

5-29/32 (150)

5-29/32 (150)

5-29/32 (150)

6-5/16 (160)

SIZE

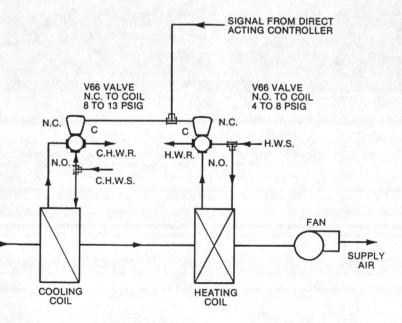
in. (mm)

1/2 (13)

3/4 (19)

1 (25)

1-1/4 (32)


1-1/2 (38)

2 (51)

Control valves are sized to the demand of the system being controlled and frequently are smaller than supply line sizes, thus requiring pipe reducers/increasers to be provided by the installer. Preferably, a control valve should be installed in the vertical position with the actuator above the valve, but it can be installed in any position if necessary.

When installing a valve, these precautions should be taken:

- Verify that flow through the valve will be in the correct direction as indicated by installation drawings and the valve flow arrows and/or port identification.
- 2. Install a pipeline strainer just ahead of the valve.
- Allow sufficient clearance to service the valve (3-1/2" [89mm] minimum above the top of the actuator).

WEIGHT

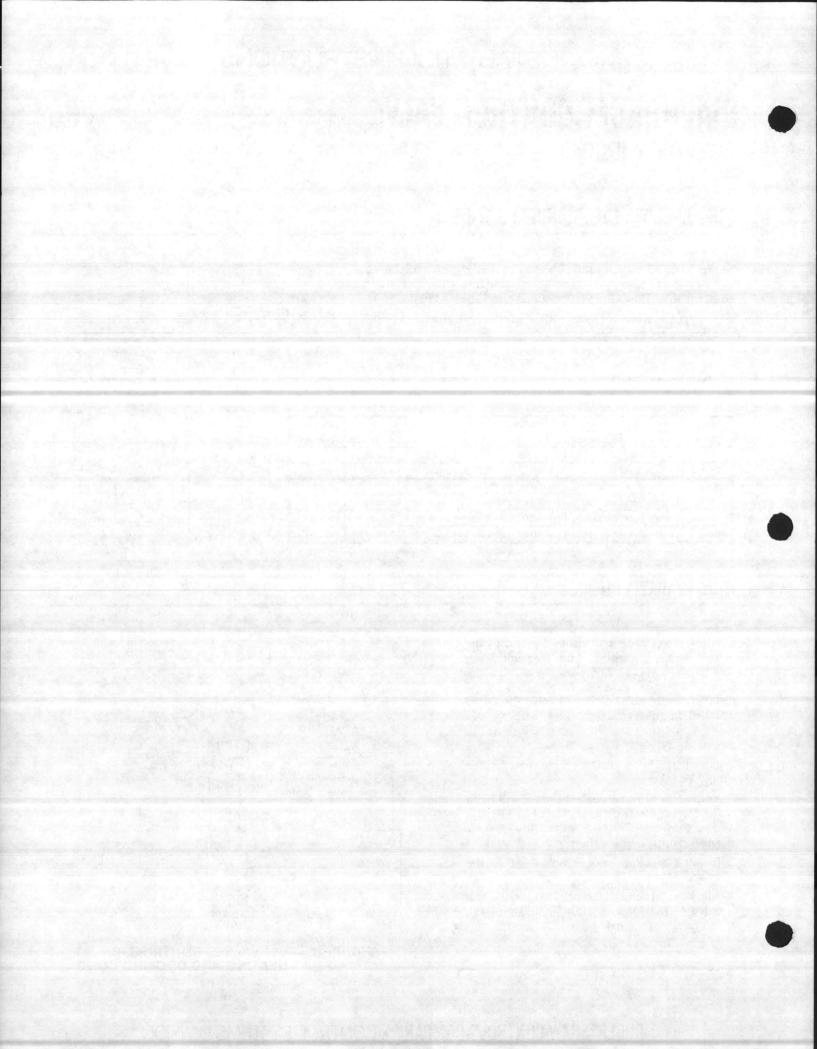
LBS. (KG)

3.1 (1.4)

3.4 (1.5)

6.9 (3.1)

8.0 (3.6)


8.0 (3.6)

16.3 (7.4)

FIGURE 1 — V66 VALVES CONTROLLING HEATING AND COOLING COILS.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION

141

CALIBRATION & ADJUSTMENT INSTRUCTIONS

DIAPHRAGM CONTROL VALVES 10 SQUARE INCH ACTUATOR

CALIBRATION

This information applies to the diaphragm actuators used with the Model V6600, V6700 and V6800 pneumatic control valves scheduled in Table I. All listed valves are furnished with a direct acting actuator of 10 sq. in. (65cm²) effective diaphragm area and are available with an optional positive positioning relay (model number suffix -xxx19) and/or an optional position indicator (model number suffix -xxxx2).

Table I lists the available actuator fixed spring ranges and the spring ranges used when the positioner option is selected. The fixed ranges are designated by model number suffix (see Data Sheets) and should be noted on installation drawings. Port connections for all models are female NPT.

AD.	JUS'	TM	ENT
-			

Spring Range: Model V6600, V6700 and V6800 actuator spring ranges are not field adjustable.

Positive Positioner (Optional): A common model of positioner is used on all listed valves (see Figures 1 and 2); however, each assembly has custom hardware described by a kit number. The positioner requires a signal connection to the "Instrument" port and a main air connection to the "Supply" port with a maximum pressure of 30 psig (207 kPa). The branch pressure from the positioner "Output" port is factory-connected to the actuator signal port. Two field adjustments are provided:

- a. The span (or throttling range) of the positioner (signal pressure change required to produce full stroke) may be adjusted by inserting a small screwdriver through an opening in the positioner cover (see Figure 2) and turning the slotted "span adjusting screw" until full stroke is obtained for the desired units of pressure change.
- b. The stroke start point of the positioner is adjusted by setting the signal pressure to the desired value and turning the "start point adjusting nut" (see Figure 2) with an open end wrench until the valve stem begins to move from its "normal" (zero pressure) position.

TABLE I	- ACTUAT	OR AVAILABILI	тү
SPRING RANGE,	MODEL	NUMBER & DE	SCRIPTION
PSIG (kPa)	V6600	V6700	V6800
	3-WAY, MIXING	2-WAY, NORMALLY CLOSED	2-WAY, NORMALLY OPEN
1-5 (7-34) 2-6 (14-41) 2-13 (14-90)	x x	x	X(P) X
4-8 (28-55) 5-9 (34-62) 7-11 (48-76)	X Xa -(P)	X	x
8-13 (55-90)	x	X(P)	X

V66

V67

V68

a - Not available for all sizes (see Model No. Book).

Used with positioner option.

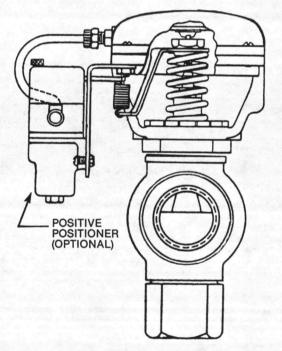
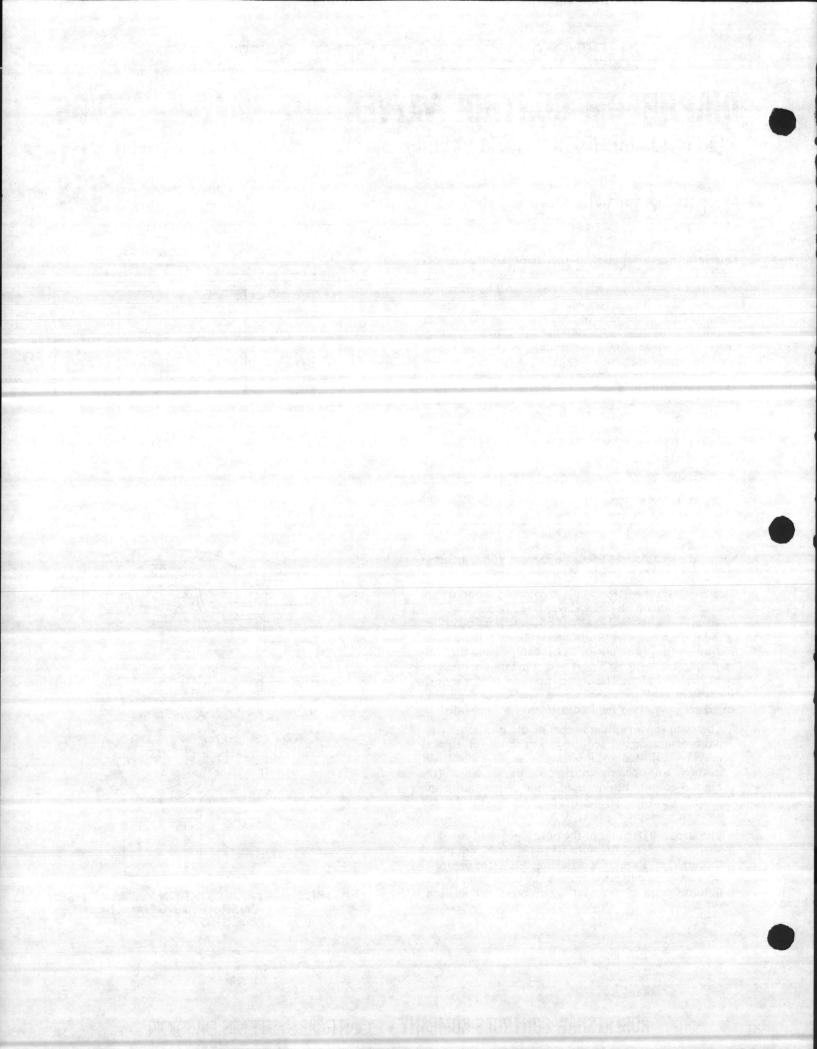



FIGURE 1 — TYPICAL OPTIONAL VALVE POSI-TIONER ARRANGEMENT (MODEL V6600 SHOWN).

MAINTENANCE AND REPAIR INSTRUCTIONS

DIAPHRAGM CONTROL VALVE

GENERAL INSTRUCTIONS

The V66 requires very little maintenance after proper installation. It is recommended that field repairs be limited to the following: (No Special Tools Required)

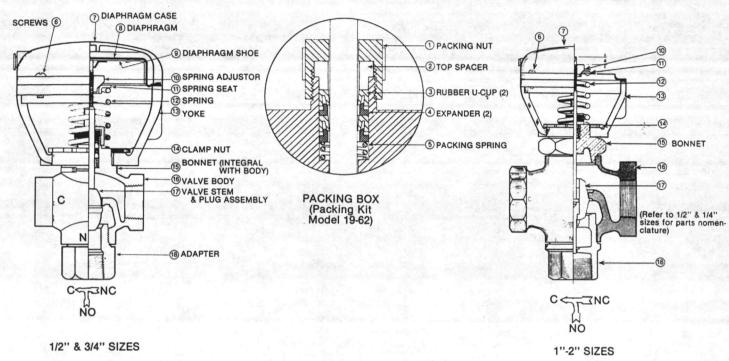
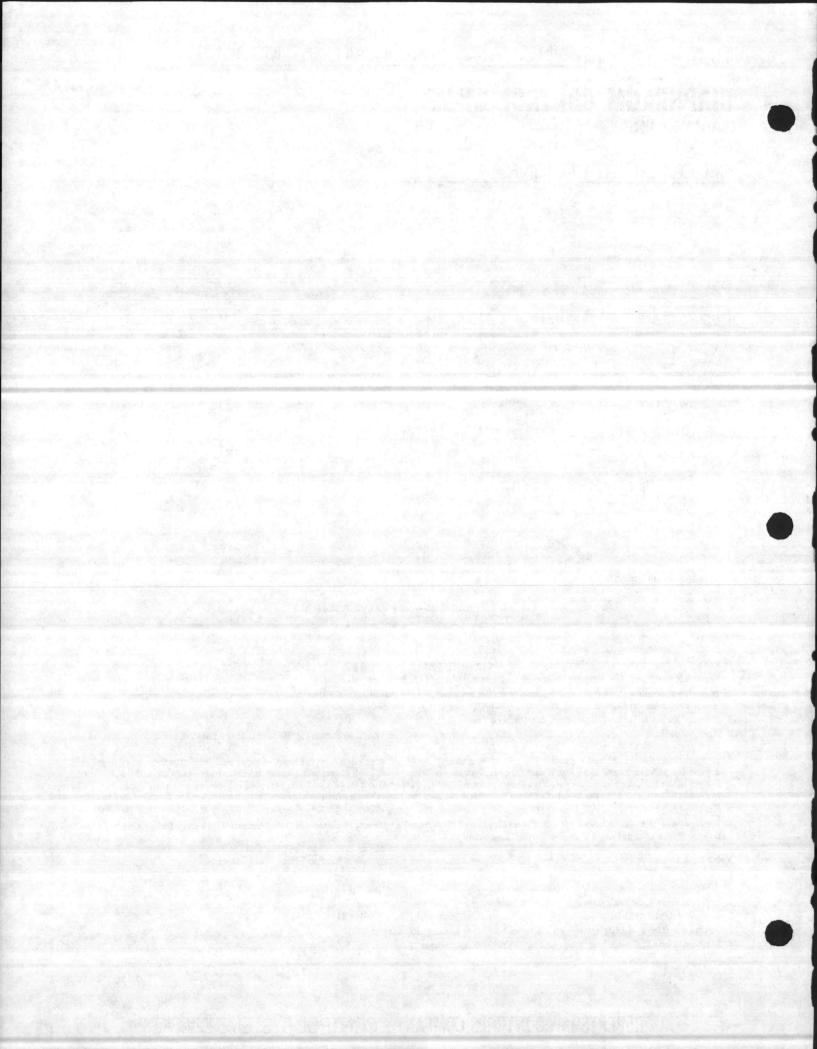


FIGURE 1 - V66 VALVE ASSEMBLY

Packing Replacement

If valve stem leakage is encountered, replace the U-cup packing as follows:

- 1. Remove Clamp Nut (14) and lift yoke (13) and assembled parts (7, 8, 9) off valve.
- 2. Measure dimension "A" from end of stem and plug assembly (17) to top of spring adjustor (10) and record. During reassembly of the valve, this dimension must be reset ±1/64" so as not to change the actuator range.
- 3. Remove spring adjustor (10), spring seat (11) and spring (12).
- 4. Remove packing nut (1), spacer (2), U-cup packing (3), expanders (4), and packing spring (5). Be sure that the packing cavity in the bonnet and the valve stem are clean.
- 5. Drop packing spring (5) and expander (4) over stem into bottom of packing box. Apply a bead of valve seal lubricant (accessory number N6-3) around the valve stem and push one U-cup (3) over stem into packing box, thereby lubricating inside diameter of the packing and filling the annular groove in the packing with lubricant. Repeat this procedure with another expander (4) and U-cup (3) packing, taking care with U-cup *not to damage the sealing lip.* Drop top spacer (2) over stem and screw on packing nut (1) to a positive stop.
- 6. Reassemble spring (12), spring seat (11), and spring adjustor (10). Reset dimension "A" as recorded in step 2 above.
- 7. Replace yoke and assembled parts (7, 8, 9) on valve body (16) and lock in place with clamp nut (14). Make sure that end of stem is engaged in shaped hole in center of diaphragm shoe (9) during this operation.


Valve Plug Replacement

If indications of excessive valve seat leakage are encountered, the Stem and Plug Assembly (17) may be replaced. The packing should be replaced any time the stem and plug assembly is replaced. Replacement of parts is accomplished as follows:

- 1. Perform steps 1 through 4 under "Packing Replacement" above.
- 2. Remove adapter (18) from valve body (16). Remove old stem and plug assembly (17).
- 3. Insert new stem and plug assembly into valve body (16) and replace adapter (18).
- 4. Perform Steps 5, 6, and 7 as listed under "Packing Replacement".

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION

V66

Kobertshaw &

2.1.2

GENERAL DESCRIPTION

These values are especially designed for the control of hot water, low pressure steam, or chilled water. The V67 $V5 \neq V67$ $V5 \neq V67$ V67 $V5 \neq V67$ V67 V67 V67 $V5 \neq V67$ V67 V67 V67 V67 V67 V67 V67 $V5 \neq V67$ V67 V67

Spring loaded packing with 2 U-cups and 2 expanders provides a positive self-adjusting seal around the valve stem.

These valves are operated by pneumatic actuators, which include a die-cast aluminum yoke and case and a molded rubber diaphragm.

SPECIFICATIONS

VALVE ASSEMBLY ACTION: V67 Normally Closed V68 Normally Open

FLOW CHARACTERISTICS: Modified equal percentage.

RATINGS: 1" through 2" sizes water, 300 psi (20.7 bar) 35 to 250°F (1.67 to 121°C); steam, 25 psi (1.7 bar) 1/2" and 3/4" sizes water, 250 psi (17.2 bar) 35 to 250°F (1.67 to 121°C); steam, 25 psi (1.7 bar)

BODY:

Pattern: Straight Through Sizes: 1/2" through 2" NPT (1.27 through 5.08 cm) Connections: Female NPT inlet and outlet Material: Brass; 300 psi body rating Seat: Brass, integral with body Packing: Spring-logded rubbes 11

Packing: Spring-loaded rubber U-cups. VALVE TRIM:

> Plug: Brass Disc: Renewable EP rubber Stem: Stainless steel Back Scat: V68 only, rubber O-ring.

TABLE I - VALVE CODE

	-	123.0	i anes	Sec.	S	IZE A	NDO	Cv		-		nallije
Model	10,000		1/2					3/4"	1"	1%	1%"	2"
			Cv					Cv		Cv	Cv	Cv
V67	0.6		1.2		1.8	2.2		5.7	9.3	17	25	40
V68		0.9		1.6		2.2	4.6		9.3	17	25	40
Code	013	023	033	043	053	063	153	163	253	303	353	403

DATA SHEET Model V67 & V68

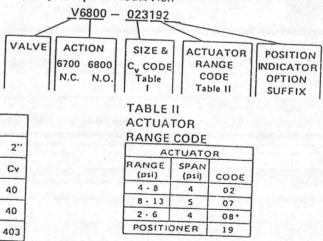
ACTUATOR ASSEMBLY ACTION: Direct Acting

SIZE: 10 sq. in. (64.5 cm²) effective area

ACTUATOR RANGES:

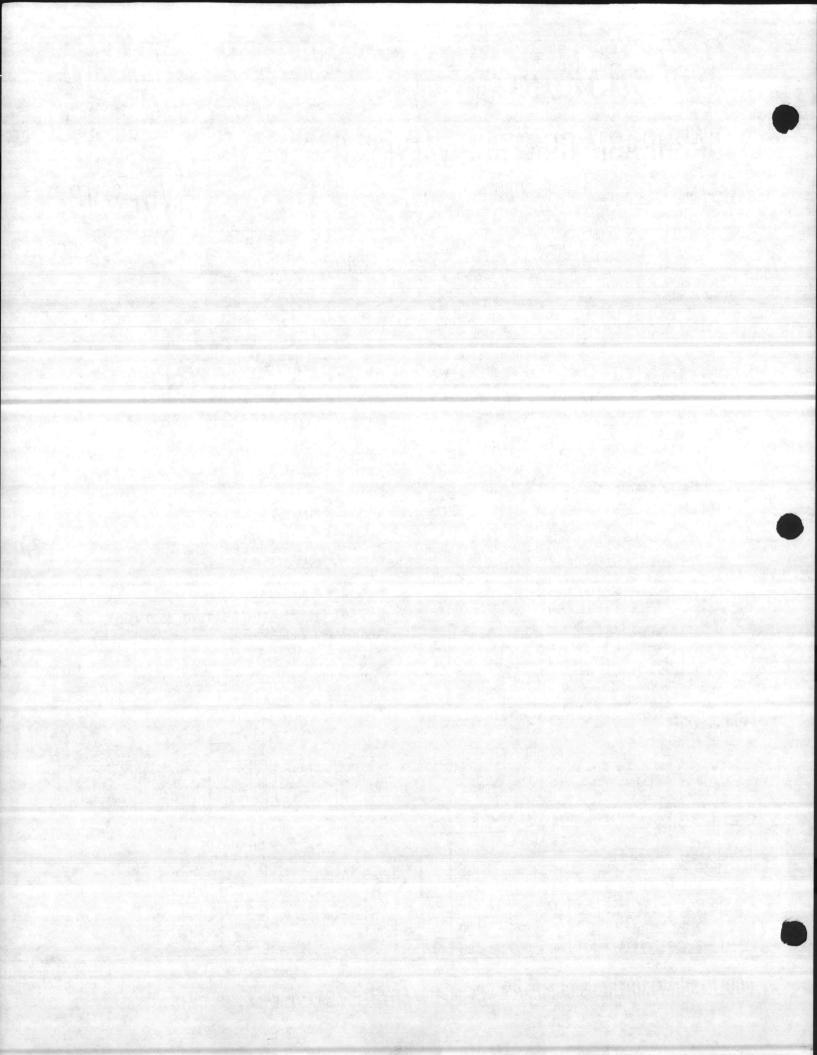
4-8 psig (.28..55 bar),V67 only 8-13 psig (.55..90 bar), V67 and V68 2-6 psig (.14..41 bar), V68 only

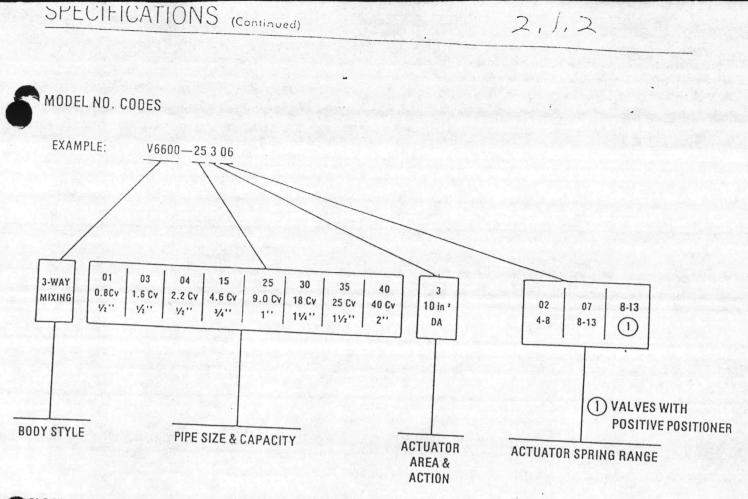
MAXIMUM AIR PRESSURE: 30 psig (2.1 bar)


AMBIENT TEMPERATURE RATING: 250°F (121°C) max.

DIAPHRAGM: Molded Rubber

CASE & YOKE: Dic-cast aluminum

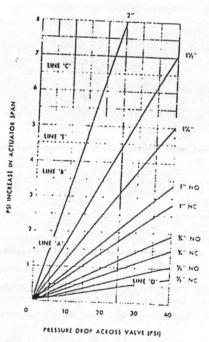

SPRING: Alloy steel, cadmium plated

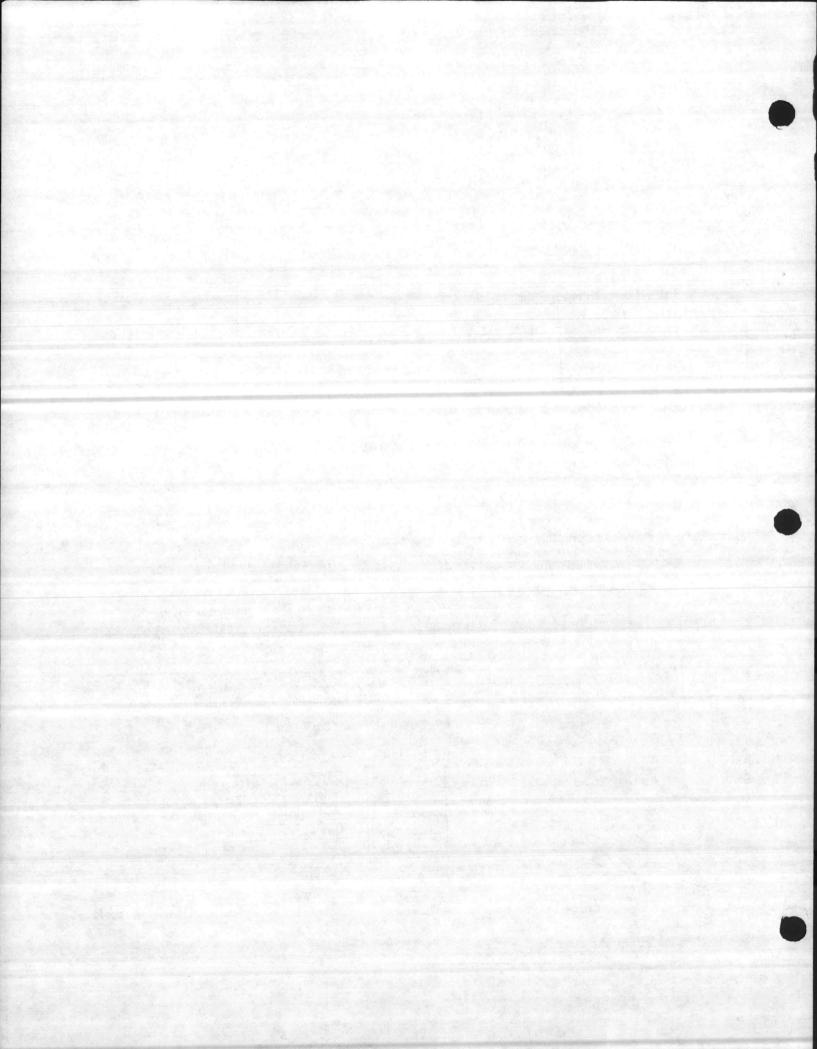

ORDERING INFORMATION: Specify Complete Model No.:

NOTE: V68 only

CLOSE OFF RATINGS

Pressure drop acting against the unbalanced area of the valve produces a thrust. When the pressure in the normally-open port is greater than the pressure in the normally-closed port, the additional thrust must be compensated for by additional signal pressure applied at the top limit of the actuator range.




Figure 1-CLOSE OFF RATING, V66 VALVE

Conversely, when the pressure in the normally-closed port is greater than the pressure in the normally-open port, the additional thrust must be compensated for by a decrease in signal pressure at the low limit of the actuator range. (See Fig. 1)

For tight close off the valve must not be operated at pressure drops greater than those designated by the intersections of the valve size curves with the appropriate line selected from Table III (See Fig. 1). Maximum allowable pressure drop for any valve (including other actuator ranges) is 40 psi.

Table III --- CLOSE OFF LINES

ACTUATOR RANGE (psi)	NORMALLY- OPEN PORT	NORMALLY- CLOSED PORT
4 - 8	Line C	Line B
8 - 13	Line A	Line C

MAINTENANCE AND REPAIR

The V67 and V68 require little maintenance after proper installation. It is recommended that field repairs be limited to the following: (No Special Tools Required)

8 9) 8 'ı. (10) 1 9 ,1 (1) 1, 111 10 ,1' 12 1 (11 11, (13) 12 62 13 (14) 20) 14 BACKSEAT O.RING 21) N. 15) D (20) M 18) (21) 11 (16) 15 17) 18 17 16

V6800 1/2 thru 3/4" Shown

PACKING REPLACEMENT

If valve stem leakage is encountered, replace the U-cup packing (3) as follows:

- 1. Remove Clamp Nut (14) and lift Yoke (13) and assembled parts (7, 8 & 9) off valve.
- Measure dimension "A" from end of stem (16) to top of spring adjustor (10) and record. During reassembly of the valve this dimension must be reset ± 1/16" so as not to change the actuator range.
- 3. Remove spring adjustor (10), spring scat (11) and
- 4. Remove packing nut (1), top spacer (2), U-cups (3), expanders (4), and packing spring (5). Be sure the packing box in bonnet (20) and d
- packing box in bonnet (20) and the valve stem (16)

5. Drop packing spring (5) and expander (4) over stem into bottom of packing box. Apply a bead of valve seal lubricant, accessory number N6-3, around the valve stem and push 1 U-cup (3) over stem into packing box, thereby lubricating the inside diameter of the packing and filling the annular groove in the packing with lubricant. Repeat this procedure with another expander (4) and U-cup packing (3) taking care with U-cup not to damage the scaling lip. Drop top spacer (2) over stem, and screw on packing nut (1) to a positive stop.

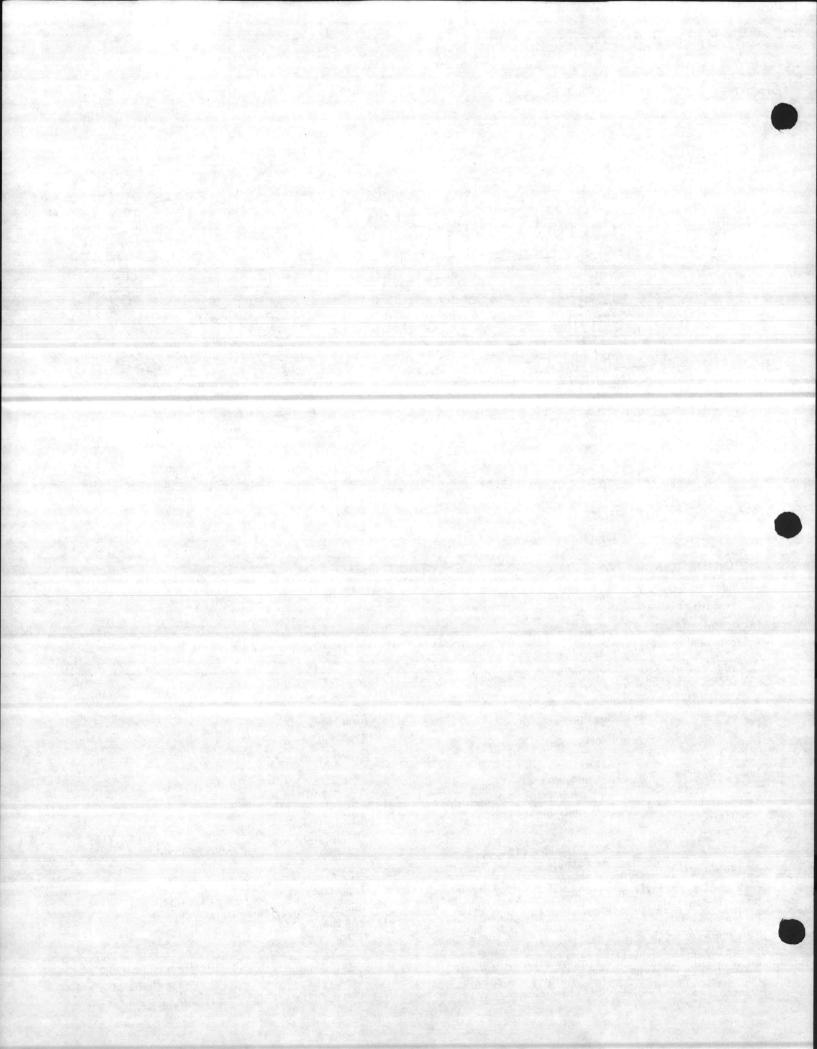
V6800 VALVE ASSEMBLY V6800 (1" thru 2")

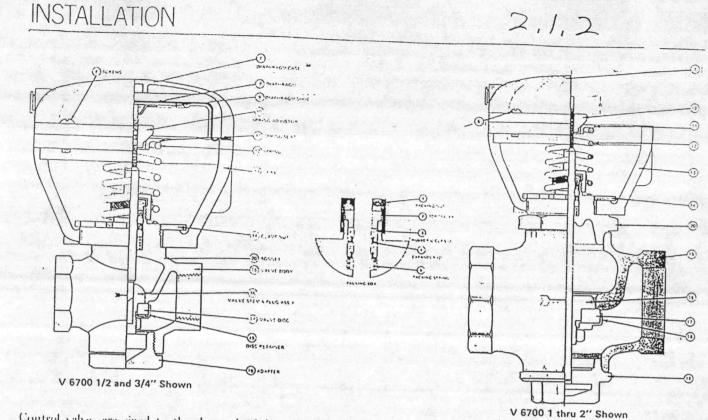
VALVE PLUG REPLACEMENT

If indications of excessive valve seat leakage are encountered, the stem and plug assembly (16) may be replaced. (Details 18 (Disc Retainer) and (17) Valve Disc may be ordered separately if desired). The packing should be replaced anytime the stem and plug assembly (16) is replaced. Replacement of parts is accomplished as follows:

(Refer to V6700 for

Nomenclature)


2,1,2

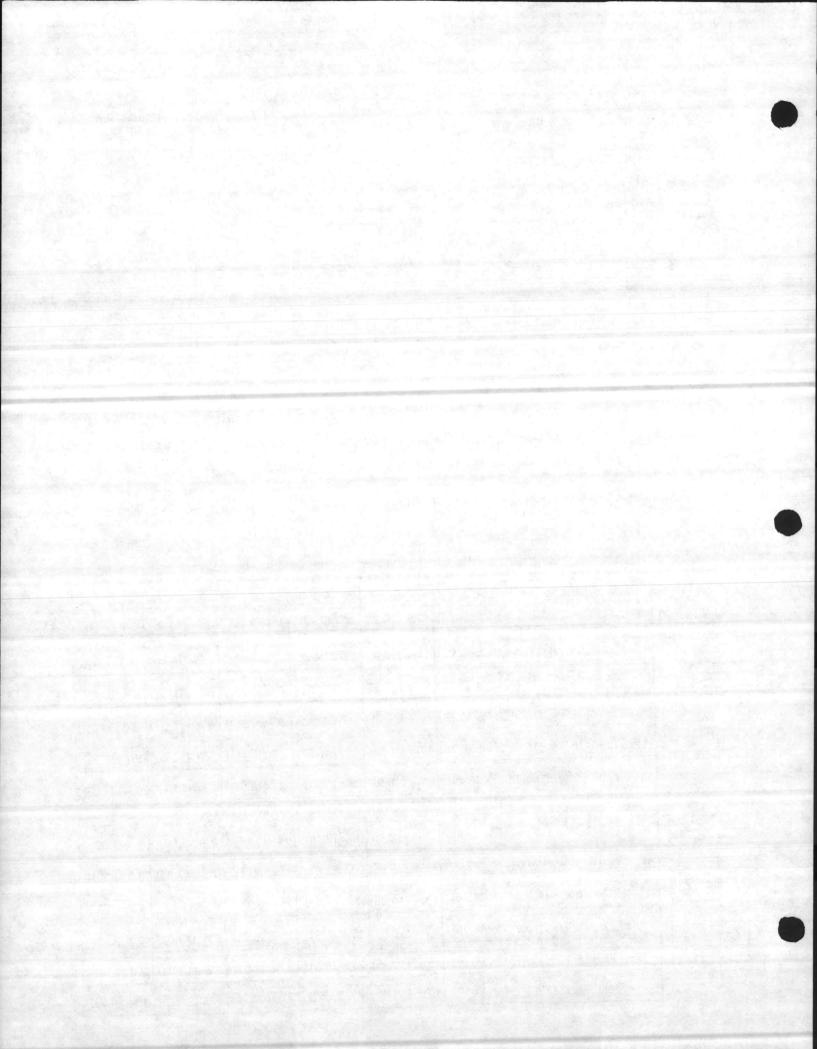

- 1. Perform Steps 1 through 4 as shown in "Packing Replacement" above.
- 2. (a) V67 Control Valves:

Remove Adapter (19) from Valve Body (15). Remove Stem and Plug Assembly.

- b) V68 Control Valves: Remove Bonnet (20) from Valve Body (15). Remove old Stem and Plug Assembly from Bonnet (20).
- 3. (a) V67 Control Valves. Insert new Stem and Plug Assembly into Valve Body (15) and replace Adapter (19)
 (b) V68 Control V 1
 - (b) V68 Control Valves. Install O-Ring Seat (21) on new Stem and Plug Assembly and assemble into Bonnet (20). Reassemble Bonnet (20) into Valve Body (15).

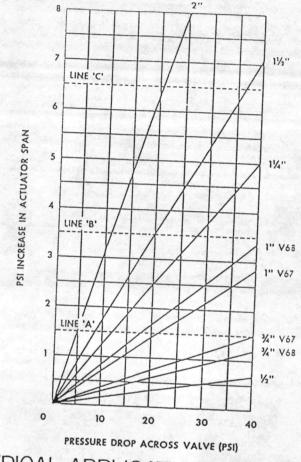
4. Perform Step 5 as listed under "Packing Replacement".

Control valves are sized to the demand of the system to be controlled and are frequently smaller than supply lines. They should be installed as close as possible to the coil being controlled. Preferably, a control valve should be installed in the vertical position so the actuator will be over the valve, but can be installed in any position if necessary. When installing a valve,


- 1. Install a pipeline strainer just ahead of the valve.
- 2. Install the valve so it closes against the flow.
- 3. Allow sufficient clearance that the valve may be easily serviced if necessary.
- 4. A minimum clearance of 31/2" must be allowed between the extreme top of the actuator and the nearest obstruction. This permits removal of actuator yoke and parts required to replace packing.

I ABLE III	V67	DIMENSIONS	AND WEIGHTS

lin	SIZE C	mlin	A cm	1:				IVIL	NSIC	1112	AN	ID N	/EIC	SHI	S			
 -	10 - S. 1 - S. 14		198. S. 199	1		n in	С	cm	-			in	E	cm	lin	F	cm	Ib. WEIGHT K
1/2	(1.2	7) 4%	6 (11.59) 119/3	2 (4.05	45/16	(10	.95)	1.3/8	(3.4	9)	1.1/8			1	(6.9		3.1 (1.41)
3/4	(1.9	1) 423/3	12 (11.99)	119/3	2 (4.05) 45/16	(10	.95)	11%3	2 (4.0	05)	1 19/32	. (4.	05)	33/1	6 (8.	10)	3.3 (1.50)
1		1.	12 (15.0)								-	21/2			5		2.7)	6.4 (2.90)
11/4	(3.175) 5 ² %	(15.0)	221/3	6.75	4.5/16	(10	95)	2%16	(6.5	1)	2%16	(6.	51)	51/8	(13.	01)	8.0 (3.63)
 1 1/2	(3.81) 52%	2 (15.0)	221/32	(6.75)	45/16	(10.	95)	2%16	(6.5	1)	2%16	(6.5	51)		1.1.1.1		8.1 (3.67)
2	(5.08)	6%16	(16.03)	27/8	(6.45)	4 \$ 16	(10.	95)	3.7/8 (8.57	,	33/8	(8.5		-			15.5 (7.03
			TA	BLE	IV	V68	DI	ME	NSIC	ONS	AN	ID N	EIC	GHT	rs			19.00
 ¥2	(1.27)	5.416	(13.17)	25/32				1			T	1 3/8 (:		T		(6.99	,	2.9 (1.32)
.¥4	(1.91)	5716	(12.86)	η,	(2.22)	4.416	(10.9	95)	1 1/2 (3.81)	1 1/2 (3	3.81			(7.6		3.0 (1.36)
1	(2.54)	529/.12	(15.0)	17/s (4.76)	4.5/16	(10.9)5)	21/2 (6.35) 2	21/2 (8	5.35		5	(12.7		5.3 (3.0)
11/4	(3.175)	529/32	(15.0)	1 7/8 (4.76)	4.5/16 (10.9	5) 2	2%16 (6.51	1 2	9/16 (6.51) 5	5 ¹ /s (13.0	1)	3.2 (3.72)
1 1/2	(3.81)	52%32	(15.0)	1 % (4	4.76)	45/16 (10.9	5) 2	2%16 (6.51	1 2	1/16 (6.51	-	1	13.0		7.8 (3.54)
2	(5.08)	6%12	(15.95)	21/8 (5	5.40)	4.5/16 (10.9	5) 3	3.7% (8	3.57)	3	¥s (8	.57)					4.5 (6.58)



RATINGS

. 2,1,2

Pressure drop acting against the unbalanced area of the valve produces a thrust. This thrust must be overcome by the actuator through the application of additional signal pressure above the top end of the signal range for normally open control valves, or by reducing the signal pressure below the bottom end of the range for normally closed control valves. In either

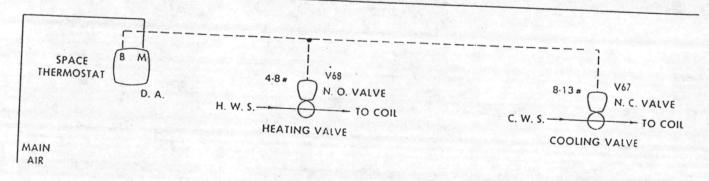
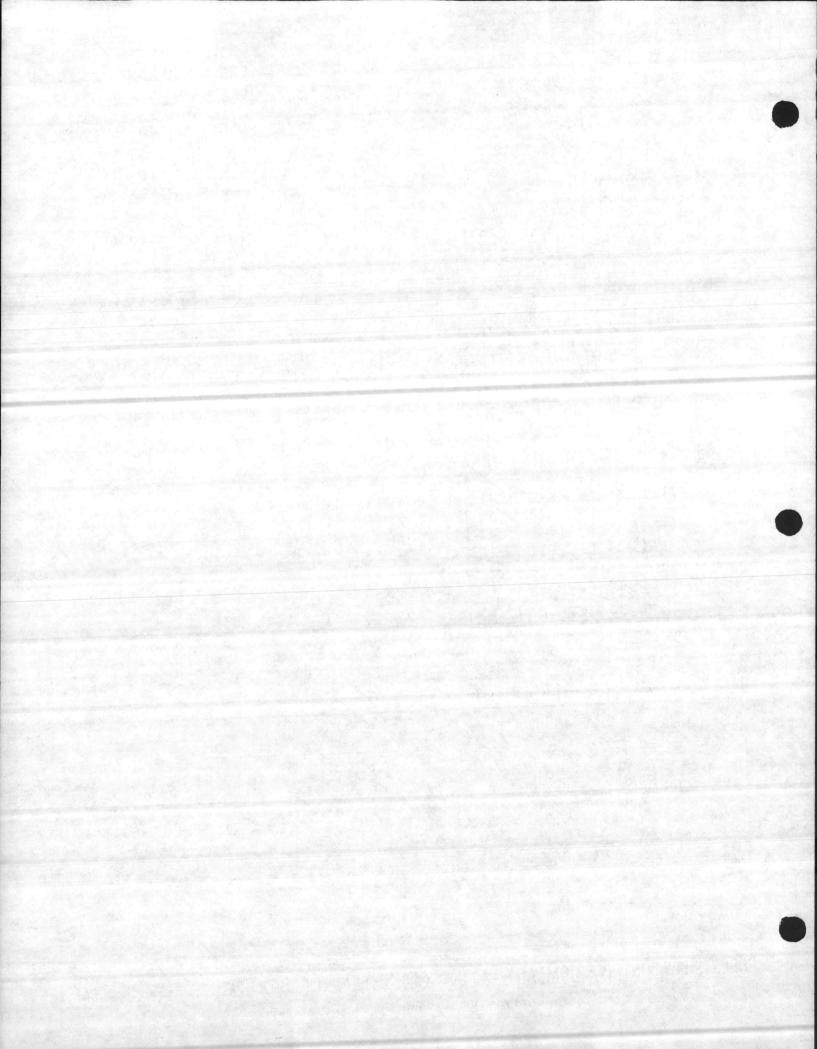

For tight close-off, the valve must not be operated at pressure drops greater than those designated by the intersections of the valve size curves with the appropriate line selected from Table V. Maximum allowable pressure drop for any valve (including

Table V - CLOSE OFF LINES

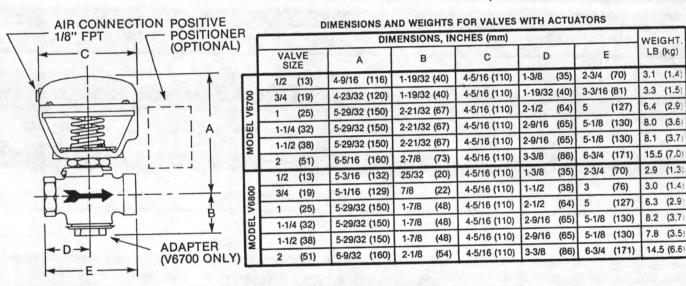
ACTUATOR RANGE	V67	V68
4 - 8	Line B	
8 - 13	Line C	Line A
2 - 6		Line C


TYPICAL APPLICATION

V67 & V68 APPLICATION

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23261 CSD FORM 052-DS-V-067/3 (Rev. 8-86)

ALL RIGHTS TO REVISE DESCRIBED DESIGN ARE RESERVED.

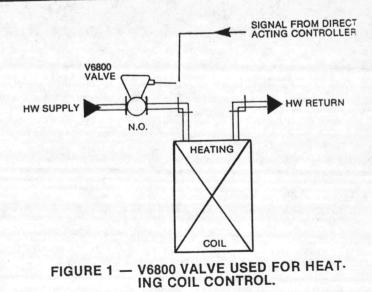

DIAPHRAGM CONTROL VALVES

V67 V68

GENERAL DESCRIPTION

These 2-way pneumatic control valves are designed for throttling control of hot or chilled water or low pressure steam and have modified equal percentage characteristics. Model V6700 is a normally closed assembly. Model V6800 is a normally open assembly. Port connections for both models are female NPT.

Actuators for both models have 10 sq. in. (65cm²) diaphragms. Positive positioners and position indicators are optional for both models.



INSTALLATION

Control valves are sized to the demand of the system being controlled and frequently are smaller than supply line sizes, thus requiring pipe reducers/increasers to be provided by the installer. Preferably, a control valve should be installed in the vertical position with the actuator above the valve, but it can be installed in any position if necessary.

When installing a valve, these precautions should be taken:

- 1. Verify that flow through the valve will be in the correct direction as indicated by installation drawings and the valve flow arrows and/or port identification.
- 2. Install a pipeline strainer just ahead of the valve.
- 3. Allow sufficient clearance to service the valve (3-1/2" [89mm] minimum above the top of the actuator).

CALIBRATION & ADJUSTMENT INSTRUCTIONS

DIAPHRAGM CONTROL VALVES 10 SQUARE INCH ACTUATOR

CALIBRATION

This information applies to the diaphragm actuators used with the Model V6600, V6700 and V6800 pneumatic control valves scheduled in Table I. All listed valves are furnished with a direct acting actuator of 10 sq. in. (65cm²) effective diaphragm area and are available with an optional positive positioning relay (model number suffix -xxx19) and/or an optional position indicator (model number suffix -xxxx2).

Table I lists the available actuator fixed spring ranges and the spring ranges used when the positioner option is selected. The fixed ranges are designated by model number suffix (see Data Sheets) and should be noted on installation drawings. Port connections for all models are female NPT.

TABLE I - ACTUATOR AVAILABILITY

V66

V67

V68

SPRING RANGE,	MODEL NUMBER & DESCRIPTION								
PSIG (kPa)	V6600	V6700	V6800						
,	3-WAY, MIXING	2-WAY, NORMALLY CLOSED	2-WAY, NORMALLY OPEN						
1-5 (7-34) 2-6 (14-41) 2-13 (14-90)	x x	x	X(P) X						
4-8 (28-55) 5-9 (34-62) 7-11 (48-76)	X Xa -(P)	x	x						
8-13 (55-90) 9-14 (62-97)	X	X(P) Xa	x						

a - Not available for all sizes (see Model No. Book).

Used with positioner option.

ADJUSTMENT

Spring Range: Model V6600, V6700 and V6800 actuator spring ranges are not field adjustable.

Positive Positioner (Optional): A common model of positioner is used on all listed valves (see Figures 1 and 2); however, each assembly has custom hardware described by a kit number. The positioner requires a signal connection to the "Instrument" port and a main air connection to the "Supply" port with a maximum pressure of 30 psig (207 kPa). The branch pressure from the positioner "Output" port is factory-connected to the actuator signal port. Two field adjustments are provided:

- a. The span (or throttling range) of the positioner (signal pressure change required to produce full stroke) may be adjusted by inserting a small screwdriver through an opening in the positioner cover (see Figure 2) and turning the slotted "span adjusting screw" until full stroke is obtained for the desired units of pressure change.
- b. The stroke start point of the positioner is adjusted by setting the signal pressure to the desired value and turning the "start point adjusting nut" (see Figure 2) with an open end wrench until the valve stem begins to move from its "normal" (zero pressure) position.

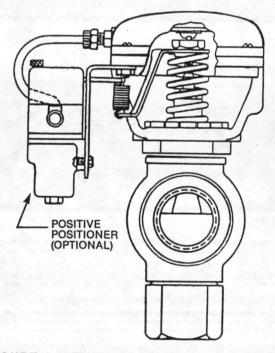
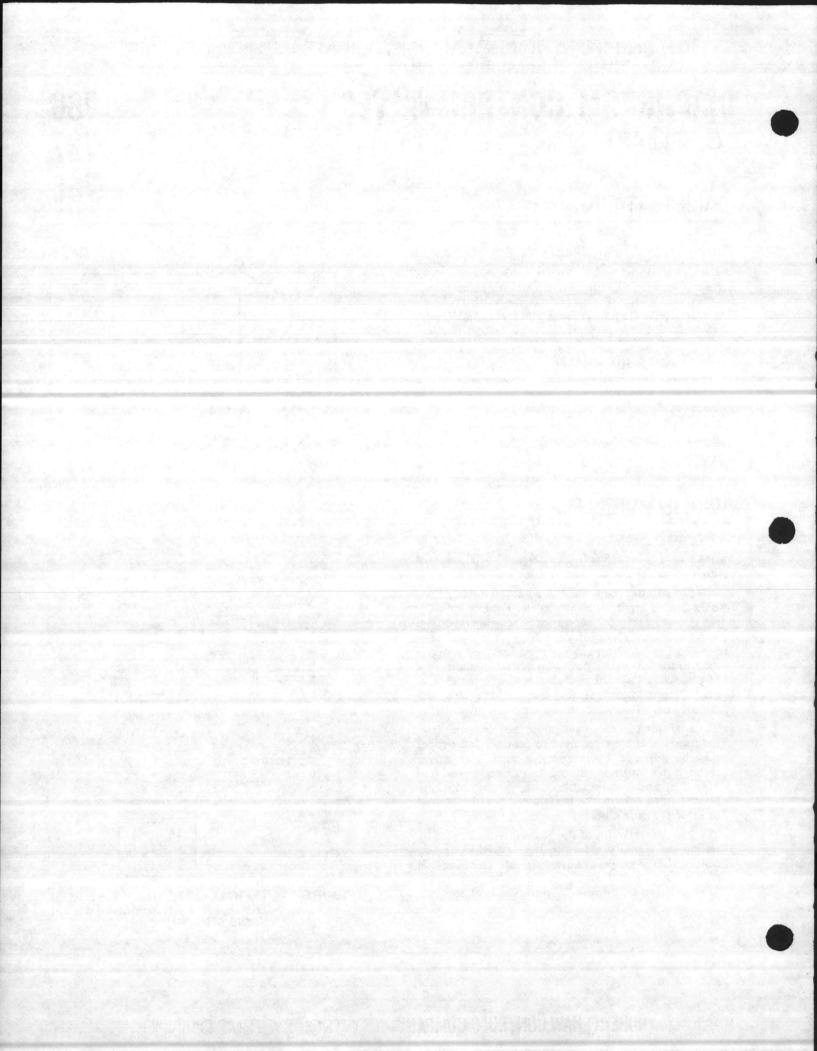



FIGURE 1 — TYPICAL OPTIONAL VALVE POSI-TIONER ARRANGEMENT (MODEL V6600 SHOWN).

ADJUSTMENT [Continued]

V66, V67 & V68

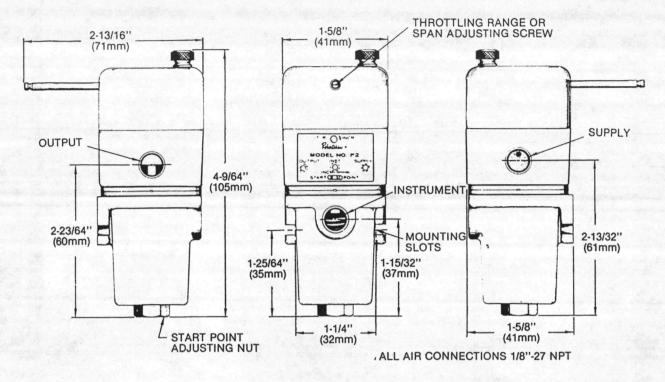
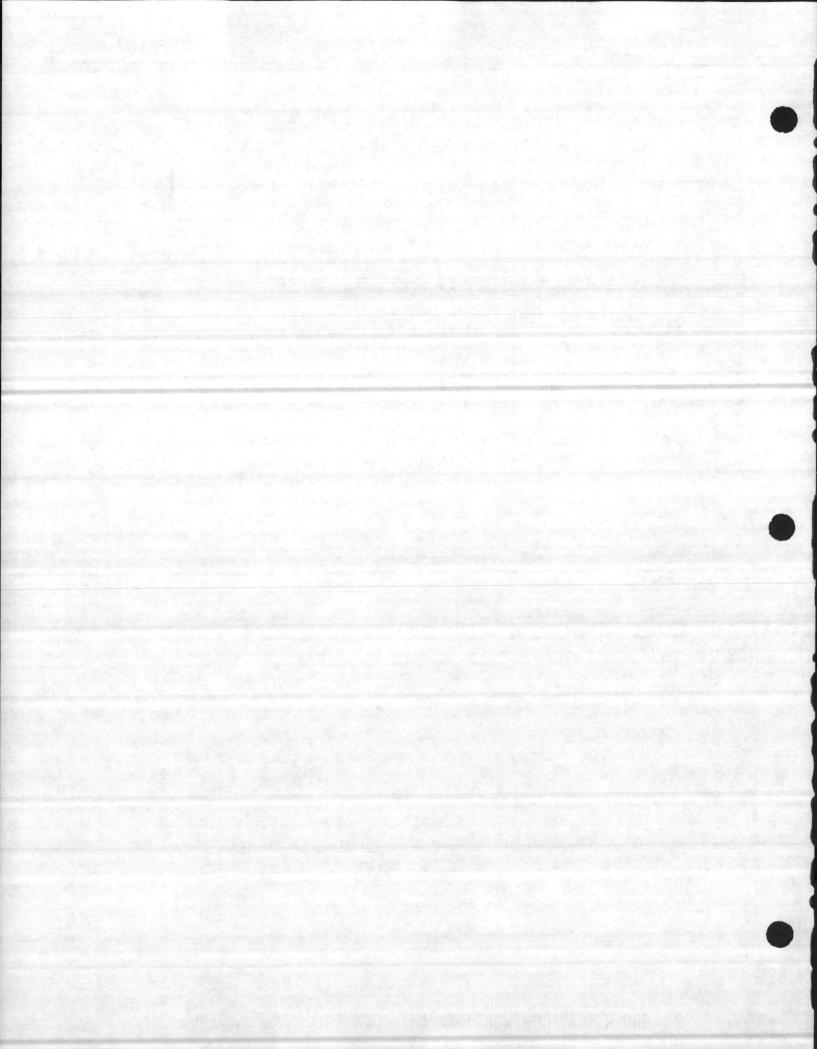
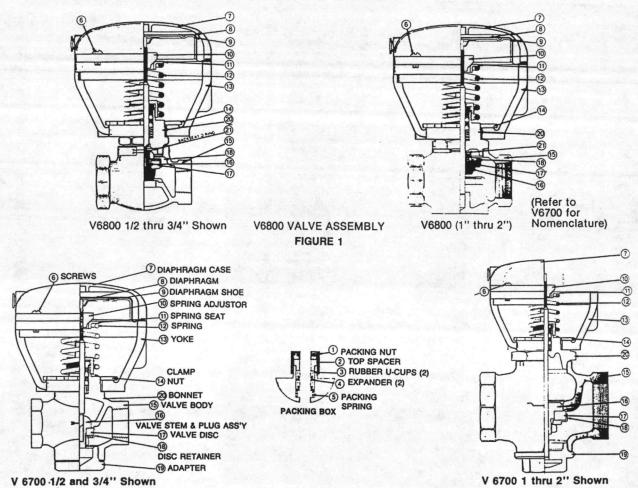



FIGURE 2 - VALVE POSITIVE POSITIONER APPEARANCE (CSD MODEL 5-415).


MAINTENANCE AND REPAIR INSTRUCTIONS

DIAPHRAGM CONTROL VALVE

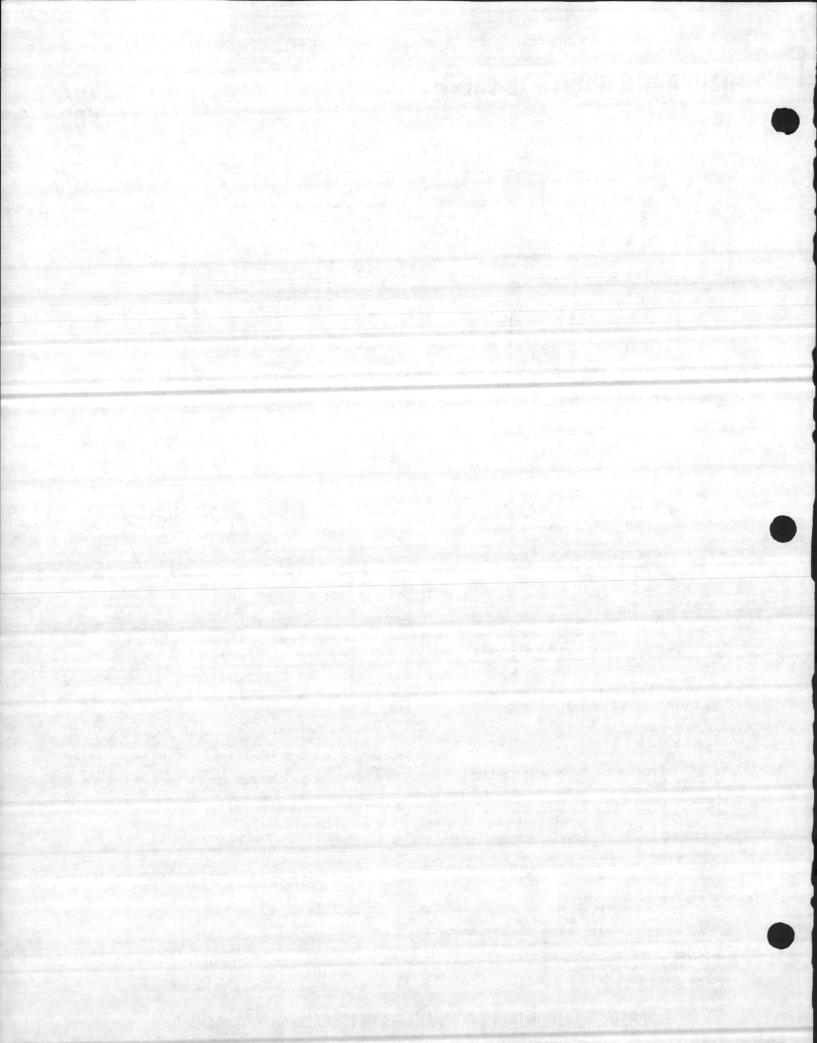
2-WAY

GENERAL INSTRUCTIONS

The V67 and V68 require little maintenance after proper installation. It is recommended that field repairs be limited to the following: (No Special Tools Required)

Packing Replacement

If valve stem leakage is encountered, replace the U-cup packing (3) as follows:


- 1. Remove Clamp Nut (14) and lift Yoke (13) and assembled parts (7, 8 & 9) off valve.
- Measure dimension "A" from end of stem (16) to top of spring adjustor (10) and record. During reassembly of the valve this dimension must be reset ±1/16" so as not to change the actuator range.
- 3. Remove spring adjustor (10), spring seat (11) and spring (12).
- 4. Remove packing nut (1), top spacer (2), U-cups (3), expanders (4), and packing spring (5). Be sure the packing box in bonnet (20) and the valve stem (16) are clean.
- 5. Drop packing spring (5) and expander (4) over stem into bottom of packing box. Apply a bead of valve seal lubricant, accessory number N6-3, around the valve stem and push 1 U-cup (3) over stem into packing box, thereby lubricating the inside diameter of the packing and filling the annular groove in the packing with lubricant. Repeat this procedure with another expander (4) and U-cup packing (3) taking care with U-cup not to damage the sealing lip. Drop top spacer (2) over stem, and screw on packing nut (1) to a positive stop.

Valve Plug Replacement

If indications of excessive valve seat leakage are encountered, the stem and plug assembly (16) may be replaced. (Details 18 [Disc Retainer] and [17] Valve Disc may be ordered separately if desired). The packing should be replaced anytime the stem and plug assembly (16) is replaced. Replacement of parts is accomplished as follows:

V67

- 1. Perform Steps 1 through 4 as shown in "Packing Replacement" above.
- 2. (a) V67 Control Valves:
 - Remove Adapter (19) from Valve Body (15). Remove Stem and Plug Assembly.
 - (b) V68 Control Valves: Remove Bonnet (20) from Valve Body (15). Remove old Stem and Plug Assembly from Bonnet (20).
- 3. (a) V67 Control Valves.
 - Insert new Stem and Plug Assembly into Valve Body (15) and replace Adapter (19)
 - (b) V68 Control Valves. Install O-Ring Seat (21) on new Stem and Plug Assembly and assemble into Bonnet (20). Reassemble Bonnet (20) into Valve Body (15).
- 4. Perform Step 5 as listed under "Packing Replacement".

ENGINEERING DATA

2,1,2 V3+04

PLAST A VANE

BUTTERFLY VALVES

PRESSURE RATED - 150 PSI - 200°

(Bubble Tested at 150 PSI Before Shipment)

TORQUE-VALUES

MODEL 'B' ELASTOMER LINED

Do not be surprised that the torque values of PLAST-A-VANE valve will be less than it will be on other butterfly valves of this type.

The PLAST-A-VANE glass filled Noryl Disc has an extremely smooth surface on the perimeter – and the selection of the liner material is a special EPT compound.

The liner has a raised rib on the center line of the outside diameter that mates with a groove in the body, for rigidity under pressure.

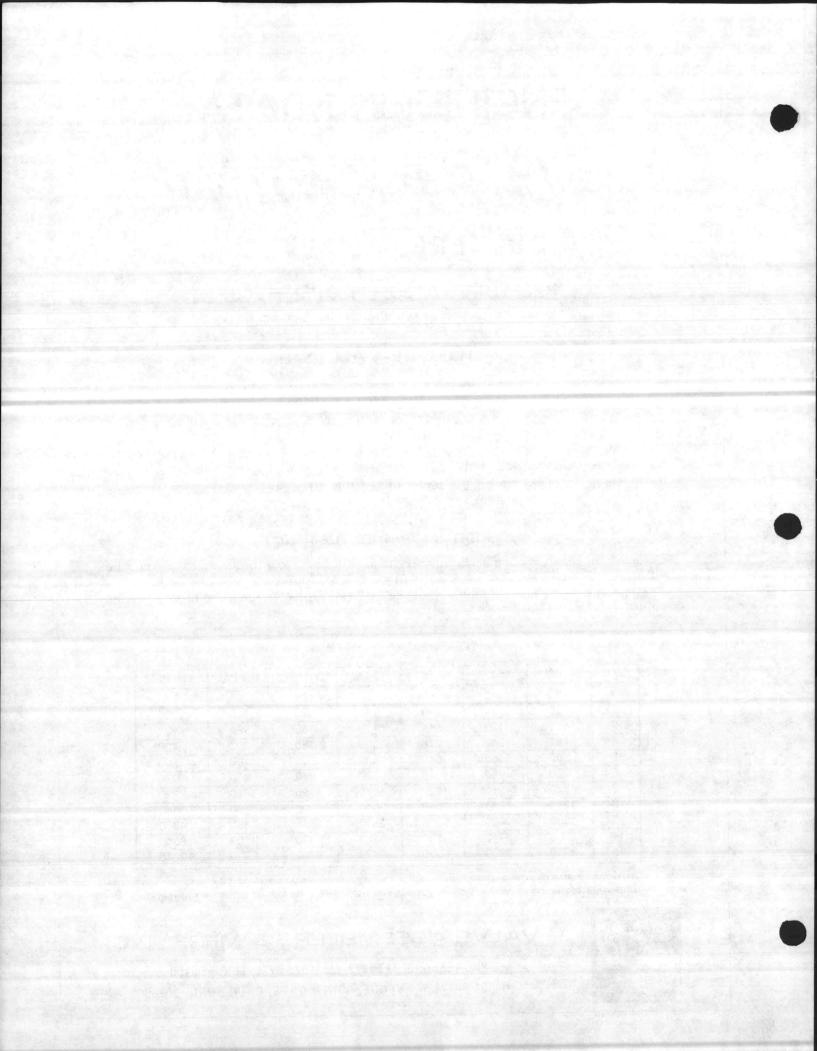
To further accentuate low torque we are using lubricated bronze bearings protected by "O" ring seals.

MODEL 'A' UNLINED FLIP-THRU

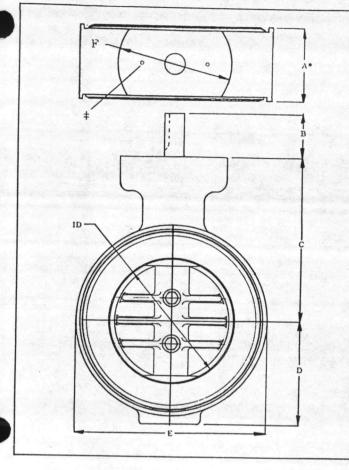
Designed for throttling and balancing of systems — has such low torque that they must be checked on the job with the pressure and material to be considered as the variable factors. The reason is — no liner friction — plus the "O" ring protected luberized bronze bearing approach for a low torque valve.

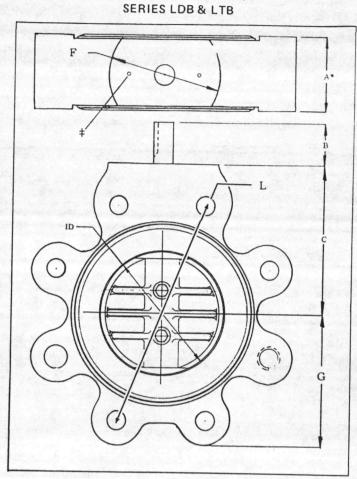
SIZE	O PSI	25 PSI	50 PSI	75 PSI	100 PSI	125 PSI	150 PSI
2	36	48	60	72	84	96	108
21/2	60	75	100	115	120	125	132
3	108	120	144	156	168	180	192
4	180	240	276	300	360	396	420
5	396	456	540	580	625	700	780
6	420	480	600	720	840	900	1020
8	720	970	1220	1470	1720	1970	2220
10	1200	1836	2040	2640	3000	3360	3840
12	1550	2090	2350	2800	3445	3850	4800
14	2880	3740	4600	5460	6320	7180	8040
16	3360	3900	5000	6420	8040	9900	12240

TORQUE CHART (IN LBS.)


These are actual torques, tested with 70° F. water. These values do not take into account rubber elastomer compression set. We suggest you use a safety factor for actuator application.

VALVE ASSEMBLERS & MFRS., INC.


PHONES: (213) 773-1272, (213) 923-0721, TLX: 68-6400 11151 PALMER AVENUE, SOUTH GATE, CALIFORNIA 90280


3

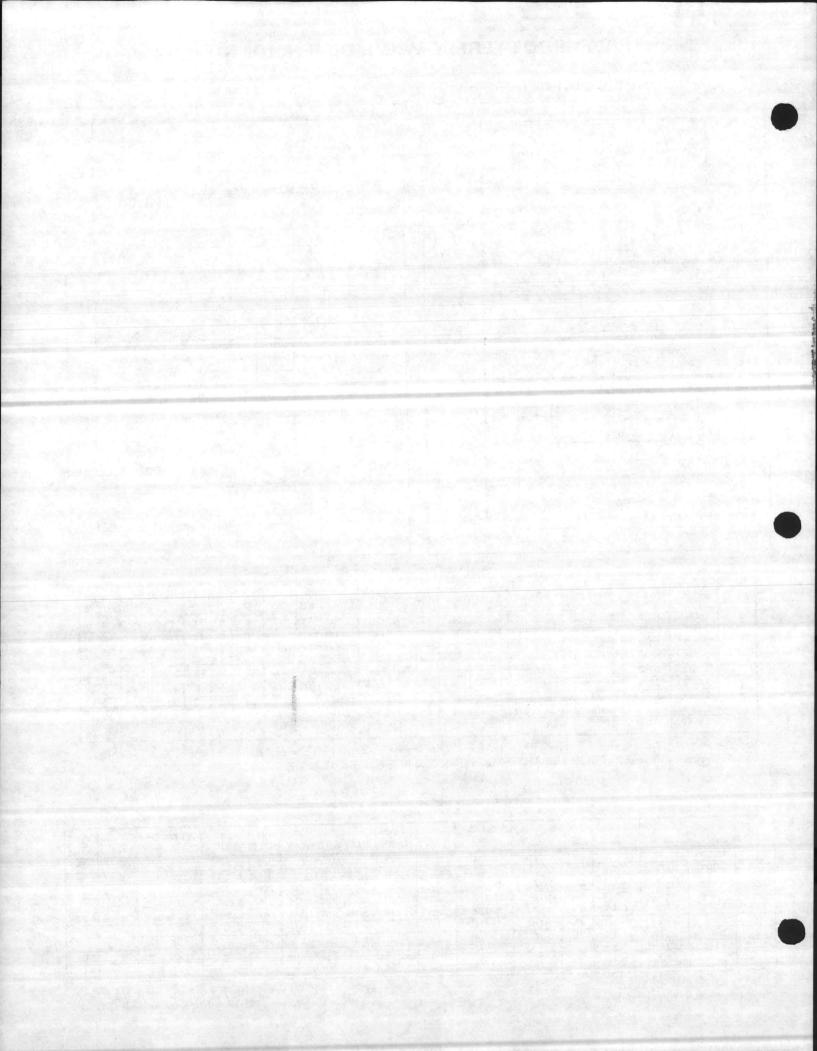
VAMI-BUTTERFLY VALVE DIMENSIONS

SERIES WCB

2.1.2

DIMENSIONS SERIES WCB

SIZE	A*	В	с	D	E	F	ID	SHAFT DIA.	SHAFT KEYWAY	WT.	BOLT		GTH	QTY.
2	1.720	1-1/2	3-5/8	2-9/16	3-5/8	31/2	2	1/2	1/8x1/16x1	5	5/8-11	41/4		
21/2	2.000	1-1/2	3-7/8	2-7/8	4-1/8	31/2	21/2	1/2	1/8x1/16x1	8	5/8-11	41/2	4%	4
3	2.005	1-1/2	4-1/8	3	5	31/2	3	1/2	1/8x1/16x1-1/8	10	5/8-11	4/2	5%	4
4	2.285	1-7/8	5-1/4	3-1/2	6-3/16	31/2	4	5/8	3/16x3/32x1-1/4	12	5/8-11	5	51/2	4
5	2.300	1-7/8	6-1/16	4-1/2	7-3/8	31/2	5	3/4	3/16x3/32x1-1/4	15	3/4-10	5%	51/2	8
6	2.845	1-7/8	6-1/16	4-3/4	8-1/2	31/2	6	3/4	3/16x3/32x1-1/4	22	3/4-10	6	5% 6½	8
8	3.000	2	7-1/2	6-7/8	10-5/8	31/2	8	1	1/4×1/8×1-1/4	34	3/4-10	6%	0/2	8
10	3.140	2	9-3/8	8	13	41/2	10	1-3/8	5/16x5/32x1-1/4	65	7/8-9	63/4	7%	8
12	3.390	2-1/2	10-3/8	9-1/8	15-3/4	5	12	1-1/2	3/8x3/16x1-1/4	92	7/8-9	71/4	73/4	12 12


Valves to AWWA Specifications can be supplied. Above Wafer Valves fit inside bolt circle of standard flanges. Lug Type Valves fit bolt circle of standard flanges 150 lb. ANSI – B 16.5 and 125 lb. ANSI – B 16.1.

DIMENSIONS SERIES LDB & LTB

SIZE	A*	В	с	F	G	L	ID	SHAFT DIA.	SHAFT KEYWAY	LD	LT	LENGTH CAP SCREW	QTY.	WT.
2	1.720	1-1/2	3-5/8	31/2	2.9/16	4-3/4	2	1/2	1/8x1/16x1	3/4	5/8-11			
21/2	2.000	1-1/2	3-7/8	31/2	2.5/8	5-1/2	21/2					1¾	8	8
3	2.055	1-1/2	4-1/8					1/2	1/8x1/16x1	3/4	5/8-11	13/4	8	11
				31/2	3-1/16	6	3	1/2	1/8x1/16x1-1/8	3/4	5/8-11	13/4	8	12
4	2.285	1-7/8	5-1/4	31/2	4-1/4	7-1/2	4	5/8	3/16x3/32x1-1/4	3/4	5/8-11			
5	2.300	1-7/8	6-1/16	31/2	4-5/8	8-1/2	5	3/4		3/4		13/4	16	19
6	2.845	1-7/8	6-1/16	3%	5-1/2				3/16x3/32x1-1/4	1	3/4-10	2	16	23
8	3.000					9-1/12	6	3/4	3/16x3/32x1-1/4	7/8	3/4-10	2	16	29
-		2	7-1/2	3%	6-1/2	11-3/4	8	1	1/4x1/8x1-1/4	7/8	3/4-10	21/4		
10	3.140	2	9-3/8	5	8	14-1/4	10	1-3/8		110			16	45
12	3.390	2-1/2	10-3/8	5	0.2/0				5/16x5/32x1-1/4	1	7/8-9	21/2	24	67
		12	10-3/6	9	9-3/8	17	12	1-1/2	3/8x3/16x1-1/4	1	7/8-9	21/2	24	111

* LINER NOT COMPRESSED (will compress 1/16 per side)

‡ 2" - 6" Valves: 5/16-18 x 3/4 thd. on 2-7/8 B.C. 8" - 12" Valves: 1/2-13 x 1 thd. on 2-7/8 B.C.

ENVIRONMENTAL COMPATIBILITY CHART

CAP SCREWS 316 Stainless Steel

SHAFT 17-4-PH Stainless Steel — We have selected this material for our shaft due to its strength and corrosion resistant properties.

BODY Cast Iron - Long life - corrosion resistant - generally accepted.

ON SPECIAL ORDER Carbon Steel – Required by refinery and petro-chemical plants as it will not crack or break under strain. 316 Stainless Steel – Extremely corrosion resistant. May be required by the food and drug industry. Accepted as the material for high temperatures.

211,2

BEARINGS Luberized Bronze.

LINER - "O" RINGS

EPT – It is the liner usually accepted by the industry – has a good memory, good environmental properties and long life. Our special compound is also self-lubricating.

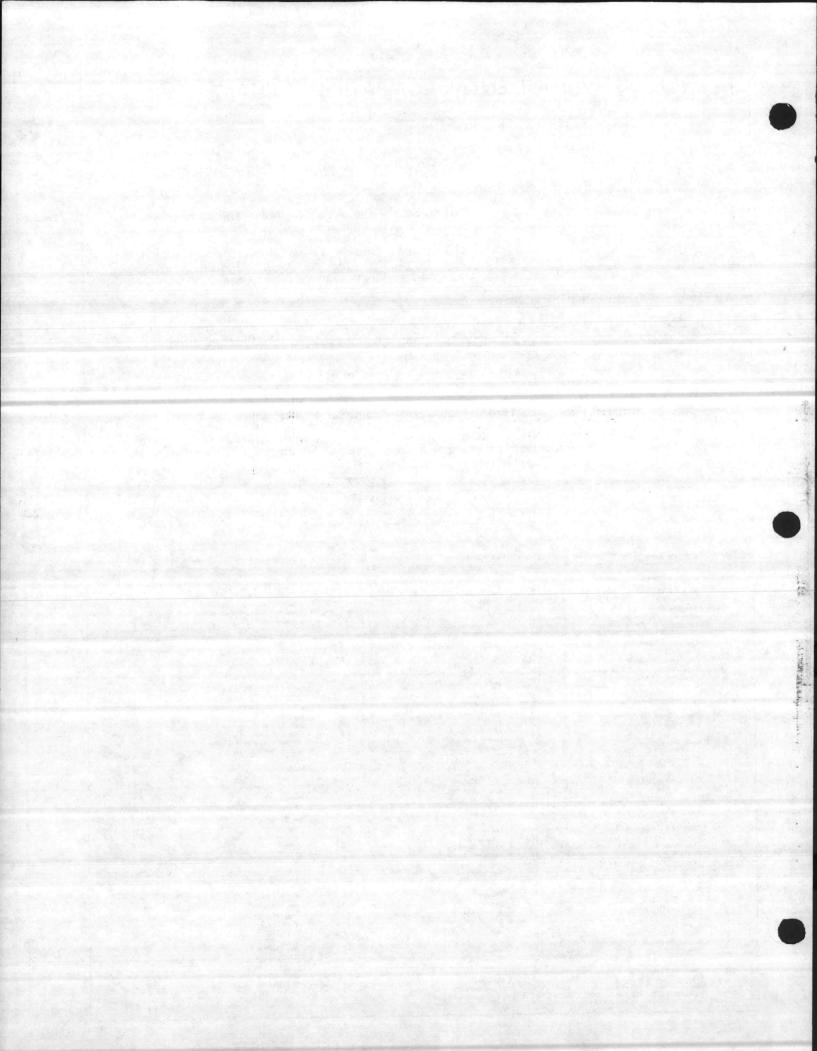
PLASTAVANE, Glass Filled Noryl - see environmental com-

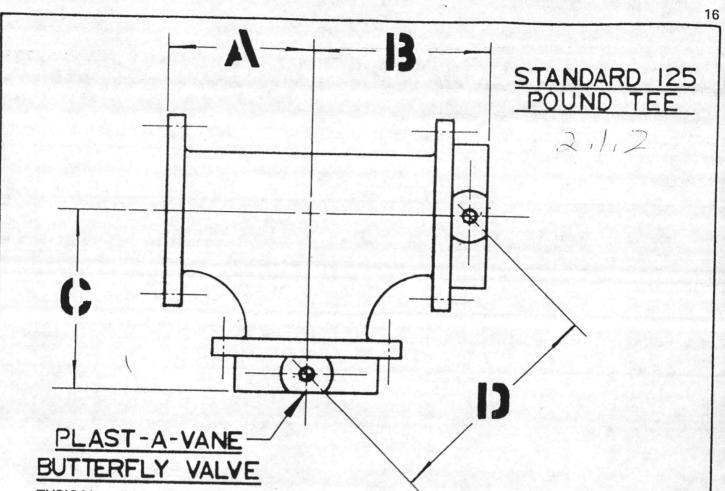
2" thru 10" DISC

12" thru 16" DISC Cast Iron -

Cast Iron - fused epoxy coated if desired.

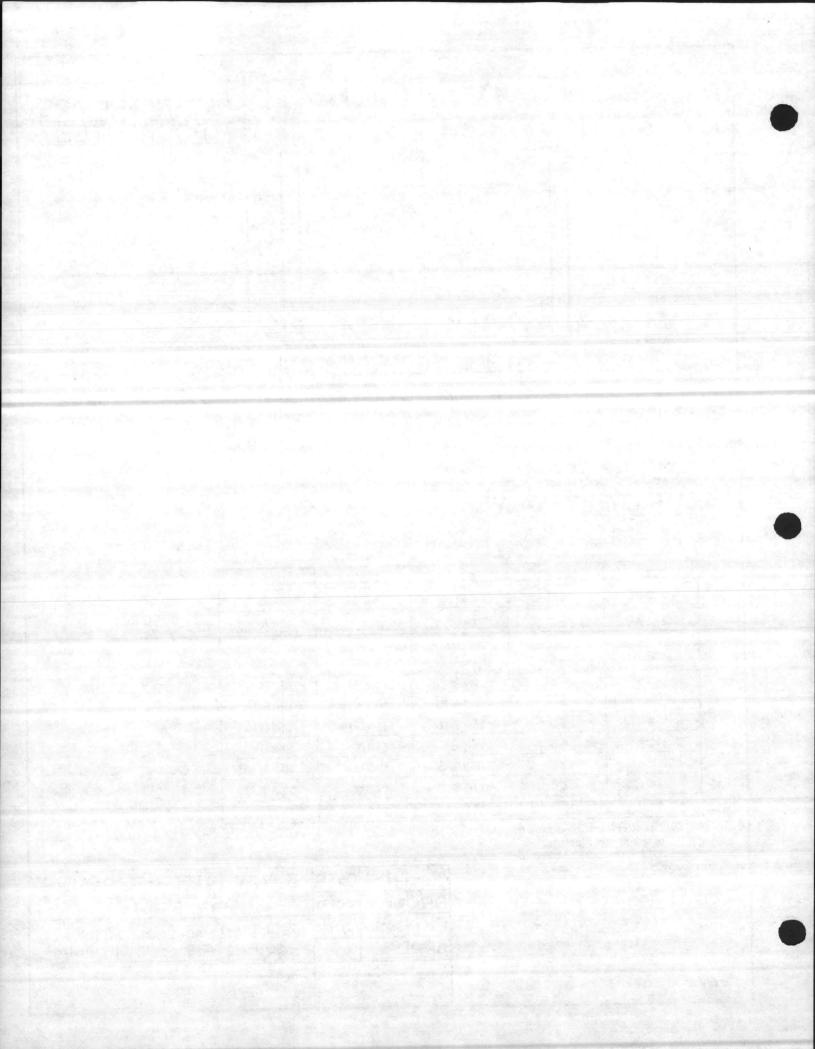
patibility chart below.

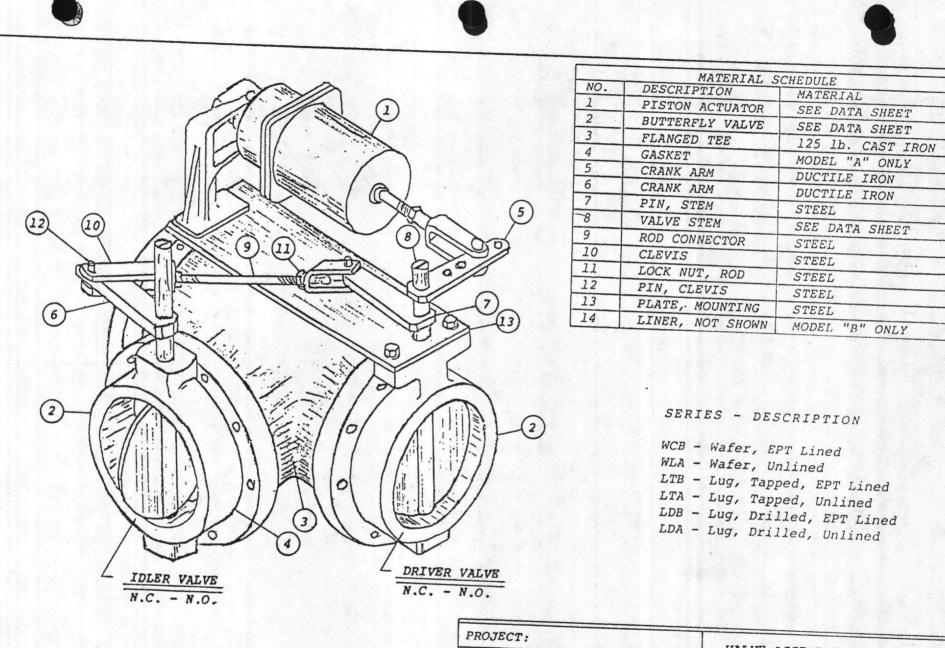

Disc - 316 Stainless Steel - Required for higher temperature and other special applications. See PLAST-A-VANE valve specification sheet.


30% GLASS FILLED NORYL®

N - No Effect C - Crazing or Significant Property Decrease

	1850 F.			15 ⁰ F. Days	Y. S.		. 2	
ENVIRONMENT	D3 20	Days	ENVIRONMENT	0. 0		ENVIRONMENT	o l	F.
	18	75°		185 ⁰ I 3 Day	750 7 Da	LIVIRONALNI	185° F.	75° F.
Acetone		С	Gulf Oil #49	N	N	Polaroid Film		
Alcojet (3%)	N	N	Gulf Security Oil	N	N		N	N
Alconox (3%)	N	N	sin county on	A	-	Potassium Acetate (40%)	N	N
Alcotab (3%)	N	N				Potassium Carbonate (40%)	N	N
All Dishwasher (10%)	N	N	Hays-Seal	N	N	Potassium Hydroxide (30%)	N	N
Ammonia	1. 19 . 12	N	HCI	N	N	Propane	-	N
Ammonium Hydroxide (10%)	N	N	Heptane	-	N			
Ammonium Nitrate (60%)		N	Houghton Hi-Temp. Oil	N	N	Rapidshave	N	N
Anderol (L465)	C	N	H2SO4	N	N	Right Guard Deodorant	N	N
API Gravity Oil 42.7	1	N	Hydrochloric Acid (10%)	N	N	Rinse Dry	N	N
Aquarium Cement	N	N	Hydraulic Cylinder			Rise	N	N
Armstrong C7 Resin	N	N	Oil Standard MS-68	N	-	Rose Chocolate Drink	N	N
in more of the state	*	N	Hydroflouric Acid (30%)	1000	N	Rubber Compound #19,005	N	N
						Rykon #2-EP	N	
Carbon Tetrachloride	С	C				10K011 #2-2.F	N	N
Cascade (10%)	N	N	Industrial Oil #14	N	N			
Climax Grease	N	N	Industrial Oil #15P	N	-	Shell Sol #B	-	N
Cloroben De (4/1 mix)	N	N	Ipana	N	N	Shell Sol #17	-	N
Clorox	N	N	Isopar Toner B	N	N	Shell Tolu Sol 5	-	N
Coca Cola Syrup	N	N	Isopar Toner H	N	N	Silicone Lub. Grease G 300	N	-
Colgate	N	N	Isopropanol		N	Sodium Hydroxide Conc.	N	N
Crest	N	N				Stripe	N	N
	and the second second	1000	Joy Cleaner (2%)	N	N	Sulphur Dioxide	-	N
			boy creatter (2x)	N	N	Sonoco 57-NH Sun Par #110	N	
Diethylene Glycol Drain Demon	N	N	· · · · · · · · · · · · · · · · · · ·					1.1
	N	N	Kemtex 195 DA	N	-			
Dynamate (3%)	N	N	Kester #135	N	-	Thermodent	N	N
Dyne (2%)	N	N	Kester #1544	N	-	Tri iso octyl phosphate	N	N
Electrosol Finish (10%)	N	N	Lestoil			Vaseline	N	N
Ethanol	N	N		С	N	Zephiran (Conc.)	N	N
Ethyl Acetate	-	C	Linseed Oil	-	N	Lepintun (conc.)	~	N
Ethylene Glycol	N	N	Liquid Soap	N	N			1.1
Ethylene Oxide	N	N	Lithium Bromide (62%)	N	N			
indytene oxide		N	Lithium Grease	N	N			
alada in internet in provinsi			Lubriplate		N		- A	Y's
FC-78	N	N				ENVIRONMENT	75° F. 10 Days	1250 F.
Fogging Oil (Chevron)(A-2)	C	N	Mazola Corn Oil	N	N		10	0 19
Freon Gas #22		N	Methanol	N	N	1		
Freon 113 (MS-230)	N		Mineral Oil	N	N	Acetic (60%)		N
Freon TA	-	N	Mobil Oil Pyrogard #13	c	~	Acetic (90%)	N	N
Freen TC	-	N	Mold Release Krylon (*1328)		-	Chromic (3.)	N	С
Freon TE-30	-	N	Mold Melease Riylon (=1328)	N	N	Chromic (5%)	N	1.14
reon TP-30		N				Chromic (20)	N	
reon TWD-602		N	Oakite	с	N	Nitrie Acid (20 .)	-	N
		Company of the	Oleic Acid	N	N	Nitrie Acid (30 .)	N	N
las Cock Grease	N	N				Nitrie Acid (40 .)	N	N
fillette Foamy	N	N	Burndard	1.1.1.1.1.1		Hydroflouric (25 .)	N	
leem	N	N	Pepsodent	N	N	sulphuric Acid (30 .)	N	N
Hydraulic Fluid	N		Pipeline Powder Plus (3%)	N	N	Sulphuric Acid (60)	N	N
	N	N	Planters Peanut Oil	N	N	Sulphuric Acid (90 .)	N	N

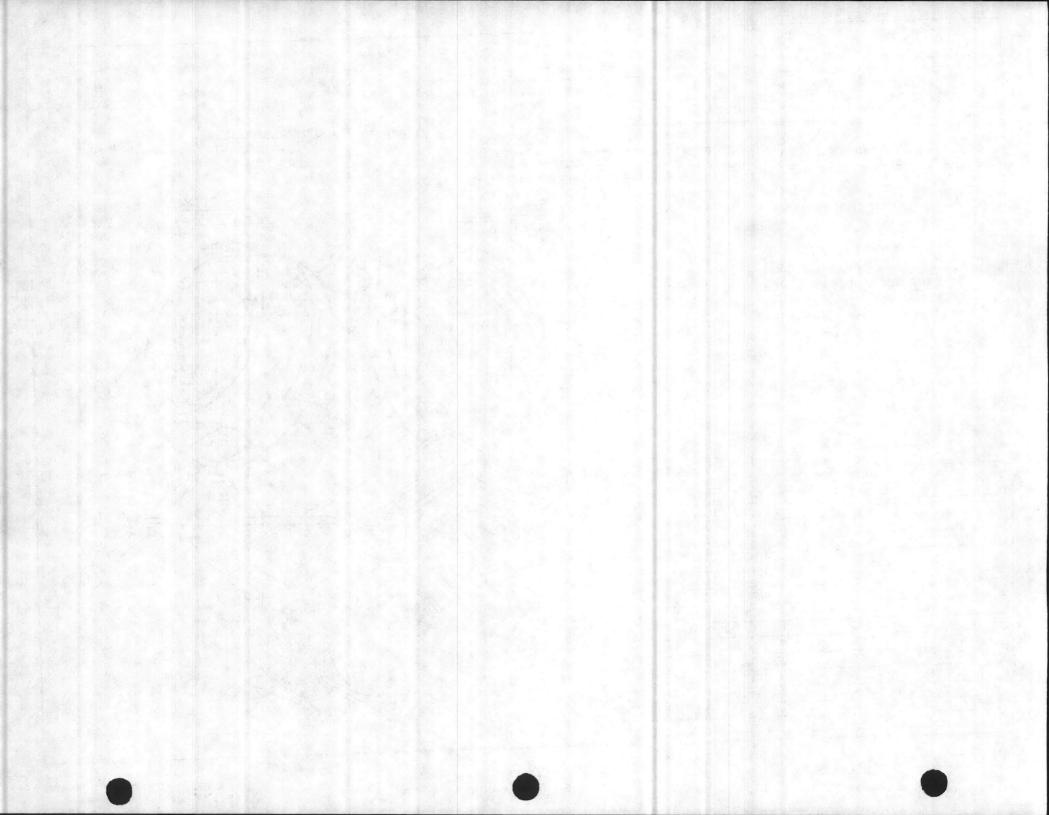


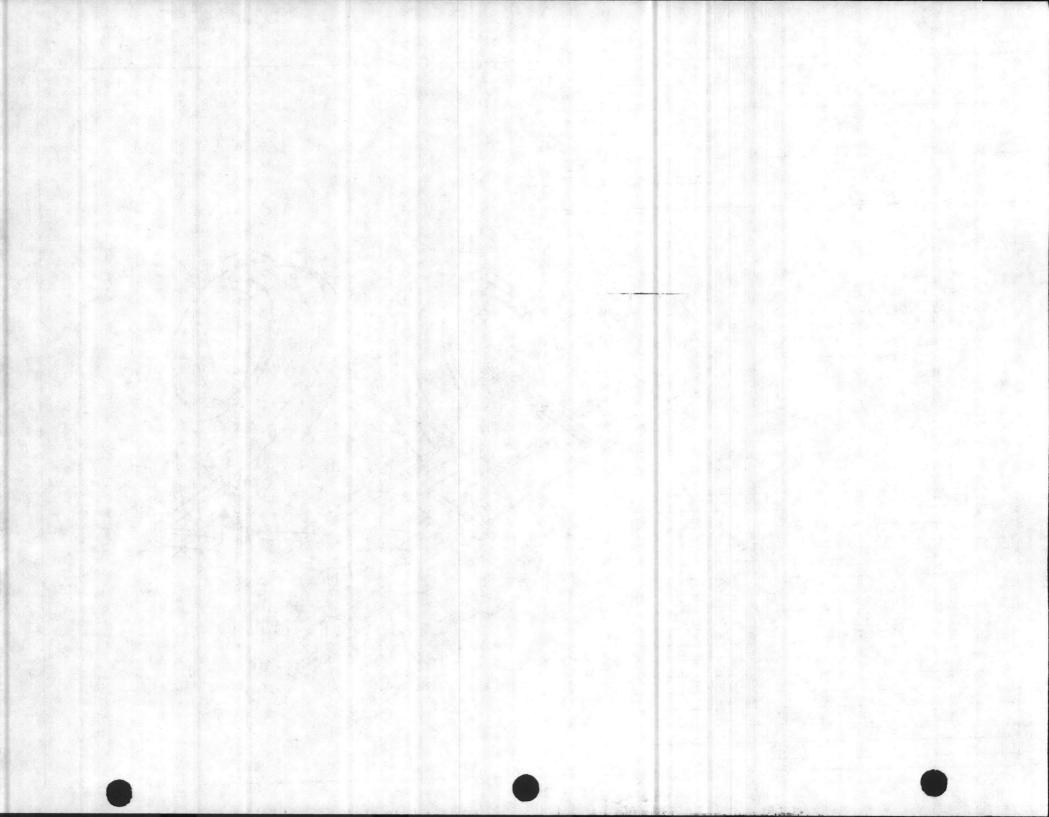

TYPICAL – Advise Valve Mounting Position and Normally Open and Closed Position Each Valve.

SIZE	A DIM	B DIM	CDIM	DDIM
2	4.5	6-3/16	6-3/16	7-1/2
2½	5.0	7.0	7.0	8-3/8
3	5.5	7-1/2	7-1/2	9-3/16
4	6.5	8-3/4	8-3/4	10-3/4
5	7.5	9-3/4	9-3/4	12-1/4
6	8.0	10-13/16	10-13/16	13-15/16
8	9.0	11-15/16	11-15/16	14-14/16
10	11.0	14-1/8	14-1/8	17-3/4
12	12.0	15-3/8	15-3/8	19-3/8
14	14.0	17-5/8	17-5/8	22-3/8
16	15.0	19.0	19.0	24-1/16

NOTE: For sizes larger than shown – please contact factory.

	BY	DATE	3 WAY BUTTERFLY VALVE
DR	tub)	12-31-71	ASSEMBLY
CK	Dur	12/31/11	VALVE ASSEMBLERS & MFRS., INC.
APP			SOUTH GATE CALIFORNIA




VALVE ROTATION: 60° - 90°

PROJECT:	
JOB #	G MFRS., INC.
P.O. #	. 3-WAY BUTTERFLY VALVE
ACTUATOR:	ASS'Y W/ 1 ACTUATOR
SIZE:	DRAWING
SERIES:	NUMBER :

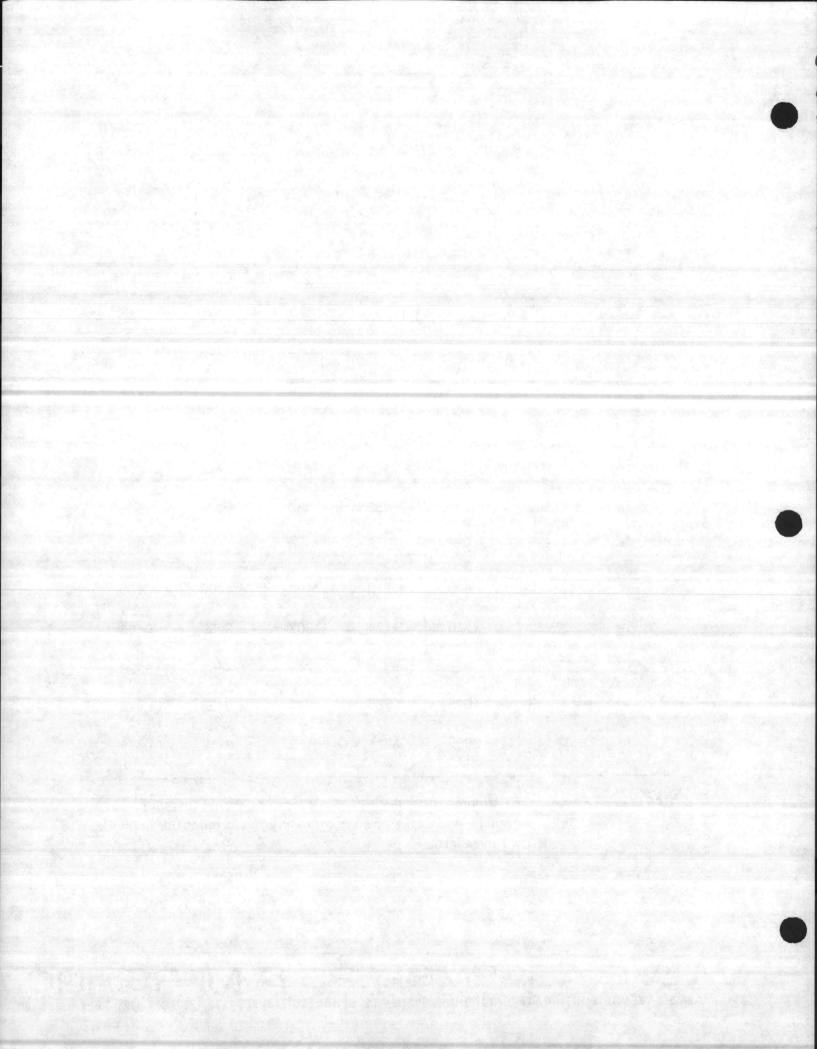
XI

		M	MATERIAL SO	CHEDULE
	NO.	DESCRIPI	TION	MATERIAL
	1) 1	PISTON A		SEE DATA SHEET
	2	BUTTERFL		SEE DATA SHEET
	3	FLANGED		125 1b. CAST IRO
	4	GASKET		MODEL "A" ONLY
	5	CRANK AR	M	DUCTILE IRON
	6	CRANK AR	M	DUCTILE IRON
0.4.3	5 7	PIN, STE		STEEL
	8	VALVE ST		SEE DATA SHEET
	9	ROD CONN	and the second sec	STEEL
POR YULL	10	CLEVIS		STEEL
4K VI	11	LOCK NUT	, ROD	STEEL
	7 12	PIN, CLE		STEEL
I E P III	13	PLATE, M		
	(8) 14	LINER, N		STEEL MODEL "B" ONLY
HI M 12/19		N A	VCB - Wafe	DESCRIPTION
DLER_VALVE_	DRIVER VALVE N.C N.O.		VLA - Wafer LTB - Lug, LTA - Lug, LDB - Lug,	<i>Tapped, EPT Lined</i> <i>Tapped, EPT Lined</i> <i>Tapped, Unlined</i> <i>Drilled, EPT Lined</i> <i>Drilled, Unlined</i>
IDLER_VALVE N.C N.O.	DRIVER VALVE N.C N.O. Project: Job #		VLA - Wafer CTB - Lug, CTA - Lug, CDB - Lug, CDA - Lug, VALVE 2	r, EPT Lined r, Unlined Tapped, EPT Lined Tapped, Unlined Drilled, EPT Lined
$\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$	N.C N.O. Project:		VLA - Wafer LTB - Lug, LTA - Lug, LDB - Lug, LDA - Lug, VALVE A & MFRS	r, EPT Lined r, Unlined Tapped, EPT Lined Tapped, Unlined Drilled, EPT Lined Drilled, Unlined
- N.O.	N.C N.O. Project: Job #		VLA - Wafes LTB - Lug, LTA - Lug, LDB - Lug, LDA - Lug, VALVE A & MFRS 3-WAY BL	r, EPT Lined r, Unlined Tapped, EPT Lined Tapped, Unlined Drilled, EPT Lined Drilled, Unlined
C N.O.	N.C N.O. Project: Job # P.O. # Actuator:		VLA - Wafes LTB - Lug, LTA - Lug, LDB - Lug, LDA - Lug, VALVE A & MFRS 3-WAY BU ASS'Y. W	r, EPT Lined r, Unlined Tapped, EPT Lined Tapped, Unlined Drilled, EPT Line Drilled, Unlined ASSEMBLERS ., INC.
- N.O.	N.C N.O. Project: Job # P.O. #		VLA - Wafes LTB - Lug, LTA - Lug, LDB - Lug, LDA - Lug, VALVE A & MFRS 3-WAY BL	r, EPT Lined r, Unlined Tapped, EPT Lined Tapped, Unlined Drilled, EPT Lined Drilled, Unlined ASSEMBLERS ., INC.

2.1,2

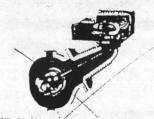
RATED FLOW COEFFICIENTS

C/V

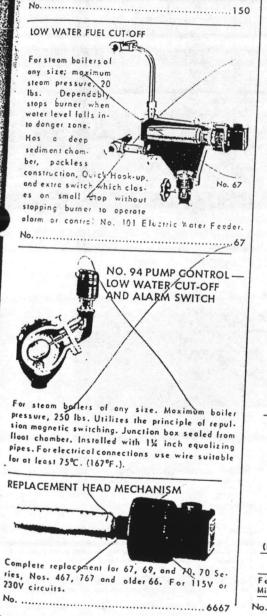

						Full Open
Valve Size	30 ⁰	40 ⁰	50 ⁰	60 ⁰	70 ⁰	90 ⁰
2	14	23	36	63	105	130
2½	25	44	70	110	180	320
3	38	66	110	170	280	500
\searrow_4	63	110	180	280	460	820
5	100	180	280	450	740	1300
6	140	250	400	640	1100	1900
8	250	440	690	1100	1800	3200
10	420	710	1174	1802	3059	5462
12	641	1082	1790	2748	4663	8326
14	883	1605	2523	3899	6423	11,470
16	1147	2065	3211	5113	9712	14,311

RATED - C/V =

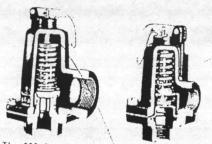
The Volume of Water in U. S. Gallons per Minute that will pass through a given valve opening with a pressure drop of one pound per square inch.



-



MCDONNELL & MILLER


NO. 150 PUMP CONTROL LOW WATER

For steam at lers of any size. Maximum steam pressure, 150 los, All operating parts are away from heat. No stoffing box to bind or lead. Has two-switch construction. One storts and stops pump as bojer cells for water; second operates on greater grop of water line to stop burner and/or complete alors circuit. Has I inch equalizing toppings. If manual reset cut-off switch as desired, order 150-14.

A.S.M.E. PRESSURE RELIEF VALVES

The 230 Series was developed to provide dependable pressure protection for space heating hot water boilers and hot water tanks at a modest price, and economy has been achieved largely through ingenious design.

The 230 Series valves conform to the A.S.M.E. Bojter Code requirements, and have been tested and rated by the National Board of Boiler and Pressure Vessel Inspectors. Interior operating parts are all of non-ferrous materials. Valve seat is of brass, valve disc of Silicane. Testinglever has independent action and tying it down does not interfere with automatic operation of valve.

voive.		Sector Sector
1		Opening
No.	BTU/Hr	. Pressure
and the second s	Cep.	PSI
FOR HOT WATER	TANKS AND	HEATERS
230-3/4 In75	502/000	75
230-3/4 In100	6/0 000	100
230-3/4 In125	/783,000	125
230-3/4 In150	925.000	150
240-1 In75	1,260,000	
240-1 In100 /	1,610,000	75
240-1 In125	1.960.000	100
240-1 In150	2,320,000	125
/	1 2,520,000	150
/		Opening
/	BTU/Hr.	Pressure
No.	Cop.	PSI
FOR HOT WATER S	PACE HEATI	
230-3/4 In30	T	·
240-3/4 In30	303,000	30
1230-1 In30	513,000	33
240-1 In30	743,400	30
230 1 1 (2 1	910,000	30
230-1-1/2 In30	1,025,100	30
240-1.1/2 In 30	1,560,000	30
240M-3	2,313,000	30
240M-4	2,710,000	30
240-2 In30	3,130,000	30
240-2 In30	3,550,000	36
240-2 In30 NO. AF3 AIR FLO FOR DUCT INSTALLATIN	3,550,000 W SWITCH	36
AIR FLOW VEL REQUIRED TO A (Bosed on Standard Air Installed In Horizontal Duct	0.075 Lbs. Pe	TCH r Cu./Ft.) pprox. FPM
Factory Or Flow F	Pu	Vel.
Min. Adjust. No Flow	FOU	235
No Flo	WFPM	175

2,1,12 NO. AFT AIR FLOW SWITCH FOR DUCT INSTALLATION

INSTALLED IN	VERTICAL DUCT	Standard Padaja (7%*)	Paddle Trimmed 2
Factory or Minimum	FIDE FPM	910 \	1235
Adjustment	Ho Flow FPM	785	1050
Vanmum /	Flow FPM	1 1610	2560
Adjustment	No Flow FPM	1 1460	2410
NOAL	ZONTAL DUCT (Pre	berred Installath	1
HORIZON	LED IN	Standard Paddle (7%)	Paddle Trimmed 7" (51%-)
Factory or Minimum	Flow FPM	480	700
Adjustment .	No Flow FPM	185 :	220
Masimum	Flow FPM	1385	2230
Adjustment	No Flow FPM	1160	1820

No. AF:

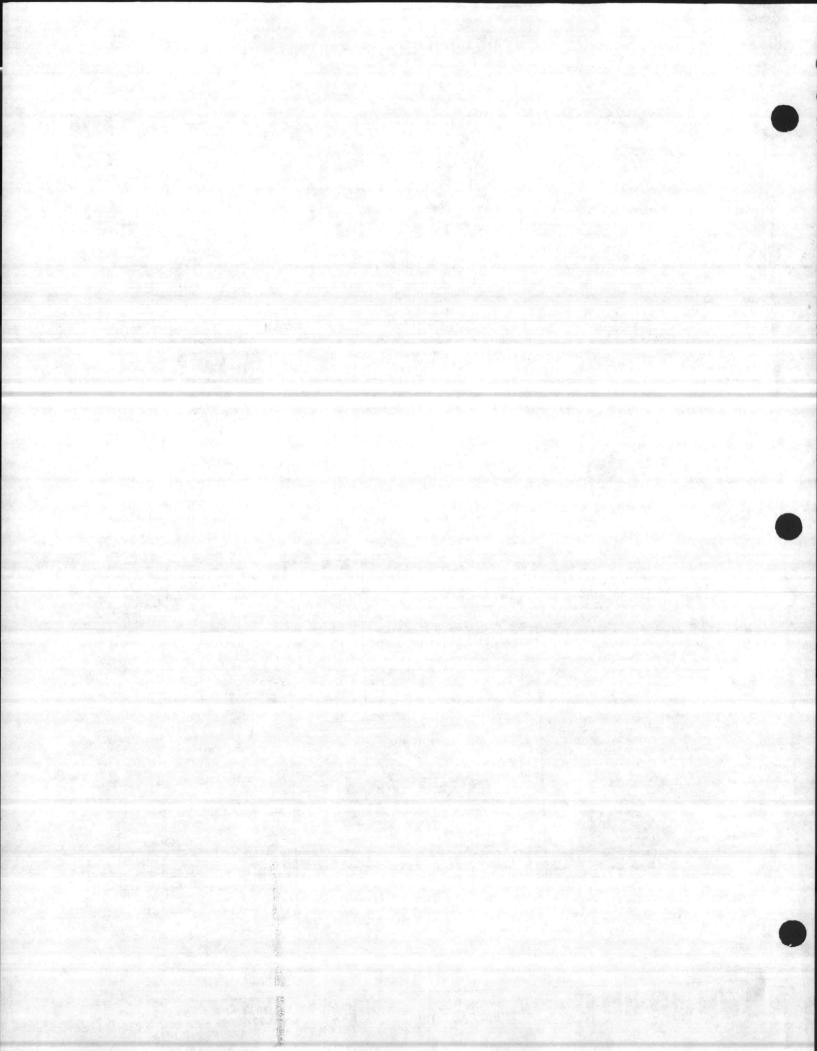
NO

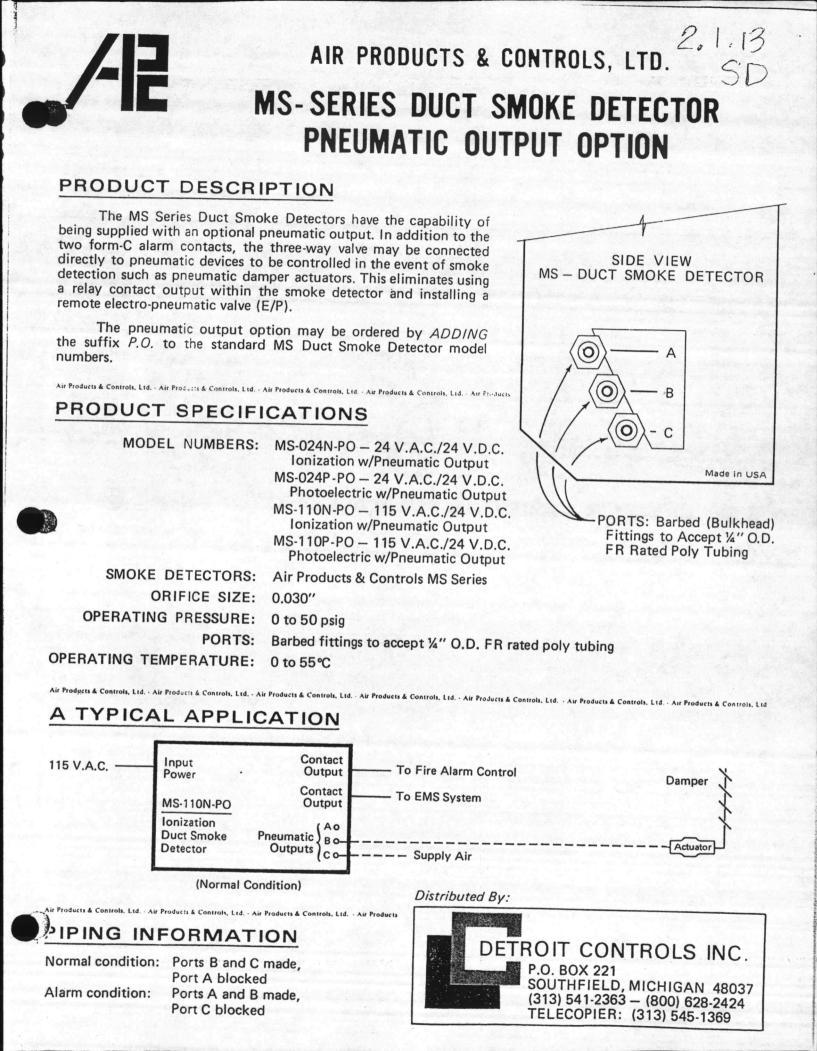
NO. FS1 FLOW SWITCH Designed to respond of very low flow rates, yet allow lerge flow-thic gen copecity. They find porticular opplication in domestic, municiped and industrial water treatment systems; cce has systems for electronic tubes, bearings compresssers; booster puress jobs requiring instaswitch action, etc. East

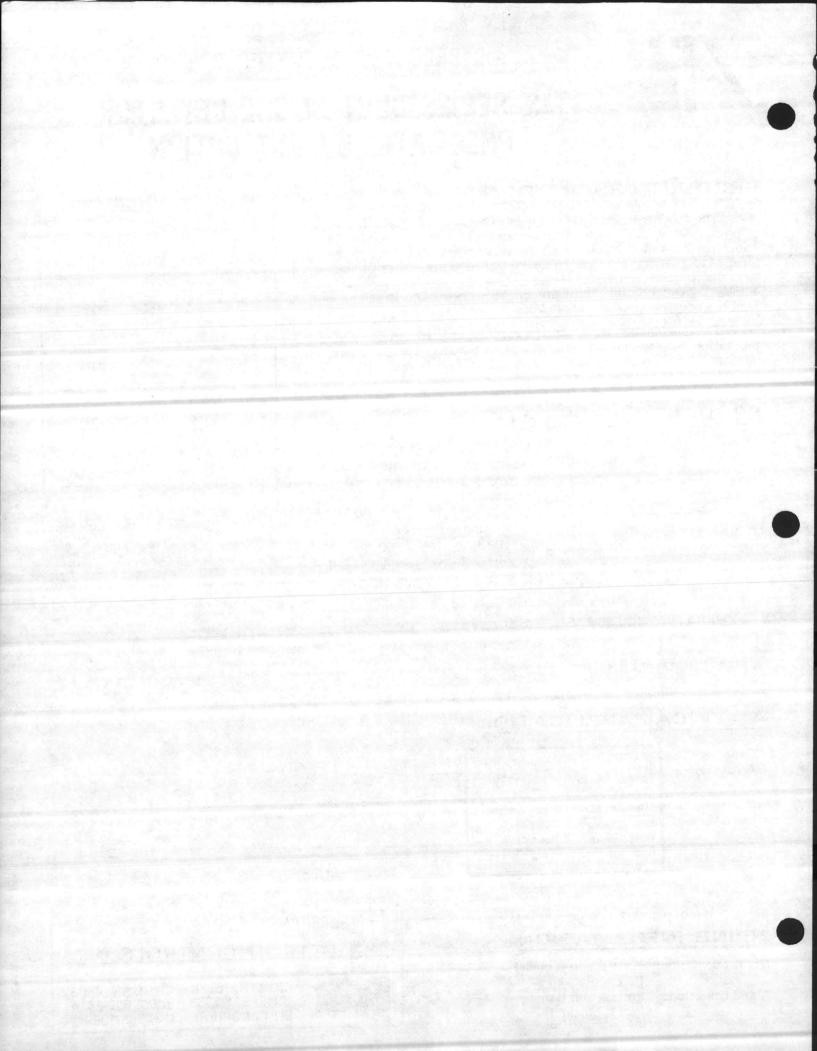
ies are tapped for installation right in the pise.

	1			GPU FRS		041	
Minimur Adjustm	·//	Flo	*				
		No Flow		GPM'		0.24 0.25	
Masimum		Flow		GPM FPS GPM FPS		1.81	
Adjustme	ent	No Flow					
FLOW	CAPAC	ITY O	F NO	. FS1 FLOW			
ressure	10 psi	20 psi	30 psi			70 pi	
CPM Capacity	8.35	11.50	13.60	15.75	17.75		24.25
				eet per			

NO. FS4-3 FLOW SWITCH Compact, moderately-priced device that makes or brecks on electrical circuit when flow in pipe start or stops. Used to activate signal lights, olarms, burners,

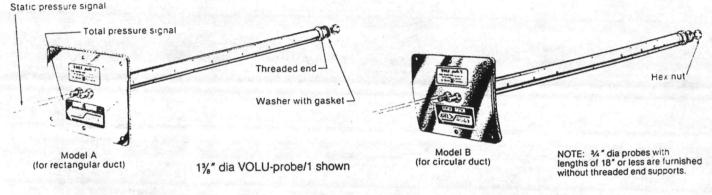

motors, metering devices, burners, pressures up to 150 lbs., temperctures to 300° F. SPDT switch action, packless construction segmented poddle quickly adoptable for pipe 1 inch and larger easy adjustment of switch activity.


Electrical Ratings (U/L listed)

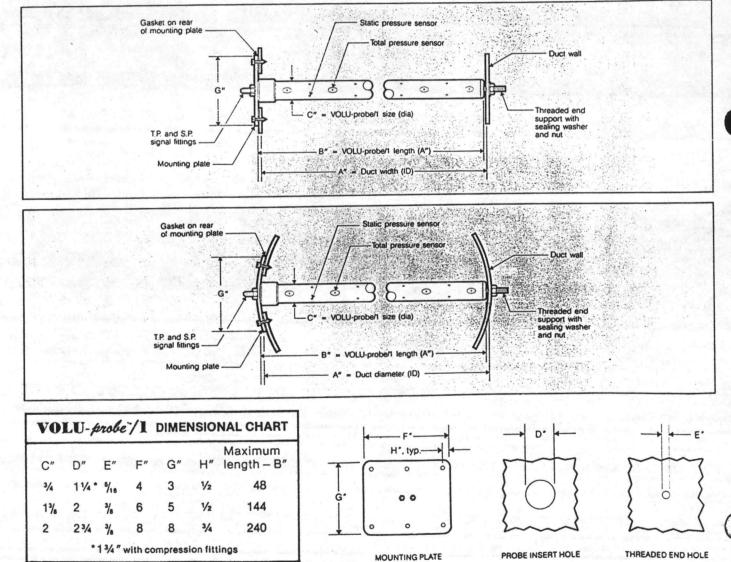

MOTOR DUTY	and the second
120 V.A.C.	240 V.A.C
7 4 omps. 44.4 omps.	3.7 om; 22.2 om;
125 VA 57 VA	115-230 V 115-230 V
	120 V.A.C. 7 4 oinps. 44.4 omps. PILOT DUTY 125 VA

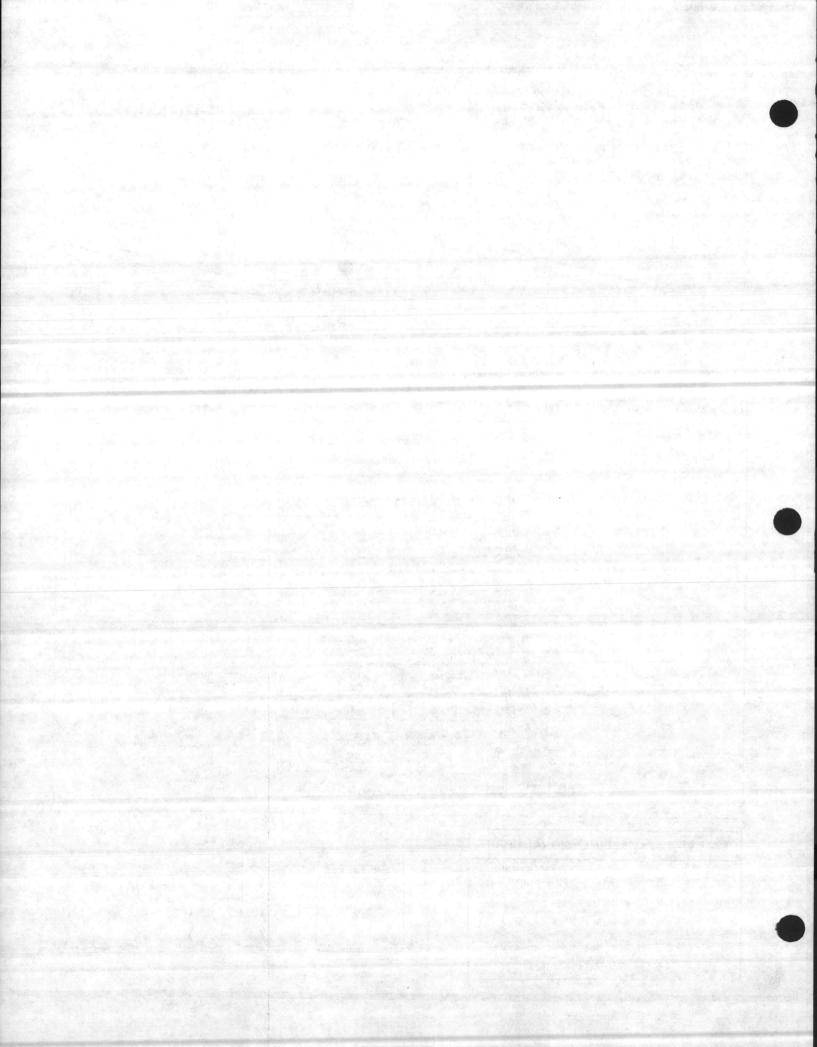
BRANCHES IN PRINCIPAL CITIES USA 1-800-523-2663 • PA 1-800-545-6629 FAX USA 1-800-237-3292 • FAX PA 1-215-474-9851 TELEX 710-670-1664 CAPPINC PHA

21.6.1



The VOLU-probe/1 is designed for the lighter duty commercial HVAC applications. The VOLU-probe/1 is furnished with a threaded end support and a mounting plate suitable for


COMMERCIAL HVAC



installation in light gauge duct construction. Said installation can be accomplished by cutting or drilling two holes in opposing duct walls, without need to enter the duct.

BASIC DIMENSIONAL DATA

2,1.6.1.

the Airflow Traverse Probe

In 1970, Air Monitor Corporation developed and introduced the multiple point, self-averaging Pitot tube station with built-in air straightener. Termed an "airflow measuring station", it now represents the standard for measuring airflow in commercial and industrial HVAC applications. There are, however, many existing ducts or stacks where it is not practical or possible to remove a duct section and install an airflow measuring station, or where the presence of particulate contaminants in the air stream makes periodic cleaning of the flow sensing means a requirement. It is in these applications that the task of

accurate air (or gas) flow measurement falls to the multiple point, flow traverse probe, or "airflow traverse probe".

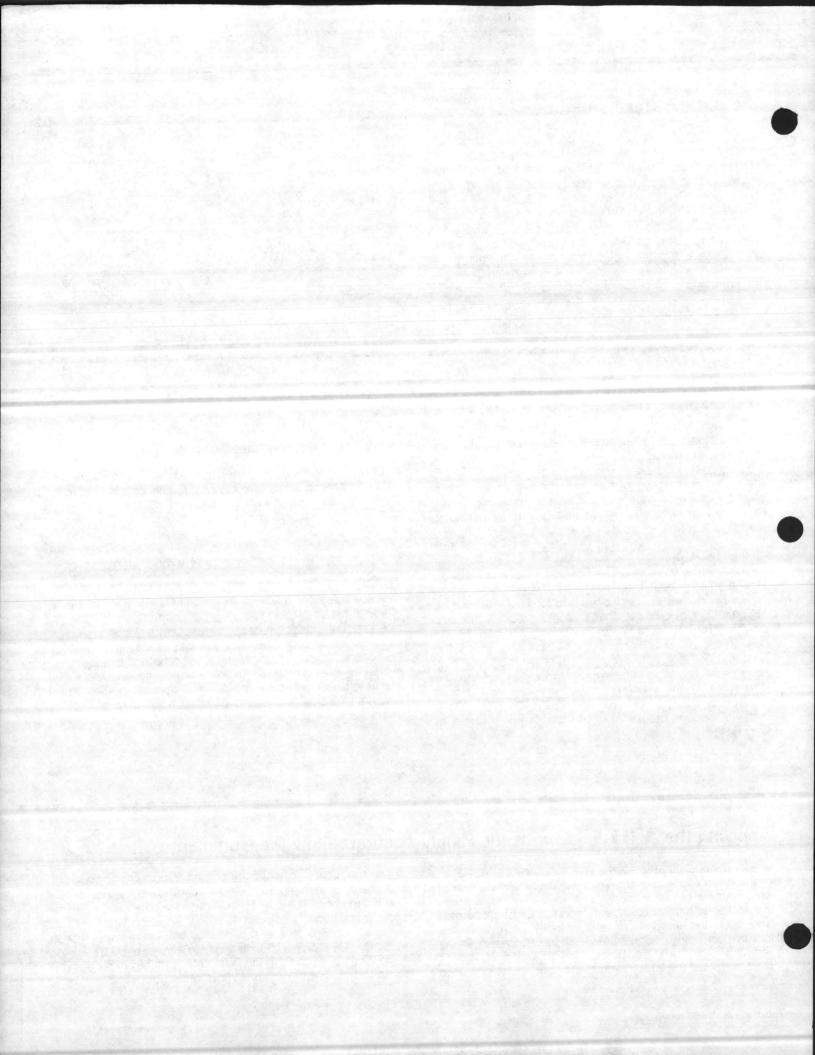
This probe is not to be confused with a single point, flow sensing probe, such as a Pitot tube, Velometer, or thermal (hot) wire, where the flow is sensed at a single location in the air stream. The "airflow traverse probe" senses the airflow at multiple velocity (Pitot) sensing points along the entire length of the probe—traversing the air stream in a single line across the duct or stack—and averages these sensed values (total and static pressure) in separate manifolds.

the Accuracy of the Airflow Traverse Probe

The accuracy of an airflow measuring station, which incorporates an air straightener or equalizer (to eliminate turbulent, rotational flow) and has multiple Pitot tube sensors positioned in a balanced, equal area, array across the entire crossection of the station area (air stream), is stated as a percentage of ACTUAL (or true) flow. With a rated accuracy of 2%, it means that the airflow measuring station is capable of sensing the rate of the air flowing through the station (and duct) to within 98% of the true (actual) flow rate.

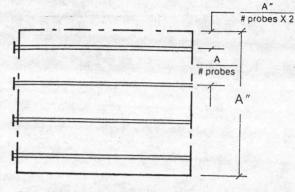
The "airflow traverse probe" does not incorporate an air straightening or equalizing means, and while it has multiple flow sensors, they are positioned on a single line across the air stream. Obviously if only a single probe is installed across a large duct, it will be traversing and sensing the flow rate across only that single line of the air stream in the duct and not the entire crossection. While the probe may have sensed the flow rate very accurately in that line, the flow rates in the other unsensed portions of the duct crossection may be at sharp variance. This can result in a highly erroneous measurement or calculation of the duct flow rate. A simple rule must therefore be applied to the statement of accuracy for airflow traverse probes:

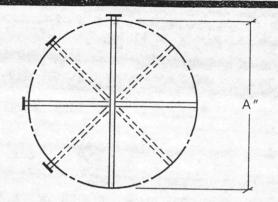
Unless multiple probes are applied across the entire duct crossection in the quantity and manner as set forth in the ASHRAE Guide on airflow measurement, the accuracy of the airflow traverse probe will be that of an instrument only (as determined when laboratory tested and compared against a known airflow rate directly in front of the probe), and NOT that of the actual or true airflow rate passing through the duct.


In summary, the measuring capability or accuracy of the airflow traverse probe in sensing the actual or true airflow rate in a duct is highly dependent upon the location and quantity of probes utilized in that installation and application. On page 3, Air Monitor has proposed a guide to enable the design engineer to predetermine the anticipated percentage of accuracy of airflow traverse probes in relation to actual or true flow when applied to a duct or stack.

Applying the VOLU-probe for Highly Accurate Flow Measurement

As previously stated above, the accuracy of the VOLUprobe when applied singularly (to a duct) can be expressed only in terms of "instrument accuracy". The single probe installation is highly dependent upon the probe placement and upon the air patterns and velocity profiles in that location as being representative of those present in the remainder of the duct. Unless the actual duct flow is predetermined (by Pitot traverse, etc.) and the duct probed


to find the ideal "corresponding" probe location, no valid statement of overall installation accuracy in terms of percentage of ACTUAL airflow can be issued for any single probe installation.


Listed in Fig. 1 are the predictable accuracies for multiple VOLU-probe installations, in terms of ACTUAL airflow, when installed in the indicated quantities of probes so as to traverse the entire airflow in the duct.

2.1.6.1

Fig. 1

FOR RECTANGULAR DUCTS

"A" Din	nension — Inches	12	16	20	24	30	36	42	48	60	72	84	96	108	120
No. of VOLU-probes Required	95 + % Accuracy*	1	1	2	2	3	3	3	3	3	4	4	5	6	6
	98 + % Accuracy*	2	2	3	3	4	4	4	4	5	6	7	8	9	10

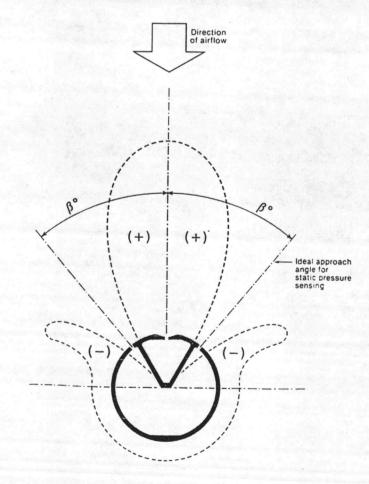
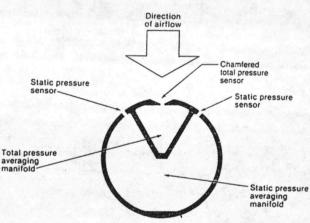
FOR CIRCULAR DUCTS

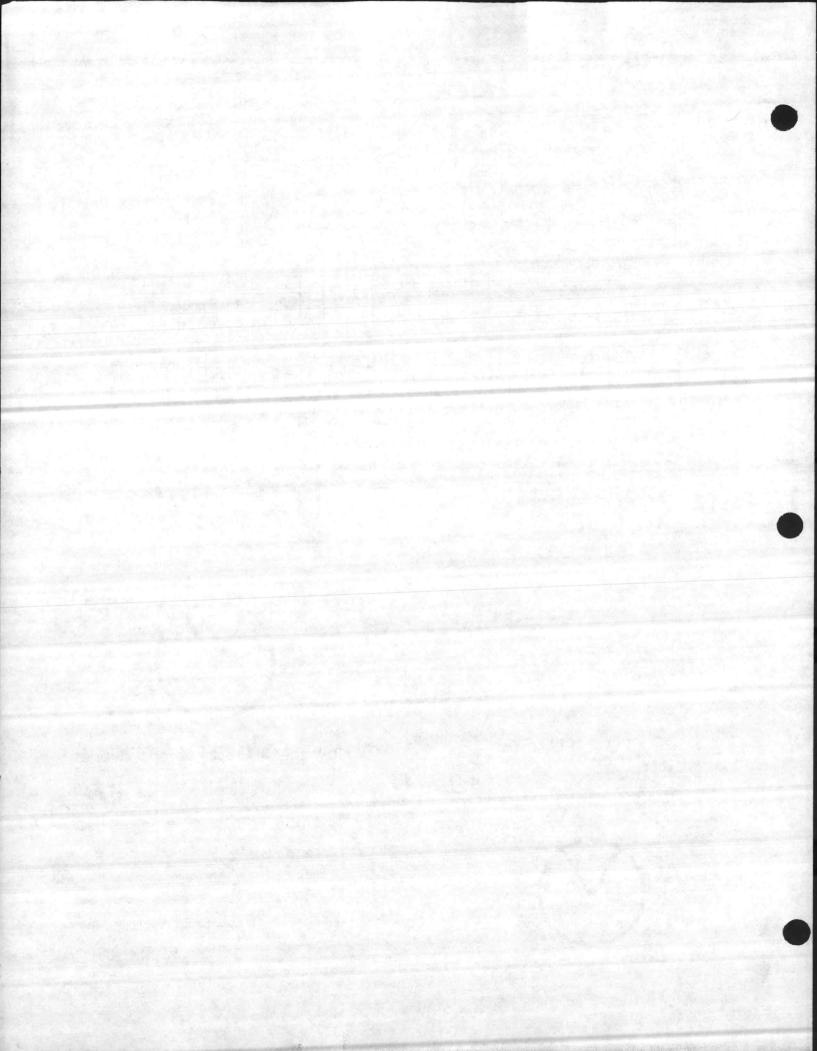
"A" Dia	meter - Inches	6	12	16	20	24	30	36	42	48	60	72	84	96	108	120
No. of VOLU-probes Required	95+% Accuracy*	1	1	1	1	1	1	2	2	2	2	2	3	3	2	2
	98 + % Accuracy*	1	1	2	2	2	2	3	3	3	3	3	4	4	4	1

Note: Above VOLU-probe installations assume compliance with proper probe orientation and required minimum distances from air turbulence producing sources. (See Page 11).

*Percent of ACTUAL airflow

Fig. 2 Airflow pressure distribution on surface of cylinder inserted across flow


Fig. 3 Cross section of VOLU-probe

How the VOLU-probe works

The flow sensors (total and static pressure sensing ports) are located on the surface of the VOLU-probe at the ideal angles for accurate flow sensing (see Fig. 2). In addition the VOLU-probe design utilizes dual static pressure sensors on opposing surfaces of the VOLU-probe to minimize the effect of arflow direction on these probes. As the flow direction veers from the normal, one static sensor is exposed to a higher pressure (P_s + part of P_t), whereas the other static sensor experiences a lower pressure (P_s - part of P_t) of the same magnitude, thereby balancing out the undesired effect of total pressure.

In addition, the total pressure sensing ports are chamfered at angles up to 60°. It is this unique design of offset static pressure and chamfered total pressure sensors (Fig. 1) that makes the VOLU-probe insensitive to approaching multi-directional, rotating airflow with pitch and yaw up to 30° from straight flow, thereby assuring the accurate measurement of the sensed airflow rate without the presence of an airflow straightener upstream. The unique design of the VOLU-probe is covered by U.S. Patent No. 4,559.835.

the Operating and Installation Features

EQUAL AREA TRAVERSE PROBE

Each VOLU-probe contains multiple total and static pressure sensors specifically and precisely located along the length of the probe to provide an equal area traverse of the duct or stack it is mounted into. For rectangular duct configurations, the VOLU-probe has the sensors spaced at equal distances along the probe. For circular duct configurations, the sensors are located at the centers of the equivalent concentric areas along the probe. All sensor locations are in full compliance with the formulation for duct traversing as set forth in *ASHRAE Handbook* 1977 Fundamentals Edition, Chapter 13, page 13.15, Subject: Pitot tubes.

HIGHLY ACCURATE FLOW SENSORS

The multiple total pressure sensors are located on the cylindrical VOLU-probe along the stagnation plane of the approaching airflow (see Fig. 2), thereby assuring the accurate sensing of these total pressure values without the need for the physical presence of forward projecting sensors into the air stream, and minimizing the possibility of impingement of airborne contaminants in or over the sensor holes.

The VOLU-probe static pressure sensor design utilizes the principle of dual offset static taps on opposing sides of the averaging manifold. As the airflow direction veers from the normal straight approach, one static tap is exposed to a lower pressure while the other static tap experiences a higher pressure of the same magnitude. This unique design of dual static taps is insensitive to flow-angle variations of as much as $\pm 20^{\circ}$ in the approaching air stream, thereby minimizing the effect of nondirectional, turbulent, rotational airflow upon the sensor, and providing the most accurate method for sensing the static pressure of the air stream (without the benefit of an air straightener).

EQUAL WEIGHT AVERAGING MANIFOLDS

The averaging process in the airflow traverse probe is a critical process if accuracy is to be maintained. Unlike single point probes (such as the Pitot tube), where individual velocity pressure readings are recorded and mathematically averaged, the airflow traverse probe must instantaneously average all the sensed pressures in a manner that gives equal weight to each pressure value and produce a final "averaged" value to be transmitted to the exterior of the probe for signal or control use.

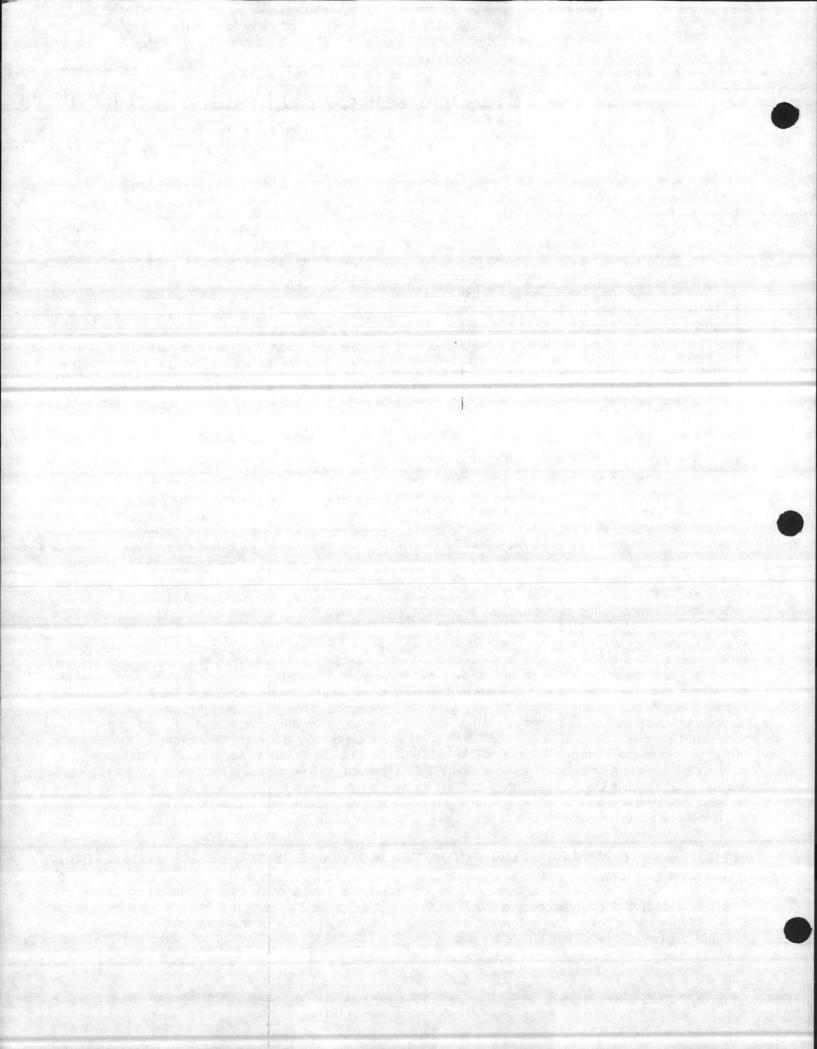
2.1.6.1

VOLU-probe

To assure accuracy in the sensed-pressure averaging process, the VOLU-probe traverse probe utilizes the patented averaging process (U.S. Patent 3,685,355) called symmetrical averaging, which requires that all stages in the averaging process occur at a point where there is a balanced array of sensors present, thereby assuring that each sensed pressure is given the same "equal weight" in the averaging process.

COMMERCIAL HVAC DESIGN

For commercial HVAC and small duct configurations, the light gauge construction of the duct walls usually will not permit the use of a self-supported VOLUprobe which requires rigidity in the duct casing wall to carry the cantilevered weight of the probe. For these light duty commercial HVAC applications, the VOLUprobe/1 with threaded end support and simplified mounting plate is the ideal product.


■ INTERNAL DUCT OR STACK INSTALLATION

Where the stack or duct size and access permits entry for installation, or where exterior inaccessibility prohibits an external installation, the VOLU-probe/2 is furnished. It has a suitable end plate for mounting to the duct or stack wall, and an end support for securing the other end of the probe to the opposite duct or stack wall. In addition, the VOLU-probe/2 is provided with midpoint total and static pressure takeoff fittings to permit internal signal connecting and/or manifolding of individual or multiple probe installations.

EXTERNAL DUCT OR STACK INSTALLATION

Where the stack or duct location, orientation, or internal conditions prohibit entry for installation, the VOLU-probe/3 is designed for complete installation from the exterior of the duct or stack. The VOLUprobe/3 is furnished with a duct mounting plate which

2.1.6.1

of the AIRFLOW MEASURING TRAVERSE PROBE

serves to secure the mounting end of the probe as well as to seal the stack or duct opening used to insert the probe. In addition, an end support suitable for installation from outside the stack or duct is provided to secure the projected end of the probe. The total and static pressure takeoff fittings are provided on the duct mounting plate to permit external signal connecting and/or manifolding of individual or multiple probe installations.

SELF-SUPPORTED PROBE DESIGN

For stack, industrial HVAC, and process air duct applications, where access for mounting the probe may be limited to one location and/or where the heavy gauge or plate construction of the stack or duct casing or wall provide a rigid member, the selfsupported VOLU-probe/4 is the ideal product. Where periodic removal of the probe may be required for cleaning, the self-supported VOLU-probe/4 eliminates the task of disengaging and re-engaging the probe at the end support when removing and reinserting the probe.

The VOLU-probe/4 is specially designed so that the self-support means, which rigidly secures the probe to the mounting plate, does not present any obstruction to the air stream or produce turbulence that might adversely affect the flow sensing capabilities of the probe.

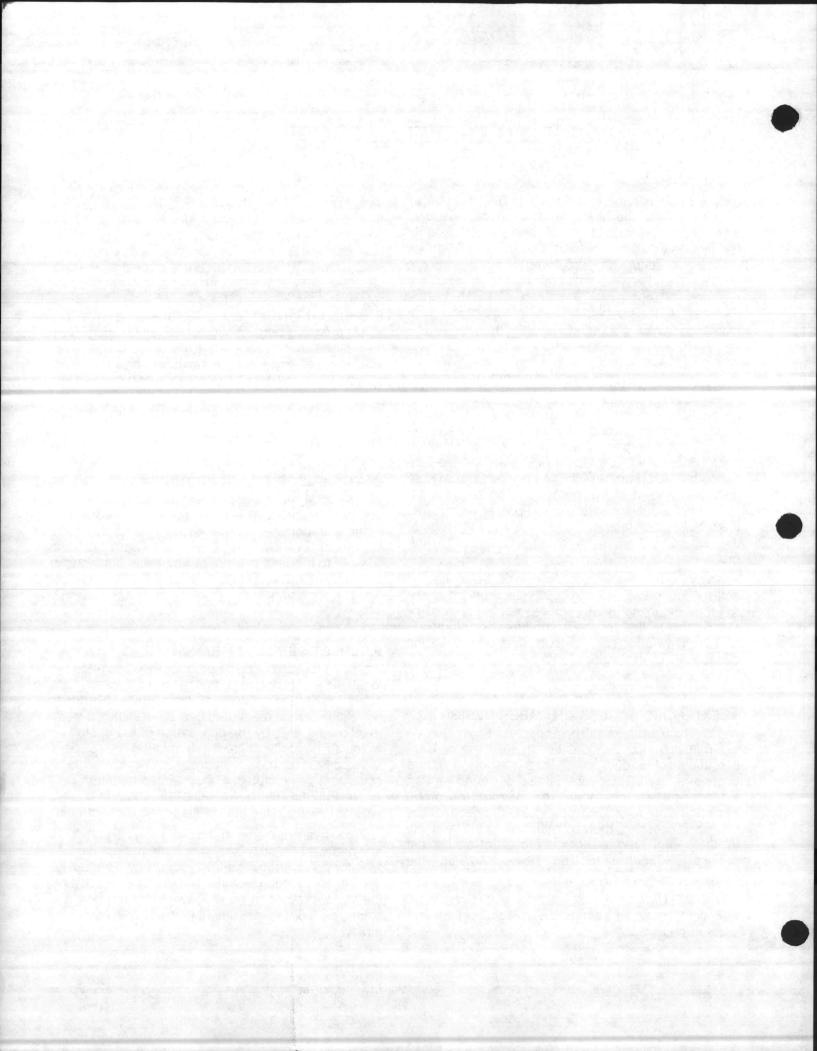
EXTENDED ACCESS CHAMBER DESIGN

For high temperature applications where an external covering of insulation material is present over the stack or duct, or where a masonry structure is present, the VOLU-probe is also designed with an extended-access chamber. This permits the probe mounting plate to be located outside the depth of the insulating covering, thereby maintaining full flexibility for the periodic removal of the probe (for cleaning, if required) without need to remove or disturb the insulating material.

The VOLU-probe/4 with extended-access chamber can be furnished in either the self-support or endsupport design.

SIMPLICITY OF INSTALLATION

The family of VOLU-probe airflow traverse probes have been specifically designed to meet all the varied conditions present with existing stack or duct installations. The VOLU-probe/1 is designed for a simple, rapid installation in HVAC sheet metal ducts. requiring only two small holes (for probe insertion and end support) and several sheet metal screws. The VOLU-probe/2 permits complete installation from inside the stack or duct, while the VOLU-probe/3 and VOLU-probe/4 permit installation entirely from outside the stack or duct. Other than cutting the entry or end support holes (for VOLU-probe/1, 3, and 4), no other sheet metal or casing cutting or patching is required.


NO SENSOR PROTRUSIONS

The total and static pressure sensors of the VOLU-probe airflow traverse probes are all contained within the confines of the exterior surface of the cylindrical VOLU-probe. There are no protruding sensors to be bent, broken, or otherwise damaged in the process of installation or possible subsequent removal for cleaning.

DIRECT AIRFLOW MEASUREMENT

The VOLU-probe configuration, sensors, and their locations are designed so that the reading of total and static pressure obtained from the averaging manifolds can be measured by a differential gauge or manometer, and, by the application of the basic flow formulas [Velocity (in feet per minute) = $4005 \times \sqrt{Velocity Pressure}$ (in inches w.c.), and Volume (in cubic feet per minute) = Duct Area (in square feet) \times Velocity (in feet per minute)] the air velocity and volume flowing in the duct or stack can be calculated.

Also available are direct reading portable or stationary air velocity and/or volume meters (see Air Monitor page Airflow Meter brochure) which can be used in conjunction with the VOLU-probe. In addition, the VOLU-probe can be utilized with pneumatic and electronic control-instrumentation for the control of airflow processes.

Robertshaw &

PE

ELECTRICAL RATING:

1 HP@120 VAC

2 HP @ 240 VAC

Local Office of

or office noted below.

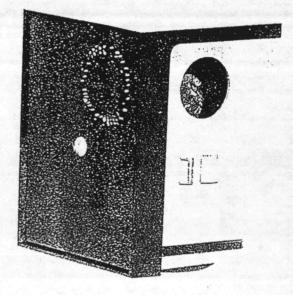
ORDER FROM:

21 Amps non-inductive @ 120-240-480 VAC

ORDERING INFORMATION: SPECIFY: Model Number

CONTROL SYSTEMS DIVISION

ROBERTSHAW CONTROLS COMPANY


2,1,13

PNEUMATIC ELECTRIC RELAY

GENERAL DESCRIPTION

The R471 Pneumatic-Electric Relays are used in control systems requiring conversion of gradual air pressure changes to positive electrical switching actions. Typical applications arc starting/stopping unit ventilator and fan coil motors, unit heaters, and air handling unit fans.

The R471 incorporates a non-metallic diaphragm that is displaced by air pressure changes. The diaphragm in turn actuates a heavy duty electrical contact mechanism.

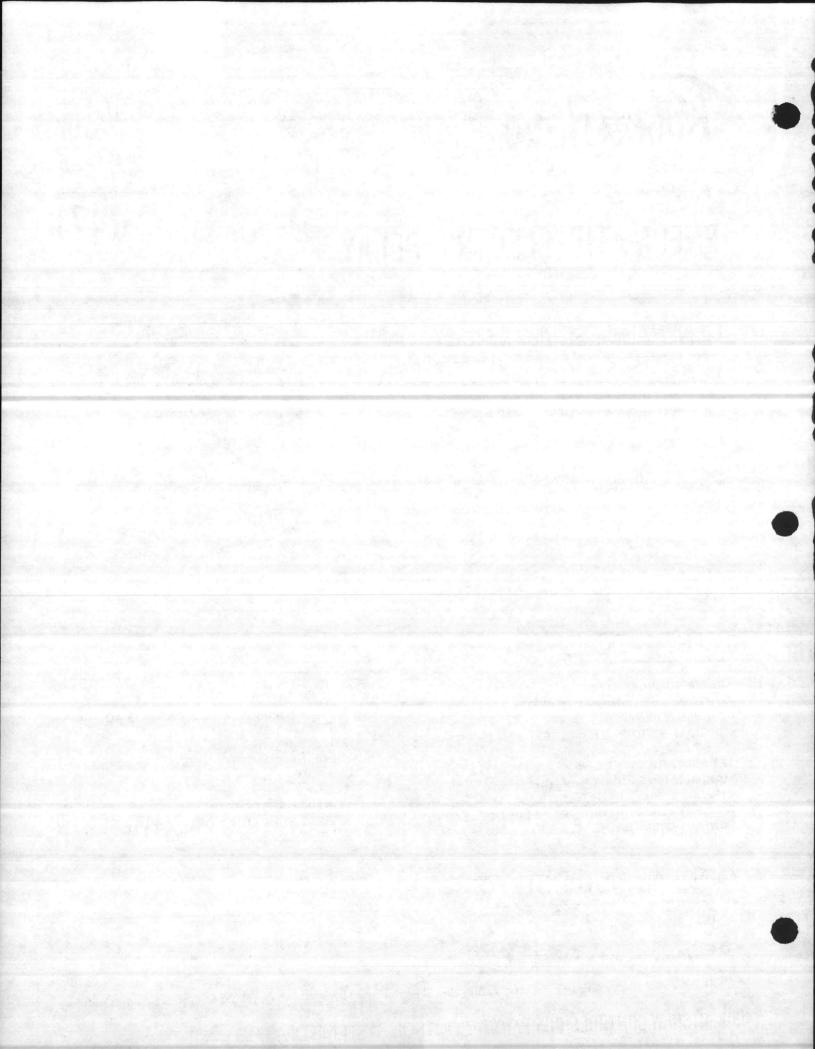
101

SHEE

R471

SPECIFICATIONS

- MODEL NUMBER: R471-1
- CONTROL SWITCHING ACTION: Three wire, single pole, double throw.
- AIR CONNECTION: 3/16" (4.76) Nipple for 1/4" (6.35) Tubing


SET POINT RANGE: 2 to 25 psig (13.79 to 172.4 kPa) MAXIMUM PRESSURE: 30 psig (206.8 kPa) DIFFERENTIAL: 2.0 psi Fixed (13.79 kPa) AMBIENT TEMPERATURE: 32° to 140°F (0° to 60°C) CONDUIT OPENING: 1/2" Conduit size

GENERAL INSTRUCTIONS

1. Use on control air only.

- 2. This relay will operate mounted in any position.
- 3. Any electrical loads exceeding the relay's rating should be controlled by intermediate relays, contactors or motor starters.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. 0 EOX 27606 - RICHMOND, VIRGINIA 23261

INSTALLATION INSTRUCTIONS PNEUMATIC-ELECTRIC RELAYS

GENERAL DESCRIPTION

Model R471 and R472 pneumatic-electric relays are used in pneumatic control system applications requiring conversion of gradual air pressure changes to positive electrical switching action.

The R471-1 relay has single-pole, double-throw switching action; the R472-1 has double-pole, double-throw action. These relays should be operated by control air only with a maximum pressure of 30 psig (207 kPa). Electrical ratings are listed in Table I.

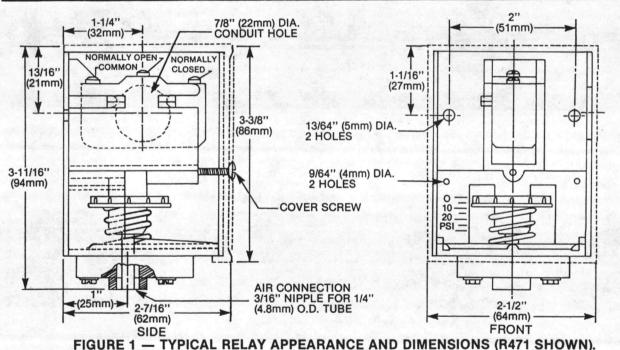
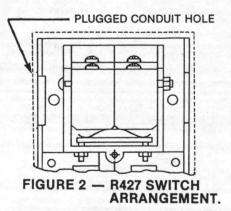

ELECTRICAL RATING (EACH SWITCH) 21 Amps non-inductive @ 120-240-480 VAC 1 HP @ 120 VAC 2 HP @ 240 VAC

TABLE I

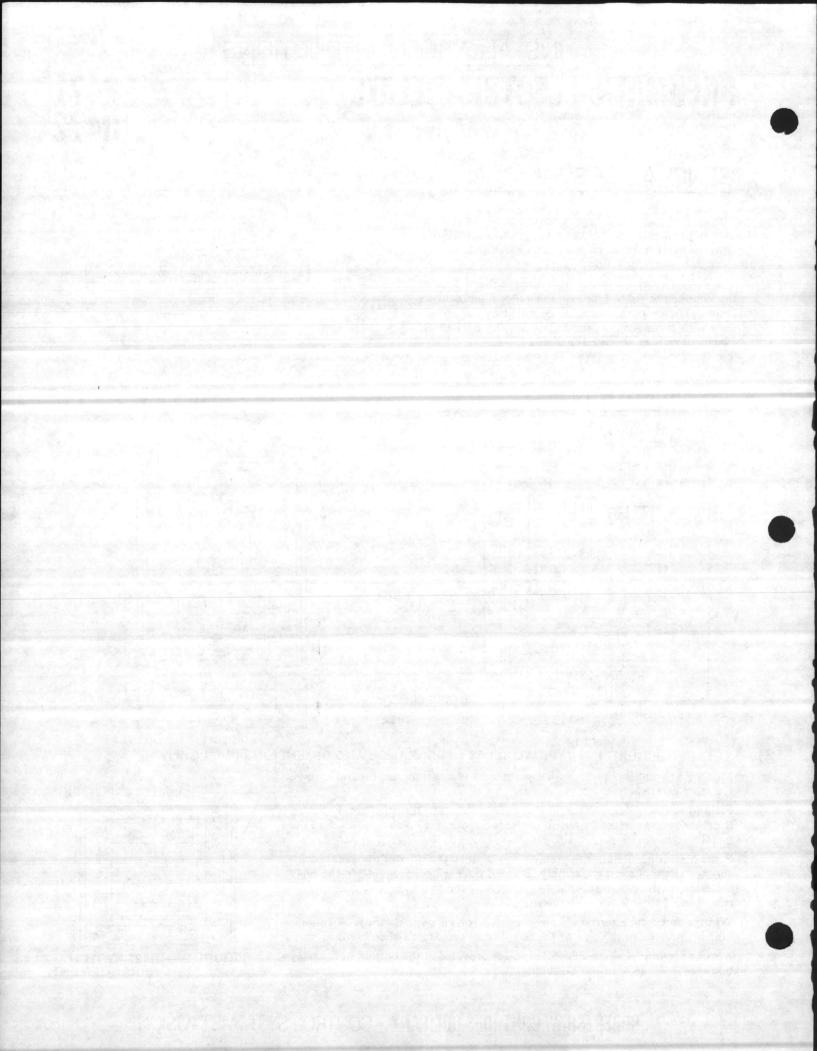
R471

R472

INSTALLATION


Model R471 and R472 relays will operate in any position. See Figures 1 and 2 for relay details.

Field Mounting: Remove the slotted cover screw and the relay cover. Fasten the relay to any surface by means of the two mounting holes in the back of the metal enclosure.


Panel Mounting: Remove the relay cover. Spread the sides of the metal enclosure to release the relay assembly. Discard the enclosure and attach the relay assembly to the panel backplate by means of the two mounting holes in the relay body (suitable for #8 screws).

Wiring: Screw-type terminals are provided for all switch wiring. A conduit hole is provided in the side of the metal relay enclosure (when used).

Air Connection: A sleeved 3/16" nipple is provided at the bottom of the relay body for 1/4" (6.4mm) O.D. tubing.

ROBERTSHAW CONTROLS COMPANY • CONTROL SYSTEMS DIVISION

CALIBRATION & ADJUSTMENT INSTRUCTIONS PNEUMATIC-ELECTRIC RELAYS R471

CALIBRATION

Model R471 and R472 pneumatic-electric relays are used in pneumatic control system applications requiring conversion of gradual air pressure changes to positive electrical switching action.

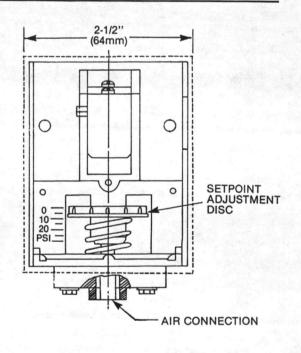
The R471-1 relay has single-pole, double-throw switching action; the R472-1 has double-pole, double-throw action. These relays should be operated by control air only with a maximum pressure of 30 psig (207 kPa). Electrical ratings are listed in Table I.

These relays are not factory calibrated.

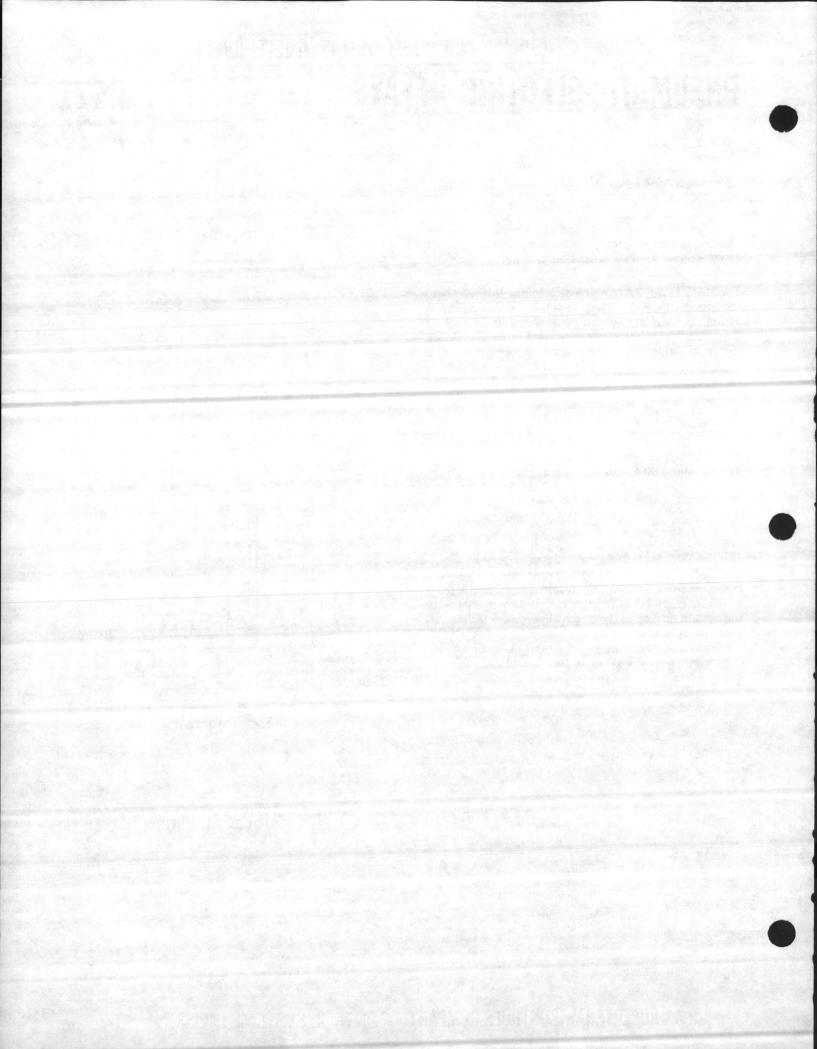
ADJUSTMENT

The switching **differential** of these relays is not adjustable. It is fixed at approximately 2 psi (14 kPa) for the R471 and 3 psi (21 kPa) for the R472.

The setpoint ranges of these relays are as follows:


R471-1 (SPDT): 2 to 25 psig (14 to 172 kPa) R472-1 (DPDT): 4 to 20 psig (28 to 138 kPa)

The device setpoint may be adjusted by removing the enclosure cover (retained by a slotted screw in the front of the cover) and then rotating the adjustment disc until the bottom surface of the disc is aligned with the desired value on the adjacent pressure scale (see Figure 1). For maximum accuracy, the switch points should be measured with a pressure gauge in the signal line.


TABLE I

R472

ELECTRICAL RATING (EACH SWITCH)
21 Amps non-inductive @ 120-240-480 VAC
1 HP @ 120 VAC
2 HP @ 240 VAC

FIGURE 1 — TYPICAL RELAY APPEARANCE (MODEL R471 SHOWN).

2.1,13 EP

ELECTRIC PNEUMATIC RELAYS GENERAL DESCRIPTION

The Model R429 and R430 Electric-Pneumatic Relays are solenoid air valves for two-position action. Their three tubing connections are marked 1 (normally-closed), 2 (normally-open) and 3 (common). These 3-way air valves are designed for applications where control air is to be supplied to or exhausted from a pneumatic device, or where control air is to be diverted from one device to another, in response to an on-off electrical signal. Supply, exhaust and diverting operations depend on tubing connections.

All three tubing connections are of the barbed type, sized for 1/4 inch (6 mm) OD polyethylene tubing, or other suitable tubing.

ACTION: Coil Deenergized:

Ports 2 and 3 connected, Port 1 blocked.

Ports 1 and 3 connected, Port 2 blocked.

These relays may be mounted in any position, and are designed for continuous duty cycle. Valve body may be rotated 360° if necessary.

SPECIFICATIONS

Coil Energized:

MODEL NO. R429 (Splice Box Model)

MODEL NO. R430 (Open Frame Model)

POWER CONSUMPTION: 4 watts.

HEAT RISE: 120° F. (49° C) Max.

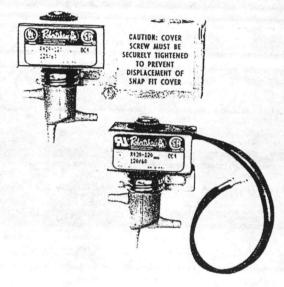
- AIR CONNECTIONS: 3/16" O.D. Barbed Fittings, for 1/4" O.D. (6 mm) Polyethylene Tubing, or equivalent.
- CONSTRUCTION: Outer Body: Plastic Internal: Nitrile, Copper, Stainless Steel

NOISE: No Audible Hum or Vibration at 90% Rated. Voltage at 3 FT. (.9M).

INTERNAL LEAKAGE: 2.44 in ³ (40 cm³) per minute @ 50 psi (345kPa) △ p.

EXTERNAL LEAKAGE: Bubble Tight

MAXIMUM OPERATING PRESSURE: 30 psig

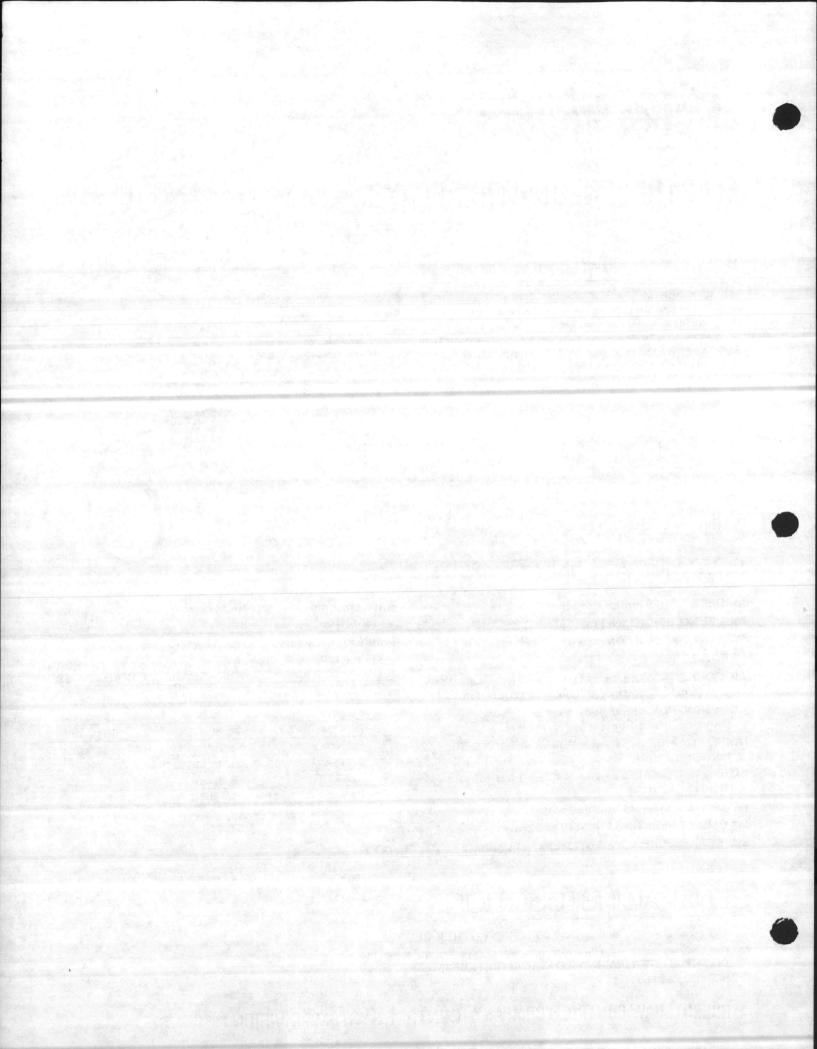

BURST PRESSURE: 250 psig (1724kPa) minimum

GENERAL INSTRUCTIONS

- 1. To be used on control air only. DO NOT USE ANY OTHER MEDIUM.
- 2. Coil becomes hot when continuously energized. LOCATE OUT OF REACH. DO NOT ALLOW TUBING TO CONTACT COIL HOUSING.

3. Provide normal free space for proper ventilation.

DATA SHEET MODELS R429 R430 2



AIR CAPACITY: .42 SCFM (12,000 SCCM) at 20 psig (138kPa) with 1 psi (7kPa) drop. CV = 0.075

WIRING: Thermoplastic leads, #18 AWG

SPLICE BOX TYPE MODEL NUMBERS	VOLTAGE / HZ	OPEN FRAME TYPE MODEL NUMBERS		
R429-24	24/60	R430-24		
R429-2450	24/50	R430-2450		
R429-120	120/60, 110/50	R430-120		
R429-208	208/60	R430-208		
R429-240	240/60, 220/50	R430-240		
R429-277	277/60	R430-277		
R429-480	480/60, 440/50	R430-480		
	the second s			

ROBERTSHAW CONTROLS COMPANY CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE PO BOX 27606 + RICHMOND VIRGINIA 23261

PRESSURE RANGE: ORIFICE (ALL PORTS):

FLOW CONSTANT:

 $C_v = 0.4(1/8")$

TEMPERATURE RANGE:

274B-

State of the state

275B-

OPERATING DATA

Pressures shown are minimum and maximum safe working pressures MANIFOLD

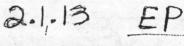
=0.4

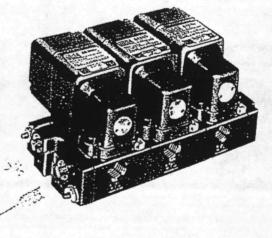
0.5 /1/2") All valves rated 0°F to 140°F (---18° to 60°C). For UL purposes, maximum is 40°C (104°F). Consult factory outside these ranges.

LUBRICATION: ELECTRICAL: AC 120/60

FLUIDS.

DC 24 VOLT ABOVE COILS


LEADS


Not required, but if lubrication is used, a met aniline point oil is recommended.

Inrush 32.4 Volt-amps (.27 amps) Seal 21.6 Voli-amps (.18 amps) 8.5, 6.0, 4.5, 2.5 or 1.0 wolts

General Purpose Class A, cont. duty, encopy except 2.5 and 1.0 watts which are varnishes #18 AWG x 18" std.

UL APPROVED MODELS

The Valve Models above in the "How to Order" section identified with the symbol ("•") are UL Listed models for General Purpose—Class A service (See "Ambient Temperature Range" in Operating Data section). The grommet enclosures for the some models are listed as a UL recognized component. CSA APPROVED MODELS

The Valve Models above identified with the symbol ("†") are listed as Certified by CSA.

AMBIENT

Select the desired model number from the tables below and odd the desired voltage, manual operator and electrical enclosure to obtain complete model number, e.g.: 224B-111B. INLINE MODELS NO FTI EXH IN 274R. 225B +Universal 2. or 3. Way (N.C. & N.O.)

HOW TO ORDER

200B SERIES

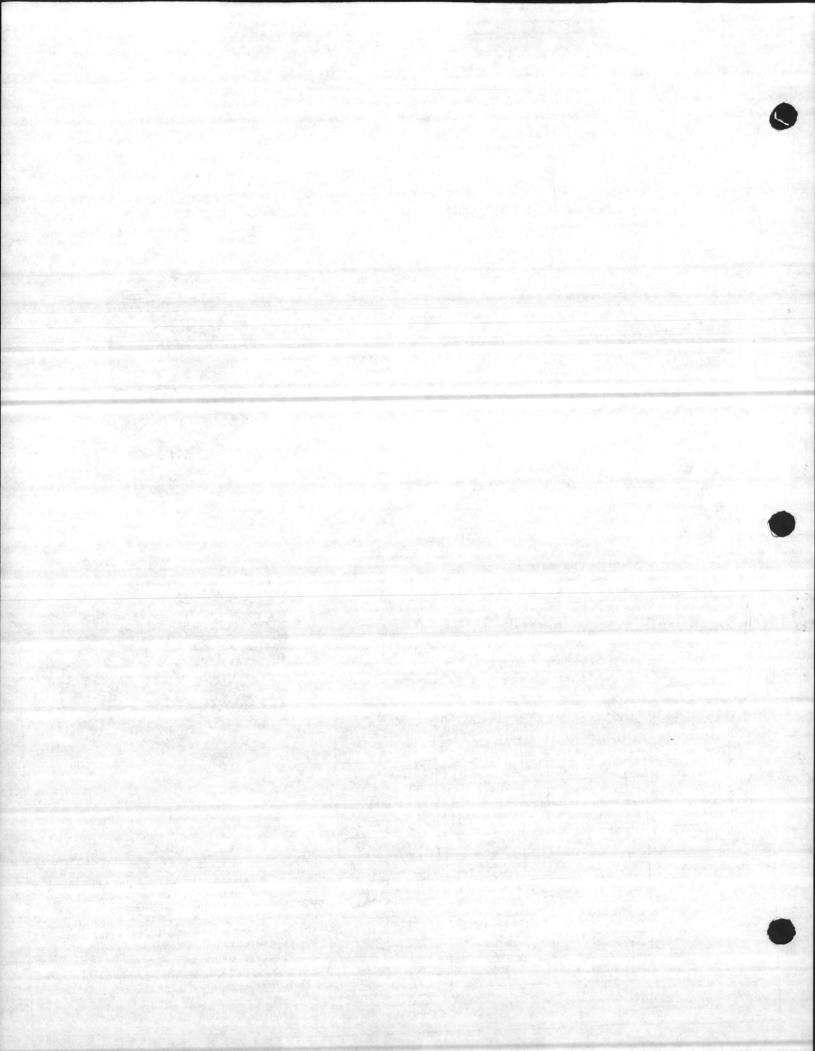
Vacuum to 150 PSIG

INLINE

0.19" (4.8 mm)

MANIFOLD MODELS

N.C. Only 3-Way


MODILNO	DE	RIPHON		STO CONDACK
VALVE LESS BASE	ATT M M.	. (YL 2		I <u>S NO.</u> /ITH BASE
†250B-	Universal 3-Way	Sid. Sol.	1/00	STIC S
1	(N.C. & N.O.)	Exp. Proof Solenoid	†256B-	†257B-
†260B-	Universal 2-Way	Std. Sol.	258B-	259B-
	(N.C. & N.O.)		†266B-	†267B-
280B-		Exp. Proof Solenoid	268B-	269B-
	N.C. Only 3-Way	Std. Sol.	286B	2878-
		Exp. Proof Solenoid	2888-	2898.

SOLENOID OPTIONS: EXAMPLE: 2258-11 1 8

	ACVoltage	1000	X DC Voltago		Manual Operators		R	Entlosuro
11	•†120/60, 110/50 24 VDC (6W)	50	• +24 VDC (6.0W)	0	•†No Operator	1	A	JIC w/1/2" NPS Conduit
_	1999 B	51	24 VDC (4.5W)	1	*†Non-Locking Recessed (Std.)	1	в	tGrommet
12	• † 240/60, 220/50	52	24 VDC (2.5W)	2	•†Locking Recessed	1	c	•†Conduit
22	•†24/50-60	53	24 VDC (1.0W)	3	•†Non-Locking Extended	1	E	Explosion Proof Ø
26	• + 480/60, 440/50	55	12 VDC (6.0W)	4	•†Locking Exlended	1	N	•†Conduit 1/2" NPS w/Grd. Wire
Sho	Voltages Not wn, Consult lory.	60	• † 12 VDC (8.5W)	5	No Operator with Light	0	Lig	hts are avail.
e "200 Series—Supple		61	•†24 VDC (8.5W)	6	Non-Locking () Recessed w/Lg1. Locking () Recessed w/Lg1.		110	le for 120/60. 0/50 or 240/60 220/50 with
		68	•†120 VDC	7			JIC enclosure only ("A"). Explosion proof	
		69 250 VDC		8	Non-Locking ① Extended w/Lgt.		will	losure supplied h No Operator y ("O").
		78	24VDC (24.0W)		Locking (D) Extended w/Lgt.	Not recommended for extended ener- gization periods.		

See "200 Series-Supplemental Technical Dato" at the back of this section for modifications, accessories and dimensions.

F only. Specily: MOD CLSF.

T318 - 2.1.8.5 AQ2

CONTRAS

18

MODE

T316

THROUGH

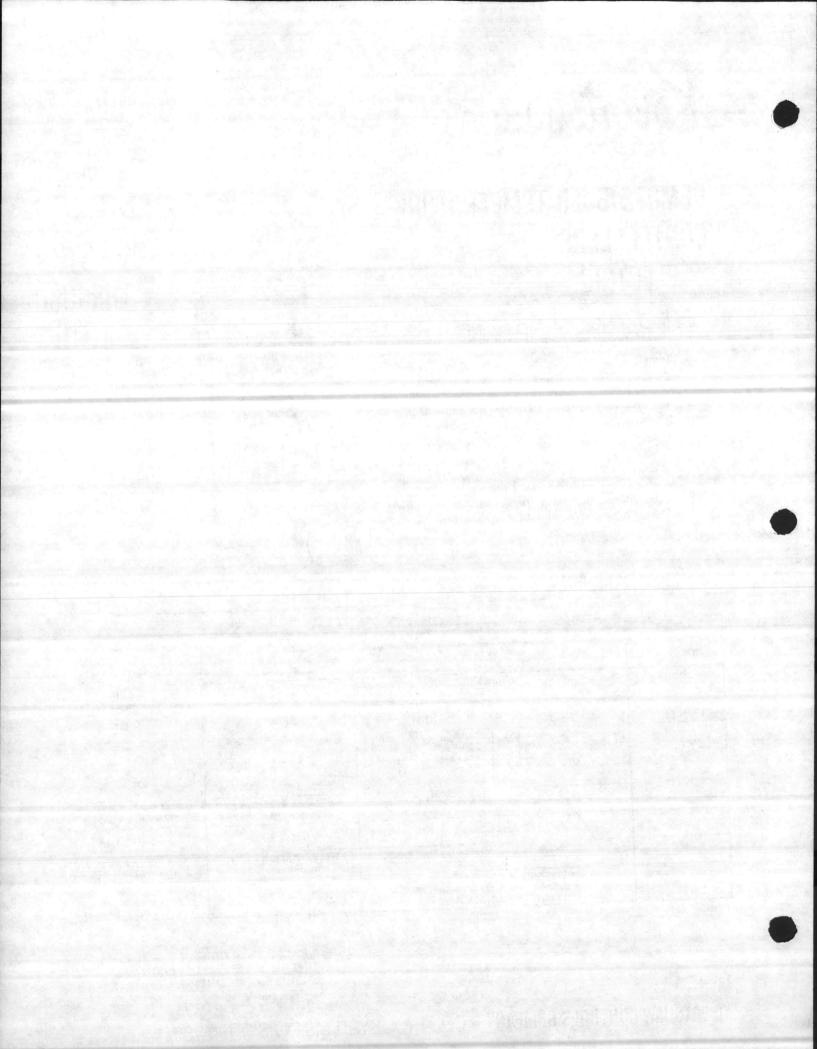
T319

REMOTE BULB TEMPERATURE Controllers Electric

GENERAL DESCRIPTION

T316 through T319 Remote Bulb Temperature Controls feature rugged switch mechanisms enclosed in dustproof housings, with highly sensitive remote bulbs, and capillary tubes to permit mounting of switches and bulbs in any desired positions. Externally set indicators are calibrated in °F.

These controls are suitable for use in air or with liquids that are non-corrosive to copper, and may be used with accessory wells 100-52, 100-53, and 100-54 as listed below. Applications include high-limit, reverse-action, heating/ cooling; and outdoor thermostat functions, depending on model selected.

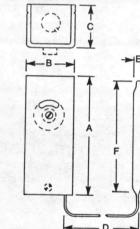

SPECIFICATIONS

T318 shown

MODEL	T316		1	_ /		ANT.
		T317	T318	AL.	T310) 63-
RANGE	100° to (38° to 1	240°F	50° to 13	0°F	-30° to	
DIFFERENTIAL	5° to 4	15°F	(10° to 54		(-18°. to	48°C)
(Adjustable) SWITCH	(2.8° to	25°C)	3.5° to 14 (1.9° to 7.1	°F B°C)	4.5° to 4	0°F
ACTION	opens on rise (NC)	closes on rise (NO)	SPDT		(2.5° to 2	2°C)
Charles and the second s	240 Vac 6.0 A	240 Vac 7.0 A			SPDI	
SWITCH RATING	/	120 Vac 14.0 A not suited to lower voltages	240 Vac 208 Vac 120 Vac pilot duty: 24-600 Vac	8.0 A 9.2 A 16.0 A 125 VA	240 Vac 120 Vac	3.7 A 7.4 A
BULB	3-1/2" long x 7/] (89 mm x 1)	16" diameter 1 mm)	5" long x 3/8" (127 mm x 9.5	diam	5-3/4" long x 3/	8" diam.
APILLARY	5 feet (1.5	5 m)			(146 mm x 9.	5 mm)
OUSING	5-3/8" x 2-5/16"	'x 2.0/16"	8 feet (2.4 1	P	8 feet (2.4	m)
ELLS	100-52: 1/2" MPT: 4.7/16	m x 65 mm)	4-13/16" x 2-5/32" (122 mm x 55 mm	x 1-3/16" x 30 mm)	5-3/8" x 2-5/16" (137 mm x 59 mm	x 2-9/16" x 65 mm)
	insertion approx. 3-1/0 100 psig (689 Kpa);		100-53: 1/2" MPT;	for T318	100-54: 1/2" MP (194 mm); ins approx. 6" (15	T; 7.5/8" ertion

ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 232E


ELECTRIC TEMPERATURE CONTROLLERS REMOTE BULB

GENERAL DESCRIPTION

Model T316 through T319 electric remote bulb temperature controllers are suitable for use in air or with liquids that are noncorrosive to copper and may be used with the immersion wells listed below (order separately). All models have adjustable differentials and line voltage contact ratings (see Table I).

INSTALLATION

Controllers: These controllers will operate in any position. They can be wall, duct or panel mounted using the four slotted mounting holes in the back of the controller case.

MC	DDEL .	T316 & T317	T319	T318			
	A	5-3/8' 2-5/16 2-9/16 5 ft. (1.5m) ^a 7/16'' (11mm) 3-1/2'' (90mm) L 90° J. Screw AL Detent Knocko	(137mm)	4-13/16" (122mm)			
S	В	2-5/16'	' (59mm)	2-5/32" (55mm)			
DIMENSIONS	С	2-9/16'	' (65mm)	1-13/16" (46mm)			
VEN	D	5 ft. (1.5m) ^a	8 ft. (2.4m)	8 ft. (2.4m)			
	E	7/16" (11mm)	3/8" (10mm)	3/8" (10mm)			
	F	3-1/2" (90mm)	5-3/4" (146mm)	5-5/8" (143mm)			
SETPO	INT DIAL	90° \	Window	360° Window			
SETPO	INT ADJ.	Screwd	Iriver Slot	Knob			
COVER	REMOVAL	Detents	(Friction)	Slotted Screw			
			uts in Top, and Back	Hole in Bottom			

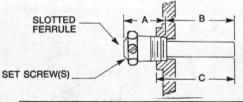

a - Armored capillary on T316.

FIGURE 1 - CONTROLLER DIMENSIONS AND DETAILS.

	SETPOINT	DIFFERENTIAL	SWITCH	MOTOR	RATING,	AMPS	OTHER	
MODEL	RANGE	(Adjustable)	ACTION	120 VAC	208 VAC	240 VAC	RATINGS	
T316	100° to 240°F (38° to 116°C)	5° to 45°F (2.8° to 25°C)	SPST (NC) Open on Rise	10.0	-	6.0	6A @ 25 VAC 1A @ 0.3 to 12 VDC	
T317	1.4.16		SPST (NO) Close on Rise	14.0	-70	7.0	- 1997) 1997 - 1997 1997	
T318	50° to 130°F (10° to 54°C)	3.5° to 14°F (1.9° to 7.8°C)	SPDT	16.0	9.2	8.0	Pilot Duty: 125 VA @ 24 to 600 VAC	
T319	-30° to 90°F (-18° to 48°C)	4.5° to 40°F (2.5° to 22°C)	SPDT	7.4	-	3.7		

Sensing Bulbs: The remote sensing bulbs can be mounted in any position in an immersion well (see Figure 2), in a duct (bulb holder model 100-02 may be ordered separately) or in the outside air (O.A. shield model 100-13 may be ordered separately).

Electrical: The electrical compartment is exposed by removing the controller cover. Screw terminals are provided for wire connections (see Figure 3) and conduit openings are provided as listed in Figure 1.

CONTROLLER	WELL	DIMENIONS - INCHES (mm)							
MODEL	MODEL	A	В	С					
T316 & T317	100-52	1-5/8 (41)	2-13/16 (71)	3-1/8 (79)					
T318	100-53	2-1/16 (52)	5-13/16 (148)	6-1/8 (156)					
T319	100-54	1-5/8 (41)	6 (152)	6-5/16 (160)					

FIGURE 2 — IMMERSION WELLS.

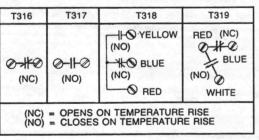
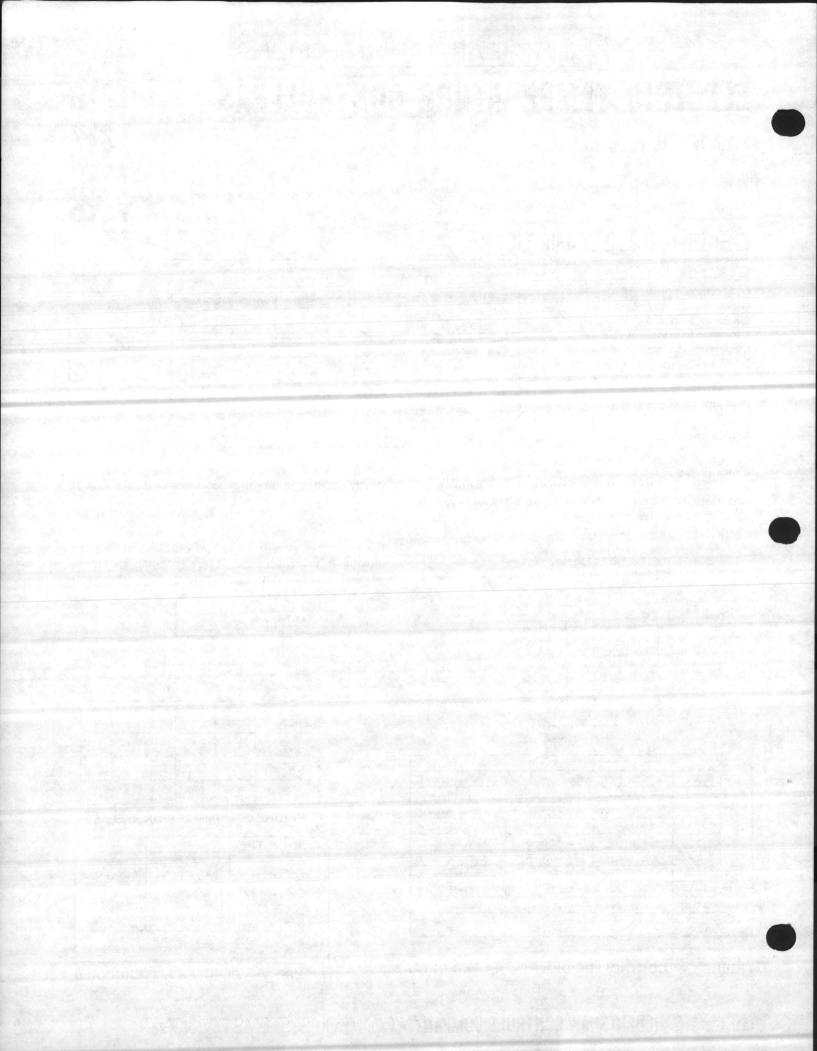
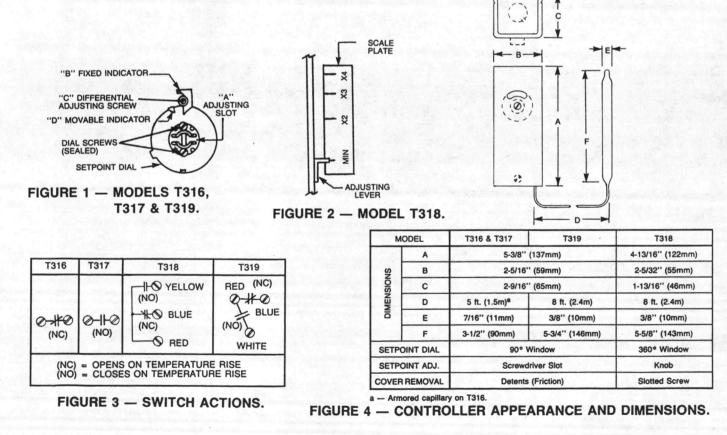



FIGURE 3 - ELECTRICAL TERMINALS.

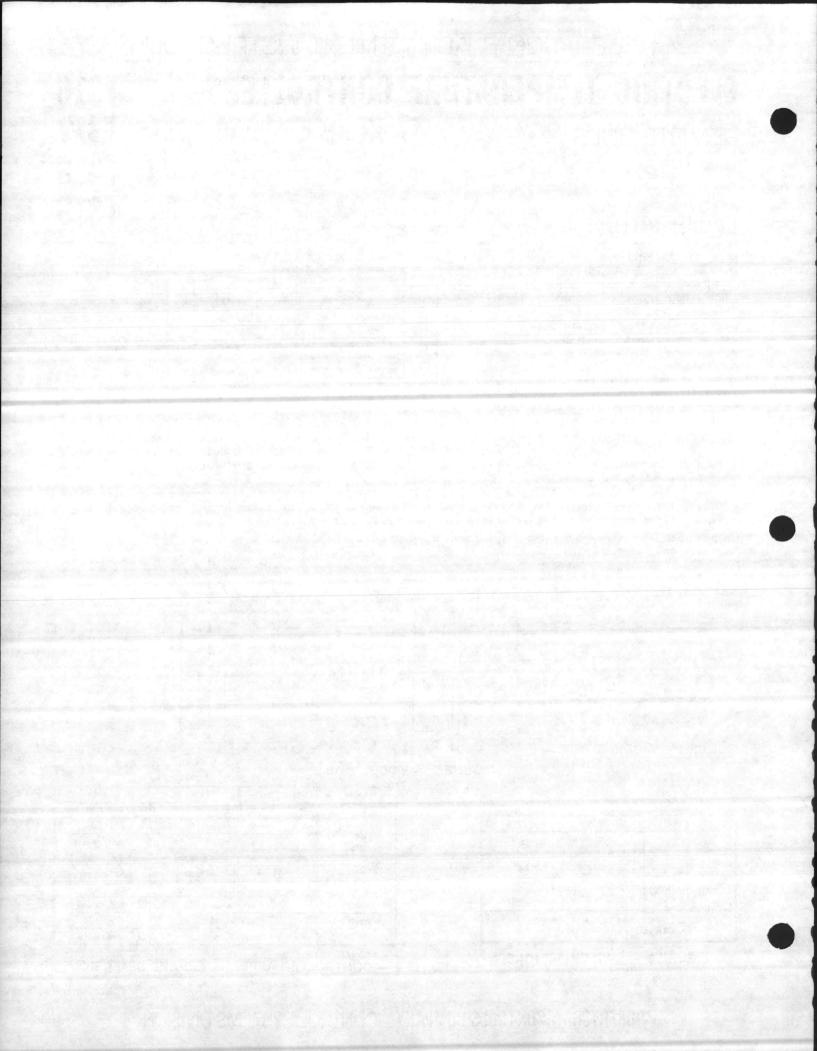
CALIBRATION & ADJUSTMENT INSTRUCTIONS ELECTRIC TEMPERATURE CONTROLLERS REMOTE BULB

CALIBRATION

Model T316 through T319 electric remote bulb temperature controllers are suitable for use in air or with liquids (non-corrosive to copper) when used with immersion wells. All models have adjustable differentials and line voltage contact ratings (see Table I). Field calibration is not required.


			TABLE	1	12.15	1.20	
· · · · · ·	OFTOOLUT	DIFFERENTIAL	OWITCH	MOTOR	RATING.	OTHER	
MODEL	SETPOINT RANGE	(Adjustable)	SWITCH	120 VAC	208 VAC	240 VAC	RATINGS
T316	100° to 240°F (38° to 116°C)	5° to 45°F (2.8° to 25°C)	SPST (NC) Open on Rise	10.0	-	6.0	6A @ 25 VAC 1A @ 0.3 to 12 VDC
T317			SPST (NO) Close on Rise	14.0	-	7.0	-
T318	50° to 130°F (10° to 54°C)	3.5° to 14°F (1.9° to 7.8°C)	SPDT	16.0	9.2	8.0	Pilot Duty: 125 VA @ 24 to 600 VAC
T319	-30° to 90°F (-18° to 48°C)	4.5° to 40°F (2.5° to 22°C)	SPDT	. 7.4	-	3.7	-

ADJUSTMENT


Differential: See Table I for differential adjustment ranges. Adjustments are accessible by removing the controller covers.


- A. Models T316, T317 and T319: See Figure 1. First, insert a screwdriver in adjusting slot "A" and turn the setpoint dial until the lower differential temperature is at indicator "B" ("cut-in" for T317, "cut-out" for T319, Red to Blue for T319). Then turn slotted differential screw "C" until movable indicator "D" is at the higher differential temperature ("cut-out" for T317, "cut-in" for T318, Red to White for T319).
- B. Model T319: See Figure 2. The T319 is shipped with a minimum differential setting which may be increased by sliding the differential lever (right side of contact block) to the desired value by reference to the scale multipliers of the minimum value (X2, X3 and X4). The contacts make Red to Blue at the setpoint minus the differential.

Setpoint: See Table I for setpoint ranges. Setpoint adjustments are external for all models, screwdriver slot "A" for the T316, T317 and T319, and a knurled knob for the T318.

ROBERTSHAW CONTROLS COMPANY • CONTROL SYSTEMS DIVISION

Robertshaw &

ngh b

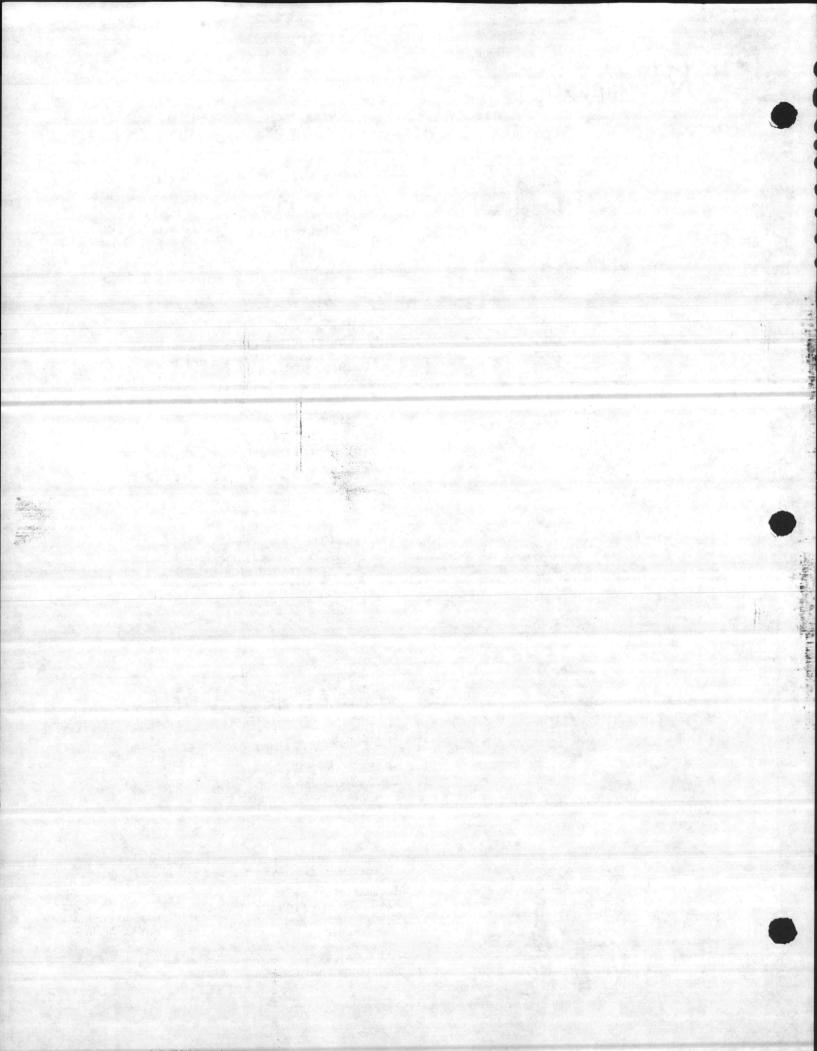
MODEL N1-7A MINIATURE PRESSURE REGULATOR PRIMARY PRESSURE: Up to 150 psig (1034 kPa OUTPUT PRESSURE: Adjustable 1-10 psig (7-69 kPa Relieving type, 1/8" FPT port connections. Unit has knob locknut. Max. temp. 150°F (65°C).

2,2,15

PRV

MODEL N1-11B FILTER REGULATOR (5 Micron) PRIMARY PRESSURE: Up to 150 psig (1034 kPa). OUTPUT PRESSURE: Adjustable 5-50 psig (34-345 kPa Relieving type, 3/8" (10mm) FPT port connections. Unit has a metal bowl guard and mounting bracket included. Max. Temp. 125°F (52°C).

SPARE PARTS N1-12B Replacement Filter Cartridge


MODEL N1-13 AUTOMATIC TANK DRAIN 150 psig (±034 kPa) at 125 °F (52 °C). 1/2 " FPT connection. Unit has bowl guard.

MODEL N1-14 OLL FILTER 10 SCFM Capacity @ 100 psig (689 kPa). 3/8" (10mm) FPT Air Connections. MAXIMUM PRESSURE: 150 psig (1034 kPa) at 125°F (52°C). Unit includes bowl guard.

SPARE PARTS N1-15 Replacement Filter Cartridge

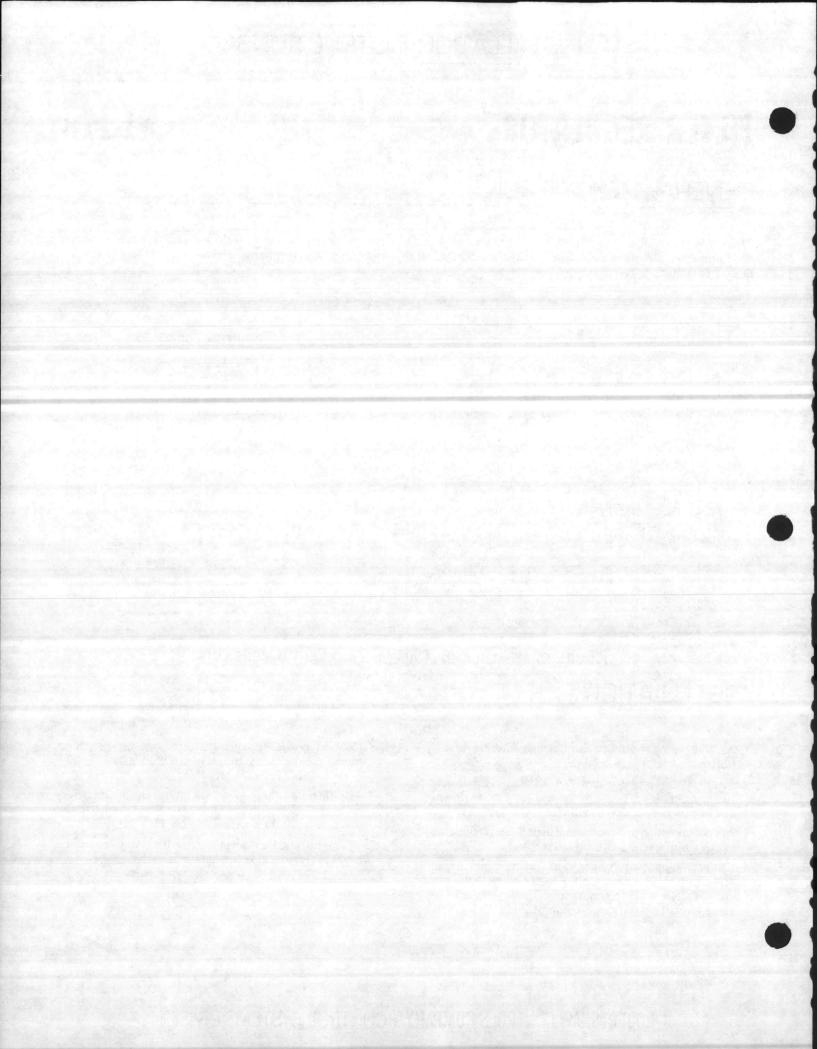
MODEL N1-20 CONTROL AIR FILTER using toilet tissue roll as filtering element for the removal of oil vapor and sub-micronic dirt from

SPARE PARTS Toilet Tissue Filter Cartridge.

INSTALLATION INSTRUCTIONS

FILTER REGULATOR

N1-11B


GENERAL DESCRIPTION

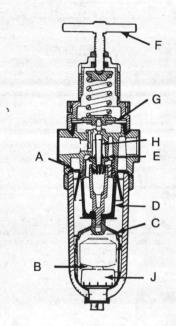
This filter/regulator performs two functions in a compressed air system. It removes most solid and liquid particles from the compressed air and it maintains a nearly constant outlet pressure despite changes in the inlet air pressure and changes in downstream flow requirements.

INSTALLATION

- 1. Air line piping should be same size as filter/regulator ports.
- Install filter/regulator in a vertical position with adjustment knob or T-handle up and filter bowl down, as close as possible to the device being serviced.
- 3. In systems with a cyclic demand, install filter/regulator upstream of cycling control valves.
- 4. Connect piping to proper ports using pipe thread sealant on male threads only. Do not allow sealant to enter interior of filter/regulator. Air flow must be in same direction as arrow on side of body.
- 5. Connect outlet pressure gauge to one of the gauge ports. Gauge ports can also be used as additional outlets. Plug unused ports.
- 6. Use flexible tubing (1/8" minimum inside diameter) or non-rigid piping for automatic drain connections. Automatic drain port is 1/8" NPTF.
- 7. When installed in a rigid pipe line, the mounting bracket (Figure 1) is not required.

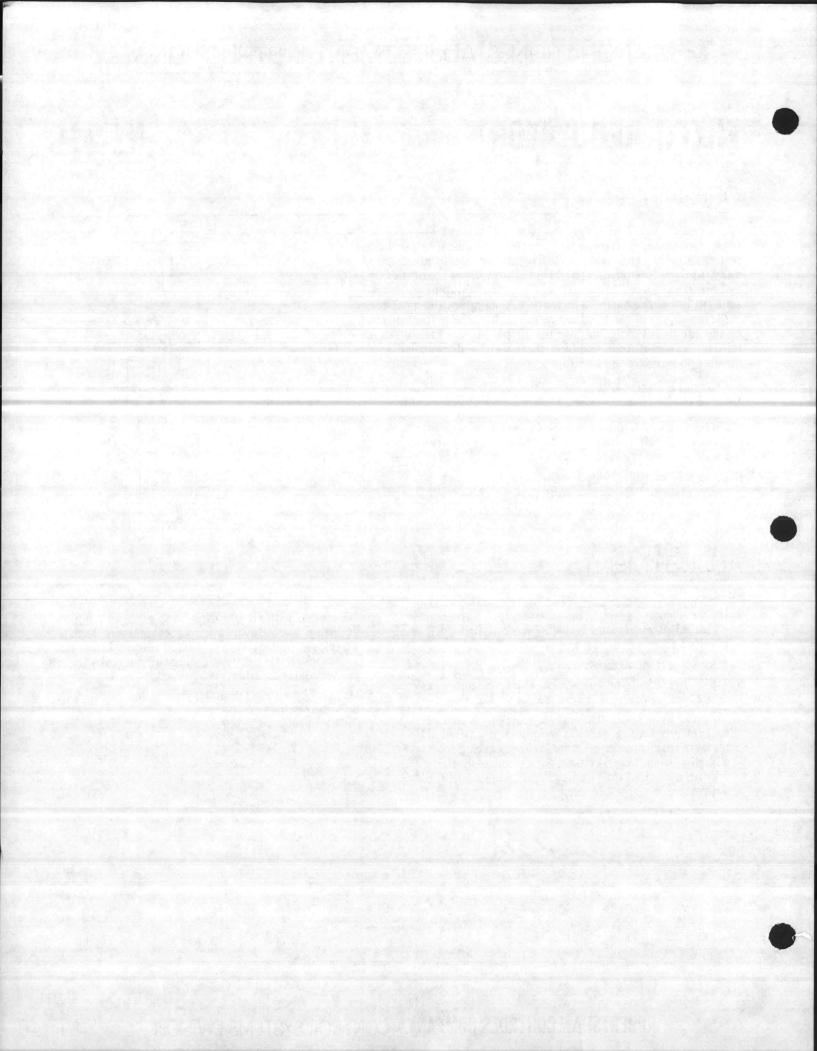
CALIBRATION & ADJUSTMENT INSTRUCTIONS

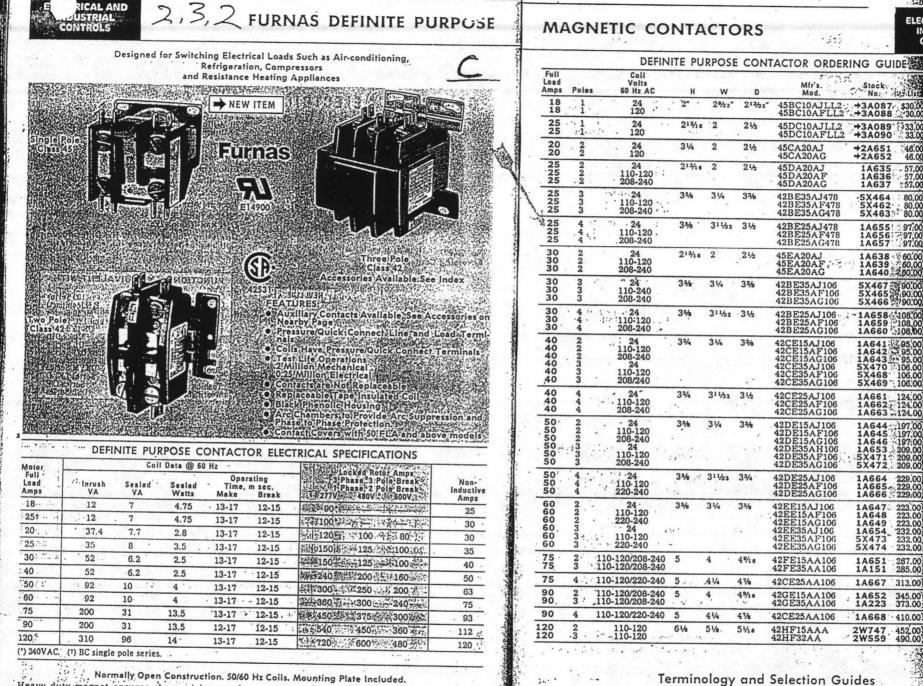
FILTER REGULATOR


N1-11B

OPERATION

Flow through the directional louvers (A) forces air into a swirling pattern. Liquids and heavy solids in the air stream are directed away from the filter element and held against the inside of the bowl by centrifugal force. They move down the bowl wall into the quiet zone (B) below the baffle. The baffle (C) maintains the quiet zone in the lower part of the bowl to prevent air turbulence from picking up the liquid and returning it to the air stream. Air then flows inward and passes through the filter element (D) which further cleans the air and removes the fine solids.


Clean air flows from the filter element directly to the regulator valve (E). Desired secondary pressure is adjusted by adjusting screw (F). The secondary pressure is sensed by the diaphragm assembly (G) which moves the valve pin (H) opening or closing the regulator valve to maintain the desired outlet pressure.


Liquids accumulated in the filter quiet zone are drained off through the manual drain (J) or an automatic drain.

ADJUSTMENTS

- 1. Before turning on system air pressure, turn filter/regulator adjustment counterclockwise until all load is removed from regulating spring.
- 2. Turn on system air pressure.
- 3. Turn filter/regulator adjustment clockwise until the desired outlet pressure is reached.
- 4. To avoid minor readjustment after making a change in pressure setting, always approach the desired pressure from a lower pressure. When reducing from a higher to a lower setting, first reduce to some pressure less than that desired, then bring up to the desired point.
- 5. On models with an adjusting knob push lockring on adjusting knob downward to lock pressure setting. To release, pull lockring upward. Pressure setting can be made tamper resistant by installing a seal wire in groove above lockring.
- 6. On models with a T-handle, tighten locknut to lock pressure setting.

Normally Open Construction. 50/60 Hz Coils. Mounting Plate Included.

Heavy duty magnet ensures sharp pick-up and drop-out; precision ground surface with cushion type armature design for quiet operation. Screw or box lug.type connectors on line terminals;

push-on or screw type coil connections. Contactors can be mounted in any position and have a mounting plate that permits interchangeability with many competitive models.

24.1

NET WHOLESALE PRICES-W.W.GRAINGER, INC.

See First Page of Index for Complete Listing of Guide

ELEC

- Ust

\$30:00

30.00

33.00

33:00

48.00

46.00

57.00

57.0

: 57.00

80.00

80.00

80.00

97:00

97.0

97:00

60.00

60.00

90 00

2,80,00

108'00

108 0

95.0

106 00

106.0

124:00

124 0

197.00

197.00

197 0

209.00

209.00

209.00

229.00

229.00

229:00

223.00

223.00

223.00

232.00

232.00

232.00

267.00 285.00

313.007

345.00

373.00

410.00

452.00

490.00

108.00

Stock

1A635

1A636

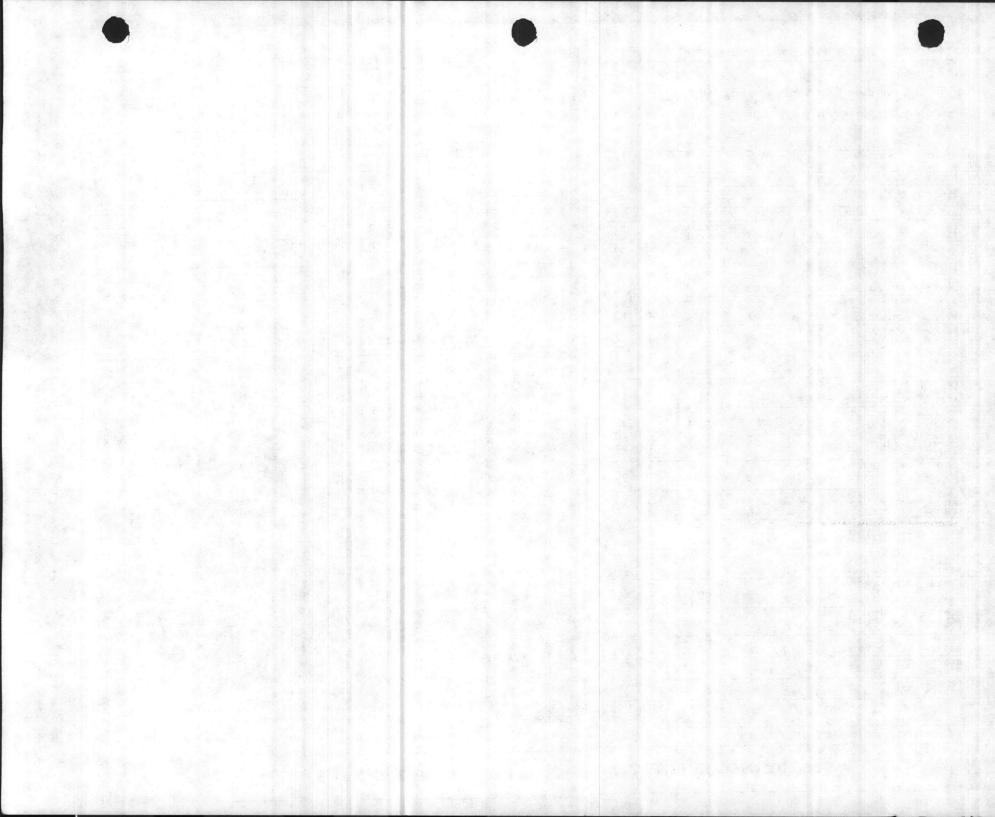
1A637

1A655

14656

1A657

1A638


1A640

1A639

A642

1A646

INI Ct

2.1.1

PO BOX 129 Grandview, Mo. 64030

RCD 45 SERIES CONTROL DAMPERS FOR THE TEMPERATURE CONTROL INDUSTRY

RCD45 SERIES FEATURES

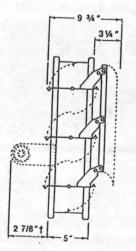
· STRONG FRAME

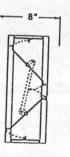
Roll formed galvanized steel, double thickness reinforced for structural strength equal to 13 gage channel type frames.

RUGGED BLADES

Triple v-groove, 16 gage galvanized steel. Parallel or poposed action available.

- LEAKAGE OPTIONS
- 1/2% maximum leakage for Model RCD46, which meets the often specified "less than 10 cfm/ft² leakage at 4" w.g. △ P".
- 1% maximum leakage for Model RCD45.
- 2+% leakage for Model RCD44.
- SHAKEPROOF LINKAGE

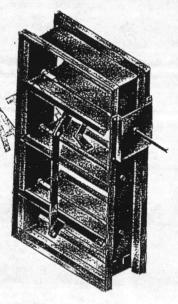

Low maintenance face linkage.


LONG LIFE AXLES AND BEARINGS

Hex axles lock firmly with blades. Noncorrosive bearings operate smoothly.

SECURE OPERATING SHAFT

Low friction outboard ball bearing support eliminates torque loss and operating problems. Factory installed jackshaft provided on multiple sections.


OPPOSED BLADE

PARALLEL BLADE

Low profile frame illustrated is typical for units under 14" high.

+ Jackshaft used only on multiple section dampers.

- Unit furnished approximately 1/4" smaller than given opening dimensions.
- *Maximum section width varies with static pressure. Consult Ruskin when the application involves pressures in excess of 2.5 inches w.g. or air velocities in excess of 2000 fpm.

STANDARD CONSTRUCTION

FRAME

5" x 1" x 16 gage galvanized steel channel with corner braces. Low profile top and bottom 31/2" x 3/6" x 16 gage galvanized steel channel on units under 14" high. Slightly different frame (see back of page) supplied with dampers made at Ruskin's California plant.

BLADES

Maximum 8" wide, 16 gage galvanized steel on approximately 8" centers.

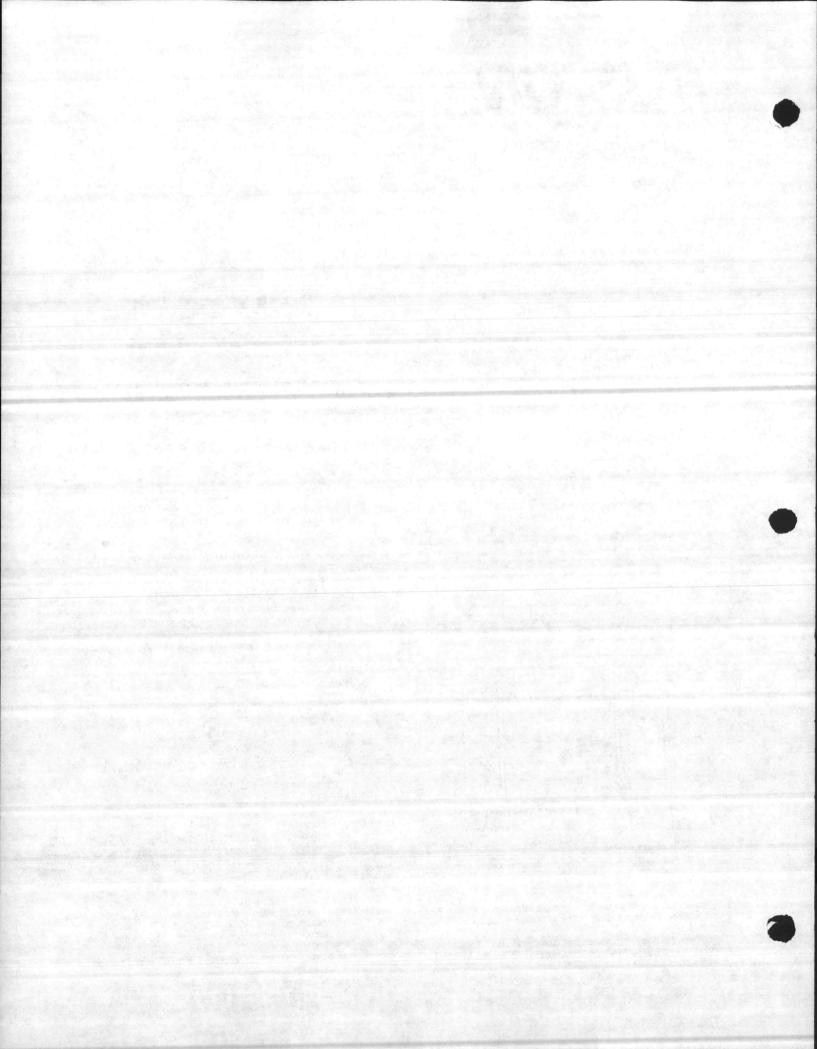
SEALS

- RCD46 Flexible metal jamb seals and EPDM blade seals.
- RCD45 --- Flexible metal jamb seals and polyurethane foam blade seals.
- RCD44 No jamb or blade seals.

LINKAGE

- Exposed. Concealed in frame on units under 14" high.
- AXLES
- 1/2" plated steel hex. BEARINGS

Synthetic.

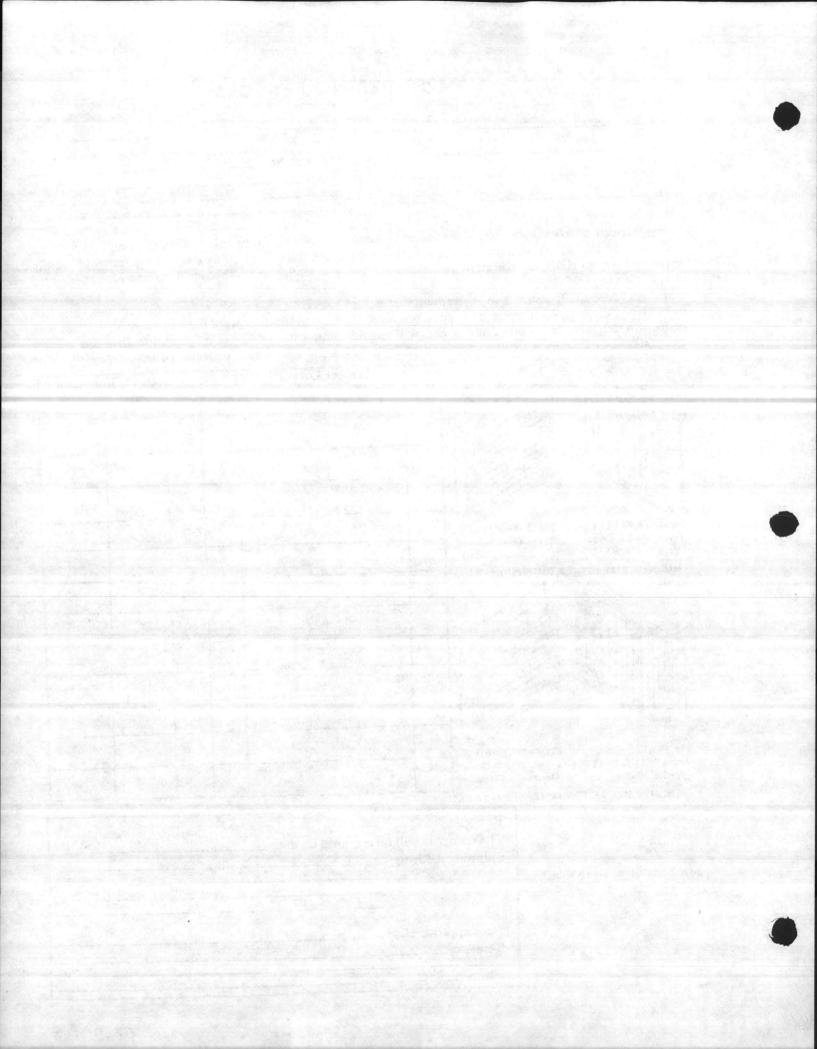

CONTROL SHAFT

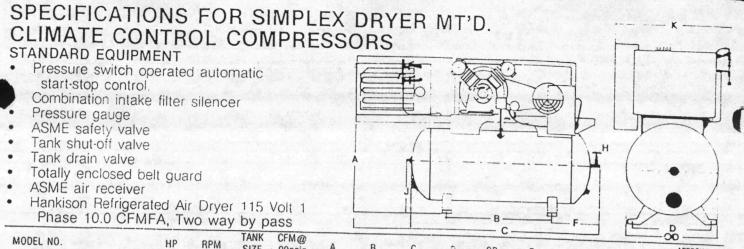
Removable 1/2" diameter control shaft extends 6" beyond frame. Outboard support bearings supplied with all single section dampers for field mounted motors. Factory installed jackshaft provided on inultiple section dampers. FINISH

Mill

MINIMUM SIZE (A x B Dimensions)

- Single blade, parallel action 5"w x 5"h.
- Two blade, parallel or opposed action, concealed linkage -5"w x 8"h.
- Two blade, parallel or opposed action, exposed linkage -8"w x 14"h.
- MAXIMUM SIZE (A x B Dimensions)** Single section - 48"w x 72"h.
- Multiple section assembly Unlimited size.


DAMPER SIZE INQUIRY FORM

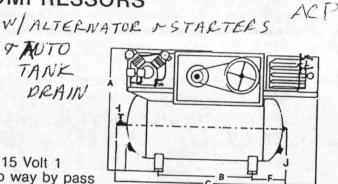

To: <u> </u>	Subject: BEG NEW RIVER
	Our Job No.: 2750
in a second second second second second	Date:
Attn:	Sheetof/
	By:

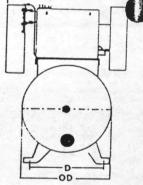
Please furnish correct duct sizes for automatic dampers for the above job and return one copy to the attention of the writer as soon as possible. Indicate exact duct or opening size. Dampers will be built smaller to allow for clearance. Indicate horizontal or vertical blade mounting for multisection dampers by figure number.

Dampers are built in even 2 in. increments. If a duct has odd dimensions, we will furnish next smaller even size. Filler sections must be field fabricated. When correct duct sizes have been received, we will order the dampers from our factory and will provide you with a damper information form giving the exact sizes of dampers we will supply and an installation planning guide to assist your installer.

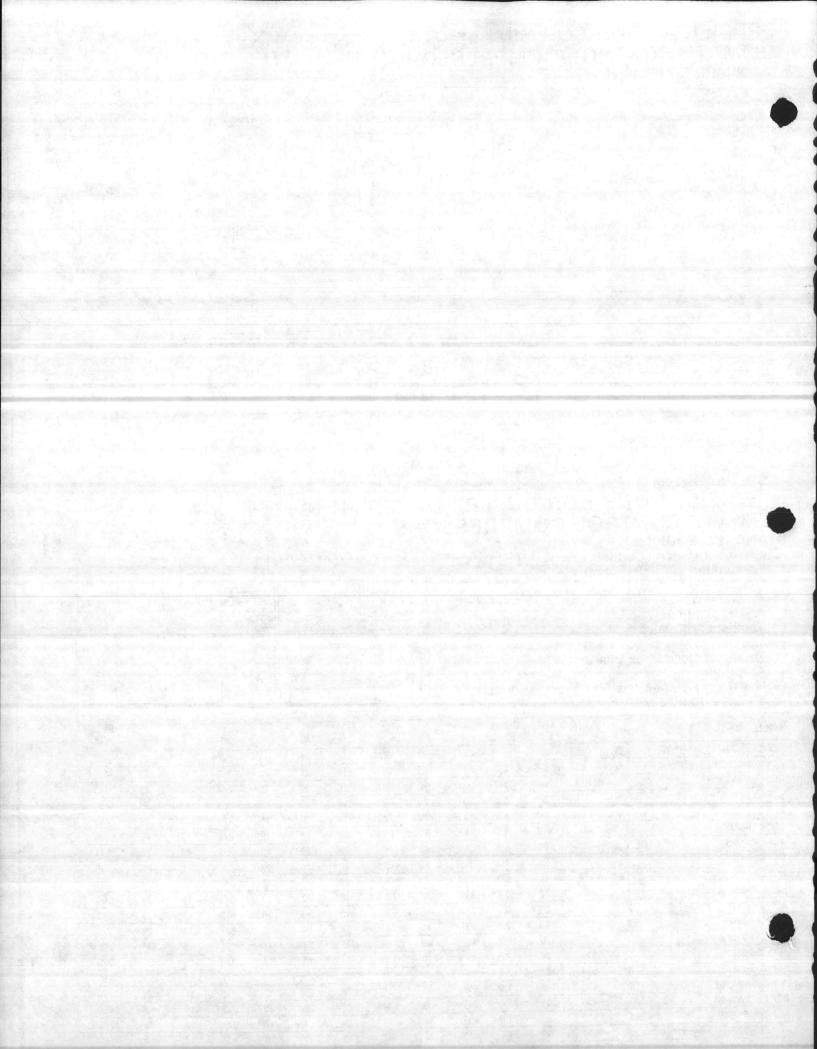
	· [Ref.	Damper Location	T	-	Duct Di	mensions
		No.	(Dampers you mark with an * will have edging.)	Qty.		A	B
T			OUTSIDE AIR AHU-1-6 RV-2	6	2	10	10=
			STAIRILELL OUTSIDE AIR	1	4	24"	24-
		-	STAIRIVELL	1	4	44"	24"
Types D640 & D642 Types D	ARALLES	-	CUTSIDE AIR FCU-2,4+6 OUTSIDE AIR	.3	2	67.	6"
MINIMUM SIZE EITHER DIMENS	Ital Blades) BION - 8 IN.		FCU-1,3+5	3	2	10=	8"
-8		-					
	-						and the second
		-		_			
		+			-		100 m
F AND							
Fig. 3-OPPOSED Fig. 4-OP Types D641 & D643 Types D64	1 & D643	+		_			
(Vertical Blades) (Horizonts MINIMUM SIZE EITHER DIMENSI							
	Reply:	rs wi ddree	ll be required on date				
NOTE: "A" dimension is always blade length (including frants).						•	
	Sizes.approv Remarks:	ved b	y:				
		11.1.7. (4)					

	····	INT IVI	SIZE	90psig	A	В	C	D	OD	F	н	1	к	APPROX.
ACP-COS-033HP	1/3	446	30	1.7	30	22	55	14					N	WT.
ACP-COS-053HP	1/2	490	30	2.2	30	22			16	11	3/8	11	20	220
ACP-C1S-0753HP	3/4	460	30	3.0			55	14	16	11	3/8	11	20	225
ACP-C2T-16HP	1	432			30	22	55	14	16	11	3/8	11	20	230
ACP-C2S-156HP	1		60	4.0	38	28	64	18	20	13	3/8	. 13	22	360
ACP-C3S-26HP	1 1/2	492	60	6.2	39 1/2	28	64	18	20	13	3/8	13	. 22	
	2	465	60	8.1	39 1/2	28	64	18	20	13	3/8	13		360
ACP-C3S-28HP	2	465	80	8.1	39 1/2	40	78	18	20	15			22	370
ACP-C4T-38HP	3	532	80	10.2	431/2	40	78	18			3/8	13	22	455
ACP-C4T-312HP	3	532	120	10.2	48	40			20	15	3/8	13	22	535
ACP-C5S-38HP	3	514	80	and a little of the			81	22	24	17	3/8	16	25	720
ACP-C5S-312HP				13.0	43 1/2	40	78	18	20	15	3/8	13	22	535
	3	514	120	13.9	55 1/2	40	81	22	24	17	3/8	16	25	720
ACP-C65S-512HP	5	436	120	21.0	55 1/2	40	81	22	24	17				
ACP-C65S-512HP	5	500	120	24.0	55 1/2	40	81	22	24		3/8	16	30	840
DEOLEIGA		1				10	01	22	24	17	3/8	16	30	840


SPECIFICATIONS FOR DUPLEX DRYER MT'D. 212.1 IMATE CONTROL COMPRESSORS STANDARD EQUIPMENT


7 AUTO

TANK


DRAIN

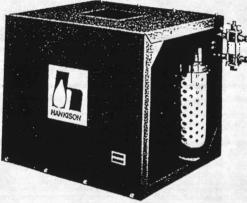
- Pressure switch operated automatic start-stop control.
- Combination intake filter silencer
- Pressure gauge
- ASME safety valve
- Tank shut-off valve
- Tank drain valve
- Totally enclosed belt guard
- ASME air receiver
- Hankison Refrigerated Air Dryer 115 Volt 1 Phase 10.0 CFMFA capacity two way by pass

		-p - onj		way by	pass								L	OD
MODEL NO.	НР	RPM	TANK SIZE	CFM@ 90psig	A	В	С	D	OD	F	н	J	к	APPROX. WT#
ACP-COS-036DP	1/3	446	60	1.7	36 1/2	22	63 1/4	14	16	11	3/8	11	20	
ACP-COS-056DP	Vz	490	60	2.2	36 1/2	28	63 1/4	18	20	13			29	400
ACP-COS-058DP	¥2	490	80	2.2	36 1/2	40	78 1/2	18			3/8	13	29	405
ACP-C1S-0756DP	3/4	460	60	3.0	36 1/2	28	63 1/4	18	20	15	3/8	13	29	465
ACP-C1S-0758DP	. 3/4	460	80	3.0	36 1/2	40			20	13	3/8	13	29	430
ACP-C2T-16DP	1	432	60	4.0	38	28	78%	18	20	15	3/8	13	29	495
ACP-C2T-18DP	1	432	80	4.0	38		63%	18	20	13	3/8	13	29	505
ACP-C2S-156DP	- 11/2	492	60	6.2		40	78 1/2	18	20	15	3/8	13	29	575
ACP-C2S-158	11/2	492	80		39 1/2	28	63 1/4	18	20	13	3/8	13	29	510
ACP-C3S-261	2	465		6.2	39 1/2	40	78 1/2	18	20	15	3/8	13	29	575
ACP-C3S-28D.	2		60	8.1	39 1/2	28	63 1/4	18	20	13	3/8	13	29	530
-C4T-38DP		465	80	8.1	39 1/2	40	78 1/2	18	20	15	3/8	13	29	585
C4T-312DP	3	532	80	10.2	431/2	40	78 1/2	18	20	15	3/8	13	29	770
	3	532	120	10.2	45 1/2	40	84	22	24	17	3/8	16	37	980
ACP-C5S-38DP	3	514	80	13.0	43 1/2	40	78 1/2	18	20	15	3/8	13	37	770
ACP-C5S-312DP	3	514	120,20	013.9	Johliy	40	84	22	24	17	3/8	16	37	980
ACP-C6SA-512DP	5	436	120	21.0	55 %	40	84	28	24	17	3/8	16	35	1220
ACP-C6SA-520DP	5	436	200	21.0	61 1/2	39	84	28	30	20	3/8	19	46	1450
ACP-C6S-512DP	5	500	120	24.0	55 1/2	40	84	28	24	17		16	35	
ACP-C6S-520DP	5	500	200	24.0	61 1/2	39	84	28	30		3/8		46	1225
RM-CC 1186	Several 1	1. N. 1. 1.						2.0	50	20	3/8	19	40	1440

2.2.13

BULLETIN 8000-J

HANKISON[®] SERIES 80 Compressed Air Dryers


STANDARD FEATURES FOR THESE DRYERS INCLUDE:

- · Power On Light (green)-Indicates power to unit
- High Air Temperature Warning Light (red)-Gives indication of refrigeration system malfunction or overloading.
- Hankison Designed & Manufactured Pilot Operated Automatic Condensate Drain Trap
- Facility for Wall Mounting Models 8010 thru 8035-Models 8010 & 8015 feature exclusive "one man" wall mounting bracket assembly
- Integral 3 Micron Particulate Afterfilter-Assures clean air downstream
- Provisions for Connection of Remote Alarm

ENGINEERING AND ORDERING INFORMATION

Hankison Series 80 dryers are complete with: non-fouling, smooth surface, tube-in-tube heat exchanger/ chiller; non-cycling, hermetically sealed refrigeration system; self-regulating hot gas by-pass valve to maintain constant dew point from no load to full load; mechanical condensate separator; integral 3 micron in-depth afterfilter; and pilot operated automatic condensate drain trap.

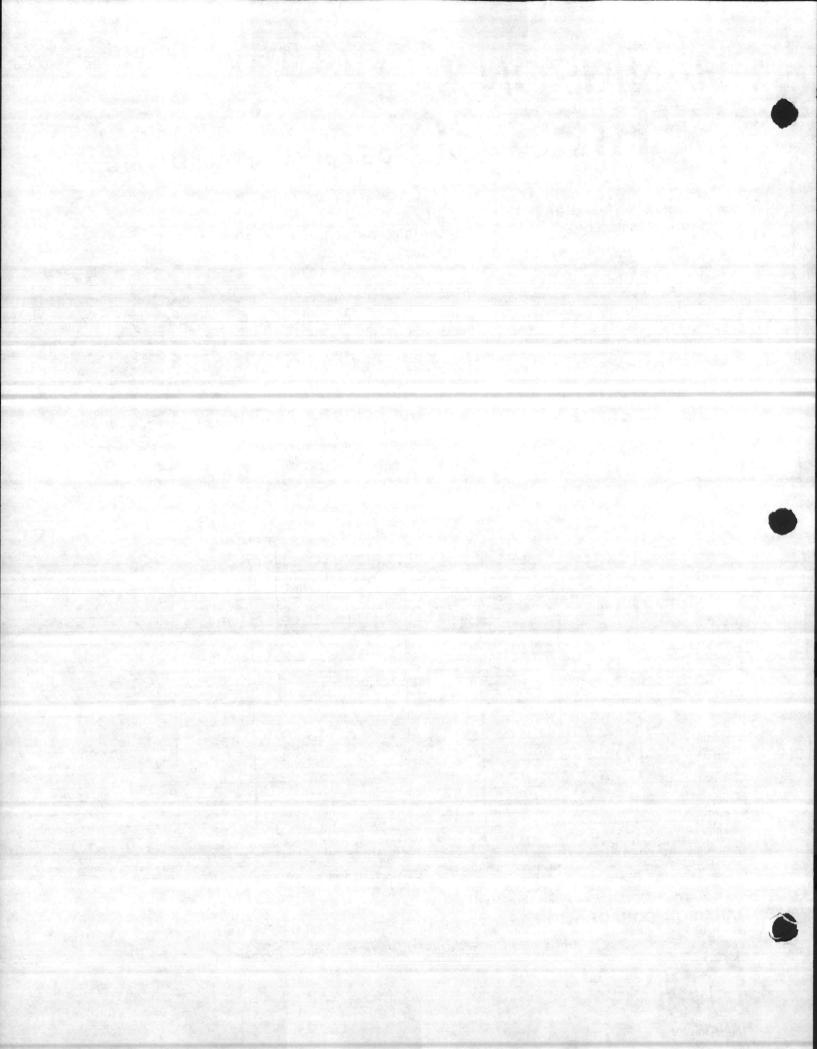
All units can handle additional capacity (scfm) when inlet air pressure is higher than 100 psig, inlet air temperature is lower than 100°F, ambient air or condenser cooling water temperature is lower than 100°F or if elevated dew points (up to 50°F) are suitable for the application

Typical Series 80 Dryer* (Model 8010 shown with optional air by-pass valve)

Model 8010 can be purchased as a package complete with Hankison Air By-Pass Valve (model 1701-1), Aerolescer oil removal filter, pressure regulator and pressure gauges, all factory mounted on unit.

	DEL NO.		8010	1	015 /	ÍV	3025 /	1		-	-						
	acity (scfm)1	1	10		5		25	1-1-	1035	8	045	1,1	3055 /	1.	8070	T	80100
Max. Wor	king Pressure		1	50 psig (175 psig				35	1	45		55/	1	70 /	1 5	100
Air Line	In (in)	360	D. tube	1 %0	D. tubę		D. tubę	. /	1	/	1	175	008) giếq	psig a			iye .
Conn.	Out (in)	3% M	ale NPT		INPT		ale NPT		D. tube		.D. tùbe	1/80	D. tube		O.D. tube	TAK	D.D. tube
Drain Co	nnections (in)		1999 (S. 1997)		16 I.D. Fle	This T	ale NPI	% 0.1	D. tube	1 Fer	ale NPT	1%0	D. tube		male NPT		D.D. tube
Refrigerat				1	101.0.11		De	1		1			3/8 O.D. T	ube Fi	tting	1 1/8 0	
Comp. HP Standard		-	1/6		/5		1/3	1	/3		12	1. 50%		2.2.49	and the second	12.1	-
Available ²	voltages	1.25		1	15 V. 1 pt	nase, 60	Hz	-			12		1/2	1	3/4	1 the	3/4
No.	in a man and in the second second	-115V	240/2200	115V 2	/220 V. 1 40/220V				1.1.1	1.1.1		230	15 V. 1 ph /208 V. 1	phase, 6	60 Hz		
Full Load	Amps.	3.4	1.5	4.8	2.2	7.4	40/220V		40/220V	115V 2	30/208V	115V 2	30/208V	115V		1151	230/208
Locked Ro	otor Amps.	18.5	9,1	24.5	11.6	35.7	3.5	7.4	3.5	9.8	4.8	9.8	4.8	15.	the second se	15.1	
Unit Prote			1	- 1.0	11.0	35.7	16.4	35.7	16.4	47.9	24.4	47.9	24.4	71	33	71	33
	(Max.) Amps.	5	2	6	3	10	5	10	5	12	1.1						- 33
Branch Cir Fuse Size	(Max.) Amps.	15	15	- Alegales	V. Sector	Sec. 14	Contraction of			12	6	12	6	20	10	20	10
Overload F		10	13	15	15	15	15	15	15	20	15	20	15	20			
Height (in))	1.	4 . 1	14			T	hermal &	Current	(Automat	ic Reset)			20	15	20	15
Width (in)			51/8			16	5	16			21/4		2%	1990 - 19900 - 19900 - 19900 - 1990 - 19900 - 1990 - 1990 - 1990 - 1990	201/		
Depth (in)		15		16			1/16	22	1/16	3	21/4		21/4		22%		22%
Veight (Ib)		57		15		16		16		19	9%		9%		321/4		32%
1				65		97		100		188		20			19½		19%
aleu Dryer	Flow Capacity-	Condition	ns for rating	druger ar			1.				_		-		14	2	31

'Rated Dryer Flow Capacity—Conditions for rating dryers are in accordance with Compressed Air and Gas Institute (CAGI) Standard for Rating and Testing Compressed Air Dryers and National Fluid Power Association (NFPA) Recommended Standard NFPA/T3.27.2-1975. Conditions for rating above dryers are: 100 psig (6.9 bar) and 100° F (37.8° C) intel air, 100° F (37.8° C) ambient air or 85° F (29.4° C) cooling water and a maximum 5 psi (.35 bar) pressure drop. Actual dew point may vary from the stated nominal value depending on site conditions and operating parameters. For other power requirements, consult factory. 'Ratings are for dual element fuses


Dryers to handle larger flow capacities are available.

HANKISON CORPORATION, Canonsburg, Pa. 15317, Phone (412) 745-1555, Telex: 81-2452, Cable: HANKORP PRICE AND ORDERING INFORMATION AVAILABLE FROM:

Printed in IIC

Hankison® Compressed Air Dryers are first for dependability because of the extra performance features built into them.

A dependable supply of clean, dry air is necessary to assure trouble-free operation of pneumatic equipment.

Hankison dryers are designed to produce that dependable supply of clean, dry air. Installed on all of your jobs, they reduce maintenance while letting pneumatic components work more efficiently and last longer.

2.2,1,3

DEPENDABLE - Smooth surface heat exchangers

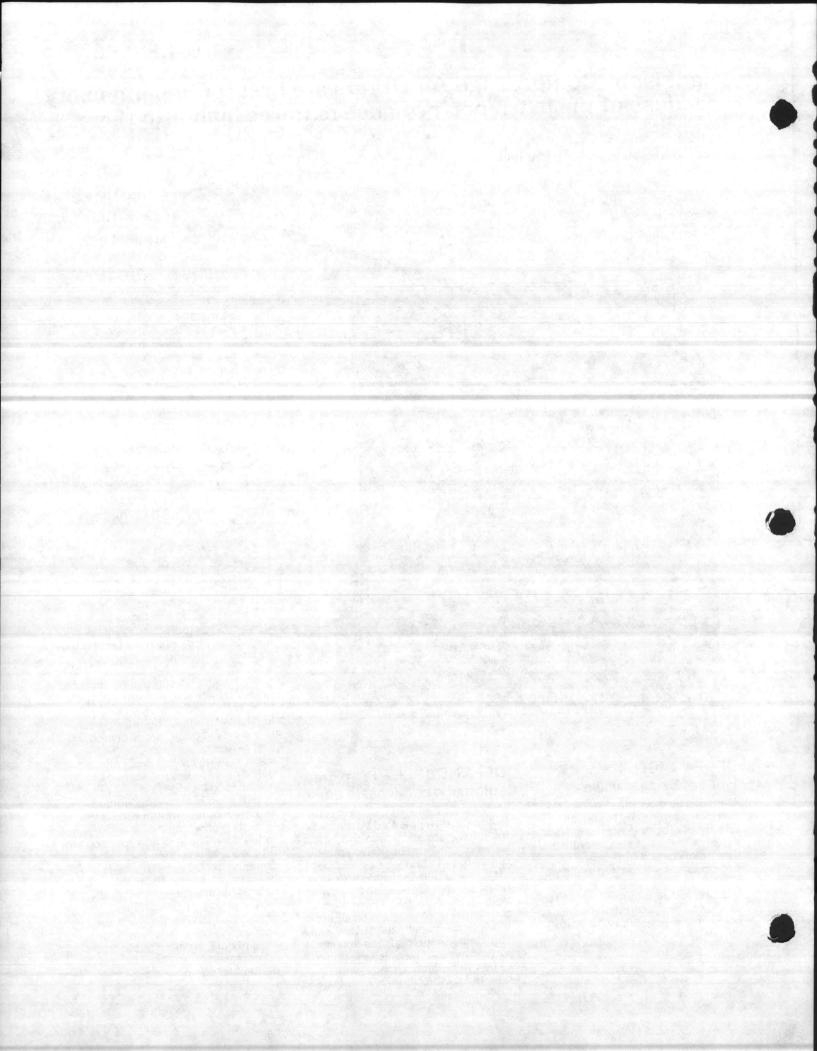
Hankison heat exchangers are made from non-fouling, self-cleaning, smooth surface copper tubes. This assures that the high heat transfer efficiency and low pressure drop built into your dryer are still there after years of service. And because heat transfer efficiency is maintained, so is your supply of dry air.

DEPENDABLE -Separator/ Filter system

Hankison's CentriflexTM separator/filter provides positive protection for your pneumatic system.

In the first of two stages in the Centriflex, a cleanable, stainless steel separator core uses centrifugal force and impaction to remove bulk liquids.

In the second stage, a replaceable, in-depth filter sleeve removes 100% of all solids and liquids 3 microns and larger in size. The filter sleeve is composed of an in-depth medium that resists oil varnish clogging and collects large amounts of solid particles, allowing the sleeve to have a long service life.


But even better—this unique separator/filter combination maintains its high efficiency from no flow to full flow. There is no reduction in efficiency at less than rated flows, a common occurrence in purely centrifugal separators. Hankison's new separator/filter consistently removes 99% of all water droplets and 40% of all oil aerosols through a full range of flows, providing consistently dry, clean, trouble-free compressed air to downstream pneumatic components.

DEPENDABLE— Hot gas by-pass valve

A hot gas by-pass valve, designed and manufactured by Hankison specifically for air dryer refrigeration systems, maintains consistently low dew points over a wide range of compressed air flows and ambient conditions. By closely controlling compressed air temperatures in the dryer, you are assured of a reliable, consistent supply of dry air downstream.

DEPENDABLE—Snap-Trap[®] automatic condensate drain

Hankison's Snap-Trap drain mechanism features a patented design that includes magnetic action and pilot valve operation. The result—positive discharge of condensates, without air leakage between cycles. Our latest design, identifiable by its red color, is manufactured from high production molded parts. assuring more dependability than ever before. Reliability of the drain mechanism is further assured because the liquid to be drained has already been cleaned by the Centriflex separator/ filter.

2,2,1,3

BULLETIN 1300-19

HANKISON® AEROLESCER® **Coalescing Type Oil Removal Filters**

99.999+% efficient in removing oil aerosols from compressed air lines.

Why remove oil?

Compressor oil downstream-it can contaminate the end product, decrease the efficiency of the production process by ruining paint jobs, gumming up air tools, motors, etc., or clog the tiny orifices in instruments or fluid logic components. Oil from a lubricated compressor is subjected to high temperatures during the compression cycle. This alters its characteristics so that it does not adequately lubricate downstream pneumatic components. It's best to take this oil out of the system and add the proper lubricant at the point of use.

Are special filters required to remove oil?

In a typical 90 psig air system 72% by weight of the oil aerosols present are less than 5 microns in size. 50% are below 1 micron in size. Droplets of this size blow right through a mechanical separator. Air line filters (particulate filters e.g. a 5 micron filter) can't trap the bulk of the aerosols either. To adequately remove oil, a special filter is required. The Hankison Aerolescer filter has been designed to remove oil by means of coalescence.

The result-an oil free compressed air system

The Hankison Aerolescer filter, when used within its rated design conditions, will eliminate the oil aerosols contained in a compressed air stream. Exhaustive tests verify a liquid oil removal efficiency of 99.999+%. In most instances, this means that the filtered air will contain less than .1 ppm of oil by weight. It assures virtually oil free air without the expense and maintenance headaches of non-lubricated compressors.

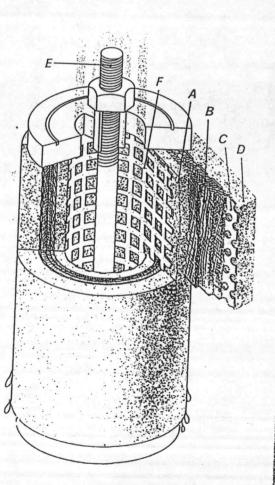
*U. S. Patent No. 3,802,160

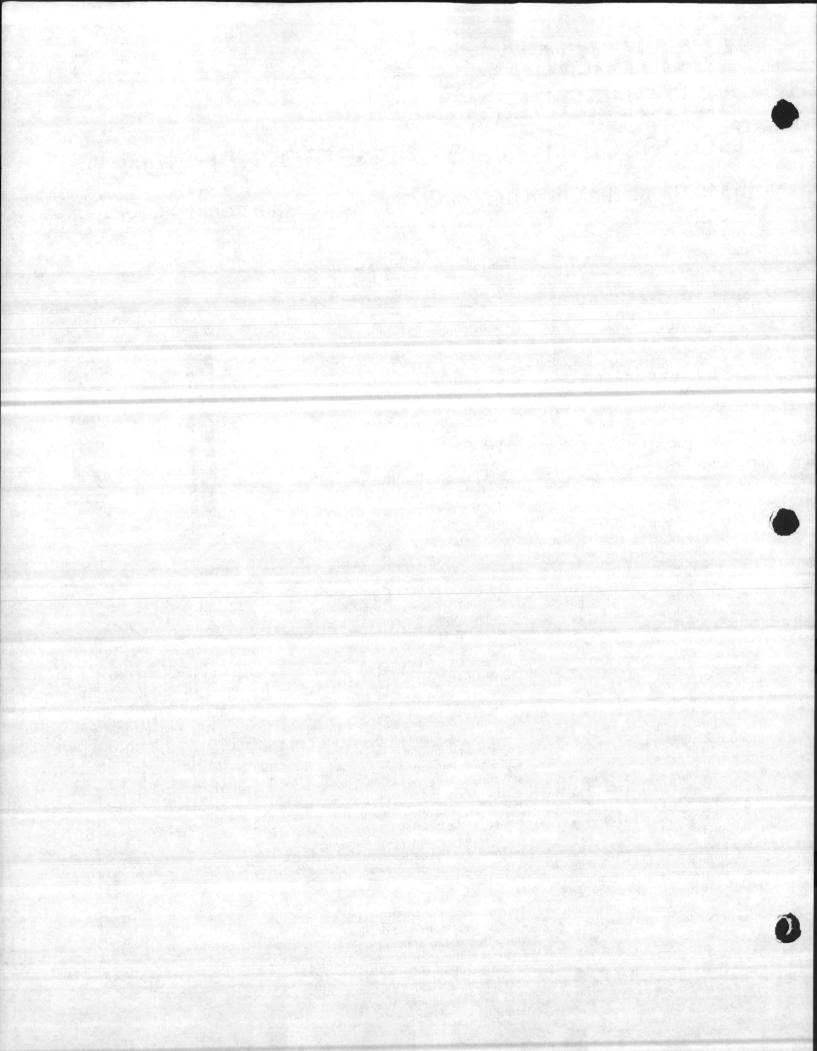
Excessive solid matter accumulation will limit life. Prefilters are available to prolong life. Request Bulletin 3100 covering HANKISON 3100 Series Air Line Filters.

Features:

- · Unique continuously stabilized filter media plus outer foam sleeve ensure 99.999+% efficiency for the life of the cartridge
- Removes: 100% of particles .025 micron and larger in size; some particles as small as .01 micron
- · Cartridge replacement made easy by removable bowls or convenient bottom flange opening
- · Rugged thru-bolt cartridge construction

The Patented* AEROLESCER Cartridge-designed for 99.999+% efficiency and long life


Oil aerosols moving through the filtering media (B), a maze of submicronic glass fibers with specific densities and diameters, are concentrated and coalesced into large droplets. High efficiency is achieved by stabilizing the filtering media between a rigid perforated cylinder (C) and an inner foam sleeve (A), which compensates for fluctuating flow rate and aerosol concentration . This design assures uniform distribution of oil aerosols which prevents liquid pocketing, fiber clotting, and subsequent air channelling. The coalesced oil droplets are collected by the outer foam sleeve (D). Having an enormous non-absorbing surface area; this sleeve allows oil droplets to drain to the bottom of the sleeve and then drop to the bottom of the housing for removal from the air system. When removing oil the life of the cartridge is indefinite.** The cartridge continuously coalesces and separates oil aerosols from your system.


Thru bolt construction (E) assures structural strength and prevents liquid by-passing of the filter media. There is no reliance on adhesives to hold the unit together. An inside support (F) offers positive protection in case flow is accidentally reversed through the cartridge.

MODELS from 10 SCFM to 6000 SCFM

300 SCFM MODEL

900 SCFM MODEL

Maximum Flow (SCFM)* at Various Inlet Pressures

2.2.1.3

200 PSIG

13.8 BAR

18.7

250 PSIG

17.3 BAR

23.1

300 PS -

20.7 81=

27.1

						oourco		
NUMBER	20 PSIG 1.4 BAR	30 PSIG 2.1 BAR	40 PSIG 2.8 BAR	50 PSIG 4.1 BAR	80 PSIG 5.5 BAR	100 PSIG 6.9 BAR	120 PSIG	150 PSIG
1302	2.0					U.S DAH	8.3 BAR	10.3 BAR
	3.0	3.9	4.8	6.5	8.2	10.0	117	110
1303	6.0	78	9.6	100		10.0	11.7	14,3
1001		1.0	9.0	13.0	16.4	20.0	23.4	28.6
1304	15.1	19.5	23.8	32.5	413	50.0	50.0	20.0

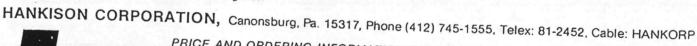
1304	15.1	19.5	23.8	1 205		20.0	23.4	28.6	37.4	46.2	54.9
1305				32.5	41.3	50.0	58.6	71.7	93.6	116	137
	30.0	39.0	48.0	65.1	82.0	100	117	143	187		
1306	60.0	78.0	96.0	130	164	200	234			231	274
1307	90.7	117	143	195	248	300		286	374	462	548
1317	150	195	238	326			352	431	562	693	823
1308	190	246	300		412	500	587	718	936	1154	1 1372
1309	285			412	520	632	740	906	1180	1460	
1310		369	450	618	780	948	1110	1359	1770	Constant of the second	1720
	380	492	600	824	1040	1264	1480	1812		2190	2580
1311	475	615	750	1030	1300	1580			2360	2920	3440
1312	760	984	1200	1648			1850	2265	' 2950	3650	4300
1313	1045	1353	1650		2080	2528	2960	3624	4720	5840	6880
1314	1330			2266	2860	3476	4070	4983	6490	8030	9460
1315		1722	2100	2884	3640	4424	5180	6342	8260		
1313	1805	2337	2850	3914	4940	6004	7030	8607	2	10220	12040
		Section 1					1000	0007	11210	13870	16340

*Convert sclm to metric units as follows: 1 sclm = 1.736 m³n/h.

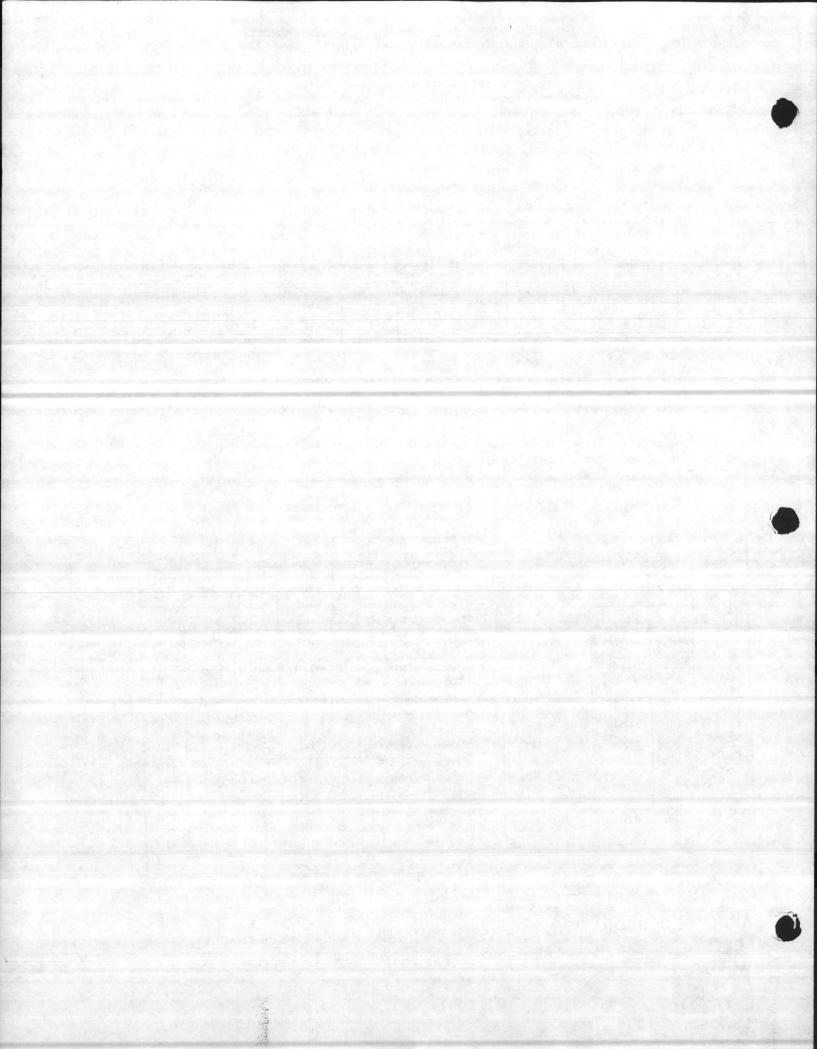
When ordering Aerolescer filters do not choose by pipe size. Make selection by flow rate and operating pressure only.

Pressure drop: Initial pressure drop (dry) is 1 psid (.07) bar nominal. At rated flow conditions, when removing liquids, pressure drop will normally range from 3 ps = (.21 bar) to 6 psid (.41 bar) depending on the quality of the influent air. Further pressure drop will occur only as the cartridge(s) become contaminated with solid particles Cartridge replacement: It is recommended that filter cartridge(s) be replaced for maximum filtration efficiency if pressure drop exceeds 10 psid (.7 bar).

Max. temp.: Temperatures in excess of 120°F (49°C) are not recommended since filtration efficiency may decrease and certain filter assembly material may be adverse .

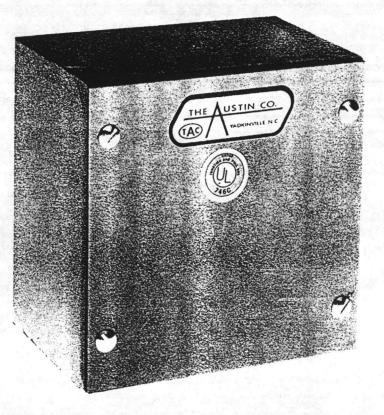

HANKISON® AEROLESCER® Filters

MODEL NUMBER MANUAL AUTO DRAIN DRAIN		NOMINAL AIR FLOW (SCFM) @	INLET/OUTLET	HOUSING (BOWL/VESSEL)	WIDTH (INLET TO OUTLET) &		MAX. OPERATING PRESSURE (PSIG)		REPLACEMENT
		100 PSIG	CONNECTION	TYPE	HEIGHT (IN)	(LB)	MANUAL	AUTO	FILTER CARTRIDGE No
1392-1		10	¾" NPTF	8 oz. polycarbonate (4)	3¼ x 6¼	1 5%	150	DRAIN -	0713-2
1302-2 1902-4	1302-3 1302-5	10 10	¾" NPTF ¾" NPTF	16 oz. polycarbonate (4) 16 oz. metal	3¼ x 10¼ 3¼ x 9%	2½ 3½	150 300	150	0713-2
1302-6	1202.0	10	¾" NPTF	8 oz. metal c/w sight glass	3¼ x 6%	21/2	250	175	0713-2
1303-3	1303-2 1303-4 1304-2	20 20 50	½" NPTF ½" NPTF ¾" NPTF	16 oz. polycarbonate (4) 16 oz. metal	3¼ x 10¼ 3¼ x 9%	2½ 3½	150 300	150 175	0713-2 0713-3 0713-3
1305-1	1305-2	100 200	1" NPTF 1½" NPTF	32 oz. metal 100 oz. metal	4%6 x 11½ 4%6 x 22%	5% 13¼	300 300	175 175	0713-4 0713-5
1307-1	1307-2	300	1½" NPTF	205 oz. metal 381 oz. metal	5¼ x 30¼ 5¼ x 36¼	21 29¼	300 300	175 175	0713-6
1317-1 1308-11 1309-5	(3)	500 600	2½" coupling (1) 3" coupling (1)	8" pressure vessel 8" pressure vessel	22½ x 37½ 22½ x 42¾	211 225	200 (2)	(3)	0713-7
1309-5	(3)	900 1200	3" flange 4" flange	10" pressure vessel 12" pressure vessel	16% x 44 ³ / ₁₆	321	200 (2)	(3)	0713-11-2 0713-11-3
1311-4	(3)	1500 2400	4" flange 6" flange	12" pressure vessel	20 x 51% ·20 x 51%	324 329	200 (2) 200 (2)	(3) (3)	0713-11-4 0713-11-5
1313-2	(3)	3300	6" flange	16" pressure vessel 20" pressure vessel	24 x 52% 28 x 59%	495 620	200 (2)	(3)	0713-11-8
1314-2 1315-2	(3) (3)	4200 6000	6" flange 8" flange	20" pressure vessel 24" pressure vessel	28 x 591⁄8	625 1135	200 (2) 200 (2) 200 (2)	(3) (3) (3)	0713-11-11 0713-11-14 0713-11-19


(1) Flanges are available.

HANKISON

(1) Flanges are available.
 (2) Units with maximum operating pressures of 300 psig (21 bar) are available. 500 scfm (1317) and larger models are ASME Code Constructed and Stampec (3) Drain plugs are standard. For manual draining a valve is recommended. For automatic draining Hankison automatic drain traps are available. For models 1311 (1500 scfm) use a Snap Trap² or model 505 Trip-L-Trap² For model 1312 (2400 scfm) use model 505 Trip-L-Trap. For models 1313 (3300 scfm) through 1315 (6000 scfm) use model 506 Trip-L-Trap.
 (4) Polycarbonate bowls are lurnished with bowl guards.

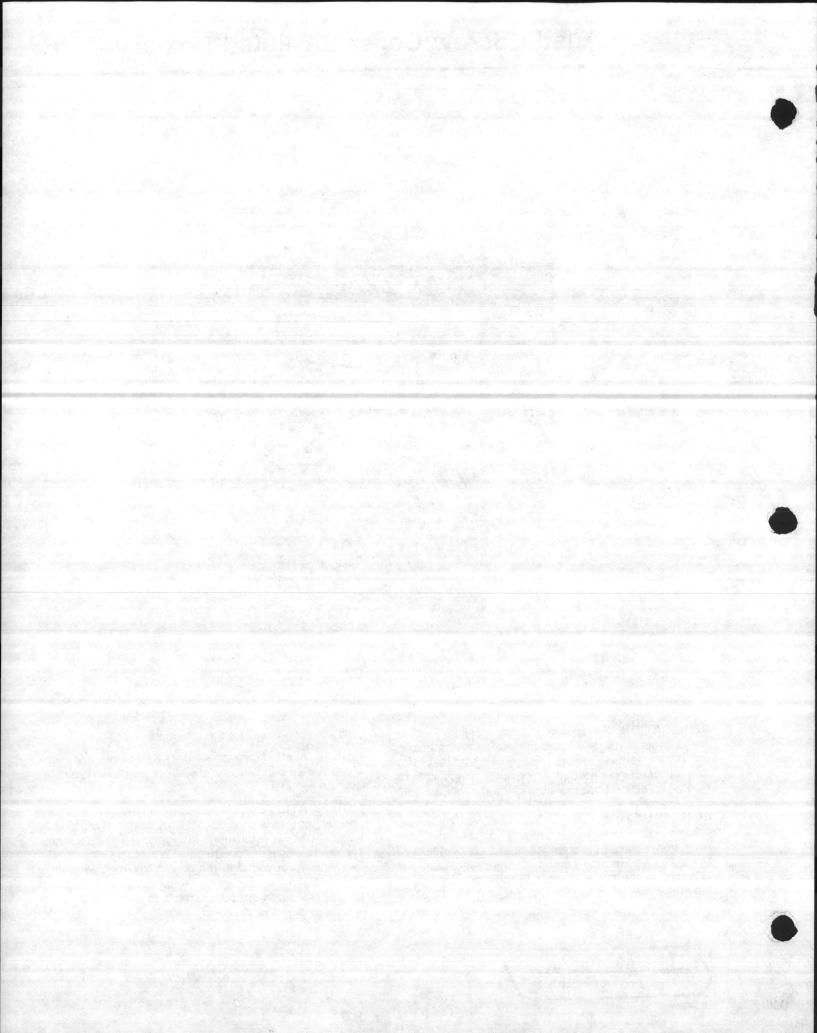


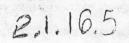
PRICE AND ORDERING INFORMATION AVAILABLE FROM:

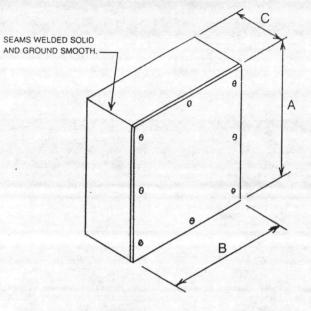
Austin Screw Cover Gasketed Boxes

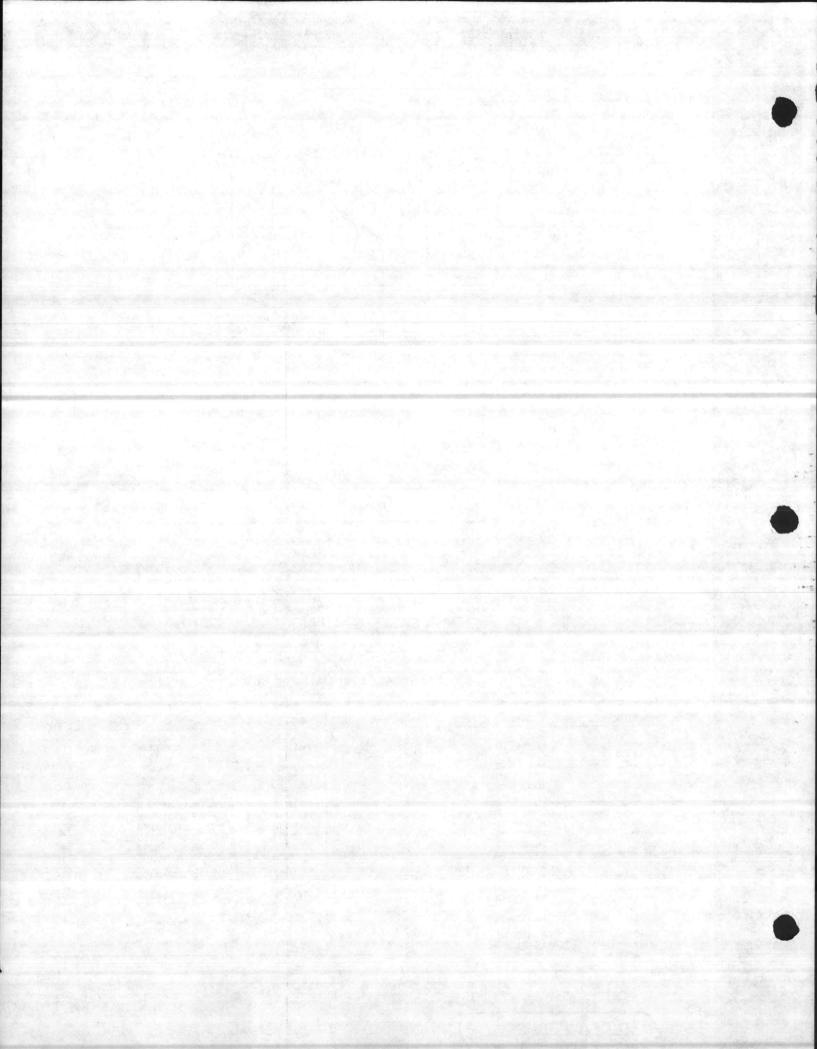
2.1.16.5

APPLICATION: Austin screw cover gasketed boxes are U.L. approved and listed for use as wiring boxes, pull boxes, terminal boxes, and junction boxes. They may be used in either indoor or outdoor applications where protection from moisture or dust is nécessary.


CONSTRUCTION: Austin screw cover gasketed boxes are fabricated, in accordance with U.L. specifications, from code gauge steel. All seams are continuously welded and ground smooth. A neoprene gasket is attached to the box with an oil resistant adhesive to prevent moisture or dust from entering the box. No holes or mounting feet are provided.


FINISH: Austin screw cover gasketed boxes are provided standard in galvanized steel. A gray finish is available on request.


MODIFICATIONS: The Austin Company can provide special knockouts or knockout arrangements, cutouts, holes, hubs, special materials, special finishes. and custom box size or construction. We specialize in custom work of any kind in gray finish, galvanized steel, stainless steel, or aluminum. Please consult the factory for assistance on special pricing and delivery.


Screw Cover Gasketed Boxes Bundle Sizes

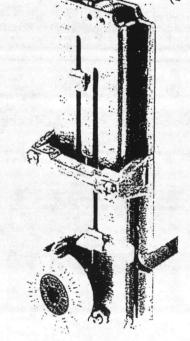
Enclosure Size AxBxC	Standard Bundle	Catalog Number	Bundle Weight
4x4x4	10	AB-444GSB	20
6x6x4	10	AB-664GSB	30
8x8x4	10	AB-884GSB	50
10x10x4	10	AB-10104GSB	70
12x12x4	5	AB-12124GSB	45
6x6x6	10	AB-666GSB	40
8x8x6	10	AB-886GSB	60
10x10x6	10	AB-10106GSB	90
12x12x6	5	AB-12126GSB	55
18x18x6	3	AB-18186GSB	60
24x24x6	2	AB-24246GSB	78

Screw Cover Gasketed Boxes

Enclosure Size AxBxC	Catalog Number	Bundle Weight	Enclosure Size AxBxC	Catalog Number	Bundle Weight
4x4x4	AB-444GSB	2	18x18x8	AB-18188GSB	23
6x6x4	AB-664GSB	3	24x24x8	AB-24248GSB	42
8x6x4	AB-864GSB	4	30x24x8	AB-30248GSB	51
8x8x4	AB-884GSB	5-	36x24x8	AB-36248GSB	60
10x8x4	AB-1084GSB	5	30x30x8	AB-30308GSB	88
10x10x4	AB-10104GSB .	7	36x30x8	AB-36308GSB	102
12x10x4	AB-12104GSB	7			102
12x12x4	AB-12124GSB	9	18x18x10	AB-181810GSB	25
0	10 111000		24x24x10	AB-242410GSB	48
6x6x6	AB-666GSB	4	30x24x10	AB-302410GSB	58
12x6x6	AB-1266GSB	7	36x24x10	AB-362410GSB	67
8x8x6	AB-886GSB	6	30x30x10	AB-303010GSB	96
10x10x6	AB-10106GSB	9	36x30x10	AB-363010GSB	111
12x12x6	AB-12126GSB	11	18x18x12	10 101010000	
15x12x6	AB-15126GSB	13		AB-181812GSB	28
15x15x6	AB-15156GSB	16	24x24x12	AB-242412GSB	53
18x18x6	AB-18186GSB	20	30x30x12	AB-303012GSB	103
24x18x6	AB-24186GSB	26	36x36x12	AB-363612GSB	137
24x24x6	AB-24246GSB	39	6x6x4 10Ga.	AB-664GSB10	7
8x8x8	AB-888GSB	7	8x8x4 10Ga.	AB-884GSB10	10
12x12x8	AB-12128GSB	12	12x12x6 10Ga.	AB-12126GSB10	23

2, 1, 4

RECEIVER CONTROLLER PEAL RA = C3, C5, CG, C124C13M Direct or Reverse Acting Models


P541 = C2

GENERAL DESCRIPTION

The Model P541 receiver-controllers are used with remote pneumatic transmitters to provide proportional control in pneumatic control systems. They are designed primarily for use with Robertshaw pneumatic transmitters; however, they may be used with any pneumatic device having a calibrated output of 3 to 15 psig, such as thermostats or humidistats. There are two models available: Model P541 (direct acting) and Model P541-RA (reverse acting).

The P541 direct acting model may be used as a low-limit controller, and the P541-RA reverse acting model may be used as a high-limit controller where applications require such devices.

The design of the P541 receiver controllers incorporates the pilot-bleed relay and pncumatic feedback principles usually found in industrial type instruments. These design features assure accuracy, linearity, and stability over the entire operating range.

SPECIFICATIONS

LY

MODELS: P541, dual input with remote adjustment, direct acting.

P541-RA, dual input with remote adjustment, reverse acting.

- SET POINT: Adjustable; graduated dial with 0.25 psi (.02 bar) divisions. Scales available for degrees, %RH, pressure, differential pressure, etc.
- THROTTLING RANGE: Adjustable, 2 to 40% (.24 to 4.8 psi or .02 bar to 0.33 bar).

AUTHORITY (EFFECT OF RESET INPUT ON SET POINT: Adjustable, 10 to 300% of primary signal input. CONTROL POINT ADJUSTMENT EFFECT ON SET POINT: ± 10% of primary transmitter span.

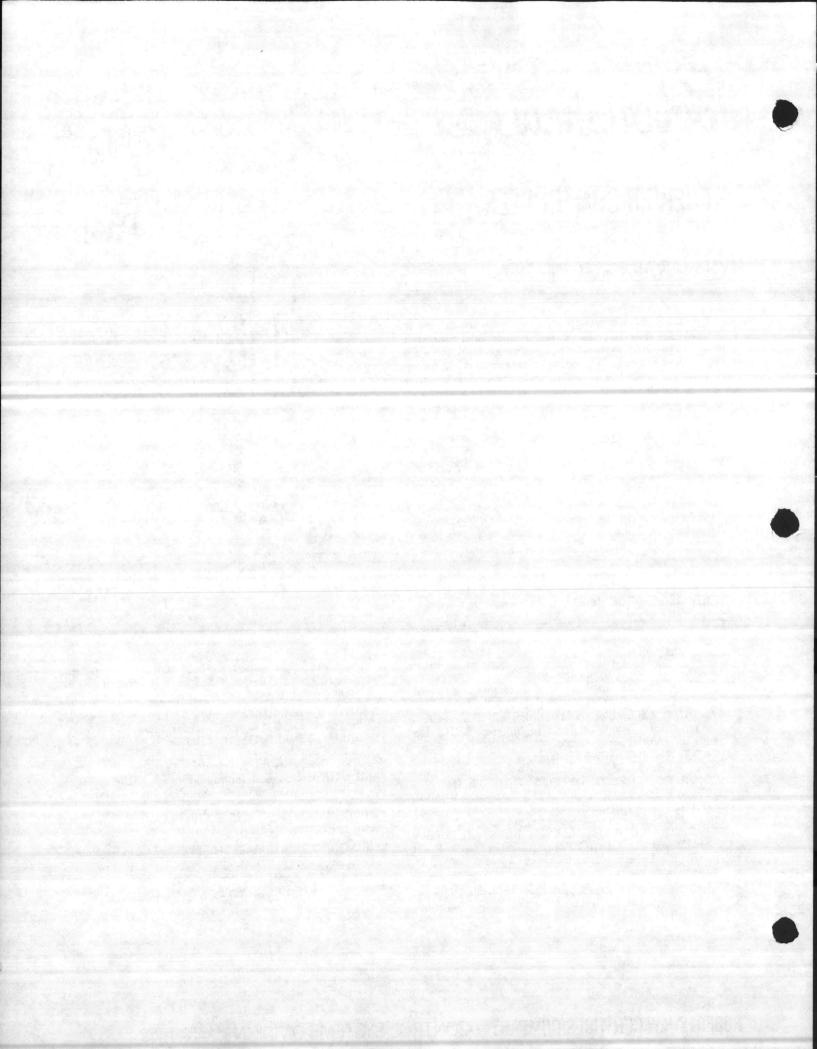
ACTIVE CONNECTIONS: Main (M), Branch (B), Primary Signal Input (S), Control Point Adjustment (C), Reset Input (R); barbed connections for ¼" (6.4 mm) O.D. polycthylene tubing.

When using either model as a limit controller, integral limit valve must be indexed to the "limit" position,

main air supply piped to port (C), and input from primary control device piped to (M). Branch (B) remains the output port.

MAIN AIR PRESSURE: 4 psig (.27 bar) to 22 psig (1.5 bar) operating; 30 psig (2.1 bar) maximum.

AMBIENT TEMPERATURE LIMITS: 40 to 140°F (4.4 to 60°C).


FINISH: Case, glass-filled Nylon. MOUNTING: Designed for mounting on MCS-S manifold socket. For non-manifold mounting, use mounting kit K504.

AIR CONSUMPTION: 1.25 SCFH (36 CIM).

AIR CAPACITY: 8 SCFH.

ORDERING INFORMATION: SPECIFY: Model Number

ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

PNEUMODULAR® RECEIVER CONTROLLERS P541 P541(R.A.)

MCS-S

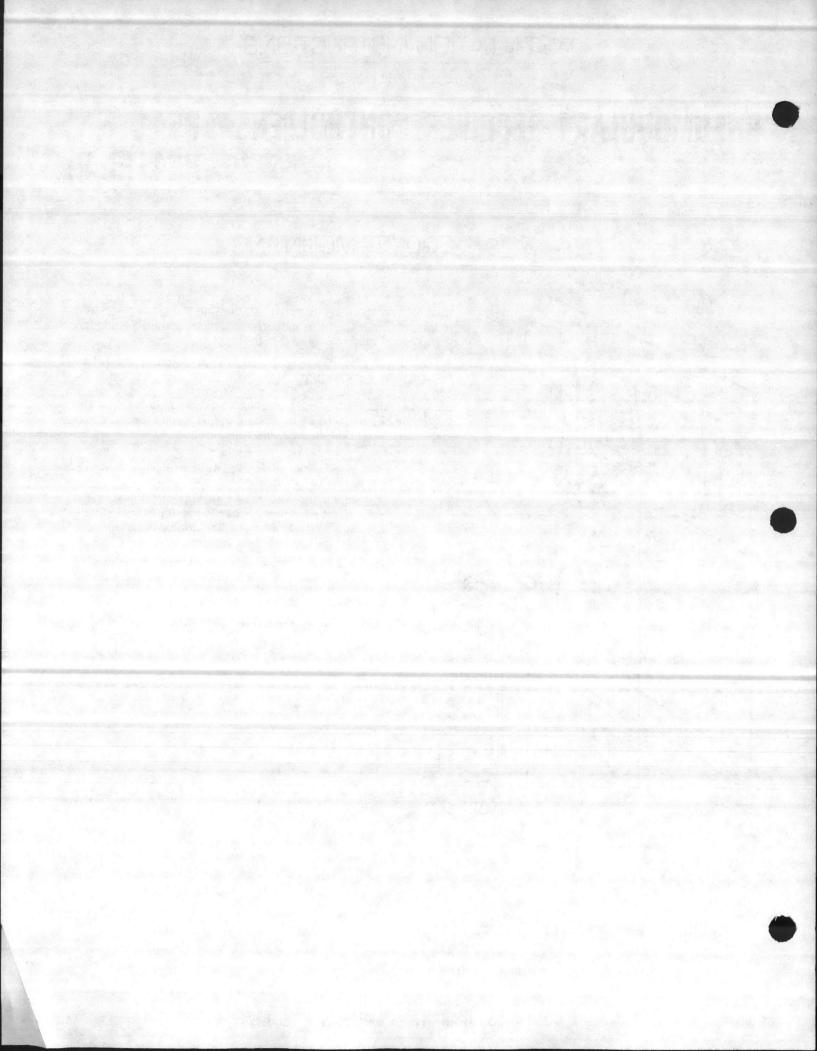
MCS-G

P541

SOCKET MOUNTING

The assembly of Pneumodular components on a panel mounted manifold backplate is illustrated. A **Manifold Backplate** (MCS-BP) is shown. The MCS-BP is mounted to a panel (cabinet) backplate with 1/4" **Mounting Screws** (MCS-MS).

A Socket and Plug Assembly (MCS-S) is mounted on the BP by engaging three socket projections with three backplate openings and pulling downward until a pin on the socket engages a hole in the spring release tab of the backplate with an audible "click." The socket may be removed by depressing the backplate spring release and lifting the socket upward, then outward.


> A P541 (or P541-R.A.) receiver controller is mounted on the socket by first placing a Socketto-Device Gasket (MCS-G) in a matching socket depression and then attaching the P541 to the socket with four #6 x 1/2" Plastite Screws (MCS-SCREW). The screws are double-helix threaded for quick installation and removal.

> A 300-XX series adhesive scale with engineering units may be applied to the P541 set point dial.

MCS-SCREW

FIGURE 1 - P541 SOCKET MOUNTING DETAIL

MCS-BP

PNEUMODULAR® RECEIVER CONTROLLERS DIRECT AND REVERSE ACTING

P541 P541-RA

CALIBRATION

The Model P541 series receiver controllers utilize input signals from remote sensing devices and adjusting devices to provide proportional control in pneumatic control systems. They are designed primarily for use with Robertshaw pneumatic transmitters; however, they may be used with any pneumatic device having a calibrated output of 3 to 15 psig (21 to 103 kPa), such as thermostats, humidistats or gradual switches. The P541 devices also may be applied as limit controllers. See Table I for model number descriptions and limit functions. TABLE I

MODEL	TYPE	LIMIT APPLICATION	
P541	Direct Acting	Low Limit	
P541-ŘA	Reverse Acting	High Limit	

The P541 series controllers are pilot-operated and require a main air connection to port "M" (non-limit application) or port "C" (limit application) of 20 psig (138 kPa). These devices are not factory-calibrated.

ADJUSTMENT

See Table II for adjustment types, ranges and descriptions. Determination of initial settings is an application engineering function and the values should be listed on control drawings or panel labels. Since changes of the throttling range or authority settings or the CPA signal pressure will affect the set point, these values are set first. See Figure 1 for device appearance and location of adjustments.

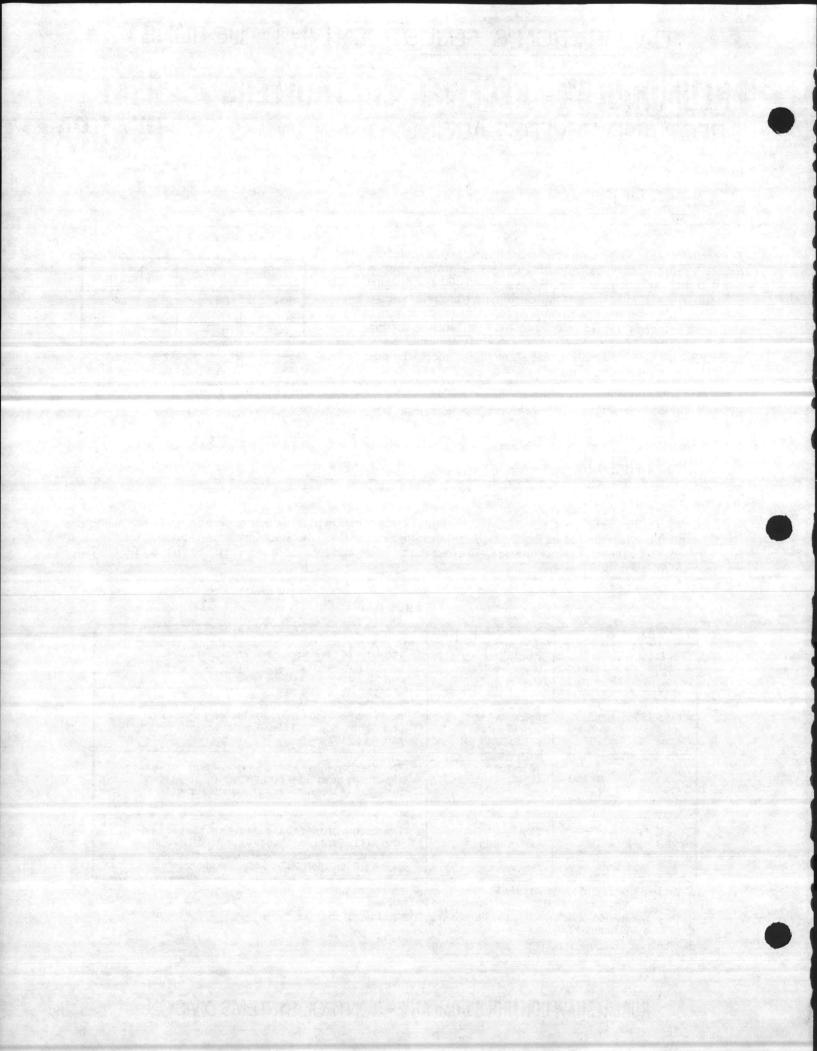
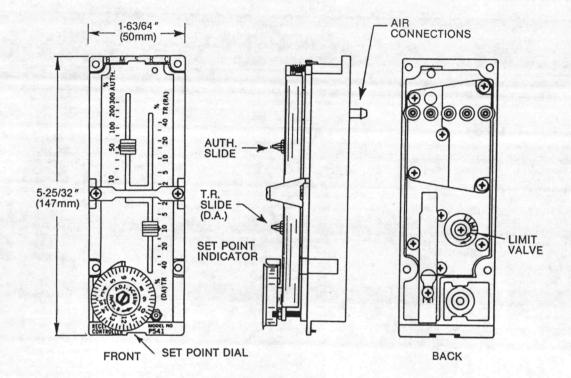

ADJUSTMENT	RANGE	DESCRIPTION
Set Point	3 to 15 psig ^a (21 to 103 kPa)	The value of the port "S" primary signal that is used to produce the midpoint branch pressure at port "B," usually 9 psig (62 kPa).
Throttling Range (Proportional Band)	2 to 40%, equivalent to 0.24 to 4.8 psi (1.7 to 33.1 kPa)	The selected portion of the port "S" primary signal range that is used to vary the branch pressure at port "B" by 12 psi (83 kPa), normally from 3 to 15 psig (21 to 103 kPa).
Authority 10 to 300%		The effect on the branch pressure at port "B" of a signal change at reset port "R" as a percentage of the effect of the same signal change at primary signal port "S."
Control Point ("CPA")	20% ^b (direct acting) ^c	The amount of set point readjustment caused by a 12 psi (83 kPa) signal change at port "C," usually from 3 to 15 psig (21 to 103 kPa), as a percentage of the primary (port "S") transmitter span.

TABLE II

 Adhesive dials (300-XX series) are available to convert pressure values to engineering units for all Robertshaw pneumatic transmitters.

- b Usually centered on the set point value to permit CPA (set point) changes of plus and minus 10%.
- c Increased pressure at port "C" raises set point.

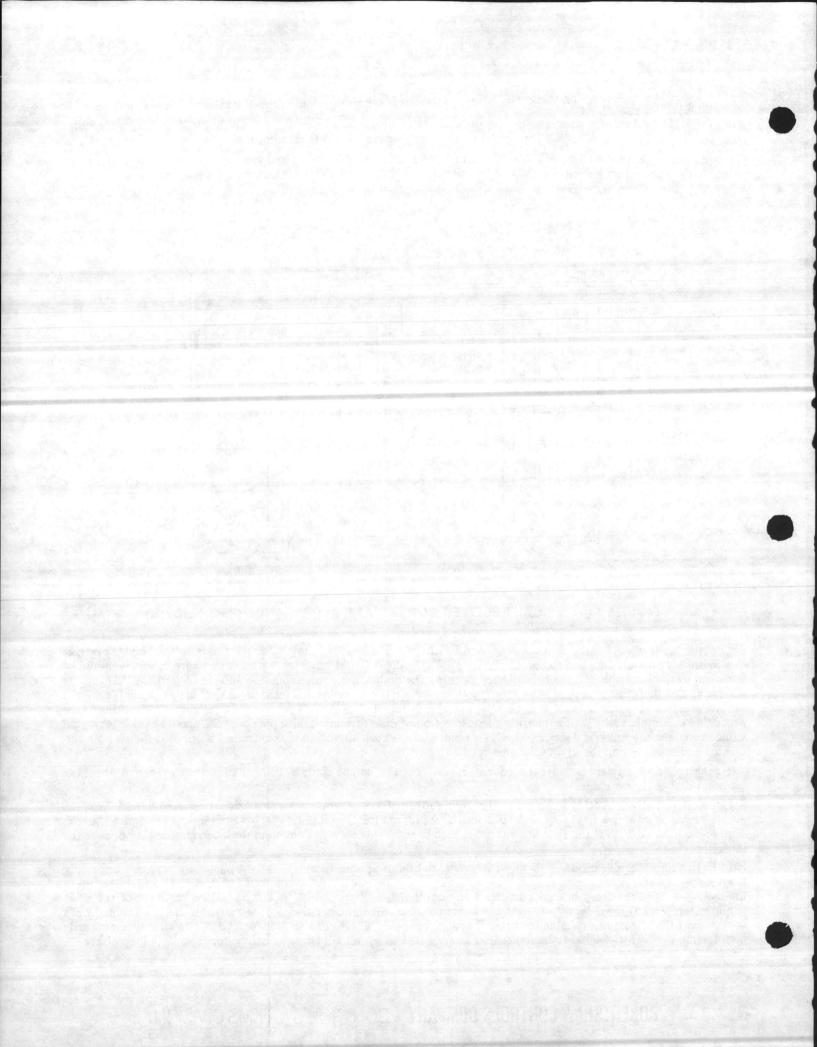


ADJUSTMENT (Continued)

Throttling Range: The throttling range (proportional band) is set by positioning the T.R. slide to the desired value. **Authority:** The authority is set by positioning the authority slide to the desired value. If the application does not require reset action (no signal to port "R"), a minimum authority setting (10%) is recommended.

Control Point Adjustment: The "CPA" feature of P541 series controllers is a fixed mechanical relationship, so that set point changes are directly proportional to CPA signal changes at port "C". No controller adjustment is required.

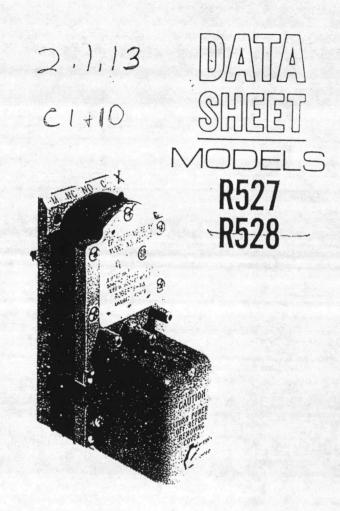
FIGURE 1 — TYPICAL RECEIVER CONTROLLER APPEARANCE (P541 SHOWN).


Set Point (standard): After the throttling range and authority have been set, main air applied to port "M" and the proper "calibration" pressures applied to ports "C" and "R" (if either of these ports is not used for an application, it should be left open to the atmosphere), the pressure representing the desired set point should be applied to port "S." Using the reverse end of thermostat wrench N2-4 (1/4", 6.4mm), rotate the set point dial (see "Increase" arrow on dial) until the branch pressure at port "B" is 9 psig (62 kPa) unless a different "calibration pressure" is designated. The adjustment procedure is completed by lifting the spring-loaded set point dial, rotating it until the port "S" pressure value (or signal value in engineering units, if a series 300-XX set point dial has been applied to the controller) is opposite the set point indicator and then seating the dial on its gear teeth.

After the above adjustment is done, subsequent set point changes can be made by using the 1/4" hex wrench to rotate the set point dial to a new value.

Set Point (alternative): A P541 series controller can be adjusted to any random port "S" signal between 3 and 15 psig (21 and 103 kPa) by adding a final step to the previous procedure: After the set point dial has been indexed to match the *random* pressure at port "S," the 1/4" hex wrench is used to rotate the set point dial until the *desired* setting is opposite the indicator.

NOTE: In "limit" applications, main air at 20 psig (138 kPa) is applied to port "C," the pneumatic transmitter sensing the limiting variable is connected to port "S," the control signal to be limited is connected to port "M" and the resultant limited signal is taken from branch port "B." In addition, the "limit valve" (see Figure 1) on the back of the P541 (Phillips screwhead) must be rotated 60° clockwise to its detent limit position before the controller is mounted on a socket. Port "R" remains available for "reset" action, but port "C" is not available for "CPA" action. By temporarily maintaining port "M" (signal to be limited) at 20 psig (138 kPa), all adjustments can be made as described above.



ELECTRIC-PNEUMATIC RELAY

GENERAL DESCRIPTION

The R527 and R528 Series electric-pneumatic relays are 3-way, 2-position, electrically activated air valves for use in pneumatic control systems where the application requires a variety of switching, diverting, or interlocking functions, actuated by an electrical circuit. The Model R527 series devices switch one SPDT pneumatic circuit. The Model R528 series devices are designed with DPDT pneumatic switching (2 independent SPDT pneumatic circuits).

In both the R527 and R528, an electric coil, when energized, initiates pneumatically actuated switching from "normal" to "energized" position. The "energized" position also may be manually selected, using a small screwdriver, as needed during installation or troubleshooting.

SPECIFICATIONS

MODELS:

- R527-24-24 Vac coil, SPDT pneumatic switching R527-24DC: 24 Vdc coil, SPDT pneumatic switching R527-210: 110 Vac coil, SPDT pneumatic switching R527-230-208-240 Vac coil, SPDT pneumatic switching R528-24-24 Vac coil, DPDT pneumatic switching R528-24DC: 24 Vdc coil, DPDT pneumatic switching R528-24DC: 20 Vdc coil, DPDT pneumatic switching R528-230: 208-240 Vac coil, DPDT pneumatic switching
- ACTION: R527 series: coil de-energized, NO & C are connected; coil energized, NC & C are connected. R528 series: coil de-energized, NO & C are connected, NO2 & C2 are connected; coil energized, NC & C are connected, NC2 & C2 are connected.

On all models, ports not connected to Common (C) or (C2) are blocked. On all R528 Models, both pneumatic switching circuits are activated simultaneously.

MAIN AIR PRESSURE: 20 psig (1.4 bar) operating. 30 psig (2.1 bar) maximum.

MAXIMUM AMBIENT TEMPERATURE: 140° F (60° C).

GENERAL INSTRUCTIONS

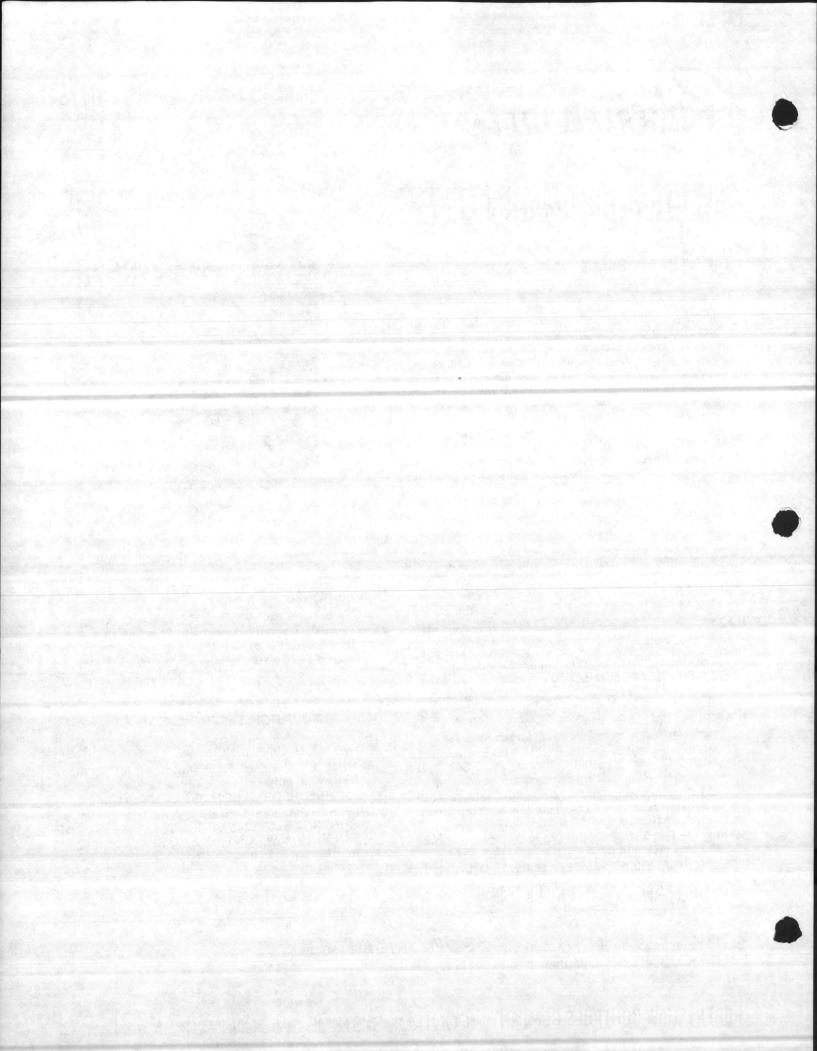
FINISH: Glass-filled Nylon.

ACTIVE CONNECTIONS: R527 series: Common (C). Normally Open (NO), Normally Closed (NC). R528 Series: Common (C), Normally Open (NO), Normally Closed (NC); Common 2 (C2), Normally Open 2 (NO2), Normally Closed 2 (NC2), nipples for ¼" (6.4 mm) O.D. polyethylene tubing.

Both series: Main (M).

AIR CONSUMPTION: 1 SCFH (28.8 CIM) AIR CAPACITY: 60 SCFH

POWER CONSUMPTION: 2.2 VA.


MOUNTING: Designed for mounting on MCS-S manifold socket only.

ORDERING INFORMATION: Specify Model Number.

ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

1. To be used on clean, dry control air only. DO NOT USE ANY OTHER MEDIUM.

2. This relay will operate properly when mounted in any position.

PNEUMODULAR® ELECTRIC-PNEUMATIC RELAYS

R527 R528

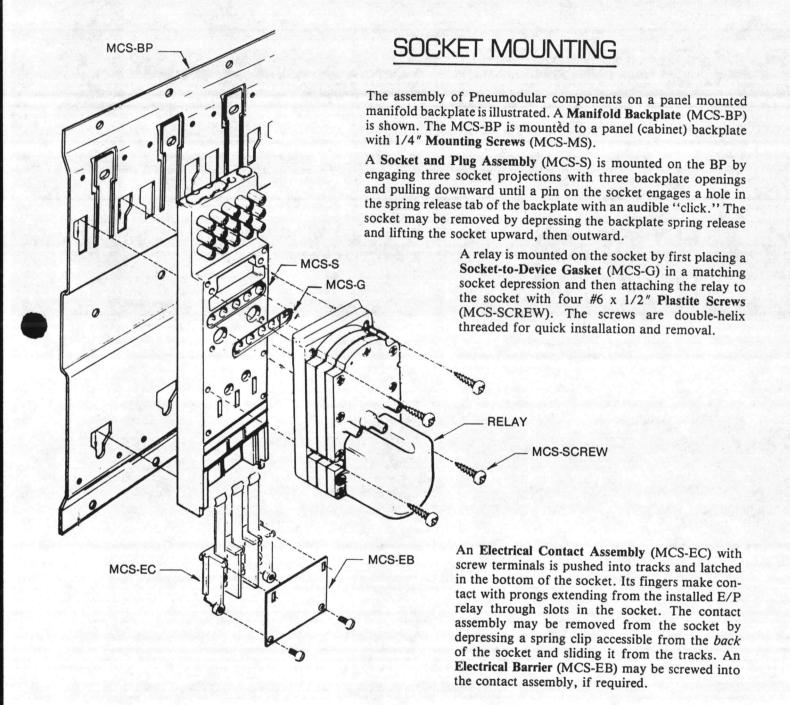
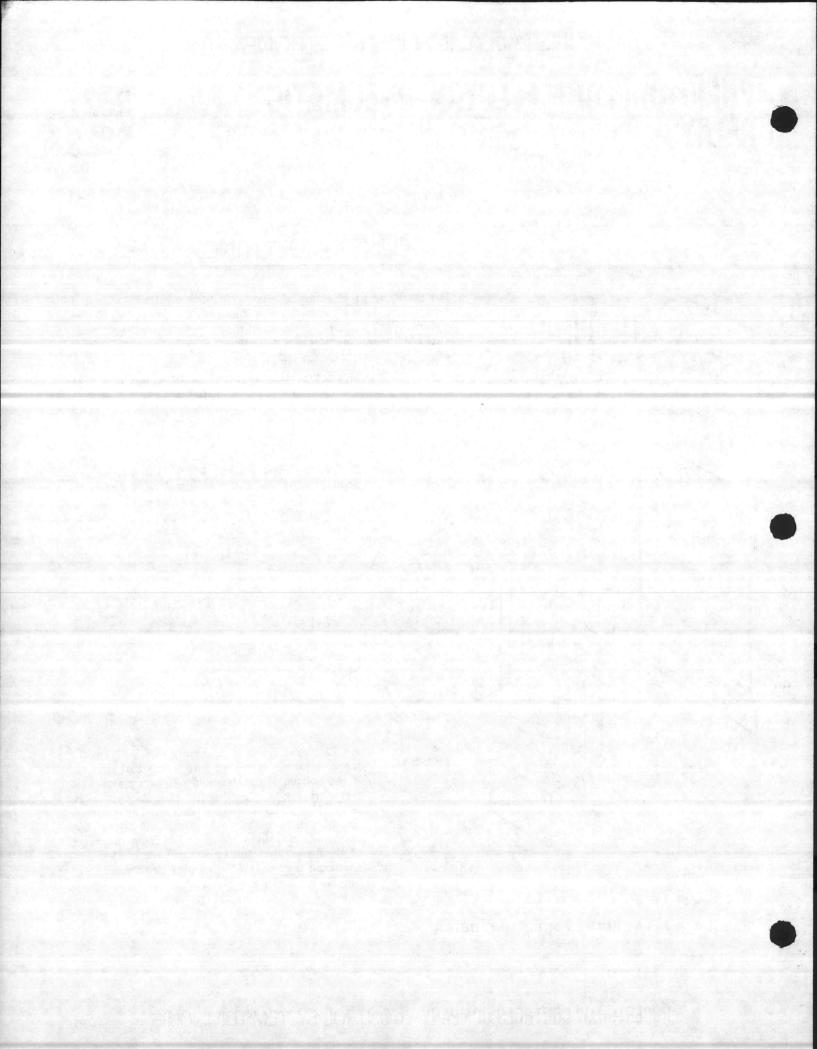



FIGURE 1 - RELAY SOCKET MOUNTING DETAIL

PNEUMODULAR® ELECTRIC-PNEUMATIC RELAYS R527 SINGLE & DUAL SWITCHING R528

CALIBRATION

The Model R527 series and R528 series electric-pneumatic relays are three-way, two-position, electrically activated air valves for use in pneumatic control systems where applications require a variety of switching, diverting or interlocking functions. The R527 series devices switch one SPDT pneumatic circuit. The R528 series devices simultaneously switch two SPDT pneumatic circuits for DPDT action. See Table I for model number descriptions and switching action.

The R527 and R528 relays are pilot-operated and require a main air connection to port "M" of 20 psig (138 kPa). They do not require calibration.

TABLE I

MODEL	COIL	ТҮРЕ	SWITCHING ACTION		
VOLTAGE		TIPE	DE-ENERGIZED ("NORMAL")	ENERGIZED	
R527-24	24 VAC	SPDT Ports NO & C connected		Ports NC & C connected	
R527-24DC	24 VDC				
R527-110	115 VAC	1			
R527-230	208-240 VAC				
R528-24DC	24 VDC	DPDT	Ports NO & C connected; ports NO2 & C2 connected	Ports NC & C connected; ports NC2 & C2 connected	
R528-110	115 VAC	12. 10.			
R528-230	208-240 VAC	1			

On all models, ports not connected to Common (C) or (C2) are blocked.

On all R528 models, both pneumatic switching circuits are activated simultaneously.

ADJUSTMENT

The R527 and R528 electricpneumatic relays do not require adjustment.

Manual Operation: These relays feature a slotted "AUTO-MAN" switch (automatic and "on" positions) on their covers to permit manual system operation when electrical power is not connected.

Coil Replacement: Replacement relay solenoid coils are listed in Table II. The replacement procedure is as follows:

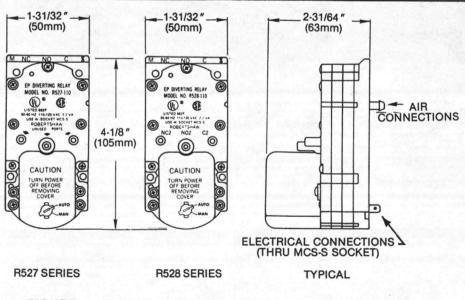
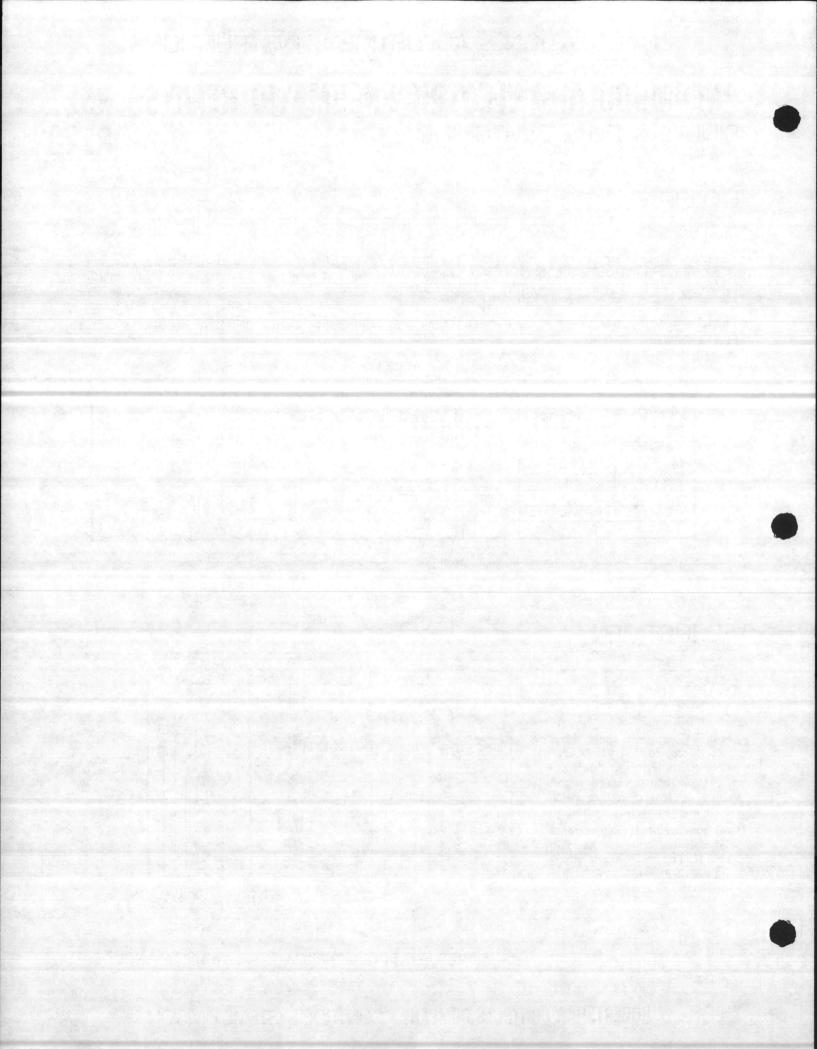
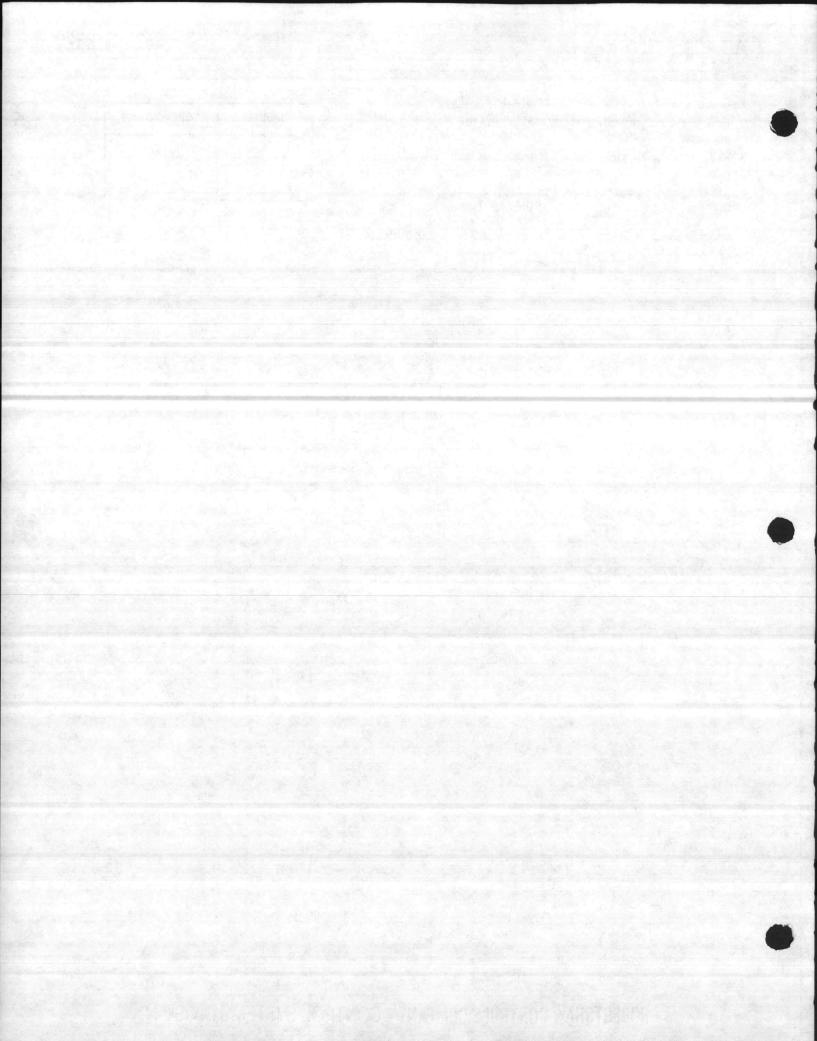



FIGURE 1 · ELECTRIC-PNEUMATIC RELAY APPEARANCE



- 1. Remove the two cover screws and the solenoid cover.
- 2. Loosen the coil mounting screw and lift the coil from its mounting post.
- 3. Remove the relay wire "quick connect" lugs from the coil terminals.
- 4. Reverse the above procedure to install the new coil, making sure that the projection on the back of the coil frame is firmly seated in its relay body detent. The clearance between the relay leakport and the solenoid leakport plug must be 0.005 to 0.008 inches (0.13 to 0.20mm) when the relay is de-energized.

TABLE II

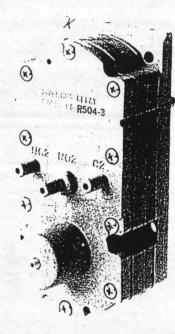
MODEL	COIL VOLTAGE	
K527-24	24 VAC	
K527-24DC	24 VDC	
K527-110	115 VAC	
K527-230	208-240 VAC	

DIVERTING RELAYS NON-ADJUSTABLE

GENERAL DESCRIPTION

The Model R504 Diverting Relays are snap-acting devices designed for a variety of switching and interlocking func-tions in pneumatic control systems where applications may require one or more of the following functions: feeding and exhausting branch lines, diverting a supply line to either one of two branch lines, diverting either one of two supply lines to one branch line.

These relays should be used only where there are positive changes in the signal pressure such as changes in summerwinter changeover pressure, day-night changeover pressure. or any other two-position pneumatic signal.


SPECIFICATIONS

1.

17

MODELS:	R504-1:	SPDT pneumatic switching @ 4-8
		psig(.3.6 bar)
-	R504-2:	SPDT pneumatic switching @ 18-22
		psig(1.2-1.5 har)
	R504-3-	DPDT pneumatic switching @ 4-8
		psig(.3.0 bar)
	R504-4-	DPDT pneumatic switching @ 18-22
		psig (1.2-1.5 bar)
	(On Mod	
	are notive	els R504-3 and R504-4, both switches
	nortenat	ated simultaneously; on all models, all
ACTION;	REAL-	connected to common (C) are blocked).
no non,	10071.	Below 4 psig: NO & C are connected.
and service and	R504-2:	Above 8 psig: NC & C arc connected.
	1004-2.	Below 18 psig: NO & C are connected. Above 22 psig: NC & C are connected.
	R504-3-	"Below 4 psig: NO & C are connected,
		NO2 & C2 are connected.
		Above 8-psig:NC & C are connected,
		NC2 & C2 are connected.
	12504-1	Below 18 psig: NO & Care connected,
		NO2 & C2 are connected.
		Above 22 psig: NC & Care connected,
		NC2 & C2 are connected.
		connocicu.

2,1,1 C4

R504

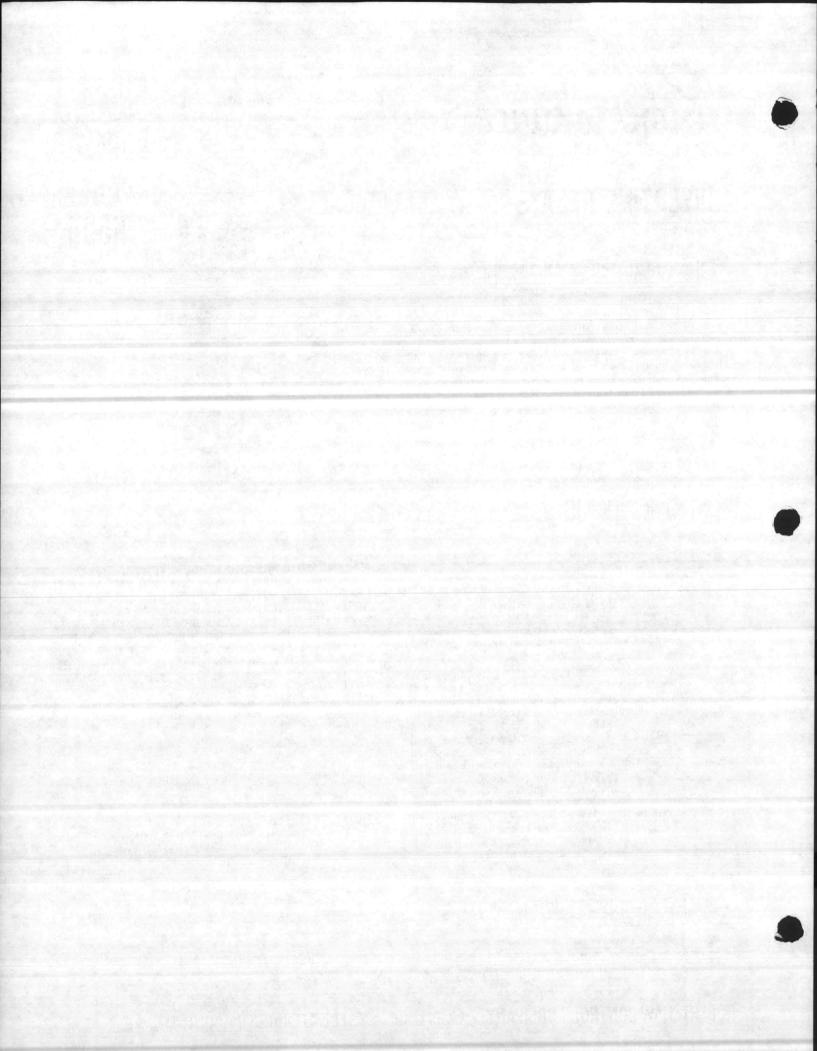
Model R504-3 Shown

MAXIMUM AIR PRESSURE: 30 psig (2.1 bar) MAXIMUM AMBIENT TEMPERATURE: 140°F (60°C). FINISH: Glass filled Nylon.

ACTIVE CONNECTIONS: R504-1, R504-2: Common (C), Normally Open (NO), Normally Closed (NC), Signal (S), R504-3, R504-4: Common (C), Normally Open (NO), Normally Closed (NC); Common 2 (C2), Normally Open 2 (NO2), Normally Closed 2 (NC2), Signal (S), nipples for ¼" (6.4 mm) O. D. polyethylene tubing. AIR CAPACITY: 60 SCFII

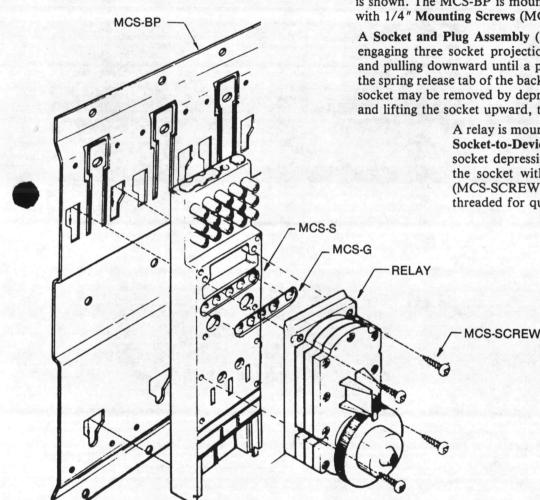
MOUNTING: Designed for mounting on MCS-S manifold socket. For non-manifold mounting, use mounting kit K503.

ORDERING INFORMATION: Specify: Model Number


ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

GENERAL INSTRUCTIONS

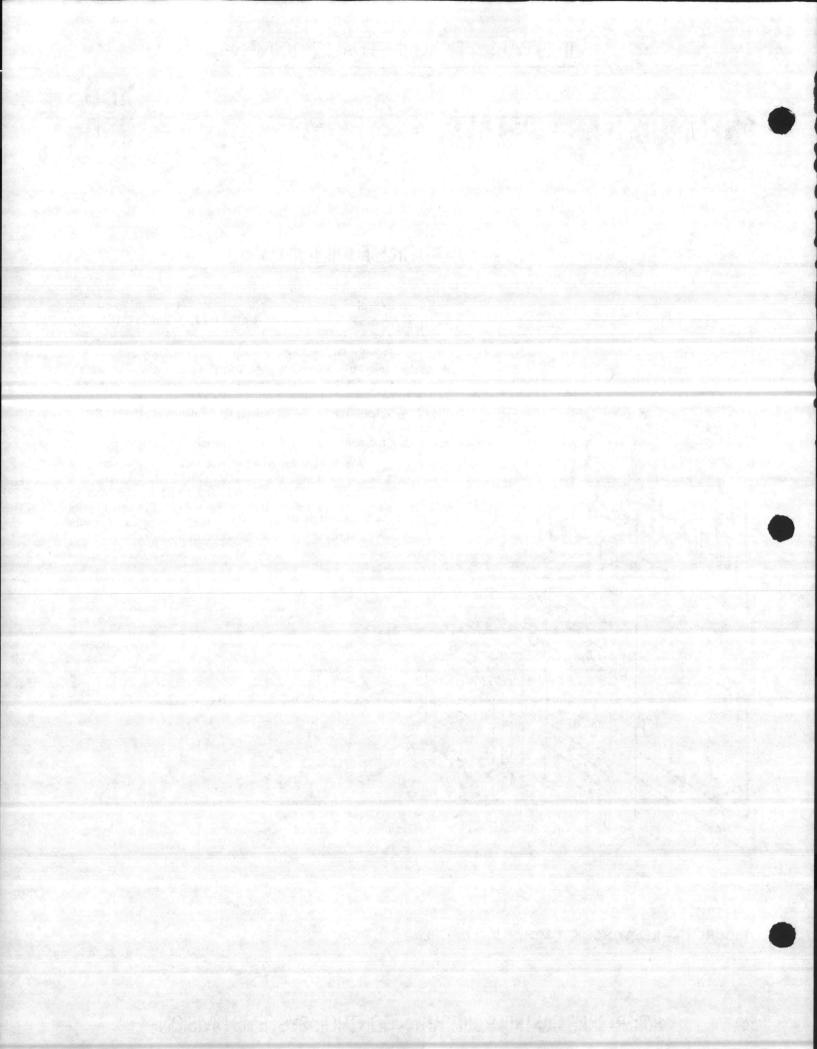
1. To be used on clean, dry control air only. DO NOT USE ANY OTHER MEDIUM.


2. This relay will operate properly when mounted in any position.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. D. BOX 27606 - RICHMOND, VIRGINIA 23261

PNEUMODULAR® RELAYS

R503 R504


SOCKET MOUNTING

The assembly of Pneumodular components on a panel mounted manifold backplate is illustrated. A Manifold Backplate (MCS-BP) is shown. The MCS-BP is mounted to a panel (cabinet) backplate with 1/4" Mounting Screws (MCS-MS).

A Socket and Plug Assembly (MCS-S) is mounted on the BP by engaging three socket projections with three backplate openings and pulling downward until a pin on the socket engages a hole in the spring release tab of the backplate with an audible "click." The socket may be removed by depressing the backplate spring release and lifting the socket upward, then outward.

A relay is mounted on the socket by first placing a **Socket-to-Device Gasket** (MCS-G) in a matching socket depression and then attaching the relay to the socket with four #6 x 1/2" Plastite Screws (MCS-SCREW). The screws are double-helix threaded for quick installation and removal.

FIGURE 1 - RELAY SOCKET MOUNTING DETAIL

PNEUMODULAR® DIVERTING RELAYS

CALIBRATION

The Model R504 series diverting relays are snap-acting devices that should be used only where there are positive changes in signal pressure at port "S" to above and below the switching range. See Table I for model number descriptions. The switching ranges are preset for standard system changeover pressures and are not intended to be field calibrated.

MODEL	TYPE	SWITCHING RANGE & ACTION
R504-1	SPDT	Port S below 4 psig (28 kPa): ports NO & C are connected. Port S above 8 psig (55 kPa): ports NC & C are connected.
R504-2	SPDT	Port S below 18 psig (124 kPa): ports NO & C are connected. Port S above 22 psig (152 kPa): ports NC & C are connected.
R504-3	DPDT	Port S below 4 psig (28 kPa): ports NO & C are connected, NO2 & C2 are connected. Port S above 8 psig (55 kPa): ports NC & C are connected, NC2 & C2 are connected.
R504-4	DPDT	Port S below 18 psig (124 kPa): ports NO & C are connected, NO2 & C2 are connected. Port S above 22 psig (152 kPa): ports NC & C are connected, NC2 & C2 are connected.

TABLE I

NOTE: On Models R504-3 and R504-4, both switches are activated simultaneously; on all models, all ports not connected to common (C) are blocked.

ADJUSTMENT

On all models, the differential is fixed at 4 psi (28 kPa). For special applications, the switching range of any model can be adjusted between 4 to 8 psig (28 to 55 kPa) and 18 to 22 psig (124 to 152 kPa) by turning the adjustment screw (see Figure 1) with a 5/64 " hex wrench (clockwise to increase). CAUTION: The adjustment screw does not have end stops; exercise care to limit adjustments to between 4 - 8 psig and 18 - 22 psig. (Note that this adjustment capability makes an R504-3 or an R504-4 a universal replacement for all R504 applications.)

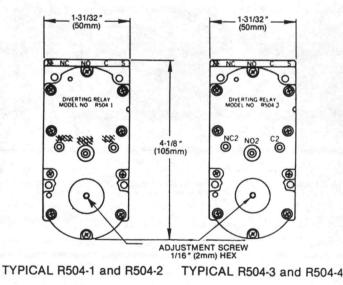
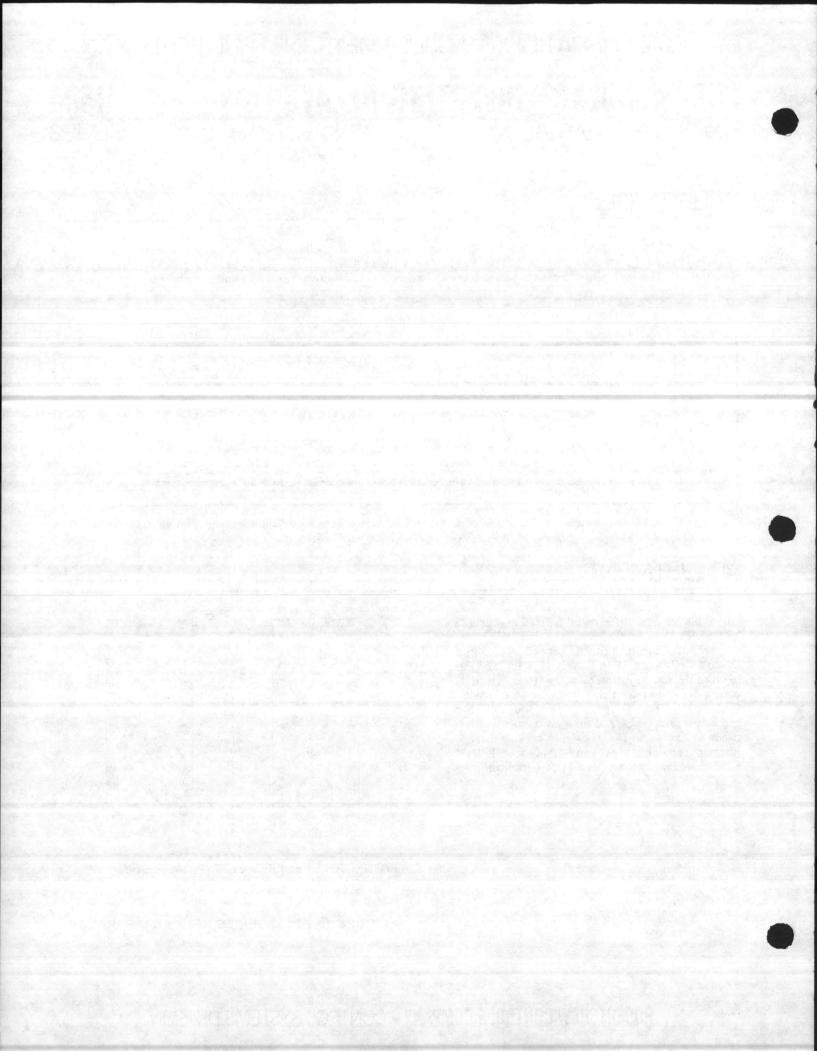



FIGURE 1 - R504 SERIES RELAY APPEARANCE

RECEIVER GAUGES

GENERAL DESCRIPTION

Robertshaw Receiver Gauges are available in 2", 2½", and 3½" sizes. The input to all of these gauges is a 3 to 15 psi air signal.

The A251 (2½") and A252 (3½") gauges are flush mounting types and they can be provided with any of a number of field-installed "DONUT" type dials to cover a multiplicity of applications. The dials, listed below, are selected and ordered for the specific application and mounted in place in the field. The A251 and A252 gauges have zinc plated steel cases with chrome plated snap out rings. They are activated by a bourdon tube through sturdy brass gears. A U-clamp mounting arrangement is standard for use in mounting these gauges on a panel. An adjustable pointer allows accurate zero adjustment on both models.

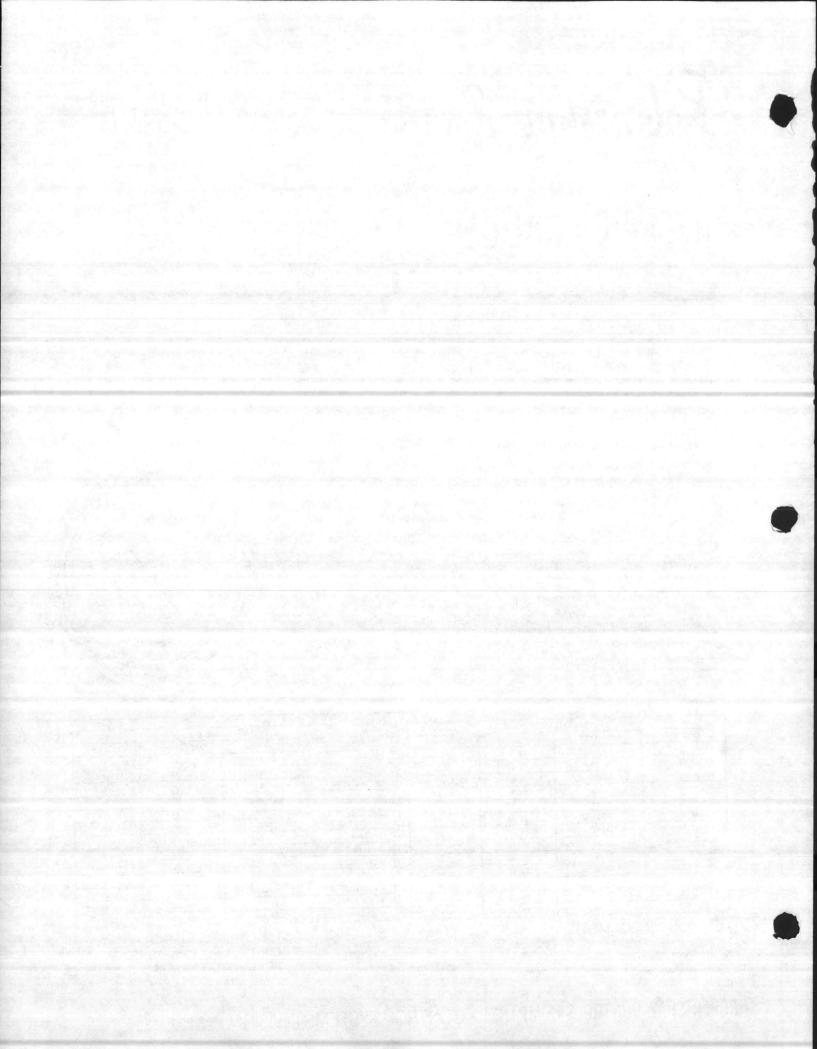
The A253 (2") Receiver Gauge is a stem mounting, backconnected type of gauge and is used on those applications not requiring flush mounting on a panel. This gauge is supplied with a 0 to 100°F dial. For other ranges, appropriate add-on dials are listed below. The case is gray Lexan® and these gauges also use a bourdon tube to actuate a brass gear movement.

DATA SHEET MODEL A251 A252 A253

2,1,9

G1+G2

SPECIFICATIONS


	DIALS AVAIL	ABLE		
RANGE	2" for A253	21/4" for A251	X 315" for A252	
0 to 100°F	basic dial supplied	24 - 50	25 - 50	
40 to 140°F	23 - 51	24 - 51	25-51	
40 to 240°F	23 - 52	24.52	25 - 52	
-40 to 160° F	23 - 53	24.53	25.53	
-25 to 125°F	23 - 54	24.54	25.54	
50 to 90° F	23 - 56	24 - 56	25.54	
62 to 92° F	23 . 57	24 - 57	25.57	
30% to 80% RH	23 - 58	24 - 58	25-58	
0 to 7" W'C	23 - 60	24.60		
20 to 45 BTU/Ib.	23 - 61	24-61	25.60	
0.5 to . 0.5 WC	23 - 62	24 - 62	25-61	
0 to 3" WC	23-63	24 - 63	25 - 62	
0 to 10" WC	23.64	24.65	25.63	

ORDERING INFORMATION:

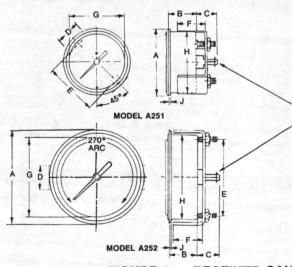
SPECIFY: 1. Model Number & Range. Dial must be ordered separately (except for A253 in 0 to 100°F range)

DIALS AVAILABLE RANCE 2" for A253 215" for A251 315" for A252 30 to 80° F 23.65 24 - 65 25.65 -05 to .20 IN WC 23.66 24 - 66 25 . 66 -10 to 40 PSIG 23 . 67 24 - 67 25 - 67 0 to 150 PSIG 23 - 68 24 . 68 25 . 68 0 to 300 PSIC 23.69 24 - 69 25 . 69 0 to 50 PSIC 23 . 70 24 - 70 25 . 70 0 to 100 PSIG 23 . 71 24 - 71 25 - 71 0% to 100% RH 23 . 72 24.72 25.72 87.5 to \$7.5°F 23.75 24 - 75 25 . 75 0 to 20 FPM x 100 23 - 80 24 - 80 25 - 80 0 to 30 FPM x 100 23 - 81 24 - 81 25 . 81 0 to 40 FPM x 100 23 - 82 24 - 82 25 . 82 0 to 55 FPM x 100 23 . 83 24.83 25 . 83

> ORDER FROM: Local office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted below.

RECEIVER GAUGES

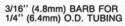
GENERAL DESCRIPTION


These receiver gauges are used to indicate the value of a standard 3 to 15 psig (21 to 103 kPa) pneumatic transmitter signal in units of the sensed variable. Nominal gauge diameters are 2-1/2" (64mm) for model A251, 3-1/2" (89mm) for model A252 and 2" (51mm) for model A253. Models A251 and A252 are flush mounting with barbed ports; model A253 is stem mounting with a threaded port. Available dials listed in Table I are ordered separately and field installed.

States in the second second	and the second second		TABLE I - DIA	LS AVAILABLE			
RANGE	2" for A253	2-1/2" for A251	3-1/2" for A252	RANGE	2" for A253	2-1/2" for A251	3-1/2" for A252
0 to 100°F	basic dial supplied	24-50	25-50	30 to 80°F	23-65	24-65	25-65
40 to 140°F	23-51	24-51	25-51	.05 to .20 IN WC	23-66	24-66	25-66
40 to 240°F	23-52	24-52	25-52	-10 to 40 PSIG	23-67	24-67	25-67
-40 to 160°F	23-53	24-53	25-53	0 to 150 PSIG	23-68	24-68	25-68
-25 to 125 °F	23-54	24-54	25-54	0 to 300 PSIG	23-69	24-69	25-69
50 to 90°F	23-56	24-56	25-56	0 to 50 PSIG	23-70	24-70	25-70
62 to 92°F	23-57	24-57	25-57	0 to 100 PSIG	23-71	24-71	25-71
30% to 80% RH	23-58	24-58	25-58	0% to 100% RH	23-72	24-72	25-72
0 to 7" WC	23-60	24-60	25-60	87.5 to 57.5°F	23-75	24-75	25-75
20 to 45 BTU/lb.	23-61	24-61	25-61	0 to 20 FPM x 100	23-80	24-80	25-80
-0.5 to +0.5" WC	23-62	24-62	25-62	0 to 30 FPM x 100	23-81	24-81	25-81
0 to 3" WC	23-63	24-63	25-63	0 to 40 FPM x 100	23-82	24-82	25-82
0 to 10" WC	23-64	24-64	25-64	0 to 55 FPM x 100	23-83	24-83	25-83

INSTALLATION

Dial: Remove the friction fit gauge bezel with a thin bladed tool. Align the self-adhesive dial with the pressure reference marks on the gauge face and press in place. Replace the bezel.


Models A251 and A252: Provide the required panel

cutout and secure the gauge to the panel face with the U-clamp (furnished).

Model A253: Thread the gauge into a 1/8" female NPT fitting.

Mo	del	A	В	С	D	E	F	G	н	J
A251	in.	2-29/32	1-3/16	3/4	1	1-7/8	1-3/8	2-9/32	2-19/32	1/16
1	mm	74	30	19	25	47	35	58	66	2
A252	in.	4	1-3/16	3/4	1	2-15/16	1-11/32	3-15/64	3-23/32	1/16
	mm	102	30	19	25	75	33	82	94	2

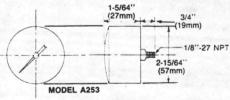
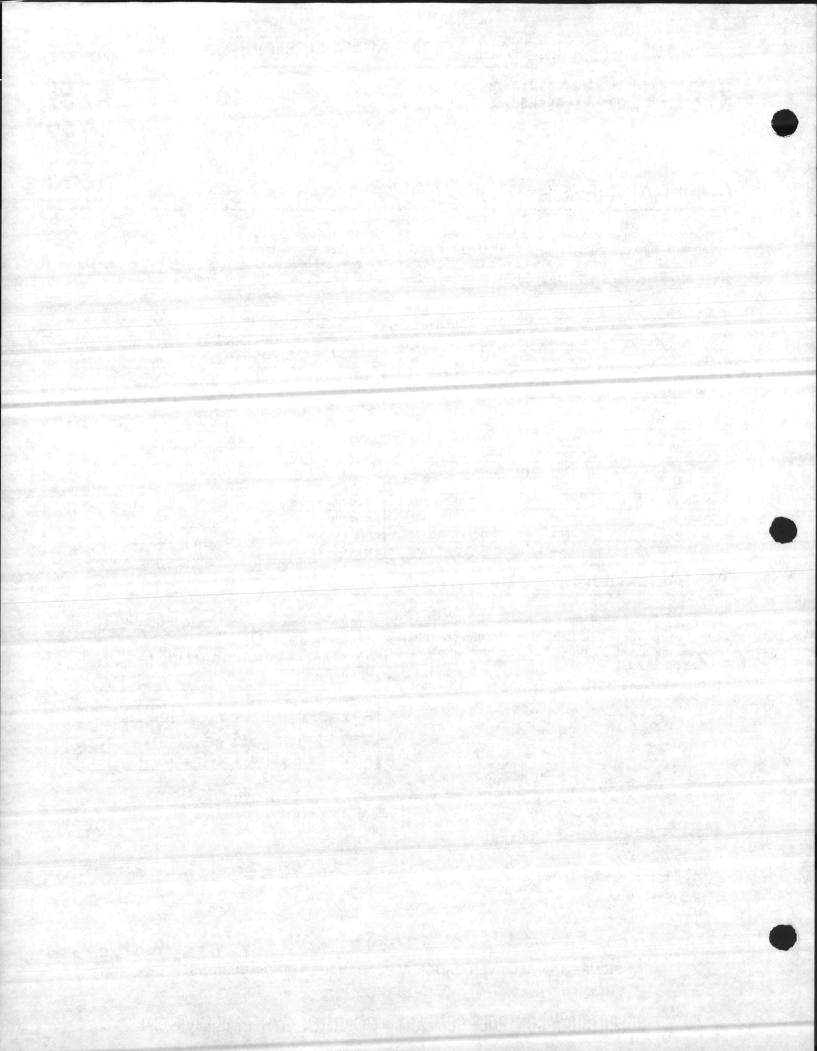
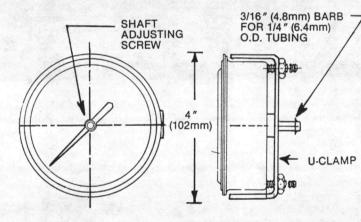



FIGURE 1 - RECEIVER GAUGE APPEARANCES AND DIMENSIONS.



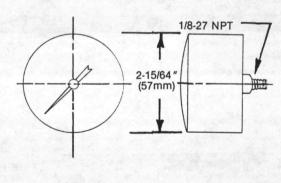
RECEIVER GAUGES

CALIBRATION

These receiver gauges are available in nominal dial diameters of 2" (51mm, Model A253), 2-1/2" (64mm, Model A251) and 3-1/2" (89 cm, Model A252). The input to each of these gauges is a 3 to 15 psig (21 to 103 kPa) pneumatic transmitter signal representing a sensed range of engineering units, such as degrees of temperature. A matching self-adhesive dial must be selected (see Data Sheet) and affixed to the dial face.

These gauges are factory calibrated so that the pointer rotates 270° in response to the 3 to 15 psig (21 to 103 kPa) input signal; this rotation is non-adjustable. The position of the pointer can be reset, if necessary (see Adjustment).

MODEL A252

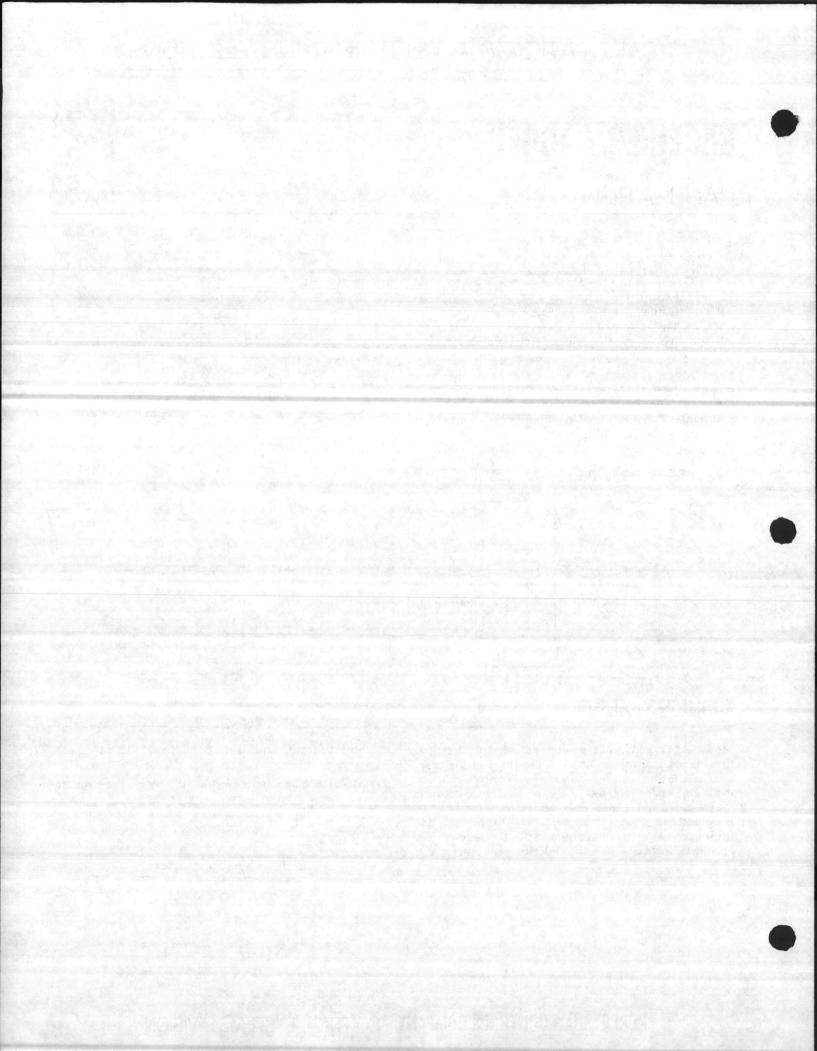

SHAFT ADJUSTING SCREW 2-29/32" (74mm) 45°" U-CLAMP

A251

A252

A253

MODEL A251

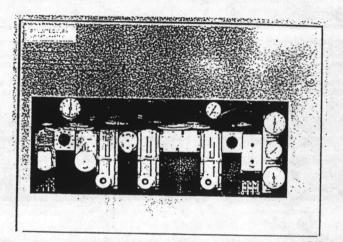

MODEL A253

ADJUSTMENT

Model A251 and A252 pointer adjustment: Using a thin-bladed screwdriver between the rim and the case, remove the rim and lens assembly. With an accurate thermometer for reference, note the difference between the indicated and reference temperatures. While holding the pointer to prevent its movement, turn the shaft adjusting screw a small amount with the screwdriver (clockwise increases the setting). Release the pointer and

note the temperature difference, if any. Repeat as necessary.

Model A253 pointer adjustment: Remove the cover and measure the reference temperature as described above. Remove the pointer with a puller. Reposition the pointer to the measured temperature and push it back on the shaft.



CONTROL PANEL CABINETS

GENERAL DESCRIPTION

The Models PCP-6 and PCP-12 control panel enclosures are designed for convenient mounting and protection of Pneu-modular Control System devices. The "two-section" construction of these enclosures allows for early rough-in of the base enclosure, and addition of the devices, door, and accessories at a later appropriate time during the various installation phases of a project. The doors may be hinged either left or right, to meet various requirements. Additionally, there are two door styles, a metal door, and a door with a Plexiglas insert, which allows for visibility while maintaining security of the various panel-mounted components. Each side of the enclosure has convenient knockouts for rigid, soft or flexible tubing, or electrical equipment connections.

PCP-6

PCP-17

MODEL PCP-12WL Shown with Plexiglas window in panel door

SPECIFICATIONS

MODEL NO's:

PCP-6BD: PCP-6WL: PCP 6WR? PCP-12BD-PCP-12WL:

Solid door, left or right hinged Window door, left hinged Window door, right hinged Solid door, left or right hinged Window door, left hinged PCP-12WR .- Window door, right hinged

DIMENSIONS: PCP-6 Series:

PCP-12 Series --

18"W x 21"H x 7"D (457 x 533 x 178 mm) 30"W x 21"H x 7"D (762 x 533 x 178 mm)

CONSTRUCTION:

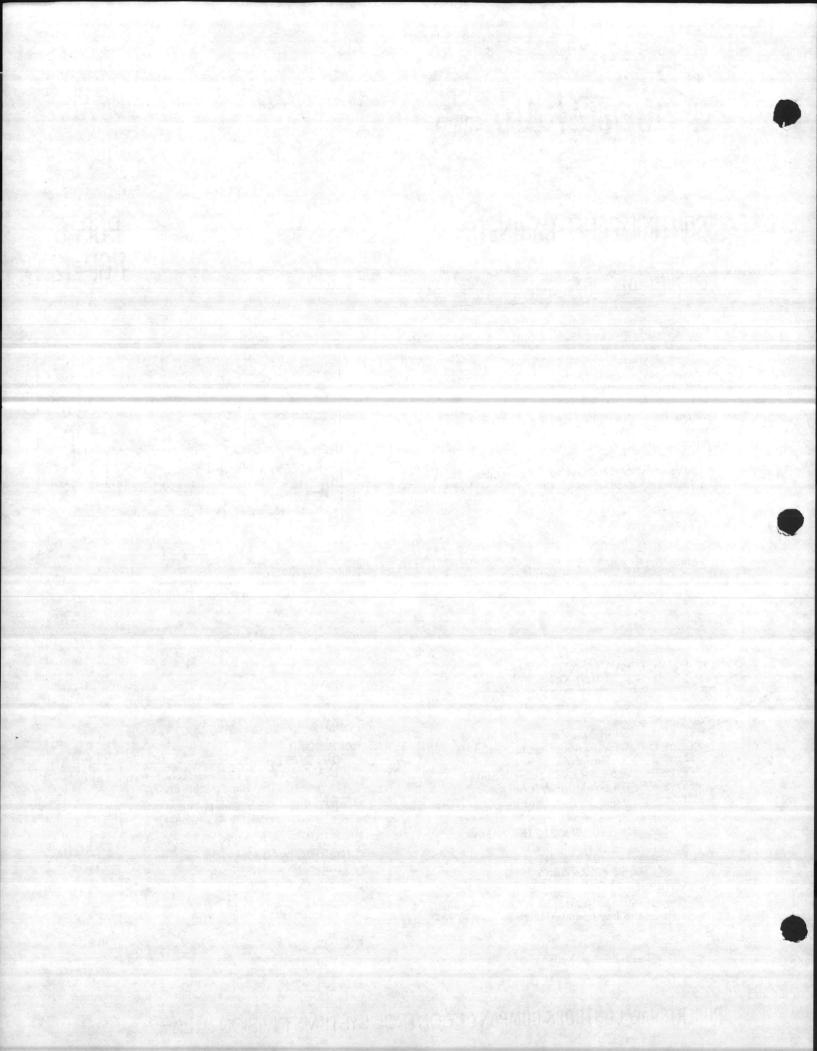
16-gauge steel throughout. Doors have spring-loaded pivot hinge and key-operated latch to prevent tampering. FINISH: Brown baked semi-gloss enamel.

ACCESSORIES: N100-9915 key lock.

2,1,14

PCP-6

PLEX-6 and PLEX-12 Plexiglas inserts (must be ordered for window-style doors).


MOUNTING: Surface-mounted, or free-standing using available panel stand.

KNOCKOUTS: Provided on four sides of cabinet.

ORDERING INFORMATION:

1. Model Number

2. Accessories required

PCP-6 PNEUMODULAR® CONTROL PANEL CABINETS PCP-12

The PCP control panels are fabricated in such a way as to permit the mounting of the outer shell or ring to the wall at any time during the construction period. Three 5/16'' mounting holes are provided: 2 round and 1 key slotted. The key slotted hole is on the top center to facilitate alignment. This allows all conduit connections and wiring, tubing, etc. to be roughed into the panel without fear of damaging panel-mounted components. The bezel with back pan and the door with all pneumatic devices installed and pneumatic connections made can then be slipped into place and held to the ring by four wing nuts. The removable door is attached to the bezel by means of a spring-loaded top hinge pin.

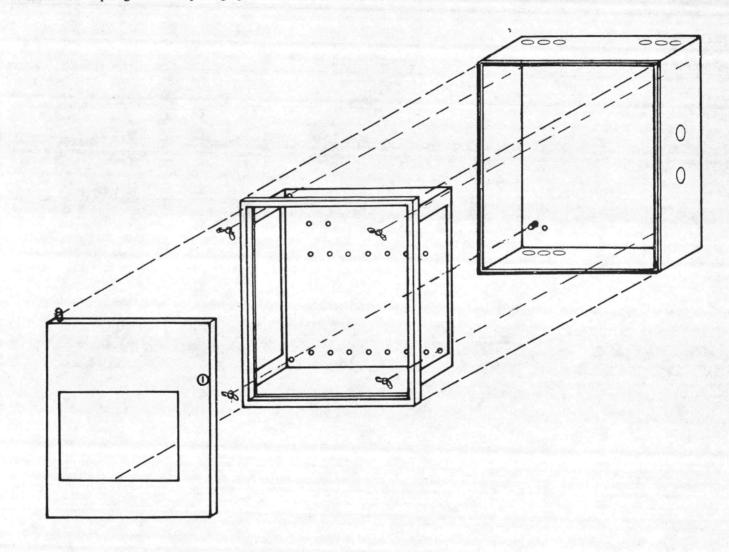
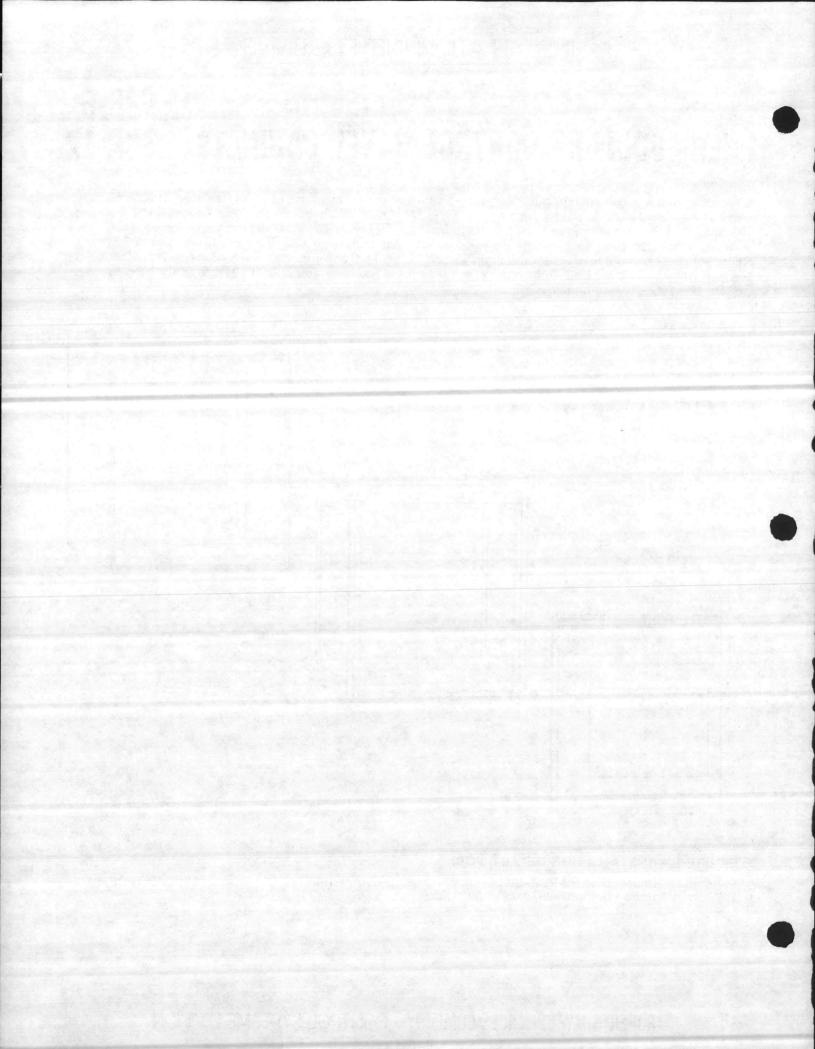
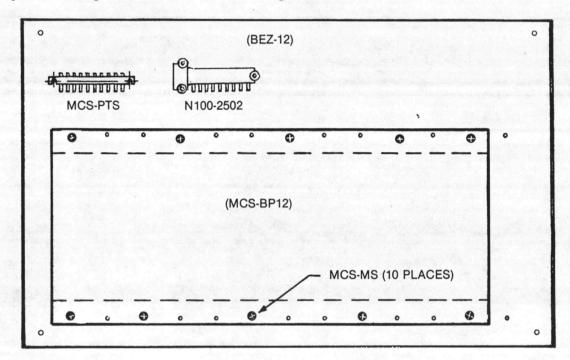



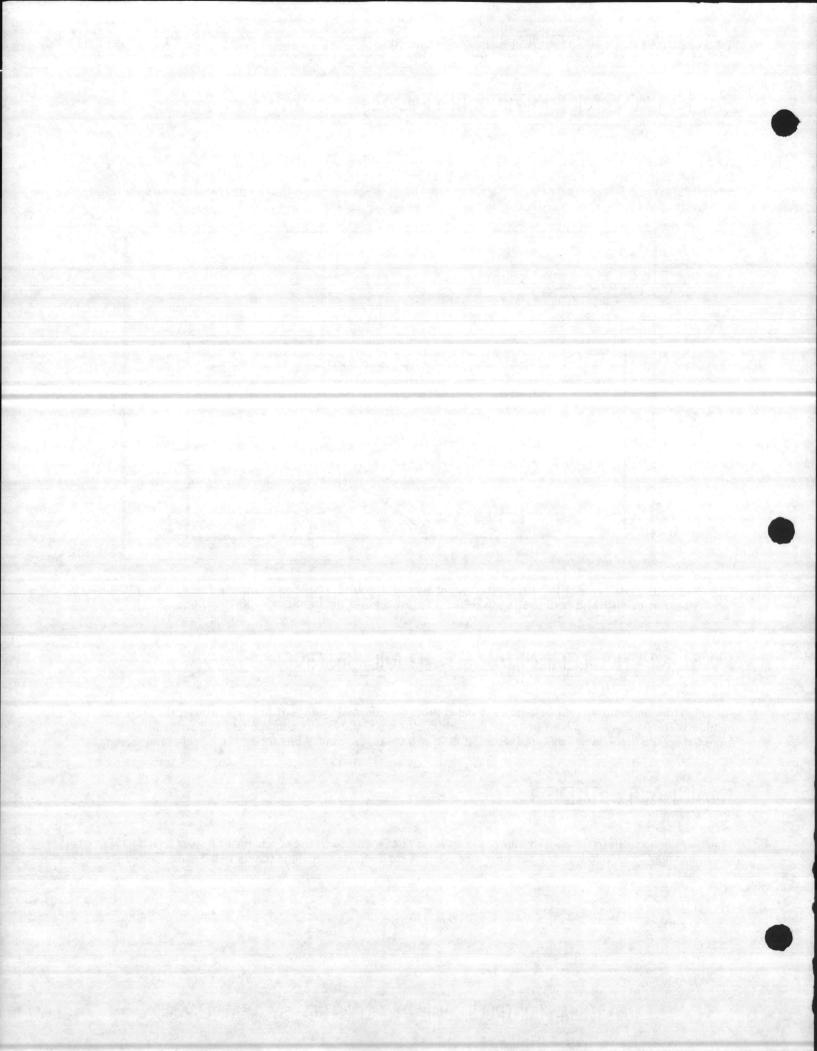
FIGURE 1 — INSTALLATION DETAILS FOR:

Pneumodular control panel PCP-6WL: 6-place, window door, left hinge, 18" W x 21" H x 7"D. (PCP-12WL construction is identical, except 30" wide.)

BACKPLATE MOUNTING (TYPICAL)

A 12-place Manifold Backplate MCS-BP12 is attached to the bezel backplate of the 12-place Pneumodular Control Panel PCP-12BD with ten screws MCS-MS spaced 4" to 6" along the top and bottom of the BP, using the predrilled holes on 2" centers (see Figure 2). Note that the BP is shifted one inch from the center toward the left to provide space for wiring to terminals on the bottom edges of sockets.




FIGURE 2 — Typical Pneumodular bezel backplate with 12-place manifold backplate (MCS-BP12), 10-point pneumatic terminal strip (MCS-PTS) and main air header (N100-2502).

PNEUMATIC TERMINAL STRIP MOUNTING

Although air connections from field tubes to panel tubes may be made with barbed brass fittings, the preferred method is for the connections to be made through one or more 10-place pneumatic terminal strips MCS-PTS mounted on the bezel backplate (see Figure 2). Drill two 0.136" holes (#29 bit) for #8 x 1" sheet metal screws.

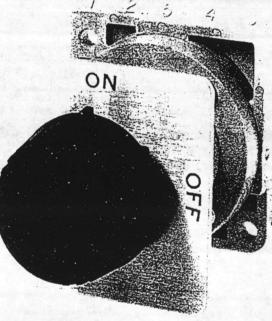
MAIN AIR HEADER

Main Air connections to the panel mounted controls may be facilitated by use of a main air header (N100-2502), which has a 3/8" FPT input port and nine output ports for 1/4" polyurethane tubing (see Figure 2).

SELECTOR SWITCHES TWO-THREE-FOUR POSITION

GENERAL DESCRIPTION

These selector switches are manually operated pneumatic devices designed for use in pneumatic control systems where applications require manual switching or diverting of pneumatic signals. A wide variety of switching or diverting functions is possible. Manual switch positions are as follows:


S520 and S521 - two-position

S530 and S531 - three-position

S540 and S541 - four-position

Various dials are available for each model and for specific switch applications.

2,1.13

S520 SHOWN

SPECIFICATIONS

MODEL	SWITCH POSITIONS	NUMBER OF PORTS USED	ISOLATED PORTS*
S520	2	4	Port 5 Blocked
S521	2	5	Blocked
S530	3	4	Blocked
S531	3	4	Exhausted
S540	4	5	Blocked
S541	4	5	Exhausted

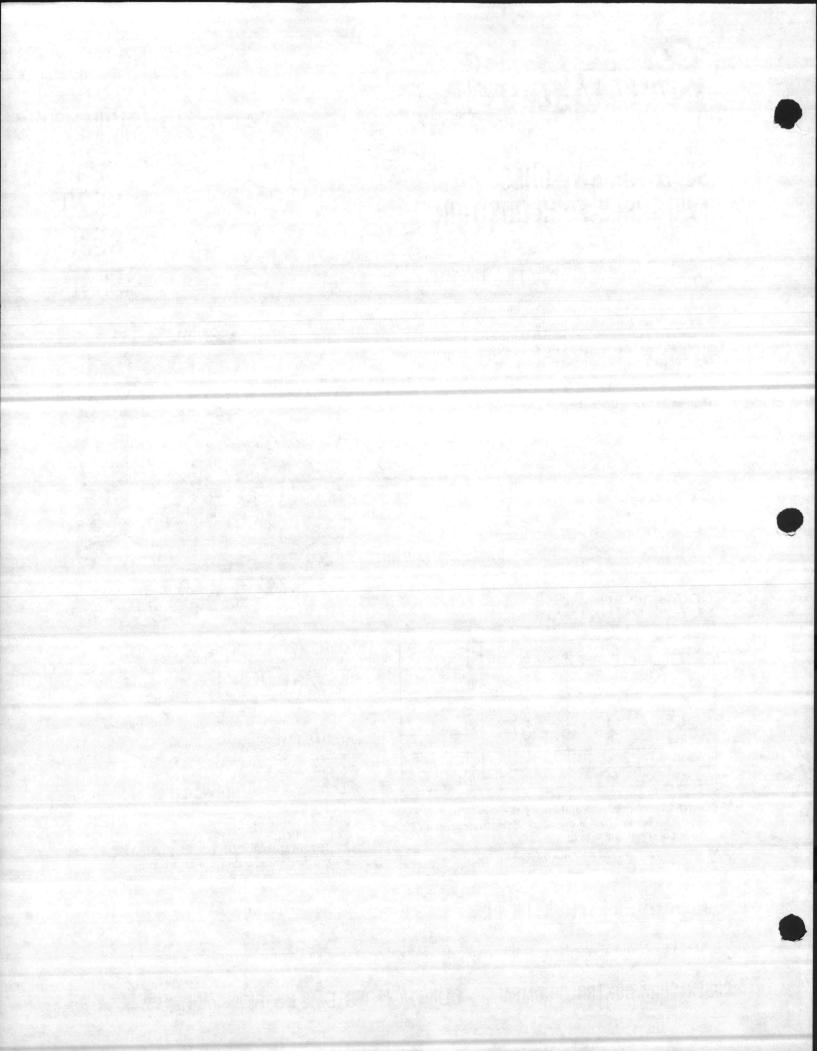
CONNECTIONS: Ports numbered 1 through 5, barbed connections for '4'' (6.4 mm) O. D. Polyethylene or 5/32'' I. D. Polyurethane tubing.

*See Switch Positions and Air Flow diagram on rear of sheet.

GENERAL INSTRUCTIONS

MAXIMUM AIR PRESSURE: 30 psig (2.1 bar) MAXIMUM AMBIENT TEMPERATURE: 140°F (60°C) AIR CAPACITY: 40 SCFH

FINISHES: Case – glass-filled Nylon. Dials – anodized aluminum. Knob – black sunburst, with pointer.


MOUNTING: Designed for mounting on MCS-S manifold socket, on control panel door, or with available surface mounting brackets.

ORDERING INFORMATION: SPECIFY: Model Number

ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted at bottom of this page.

1. To be used with clean, dry control air only. DO NOT USE WITH ANY OTHER MEDIUM.

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. D. BOX 27605 - RICHMOND, VIRGINIA 23251

PNEUMODULAR® SWITCHES

\$510 \$511 \$520 \$530 \$540 \$521 \$531 \$541

SOCKET MOUNTING

The assembly of Pneumodular components on a panel mounted manifold backplate is illustrated. A Manifold Backplate (MCS-BP) is shown. The MCS-BP is mounted to a panel (cabinet) backplate with 1/4" Mounting Screws (MGS-MS).

A Socket and Plug Assembly (MCS-S) is mounted on the BP by engaging three socket projections with three backplate openings and pulling downward until a pin on the socket engages a hole in the spring release tab of the backplate with an audible "click." The socket may be removed by depressing the backplate spring release and lifting the socket upward, then outward.

A switch is mounted on the socket by first placing a Socket-to-Device Gasket (MCS-G) in a matching socket depression and then attaching the relay to the socket with four #6 x 1/2" Plastite Screws (MCS-SCREW). The screws are double-helix threaded for quick installation and removal.

Dial Installation: With knob removed and locknut run back for clearance, turn dial to fit over projections on front of switch body. Align and engage vertical notch in dial with tab behind top switch body projection. Tighten locknut against back of dial. Replace knob.

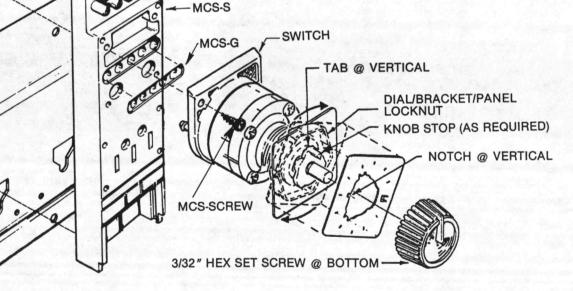
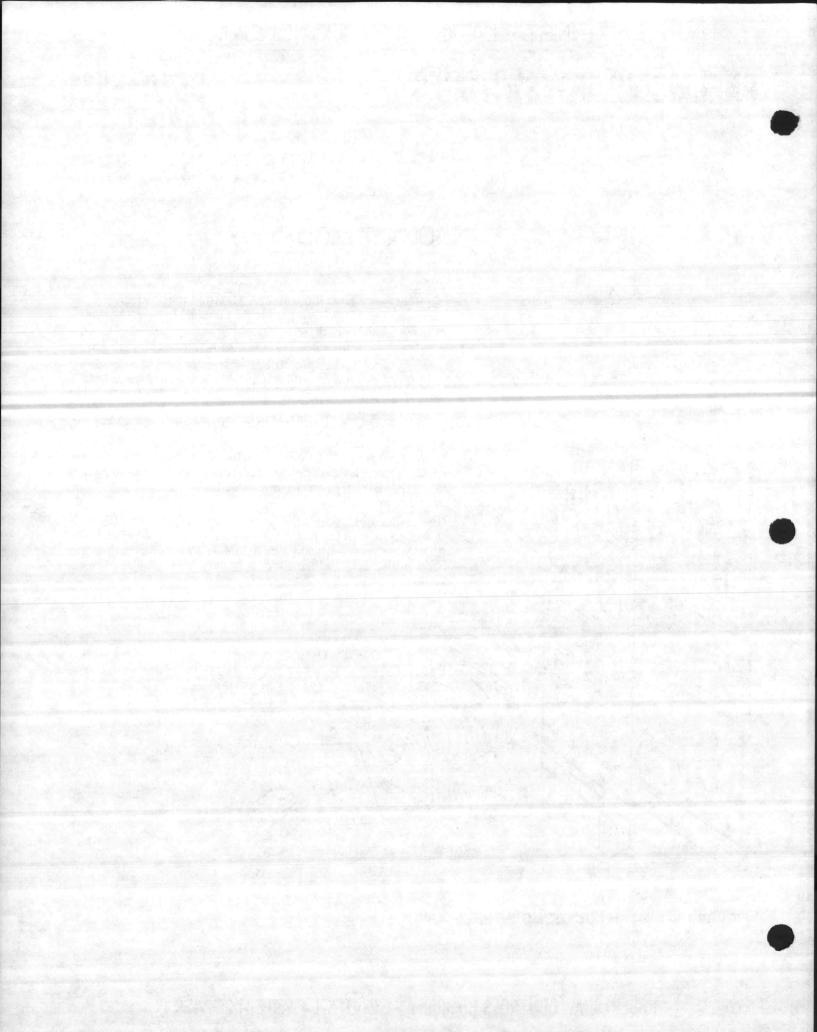
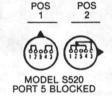
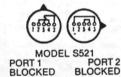
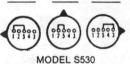



FIGURE 1 - SWITCH SOCKET MOUNTING DETAIL

MCS-BP


PNEUMODULAR® SELECTOR SWITCHES TWO-THREE-FOUR POSITION

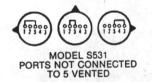

\$\$20 & \$521 \$530 & \$531 \$540 & \$541

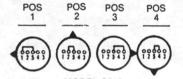

CALIBRATION

The Model S520, S530 and S540 series of selector switches is designed to allow manual selection or diversion of air signals in a wide variety of pneumatic control system applications. See Table I and Figure 1 for switch descriptions and port connections. These switches do not require calibration.

MODEL	SWITCH POSITIONS	NUMBER OF PORTS USED	ISOLATED PORTS Port 5 Blocked Blocked	
S520	2	4		
S521	2	5		
S530	3	4	Blocked	
S531	3	4	Exhausted	
S540	4	5	Blocked	
S541	4	5	Exhausted	

POS


2


POS

3

POS

MODEL S540 PORTS NOT CONNECTED TO 5 BLOCKED

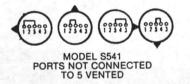


FIGURE 1 — SELECTOR SWITCH POSITIONS & PORT CONNECTIONS

ADJUSTMENT

These selector switches do not require adjustment. See Figure 2 for appearance. (NOTE: The S540 and S541 switches rotate through 360° without stops. Record indicator position before removing knob.)

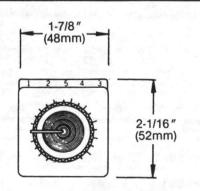
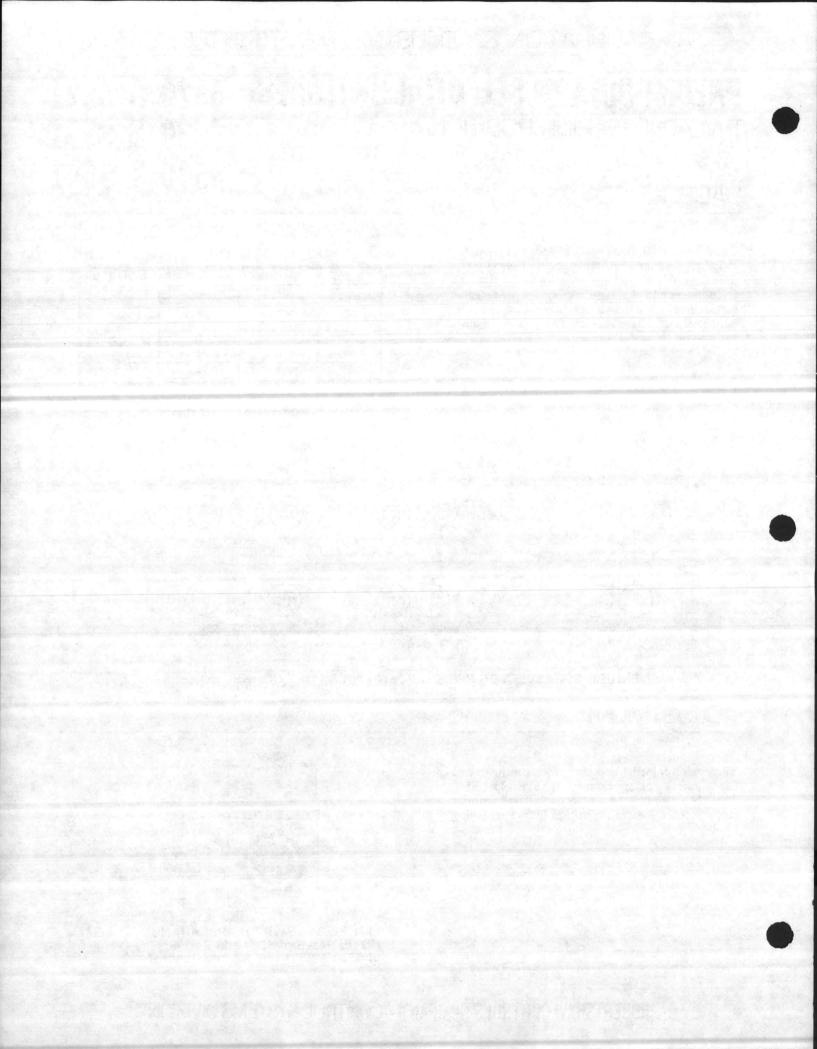
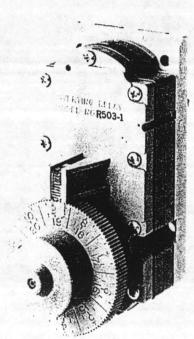



FIGURE 2 — SWITCH APPEARANCE (TYPICAL) NOTE: Port 5 of S520 and Port 4 of S530 & S531 are not functional



DIVERTING RELAY (ADJUSTABLE)

GENERAL DESCRIPTION

The R503 series Diverting Relays are snap-acting devices designed for a variety of switching and interlocking functions in pneumatic control systems where applications require one or more of the following functions: feeding and exhausting branch lines; diverting a supply line to either one of two branch lines; diverting either one of two supply lines to one branch line.

Its primary function is to convert a proportional pneumatic signal, at a predetermined setting, into a positive signal for a final control device.

Model R503-1 Shown

MODE

R503-1

R503-2

SPECIFICATIONS

MODELS: R503-1: 0.2 to 0.4 psi (.01 to .03 bar) differential. R503-2: 2 to 4 psi (.14 to .28 bar) differential.

- ACTION (both models): Signal above set point: NC and C are connected. Signal below set point: NO and C are connected. Differential to reset is subtracted from set point.
- ADJUSTMENT: Adjustment knob operates over two revolutions. A moving pointer slide is provided to indicate both inner and outer scales.
- MAIN AIR PRESSURE: 15 to 25 psig (1.03 to 1.7 bar) operating. 30 psi (2.1 bar) maximum
- ACTIVE CONNECTIONS: Main (M), Signal (S), Common (C), Normally Closed (NC), Normally Open (NO), barbed nipples for ¼" (6.4 mm) O. D. Polyethylene tubing.

MAXIMUM AMBIENT TEMPERATURE: 140°F (60°C) FINISH: Glass-filled Nylon. AIR CONSUMPTION: 1 SCFH (28.8 CIM) AIR CAPACITY: 8 SCFH MOUNTING: Designed for mounting on MCS-S manifold

socket. For non-manifold mounting, use mounting kit K503.

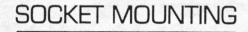
ORDERING INFORMATION: Specify: Model Number

ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted at bottom of this page.

GENERAL INSTRUCTIONS

1. To be used with clean, dry control air only. DO NOT USE ANY OTHER MEDIUM.

2. This relay will operate properly when mounted in any position.


ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. O. BOX 27606 - RICHMOND, VIRGINIA 23261

INSTALLATION INSTRUCTIONS

PNEUMODULAR® RELAYS

R503 R504

The assembly of Pneumodular components on a panel mounted manifold backplate is illustrated. A Manifold Backplate (MCS-BP) is shown. The MCS-BP is mounted to a panel (cabinet) backplate with 1/4" Mounting Screws (MCS-MS).

A Socket and Plug Assembly (MCS-S) is mounted on the BP by engaging three socket projections with three backplate openings and pulling downward until a pin on the socket engages a hole in the spring release tab of the backplate with an audible "click." The socket may be removed by depressing the backplate spring release and lifting the socket upward, then outward.

A relay is mounted on the socket by first placing a **Socket-to-Device Gasket** (MCS-G) in a matching socket depression and then attaching the relay to the socket with four #6 x 1/2" Plastite Screws (MCS-SCREW). The screws are double-helix threaded for quick installation and removal.

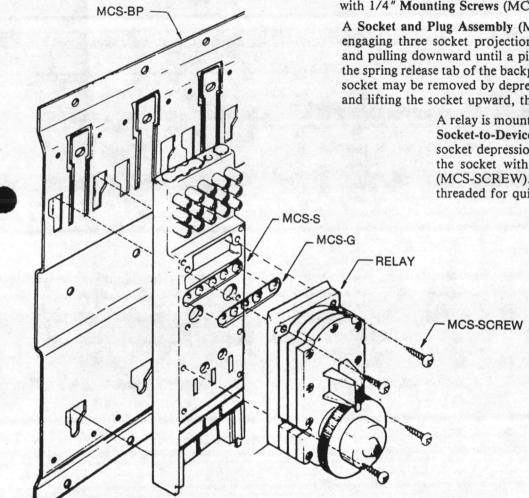
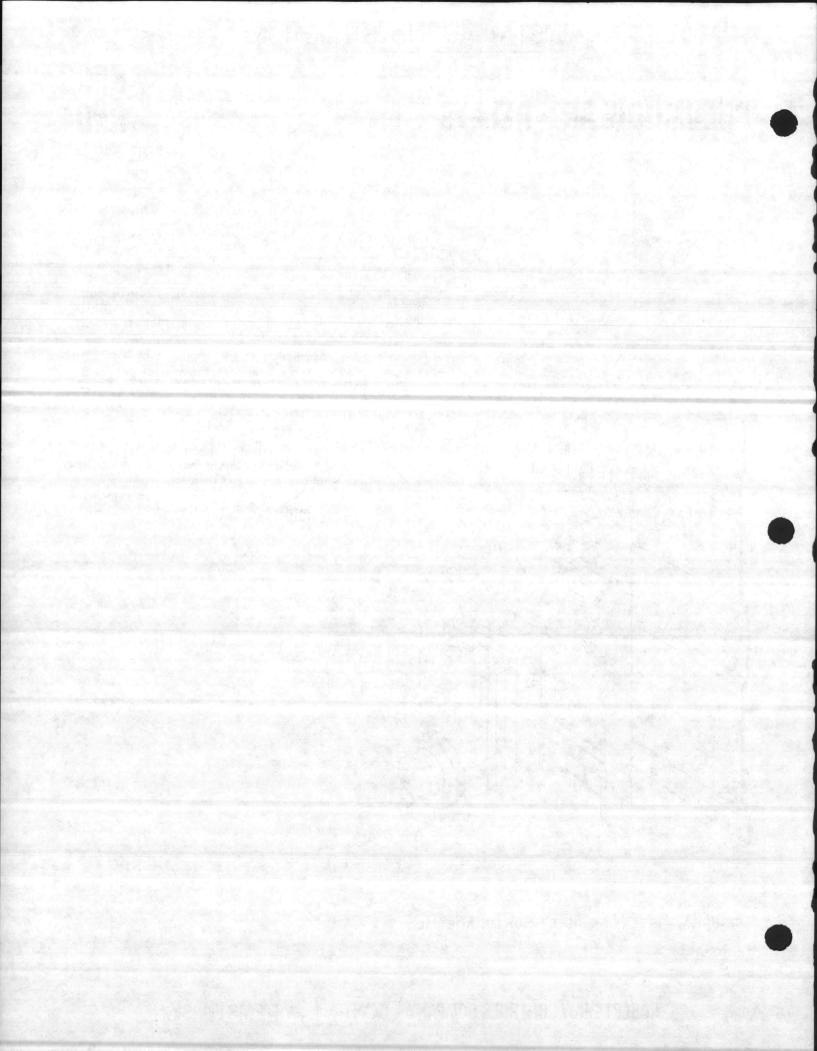



FIGURE 1 - RELAY SOCKET MOUNTING DETAIL

106

CALIBRATION & ADJUSTMENT INSTRUCTIONS

PNEUMODULAR® DIVERTING RELAYS ADJUSTABLE SET POINT

R503-1 R503-2

CALIBRATION

The Model R503-1 and R503-2 diverting relays are snap-acting devices designed to convert a proportional pneumatic signal, at a predetermined setting, to a positive (two-position) pneumatic switching action. These relays are pilot-operated and require a main air connection to port "M" of 15 to 25 psig (103 to 172 kPa). See Table I for model number descriptions.

The R503-1 and R503-2 relays should not require field calibration; however, if a relay does not transfer port "NC" to port "C" at its dial setting, the relay can be recalibrated by turning the "zero adjust" screw with a 5/64" hex wrench (clockwise to increase).

	TABL	E I I I I I I I I I I I I I I I I I I I
MODEL	R503-1	R503-2
ТҮРЕ	SPDT	SPDT
DIFFERENTIAL	0.2 to 0.4 psi (1.4 to 2.8 kPa)	2 to 4 psi (14 to 28 kPa)
SET POINT RANGE	3* to 20 psig (21 to 138 kPa)	4.5* to 20 psig (31 to 138 kPa)
SWITCHING	Port S at set point minus diff.: ports NO & C are connected.	Port S at set point minus diff.: ports NO & C are connected.
ACTION	Port S at set point: ports NC & C are connected.	Port S at set point: ports NC & C are connected.

ADLEI	ABLEI	
-------	-------	--

* DO NOT SET below this value.

NOTE: Ports not connected to common (C) are blocked. On a loss of main air pressure, ports NO & C will be connected regardless of signal pressure at port S.

ADJUSTMENT

The relay set point is changed by rotating the serrated set point adjustment knob (see Figure 1). The knob operates through two revolutions and the set point indicator shifts to indicate the effective portion of the concentric scales.

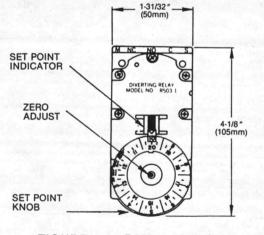
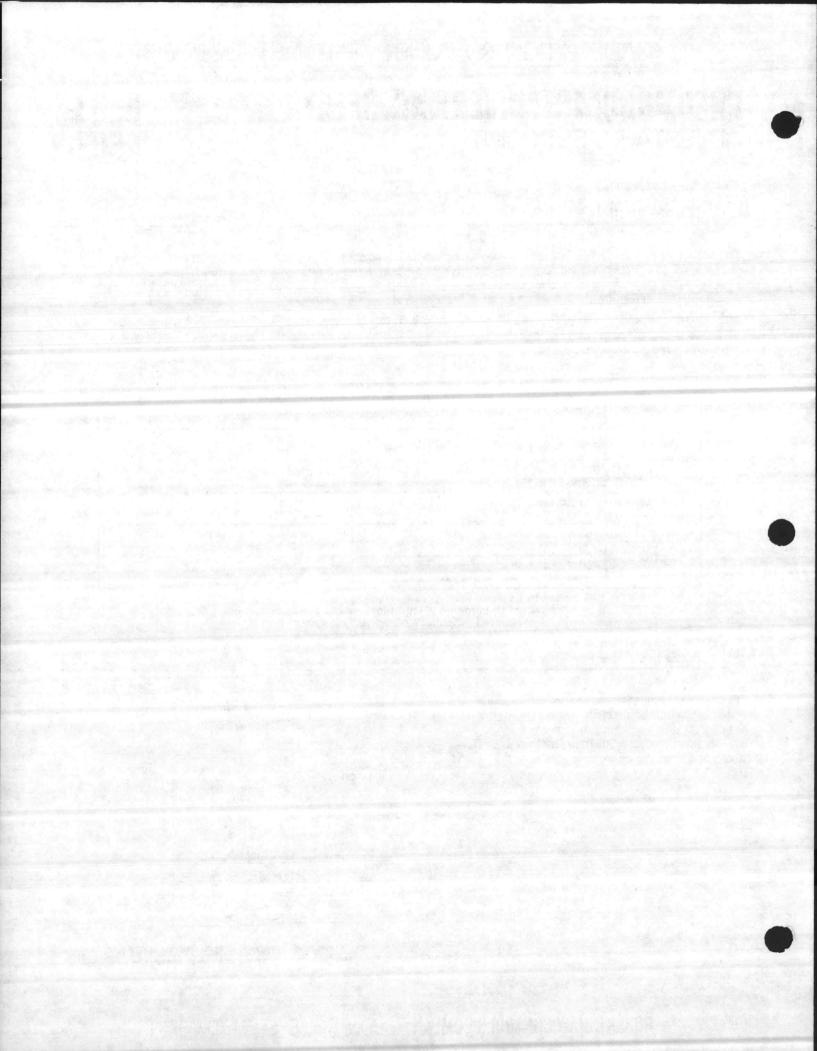
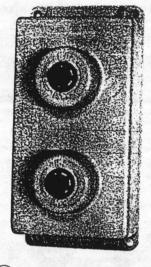



FIGURE 1 - R503-1 AND R503-2 RELAY APPEARANCE (TYPICAL)

ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION

Robertshaw &


PRESSURE ELECTRIC SWITCH

GENERAL DESCRIPTION

The Model R571 Pressure Electric Switches are used in pneumatic control systems where the conversion of gradual air pressure changes to positive electrical switching action is required. Typical applications are: Starting/stopping unit ventilator and fan coil motors, unit heaters and air handling unit fans.

The R571 incorporates a non-metallic diaphragm, which is displaced by air pressure changes, that actuates an electrical contact mechanism

2.1.13 28269

MODE

R571

(UI) UNDERWRITER'S LABORATORIES LISTED

SPECIFICATIONS

MODELS: R571-1; 2 psi (.1 bar) fixed differential. R571-2; 2-20 psi (.1 to 1.4 bar) adjustable differential. SWITCH ACTION: Single pole double throw

SET POINT RANGE: 3-25 psig (.21-1.7 bar)

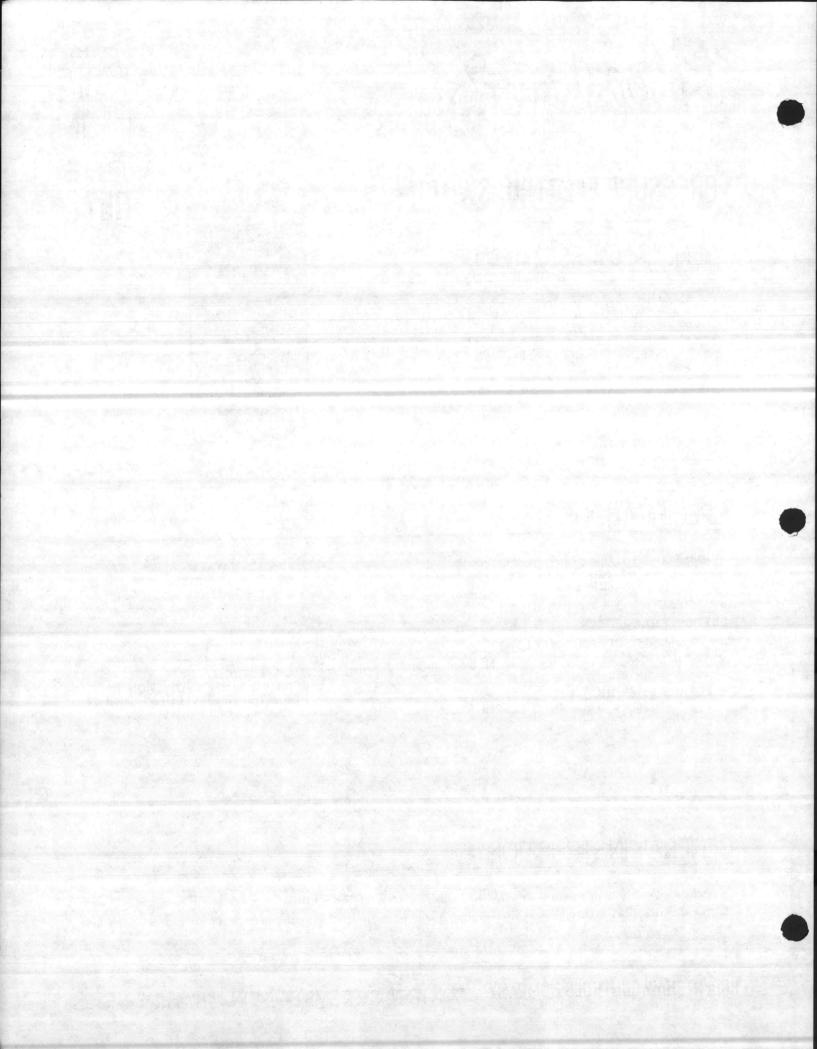
MAXIMUM PRESSURE: 30 psig (2.1 bar)

MOUNTING: Designed for mounting on MCS-S manifold socket only.

ELECTRICAL RATING:

10 amps non-inductive @ 125-250 VAC

1/2 HP @ 125 VAC (8 amps full load; 48 amps locked rotor) 34 HP @ 250 VAC (6 amps full load, 36 amps locked rotor)


ORDERING INFORMATION: Specify Model Number ORDER FROM: Local Office of CONTROL SYSTEMS DIVISION ROBERTSHAW CONTROLS COMPANY or office noted at bottom of this page

GENERAL INSTRUCTIONS

1. To be used on clean, dry control air only. DO NOT USE ANY OTHER MEDIUM.

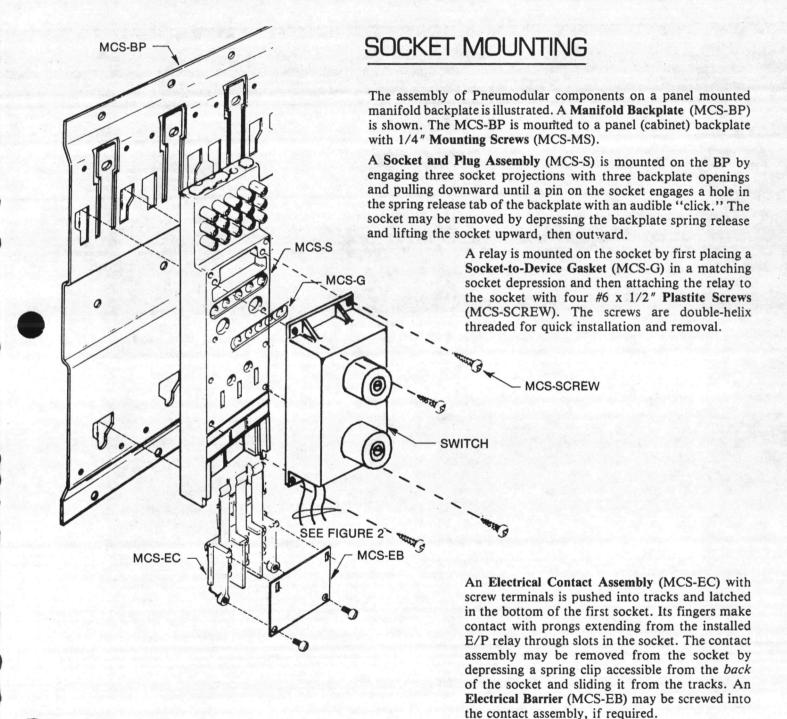
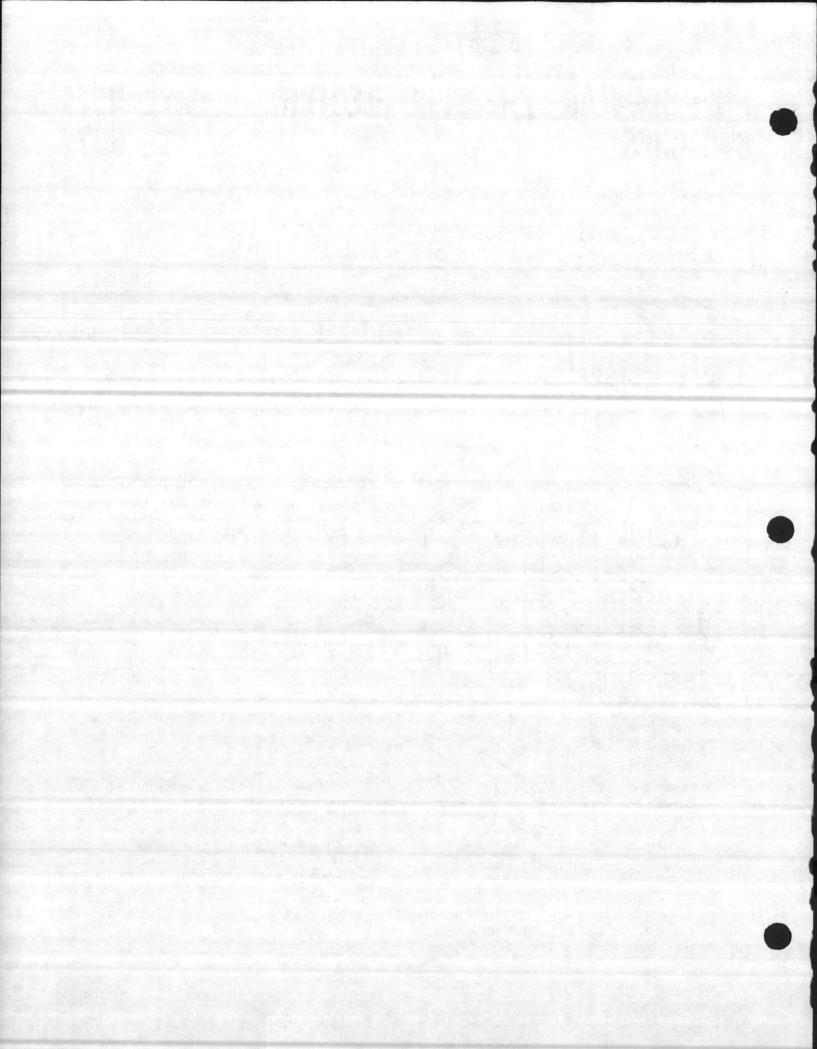
2. Any electrical loads exceeding the switch's rating should be controlled by intermediate relays, contactors, or motor starters.

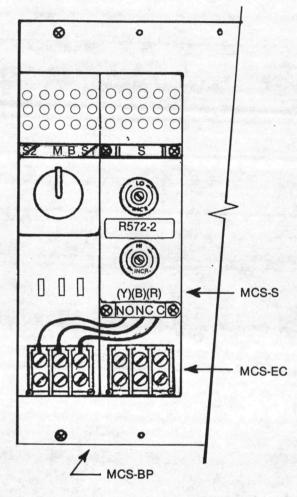
ROBERTSHAW CONTROLS COMPANY - CONTROL SYSTEMS DIVISION 1800 GLENSIDE DRIVE P. D. BOX 27606 - RICHMOND, VIRGINIA 23261

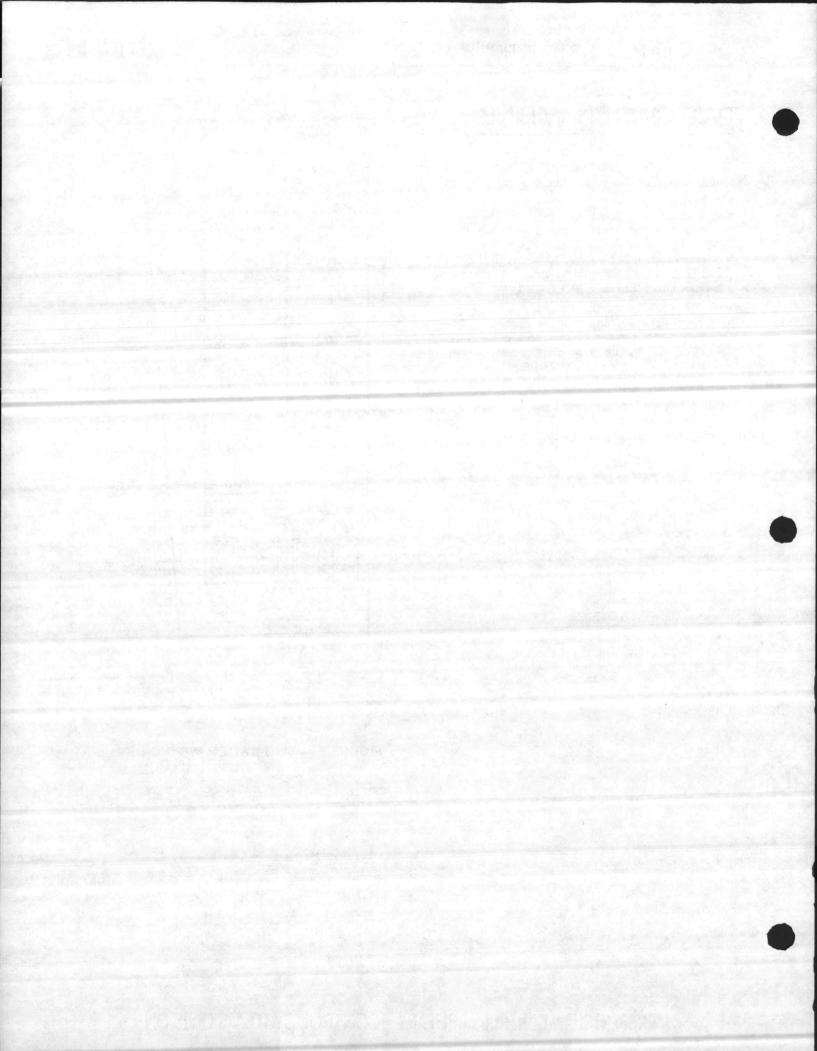
INSTALLATION INSTRUCTIONS

PNEUMODULAR® PRESSURE ELECTRIC SWITCHES

R571 R572


FIGURE 1 - SWITCH SOCKET MOUNTING DETAIL


TWO-SWITCH WIRING

The second switch of two-switch (DPDT) pressure electric switches is provided with three 6-inch (152mm), colorcoded wires. These wires may be connected in one of the following ways:

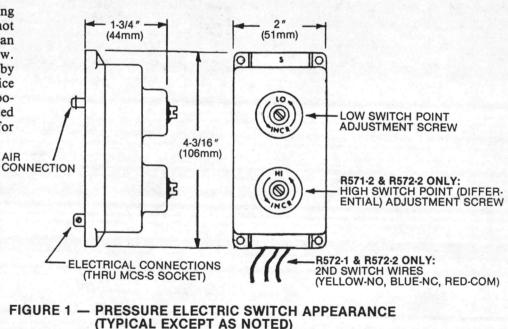
- a. If a non-electric device is socket-mounted adjacent to the two-switch device, an additional MCS-EC contact assembly can be added for the wires as shown in Figure 2; however, the MCS-EC contact blades should be cut off to prevent electric shock through the exposed slots of the socket on which it is mounted.
- b. If electrical troughing such as Panduit is required to be installed below the sockets, wire nut connections can be made inside the trough in lieu of using the extra MCS-EC.
- c. Extra electrical terminals can be added below the two-switch device socket.
- d. Wire nut connections can be made directly to other panel devices or to the panel terminal strip.

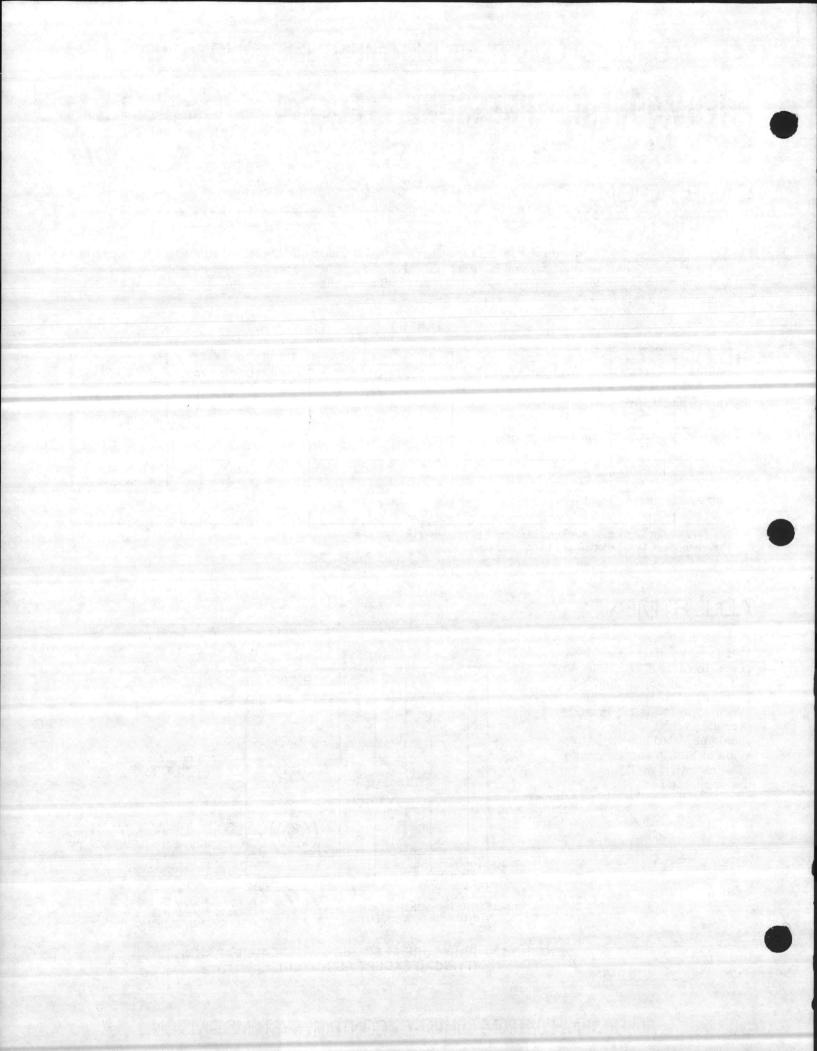
FIGURE 2 — TWO-SWITCH WIRING DETAIL

PNEUMODULAR® PRESSURE ELECTRIC SWITCHES

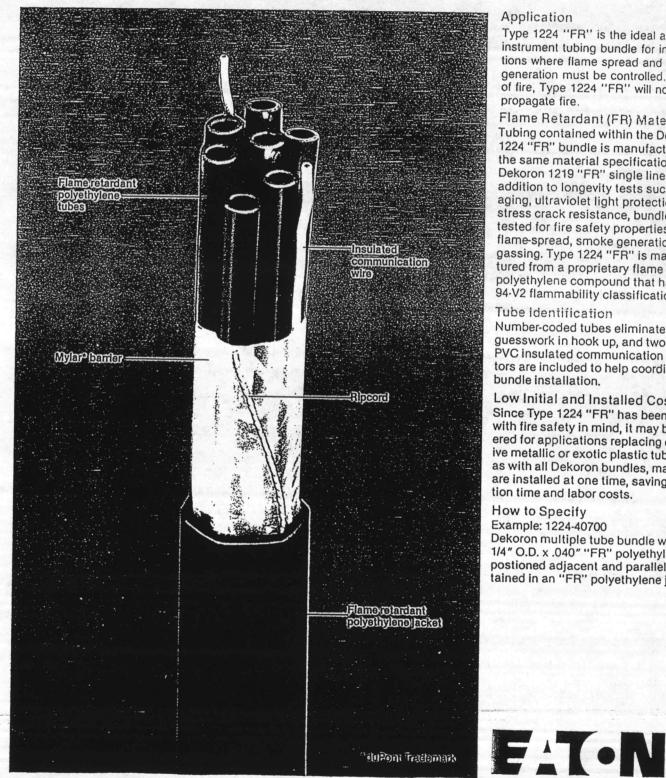
CALIBRATION

The Model R571 and R572 series pressure electric switches are used in pneumatic control systems where an application requires the conversion of air pressure changes, either gradual or two-position, to positive electrical switching action. See Table I for model number descriptions and factory-calibrated switching ranges. Note that the calibrated low switch point for all models is 5 psig (34 kPa).


MODEL TYPE	The second second second second	SWITCHI	FLOTORY		
	DIFFERENTIAL	BELOW LOW SET POINT ("NORMAL")	ABOVE LOW SET POINT PLUS DIFFERENTIAL	FACTORY CALIBRATION	
R571-1	SPDT	Fixed, 2 psi (14 kPa)	NC to C	NO to C	5 to 7 psig (34 to 48 kPa)
R571-2	SPDT	Adjustable, 2 to 20 psi (14 to 138 kPa)	NC to C	NO to C	5 to 10 psig (34 to 69 kPa)
R572-1	DPDT	Fixed, 3 psi (21 kPa)	NC to C, B to R	NO to C, Y to R	5 to 8 psig (34 to 55 kPa)
R572-2	DPDT	Adjustable, 3 to 20 psi (21 to 138 kPa)	NC to C, B to R	NO to C, Y to R	5 to 10 psig (34 to 69 kPa)


TABLE I

The set point of all models is adjustable from 3 to 25 psig (21 to 172 kPa). *The switches of DPDT models are transferred simultaneously.


ADJUSTMENT

If a factory-calibrated switching range listed in Table I is not suitable for an application, it can be changed as described below. When adjustments are made by pressure readings the device should be placed in a vertical position as though socket-mounted in a cabinet. See Figure 1 for device appearance.

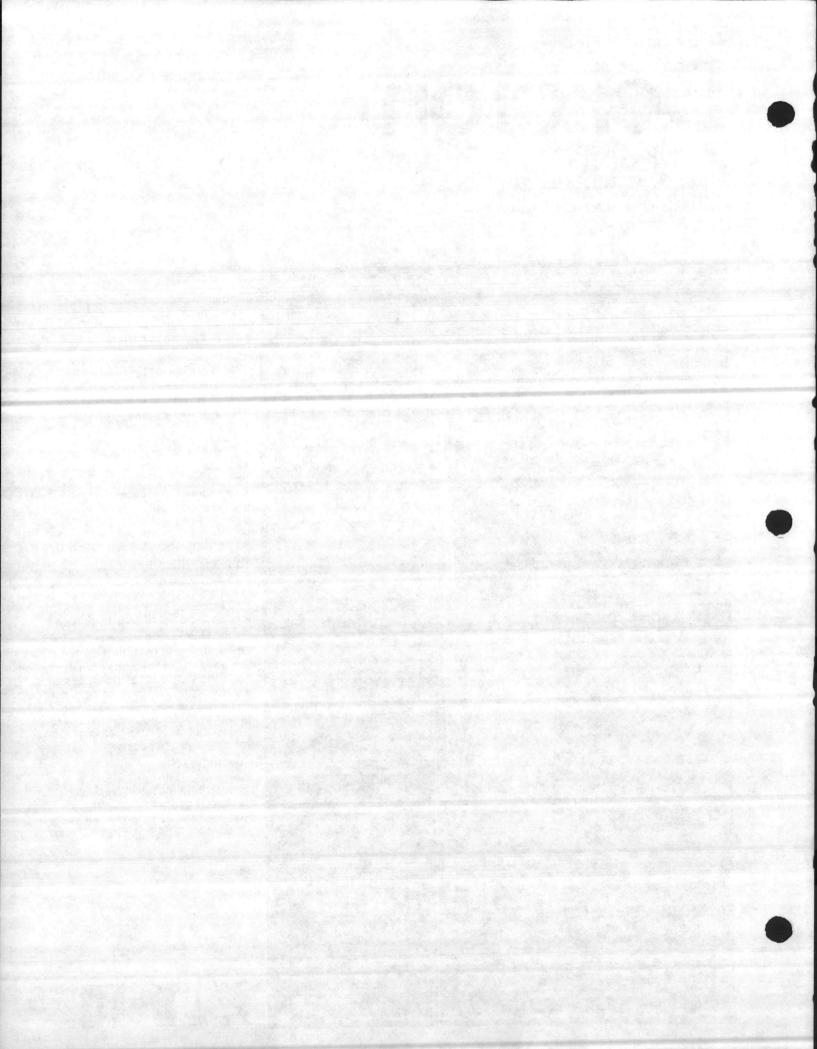
Dekoron® Type 1224 "FR" Flame Retardant Poly-Cor Multiple Tube Bundle

Application

2.2.2.

Type 1224 "FR" is the ideal all plastic instrument tubing bundle for installations where flame spread and smoke generation must be controlled. In case of fire, Type 1224 "FR" will not propagate fire.

Flame Retardant (FR) Materials Tubing contained within the Dekoron 1224 "FR" bundle is manufactured to the same material specifications as Dekoron 1219 "FR" single line tubing. In addition to longevity tests such as heat aging, ultraviolet light protection and stress crack resistance, bundles are tested for fire safety properties such as flame-spread, smoke generation and offgassing. Type 1224 "FR" is manufactured from a proprietary flame retardant polyethylene compound that has a UL 94-V2 flammability classification.


Tube Identification

Number-coded tubes eliminate costly guesswork in hook up, and two 22 Ga. PVC insulated communication conductors are included to help coordinate bundle installation.

Low Initial and Installed Cost Since Type 1224 "FR" has been designed with fire safety in mind, it may be considered for applications replacing expensive metallic or exotic plastic tubing. And, as with all Dekoron bundles, many tubes are installed at one time, saving installation time and labor costs.

How to Specify

Example: 1224-40700 Dekoron multiple tube bundle with (7) 1/4" O.D. x .040" "FR" polyethylene tubes, postioned adjacent and parallel, contained in an "FR" polyethylene jacket.

"FR" Tubing (Flame Retardant)

Ui) CLASSIFIED FOR FLAME AND SMOKE ONLY - NFPA 90A - 1985

Developed specifically for controlling flame spread and smoke generation. Dekoron 1219 FR (flame retardant) Tubing can be installed in accordance with NFPA, Standard 90A "Installation of Air Conditioning and Ventilation Systems 1985."

Dekoron 1219 FR Tubing is made of an exclusive "linear" low-density polyethylene based formulation that is UL recognized. It combines the physical characteristics and long-term stability of low density polyethylene with flame retardant properties. Look for UL Classification marking on product.

Advantages

Dekoron 1219 FR Tubing prevents fire propagation, as it rapidly extinguishes after being removed from an open flame. "FR"Tubing is very similar to Dekoron "P" Tubing for flexibility, lightweight, abrasion resistance, high tensile strength and rugged environmental performance. To guarantee stress crack resistance, both the standard ASTM D 1693 test for stress cracking of base materials and a modified test on finished tubing are performed.

Easy to Install

Installation is simple and quick. Being flexible and lightweight, Dekoron 1219 FR Tubing can be installed by hand.

How to Specify

Example: 1219-440B3 Dekoron 1219 FR tubing with red stripe, 1/4" O.D. x .040" wall, 250 ft. lengths.

Availability

Four standard sizes in coils. Black or seven standard color stripes and shipped in convenient master pack quantities. 5/32" O.D. tubing supplied in black only.

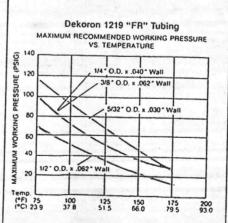
Standard Lengths

5/32"- 500-foot lengths 1/4" - 250-, 500-, and 1,000-foot lengths 3/8" - 250- and 500-foot lengths 1/2" - 250-foot lengths

Note

Authorities having jurisdiction should be consulted before installation.

Specifications

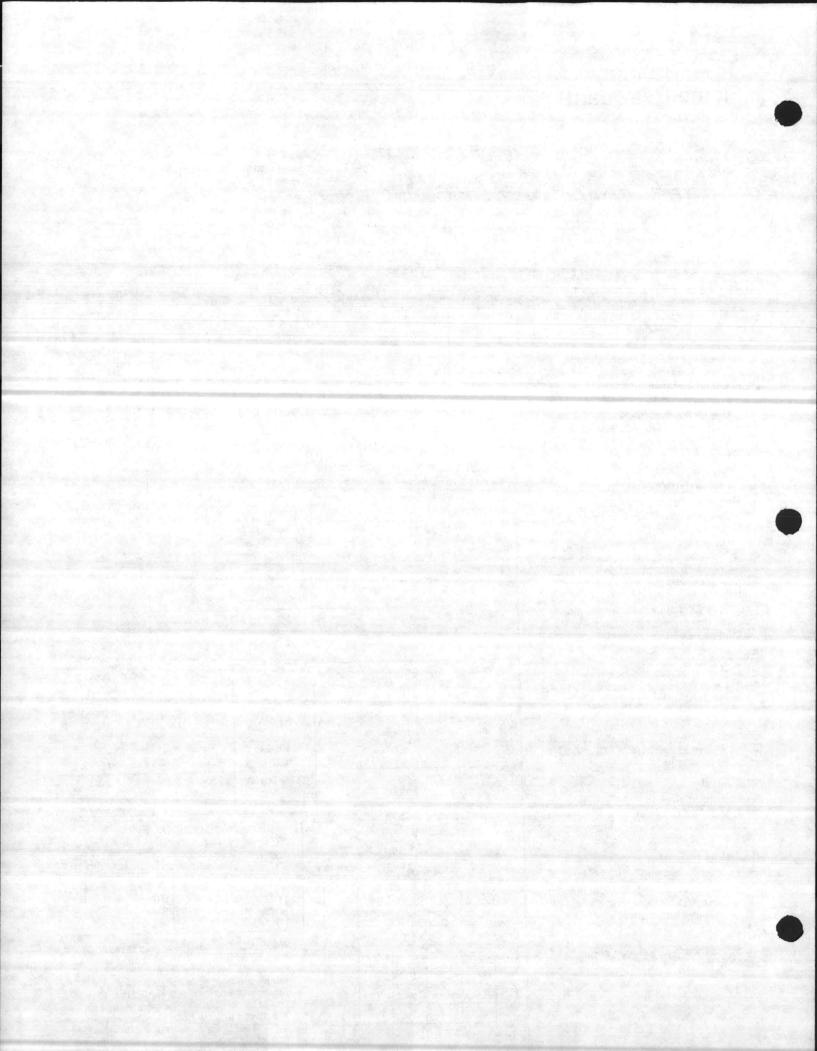

The proper letter from the color chart below should be substituted for the "X" in the part number to indicate the color stripe desired. If no color letter is indicated, black w be supplied

O.D.	I.D. Inches	WALL	NET WT	UNIT LENGTH	PART 2
5/32	.096	.030	0.57	500	1219-13004*
a serence	1.196	Children (en an Britan Seigers	250	1219-440X3
1/4 .	.170	.040	1.26	500	1219-440X4
		1997 - 1997 -		1,000	1219-440X5
3/8	.250	.062	2.90	250	1219-662X3
				500	1219-662X4
1/2	.375	.062	4.06	250	1219-862X3

2.2.2

Physical Properties of "FR" Tubing

A STATE PROPERTY TEST TYPICAL UNITS METHOD 5517.85 VALUE 4532 1.7.7 Melt Index (max.) ASTM D 1238 dg/min. 1.0 Density, 23°C **ASTM D 792** g/c.c. 1.10 Tensile Strength ASTM D 638 PSI 1900 Elongation (pull at 20" min.) ASTM D 638 % 400 Flexural Modulus of Elasticity ASTM D 790 PSI 33,000 Environmental Stress Crack Resistance ASTM D 1693 % failures 0 See Note at 48 hrs. Tube Strength (max.) pounds 5/32" tube = 141/4" tube = 303/8" tube = 671/2" tube = 95Minimum Bend Radius inches 5/32" tube = 1/2 1/4" tube = 3/43/8" tube = 1-1/2 1/2" tube = 1-7/8 Water Absorption ASTM D 570 % .08 Maximum Service Temperature - Black °F 175 Flammability **UL 94** V-2 UL 910 Classified/NFPA 90A Polyethylene Classification **ASTM D 1248** Type I Class C Category 4

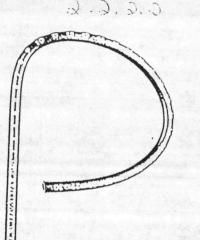


Color Designations For Striped "FR" Tubing

STRIPE	LETTER	STRIPE	LETTER
All Black	0	Yellow	D
White	Α	Green	E
Red	В	Blue	F
Orange	С	Violet	G

Black Oni.

Note: In addition to the standard stress crack test, a modified version of ASTM D 1693 to evaluate tubing quality is also performed. Sections of tubing are bent to induce severe stress in the tubing wall and then submerged in a 10% solution of Igepal (C0630). The samples and solution are placed in a controlled temperature environment at 50 °C. Samples must exhibit no cracking or crazing throughout the duration of the test to be consi prod satisfactory for a


Parflex Tubing, Plastic Fittings And Accessories

Bulletin 4460-= EB-

Effective: 107 E3

Parflex Engineering **Bulletin**

Parker

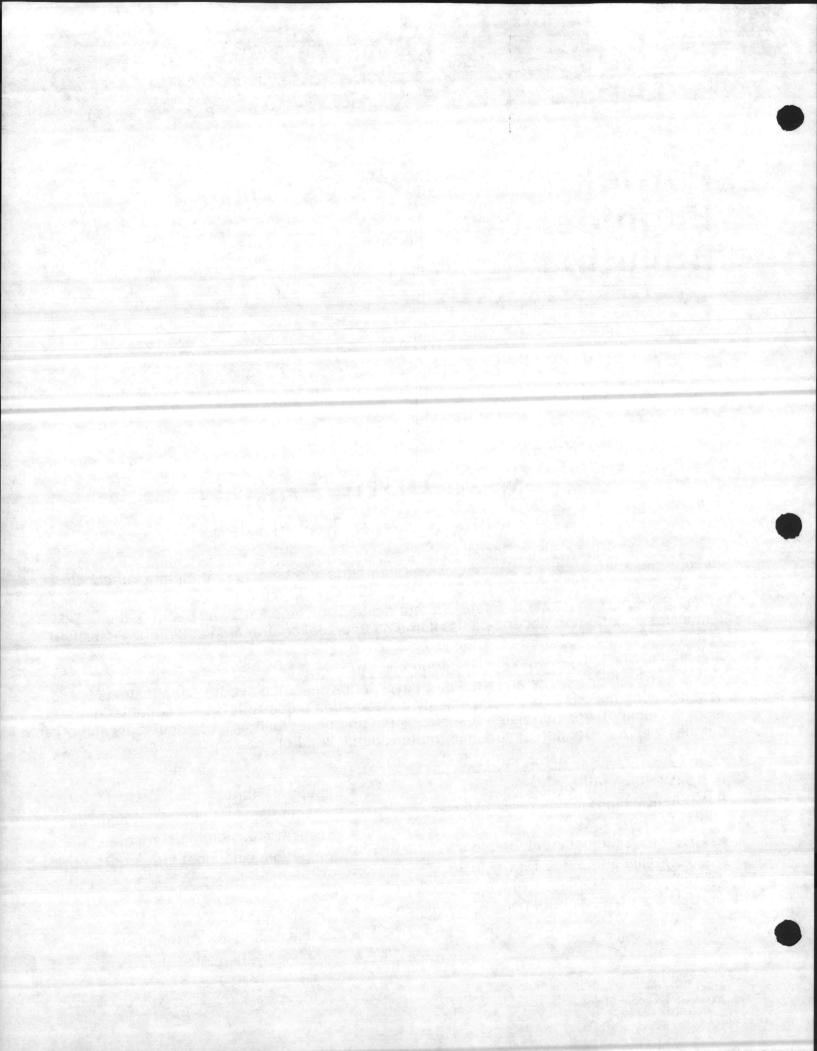
New FRPE Tubing Flame Resistant Polyethylene

Parker Parflex FRPE (Flame Resistant Polyethylene) tubing is specifically designed and manuactured to meet the stringent flame resistant standards in the heating-ventilating-air conditioning-

Series FRPE tubing is manufactured from a distinctive compound which meets the UL94V-2 flame classification. It also meets the flame spread, fuel contribution and smoke density requirements of the ASTM E84-81a tunnel test.

Supplied in black. Number-coded 1 through 30.

Parflex FRPE tubing is the preferred product type for pneumatic control applications in the heating-ventilating-air conditioning-energy conservation industry. It is also suitable for use in petrochemical plants, petroleum refineries, pulp and paper mills, mines, steel mills and other industries where protection against intermittent flame and hot sparks is necessary.


Features

- UL94V-2 Recognition
- Distinctive, high quality polyethylene formulation
- Closely-held dimensional tolerances
- Sequentially numbered from 1 to 30
- Minimum environmental stress crack resistance of 1600 hours per ASTM D-1693

Benefits

- Flame resistant
- Protected against ultraviolet degradation
- Excellent abrasion resistance
- Compatible with most industrial environments
- Durable
- Tube identification
- Flexible, light, easy to handle
- Complete system integrity

Parker Hannifin Corporation Parllex Division 1300 North Freedom Street Ravenna, Ohio 44266 216/296-2871

New Series FRPE Tubing

unstruction:	Specifically formulated polyethylene tubing designed and manufactured to close tolerances. Resistance to flame, abrasion and stress crack.
Applications:	Pneumatic control system

control systems.

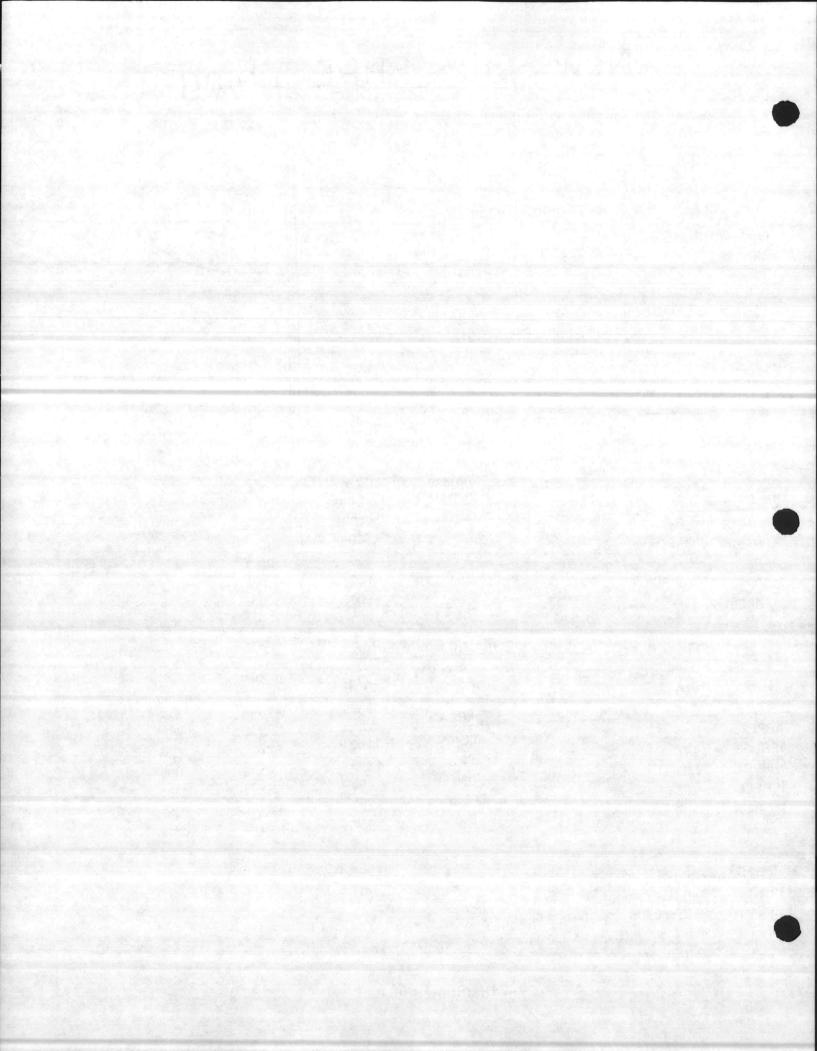
Temperature Range:

-85°F (-65°C) to +150°F (+66°C)

Fittings: Barbed fittings: Parker Dubl-Barb. Compression fittings: Parker NTA, Compress-Align or Poly-Tite. Parker Presto-Lok fittings.

Specifications:

1000		
NN CO	1	J
1		


2.2

				U.S. Designa	ations		
Part No.	O.D. ins	I.D. ins	Wall ins	Recommended Working Pressure psig	Burst Pressure psig	Minimum Bend Radius	Weight Ibs
RPE2.5	5/32	.096	.030	180		ins	Per 100 ft
1FRPE3	3/16	.1275	.030		900	1/2	.56
1FRPE4	1/4			130	650	3/4	.70
1FRPE6		.170	.040	130	650	3/4	
	3/8	.250	.062	180	.900		1.2
1FRPE8	1/2	.375	.062	130		1 1/2	2.9
				100	650	1 3/4	4.0

Metric Equivalents

Part No.	O.D. mm	I.D. mm	Wall mm	Recommended Working Pressure kPa	Burst Pressure kPa	Minimum Bend Radius mm	Weight Kg
1FRPE2.5	3.96	2.44	.76	1,240			Per m
1FRPE3	. 4.77	3.25	.76		6,200	1.27	.0083
1FRPE4	6.35	4.32		890	4,480	1.91	.0185
1FRPE6	9.53		1.02	890	4,480	1.91	
		6.35	1.58	1,240	6,200	Charles and the states of	.0431
1FRPE8	12.70	9.53	1.58	890		3.81	.0602
				000	4,480	4.45	.0104

Standard C	Coils
1FRPE2.5	500 ft (152.4 m)
1FRPE3	500 ft (152.4 m)
1FRPE4 >E6 1FRPE8	250 ft, 500 ft & 1.000 ft (76.2 m, 152.4 m & 304.8 m) 250 ft & 500 ft (76.2 m & 152.4 m) 250 ft (76.2 m)

Parker Multitube® FRPT Multiple Polyethylene

COMMUNICATION WIRES

Instrument and Control Tubing

Bulletin 4200 FRPT October 3, 1983

POLYESTER SEPARATOR TAPE

10

FR POLYETHYLENE

PARKER MULTITUBE

3.3.2

Features

General - Parker Instrument & Control Tubing is designed for general use both indoors and outdoors. Instrument Tubing is used for the transmission of pneumatic signals whether they be to monitor or control a process. Each tube in every length of Parker Multitube is pressure tested prior to shipment to assure the instrument engineer a high quality, reliable, trouble free product.

Tubing Identification - Accomplished by printing each individual flame resistant polyethylene tube at two inch (2") intervals. Clear, readable numbers on each tube eliminates confusion, guesswork and costly delays caused by trial and error air testing to locate lube ends.

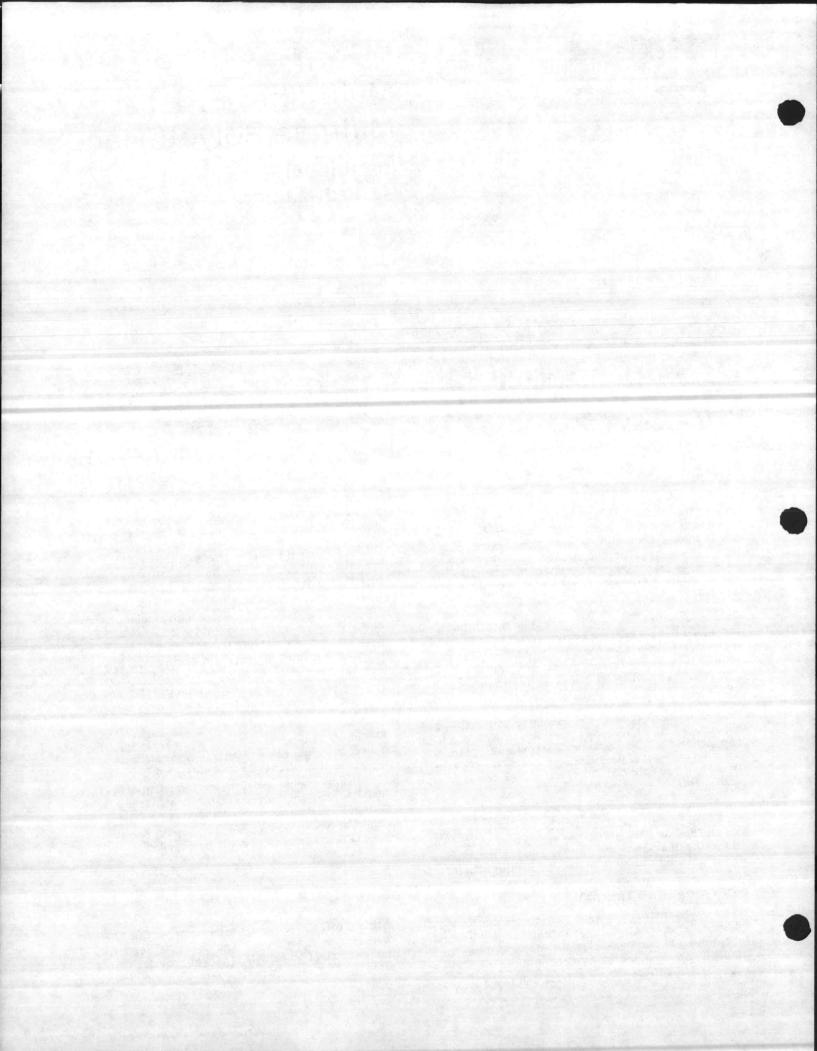
Communications Wire - Two insulated 22 AWG wires are included in all Multitube assemblies to allow electrical connection of communications equipment (e.g. sound powered phones) at the hook-up points. This provides an aid to the installer while connecting and calibrating

Sequential Footage Marking - Sequential footage marks are printed every two feet on the surface of the jacket. The numbers start at the inside end on the reel so that the number on the outside end is a measurement of the footage remaining on the reel. Sequential footage

Specification Summary

A pneumatic instrument tubing assembly consisting of multiple flame resistant polyethylene tubes with each tube printed at two inch (2") intervals. The tubes are run with two insulated 22 AWG communication wires See Reverse Side for Physical, Material, and Test Specifications NUMBER CODED TUBES

> marks are printed on all lengths over 500 feet that are cut and shipped from stock upon customers request.


Flame Resistant Polyethylene Instrument Tubing - is manufactured to close dimensional tolerances from high molecular weight polyethylene and has proved to be thoroughly satisfactory for relatively low pressure and vacuum installations where high ambient or occasional high temperatures are not encountered. It has excellent low temperature flexibility and outstanding resistance to environmental stress cracking. Flame Resistant Polyethlene tubing is inherently corrosion resistant to most chemicals. The tubing contains approximately 2.5% carbon black, thoroughly dispersed, and it recommended for outdoor exposure.

FR Polyethylene Jacket - Black, weather resistant, high molecular weight flame resistant polyethylene compound which meets the UL94V-2 flame classification.

FR Polyethylene has excellent low temperature flexibility. Also it is resistant to most chemicals and its low friction factor makes it easier to pull through conduit.

Other Jackets - Upon request, low density polyethylene. PVC, TPR and other jackets will be supplied.

with a protective polyester tape wrapped over this core assembly. An overall black, weather resistant, flame resistent polyethylene jacket provides corrosion protection (Other jackets can be supplied upon request).

Physical Specifications*

		24
		۰.
		-

Description	Catalog Number	Number of Tubes	Outer Jacket Thickness (Inches)	Overall O.D. (Inches)	Min. Bend Radius (Inches)	Maximúm: Pulling Tension (Lbs.)	Net WL. (Lb./100 IL.)	Standard Standard Length (Fi
FR Polyethylene Tubes X'' O.D. X 0.040'' Wall	2FRPT4 3FRPT4 4FRPT4 5FRPT4 7FRPT4 8FRPT4 10FRPT4 12FRPT4 13FRPT4 19FRPT4 37FRPT4	2 3 4 5 7 8 10 12 14 19 37	045 045 063 063 063 063 063 063 063 063 063 063	59 60 .74 .88 .89 .97 1.14 1.14 1.25 1.40 1.96	15 15 20 25 25 30 35 40 50 90	90 110 140 170 195 235 260 300 340 425 880	8.6 11.4 12.8 15.1 17.5 19.5 22.8 25.4 28.8 36.8	3000 3000 3000 3000 2500 2500 2000 1500 1500
FR Polyethylene Tubes %'' O.D. X 0.062'' Wall	2FRPT6 3FRPT6 4FRPT6 5FRPT6 7FRPT6 10FRPT6 12FRPT6 19FRPT6	2 3 4 5 7 10 12 19	C63 O63 C63 C63 .078 .094 .110 .110	.89 .89 1.05 1.16 1.31 1.72 1.80 2.13	2.0 2.5 3.0 4.0 5.0 6.0 10.0	160 195 265 295 365 515 685 900	74.5 13.9 17.9 21.1 24.6 29.7 44.2 60.8 85.5	1000 2000 2000 2000 2000 1500 1500 1000

· All values are nominal

† For longer length, please consult factory

¥ Values refer to straight pulls only (not including sidewall loads from pulling around bends).

Temperature and Pressure Recommendations - Type FRPT

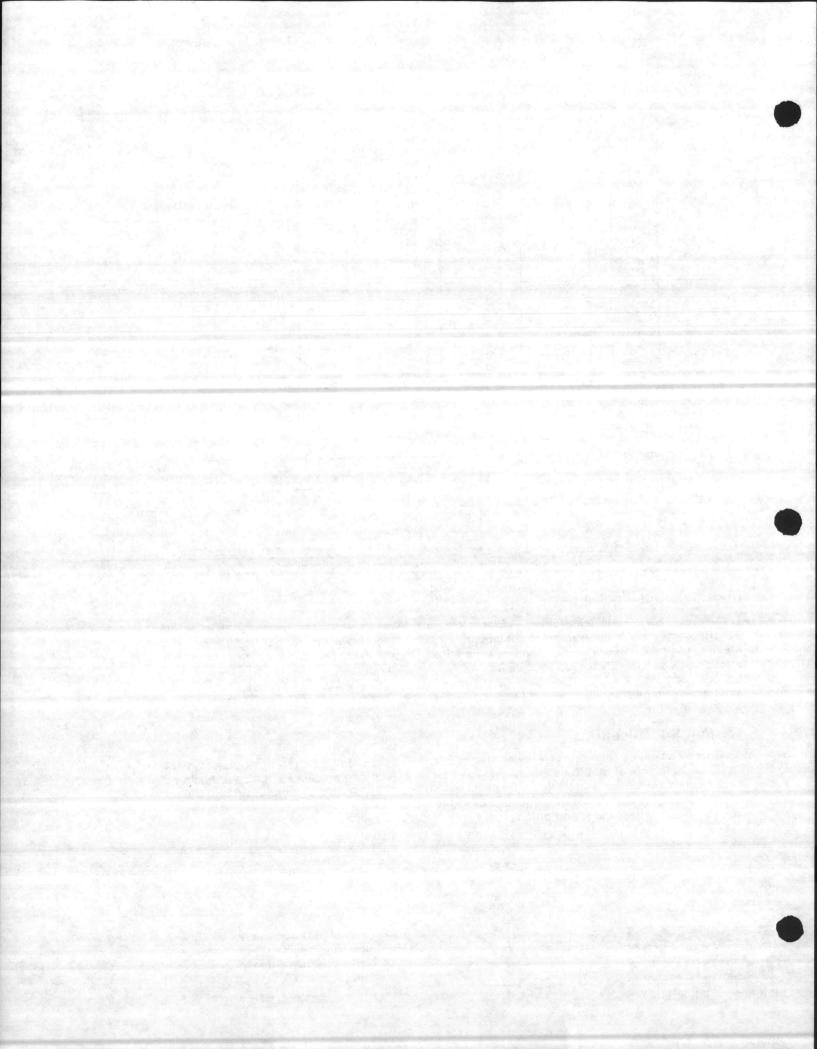
Tubing	Recommended Operating Temperature	Burst Pressure (PSI) at Temperature								
Size	Maximum	75°F	100°F	125°F	150°F	175°F				
12'' x .040'' 3₅'' x .062''	150°F 150°F	650 900	475 650	350 475	250 325	175 200				

Although flame resistant polyethylene tubing is satisfactory for short time temperature rises to 175°F at a maximum recommended operating pressure of 50 psi (3 to 1 design factor), the recommended maximum design temperature for continuous use is 150°F.

Material Specifications

Flame Resistant Polyethylene Tubing — Black, low density, flame resistant polyethylene compound meeting UL94 V-2 flame classification. Environmental stress crack resistance exceeds 2000 hours when tested in accordance with ASTMD-1693. Continuous service temperature range is -85 °F. (-65 °C.) to + 150 °F (66 °C.)

Testing Specifications


Testing — All flame resistant polyethylene tubes used in the manufacture of Multitube are subject to rigorous Q.A. inspection and testing prior to shipment. Each tube is pressure tested at not less than 150 psi for 15 minutes without any sign of leakage. FR Polyethylene Jacket — Black, weather resistant, high molecular weight flame resistant polyethylene compound which meets the UL94 V-2 flame classification.

When Multitube assemblies have completed the manufacturing process each tube is again tested with dry CO₂ at 125 psi for 15 minutes prior to shipment.

Bulletin 4200 FRPT

Parker Hannifin Corporation Multitube Operations 1300 North Freedom Street Ravenna, Ohio 44266 (216) 296-2871

DYNACON INC

Post Office Brix 29220, Richmond, Virginia (1219) 5801 Sc. Avenue, Richmond, Virginia 22125 19041 262 0326

BARE FITTINGS

70 5440 4000

PUBLICATION ND. 85-8F-1040 Issue Date: February 22, 1985 Supercedes: New

GEVERAL DESCRIPTION

Dynacon Barb Fittings are compact one-piece, 38455 Sush-on fittings for quick and economical connection of polyethylene tubing. Double barbs at each connection point assure positive seal when used with the proper size tube.

3.2 2.2

Each style fitting is supplied in individual boxes with the quantity of fittings per box as shown below.

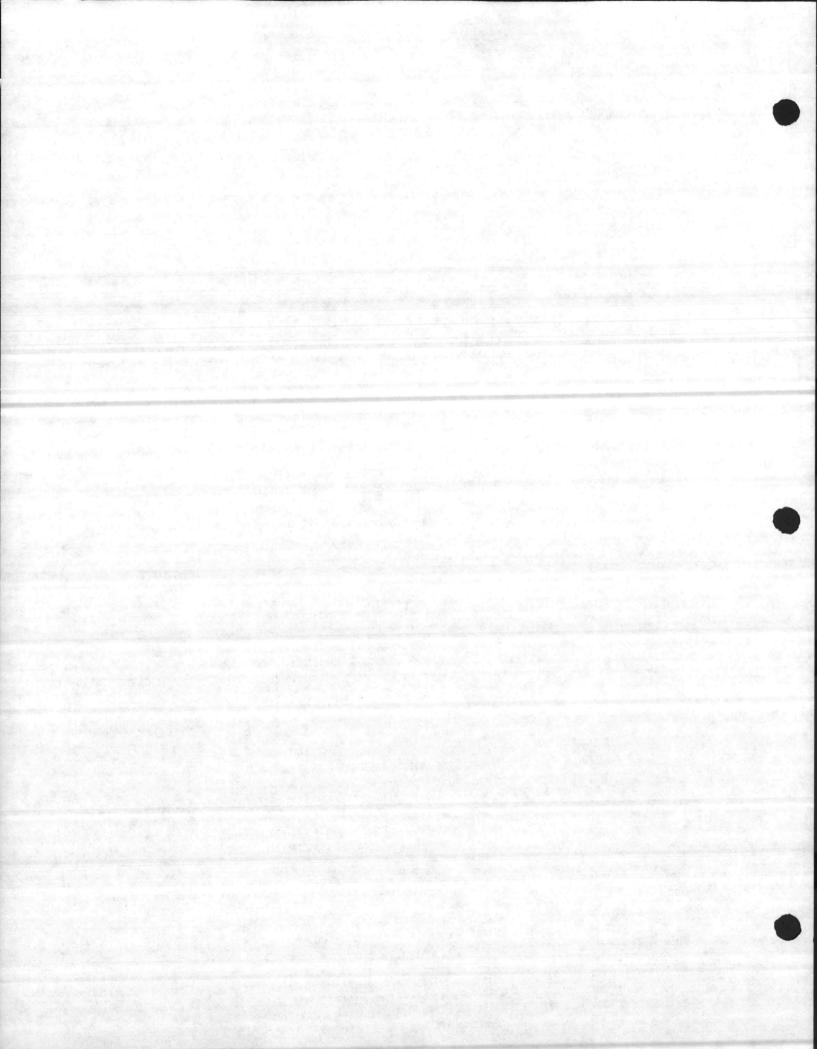
PRICING PER FITTING IS PROVIDED FOR REFERENCE ONLY. FILIINGS MUSI BE PURCHASED IN MULTIPLES OF BOX QUANTITIES SHOWN.

ORDERING PROCEDURE. To order 200 of Dynacon part 9C-44 (1 x 1 union) under Prepayment Terms,

UNION

Tube to Tube	DYNACON							30-DA1	S NET	PREPA	AYNENT	
	PART NO.	Tube Size (* OD)	Koneyxel l	- Equivali Johnson f	ent To - Robertshi	ak Poxers	BOX QTY	PER FIG.	FER BOX	PER FTG.	PER BOI	
	8C-44 8C-66 8C-88 8C-55	1/4 x 1/4 3/8 x 3/8 1/2 x 1/2 5/32 X 5/32	16088 1617B	F300-27 F300-36	K4-106 K4-107	141-201 141-216 141-218 141-247	50	.18	5.50 7.50 4.50 7.00	.10 .12 .17	5.00 6.00 4.25 5.50	

UNION REDUCER Tube to Tube


							20-DA	IS NET	PREP	AYKEKT	
	DYNACON			- Equivalent	In an						
	PART NO.	Tube Size (* OD)	Honeveell	Johnson Robe		BOX	PER	PER	PER	FER	
				Comson Roop	rtsnak Pok	ers ety	FTS.	BOX	FTG.	BOX	
III	BC-64	3/8 x 1/4	16108	E100 21							
	8C-86	1/2 x 3/8		F300-21 N4	-110 141-	217 50	.13	6.50	.12	6.00	
	BC-45	1/4 x 5/32		F300-19 N4	-111 141-;	219 25	.20	5.00	.18	4.50	
			10000	F300-30 N4-	-112 141-1	246 50	.22	11.00		9 00	

UNION TEE Tube to Tube to Tube

	DYNACON					30-DA	YS NET	PREPA	YKENT
	PART NO.	Tube Size (* OD)	Honeyxell Johnson	Robertshak Powers	BOX Diy	PER FT6.	PER BOX	PER FIG.	PER BOX
ш ш	BT-555 BT-444 BT-666 BT-888	5/32 x 5/32 x 5/32 1/4 x 1/4 x 1/4 3/8 x 3/8 x 3/8 1/2 x 1/2 x 1/2	16128 F700-7 16138 F700-7	3 N4-127 141-245 3 N4-127 141-203 5 N4-131 141-204 5 N4-134 141-221	100 100	.23	36.00 23.00 39.00 24.50	.32 .21 .36	32.00 21.00 38.00 23.00

REDUCER TEE Tube to Tube to Tube

					20-08	IS KET	PREPAY	INENT
	OYNACON PARI NO.	Tube Size (* OD)	Honeyxell Johnson Robertshaw Powers	BCX QTY	PER FIG.	PER BOX	PER FIG.	FER BOX
G.I. J.I.D .	- 81-445 81-664 81-884 81-886 81-886 81-665	1/4 x 1/4 x 5/32 3/8 x 3/8 x 1/4 1/2 x 1/2 x 1/4 1/2 x 1/2 x 3/8 3/8 + 3/6 x 5/32	16158 F700-74 84-130 141-214 16158 F700-57 84-132 141-223 16168 F700-67 84-132 141-223	100 100 50 50 100	. 45 . 52 . 55	44.00 46.00 25.00 27.50 48.60	.40 .42 .50 .52 .52 .46	40.00 42.00 25.00 25.00

Physical Specifications*

Description	Catalog Number	Number of Tubes	Outer Jacket Thickness (Inches)	Overali O.D. (Inches)	Min. Bend Radius (Inches)	Maximum: Pulling Tension (Lbs.)	Net Wt. (Lb./1001L.)	Standard Standard Length (F
FR Polyethylene Tubes %'' O.D. X 0.040'' Wall	7FRPT4 8FRPT4 10FRPT4 12FRPT4 14FRPT4 19FRPT4	3FRPT4 3 0:45 4 4FRPT4 4 063 5 5FRPT4 5 063 6 7FRPT4 7 063 6 8FRPT4 8 063 063 0FRPT4 10 063 2 2FRPT4 12 063 4 4FRPT4 14 063 6		59 60 74 88 89 .97 1.14 1.14 1.25 1.40 1.96	1 5 1.5 2.0 2 5 2.5 3.0 3.5 4.0 5.0 9.0	90 110 140 195 235 260 300 340 425 880	8 6 11 4 12 8 15 1 17 5 19 5 22 8 25 4 28 8 36 8 74 5	3000 3000 3000 3000 2500 2500 2500 2000 1500 1500 1000
FR Polyethylene Tubes %'' O.D. X 0.062'' Wall	2FRPT6 3FRPT6 4FRPT6 5FRPT6 7FRPT6 10FRPT6 12FRPT6 19FRPT6	2 3 4 5 7 10 12 19	C63 063 C63 078 094 110 .110	.89 .89 1.05 1.16 1.31 1.72 1.80, 2.13	2.0 2.5 3.0 4.0 5.0 6.0 10.0	160 195 265 295 365 515 685 900	13 9 17 9 21 1 24.6 29.7 44.2 60.8 85.5	2000 2000 2000 2000 2000 2000 1500 1500

All values are nominal

† For longer length, please consult factory

I Values refer to straight pulls only (not including sidewall loads

from pulling around bends).

	Temperature	and	Pressure	Recommendations	-	Type	FRPT
--	-------------	-----	----------	-----------------	---	------	------

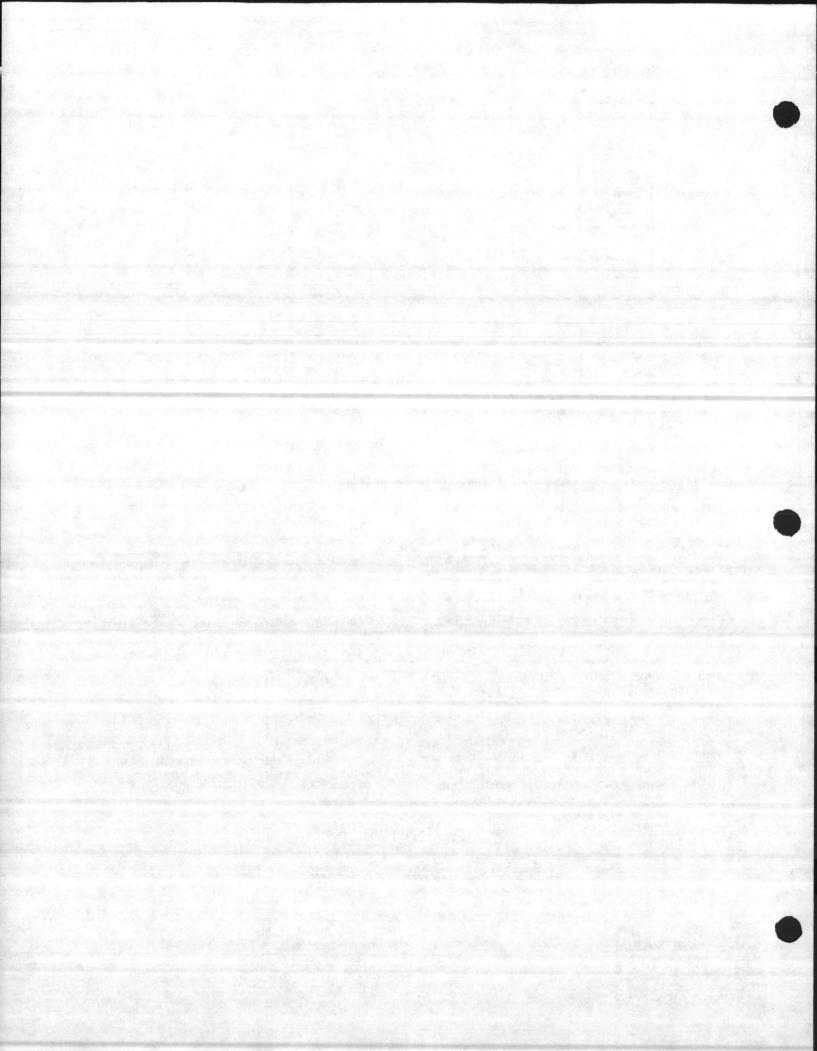
Tubing	Recommended Operating Temperature	Burst Pressure (PSI) at Temperature								
Size	Maximum	75°F	100°F	125°F	150°F	175°F				
3°5'' x 040''	150°F 150°F	650 900	475 650	350 475	250 325	175 200				

Although flame resistant polyethylene tubing is satisfactory for short time temperature rises to 175°F at a maximum recommended operating pressure of 50 psi (3 to 1 design factor), the recommended maximum design temperature for continuous use is 150°F.

Material Specifications

Flame Resistant Polyethylene Tubing — Black, low density, flame resistant polyethylene compound meeting UL94 V-2 flame classification. Environmental stress crack resistance exceeds 2000 hours when lested in accordance with ASTMD-1693. Continuous service temperature range is - 85 °F. (-65 °C.) to + 150 °F (66 °C.)

Testing Specifications


Testing — All flame resistant polyethylene tubes used in the manufacture of Multitube are subject to rigorous Q.A. inspection and testing prior to shipment. Each tube is pressure tested at not less than 150 psi for 15 minutes without any sign of leakage. FR Polyethylene Jacket — Black, weather resistant, high molecular weight flame resistant polyethylene compound which meets the UL94 V-2 flame classification.

When Multitube assemblies have completed the manufacturing process each tube is again tested with dry CO₂ at 125 psi for 15 minutes prior to shipment.

Parker Hannifin Corporation Multitube Operations 1300 North Freedom Street Ravenna, Ohio 44266 (216) 296-2871

ELBOW Tube to

Tube to Tube							30-DA	YS"NET	FREF	AYKENT
(III Fi	DYNACON PART NO. BL-44 BL-66 BL-88	Tube Size (* 00) 1/4 x 1/4 3/6 x 3/8 1/2 x 1/2	Honeykel: 1642	Johnson A F700-39	K4-141	2x Poxers 141-230 141-231 141-232	 .27	PER BOX 23.00 27.00 26.50	PER FIG. .22 .26	PER 801 22.00 26.00 24.00

2.2.2.2

CONNECTOR Tube to Male Pipe

rade to male P	OYNACON						30-DA	YS NET	·PREF	AYKENT
	PART NO.	Tube Size (* 05)	Honey×el!	- Equivalent To Johnson Rebertsha	K Pokers	EOX CTY	PER FIS.	PER BOX	PER F16.	PER
	8KC-42 8KC-52 8KC-44 8KC-62 8KC-64	1/4 x 1/8 MPT 5/32 x 1/8 MPT 1/4 x 1/4 MPT 3/8 x 1/8 MPT 3/8 x 1/4 MPT	1590BT	F100-21 N4-100 F100-21 N4-101 F100-35	141-202		. 18 . 38 . 25	18.00 38.00 25.00 23.00	.17 .35 .23	801 17.00 35.00 23.00 20.00
			10/201		141-209	50	.25	12.50		11 50

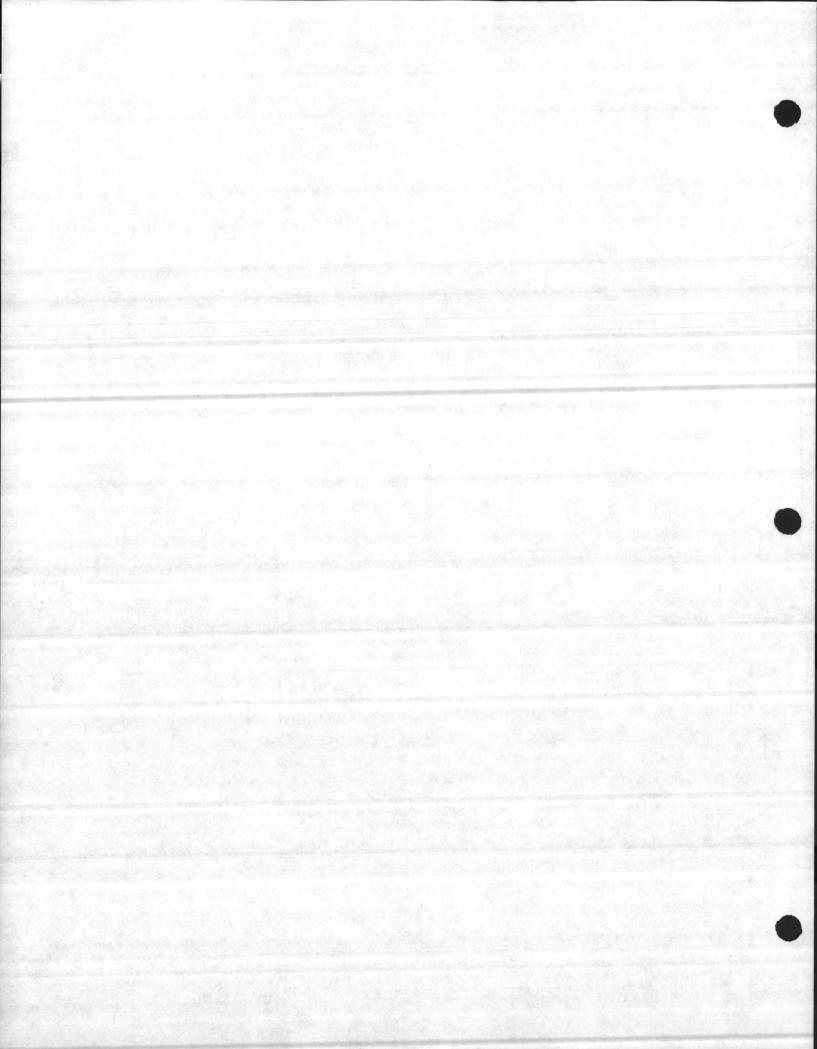
CONNECTOR Tube to Female Pipe

DYNACON					30-DA	YS KET	PREP	AYKENT	
PART NO.	Tube Size (* OD)	Koneywell	- Equivalent To Johnson Robertshaw Powers	80X QTY	PER FIG.	PER	PER	PER	
BFC-42	1/4 x 1/8 FPT	15948					FT6.	BOX	
8FC-62 8FC-64	3/8 x 1/8 FPT 3/8 x 1/4 FPT	10/10	141-211	100 25		26.00		23.00	
	576 x 174 FP1			25		10.00		6.00	

BRANCH TEE Tube to Tube to Male Pipe

DYNACON						30-DA	YS NET	PREP	AYKENT
BKT-662	Tube Size (* OD) 1/4 x 1/4 x 1/8 KPT 3/8 x 3/8 x 1/8 KPT 3/8 x 3/8 x 1/4 KPT	 Johnson I	Robertsh	аж Ронегs 141-220 141-224 141-215	QTY	.53	PER BOX 12.00 26.50 14.50	. 49	PER BOX 11.00 24.50 13.59

BRANCH TEE Tube to Tube to Female Pipe


	OYNACON						30-DA	YS NET	PREP	AYNENT	
ш <u>П</u> п	PART NO.		Johnson F	Robertsha	N Powers	QTY	F16.	PER BOX	FIG.		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							40.00	. 48	75 66	

20-0440

ELBOW Tube to Male Pipe

	DYNACON								15 NEI	PREF	AYKENT	
II	PART NO.	Tube Size (* 00)	Honeyxel	Johnson I	ent To Robertsha	an Poxers	BOX Qiy	PER FTG.	PER BOX	PER FIG.	FER RO:	
i	BHL-42	1/4 x 1/8 KPT	159581	E500-41	11/ 100	141-200						
٤.)	BXL-44	1/4 x 1/4 MPT		1 300-41	N4-120	141-200	100	. 24	24.00	.23	23.00	
	BKL-62	3/8 x 1/8 MPT	159681	F500-36	۹		50	. 34	17.00		16.00	
	BXL-64	3/8 1 1/4 MPT		1 200-20		141-205	100	. 32	32.00		30.00	
						141-206	25	. 36	9.00	.34	8.55	

DYNACON INC Post Office Box 20220, Bichneider, Virger at 3229

5801 School Avenue, Richmond, Magina 23228 (804) 262 0376

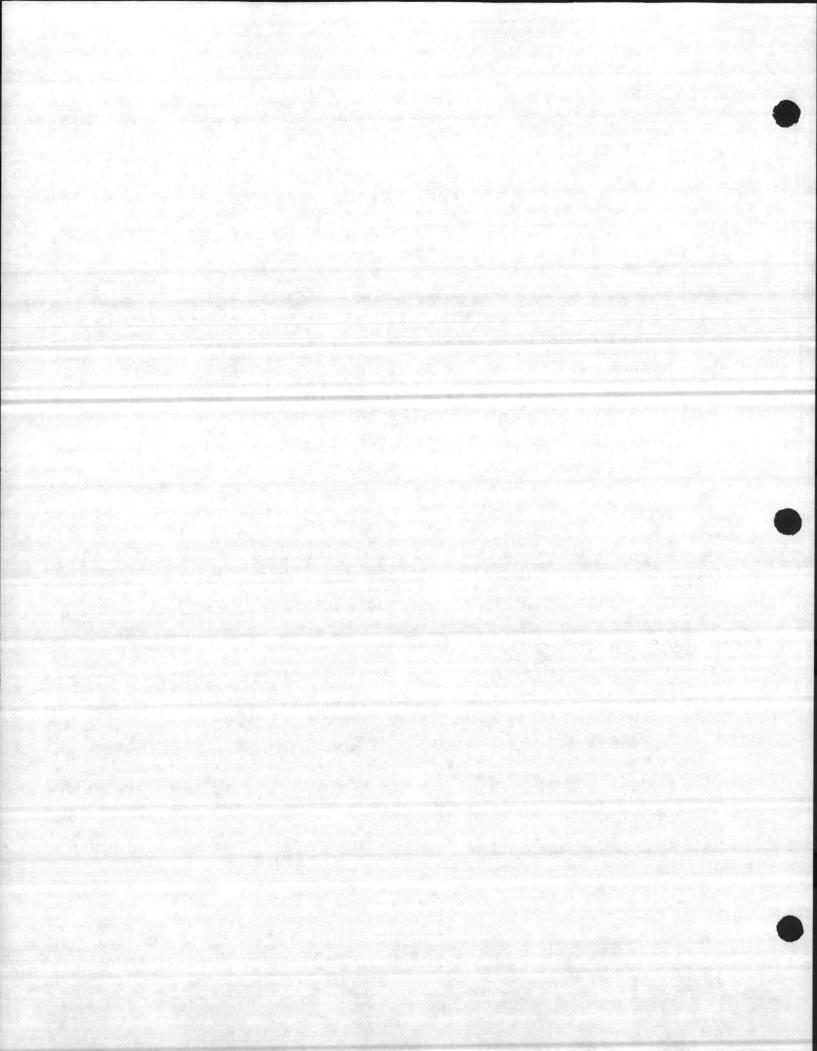
COMPRESSION FITTINGS

PUBLICATION NO. 85-CF-1050 Issue Date: September 6, 1985 Supercedes: May 1, 1985

2.2.2.D

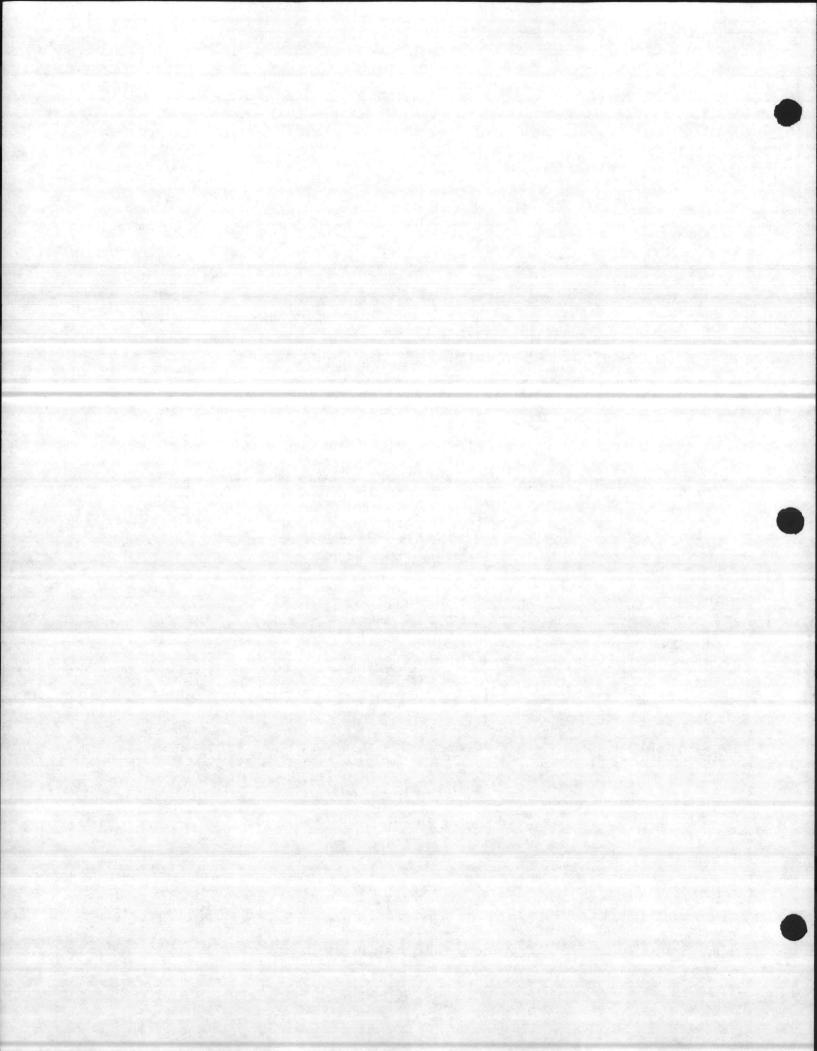
GENERAL DESCRIPTION

Dynacon BRASS Compression Fillings are designed for use with copper, brass and aluminum tubing (not recommended for steel tubing). Hanufactured for low and medium pressure tubing connections where excessive vibration or tube movement is not involved. Fittings are approved by Underwriters' Laboratories for flammable liquids and meet the specifications and standards of SAE J-512. ASA and ASME.


Each style fitting is supplied in individual boxes with the quantity of fittings per box as shown below.

PRICES PER FITTING ARE PROVIDED FOR REFERENCE UNLI. FITTINGS KUST BE ORDERED IN KULTIPLES OF BOX QUANTITIES SHOWN.

UNION (COUPLING)	DYNACON				uivalent	Io			30-DA	YS NET	PREPA	AYHENT
Tube to Tube	PART NO.	Tube Size (* OD)	Honey- well	Johnson	Robert- shaw	NCC- Fowers	Barber Colkan	BOX Oty	FER FTG.	· PER BOX	PER FTG.	PER BOX
	CC-33 CC-44 CC-64 CC-65	3/15 x 3/16 1/4 x 1/4 3/8 x 1/4 3/8 x 3/8	1428	F800-4	N4-311 N4-315 N4-312		C-233 C-234	50 25	. 32 . 30 . 38 . 39	8.00 15.00 9.50 19.50	.27	7.50 13.50 9.00 19.00


KALE CONNECTOR	DYNACON	Equivalent To							30-DA	YS NET	PREPAYKENT	
ïube to Kale Pipe	FART NO.	Tube Size (* OD)	Koney- Well J	Johnson	Robert- shaw	НСС- Fowers	Barber Colman	BOX QTY	FER FIG.	PER BOX	PER FIG.	FER BOX
	CHC-32 CHC-42 CHC-44 CHC-48 CHC-68 CHC-68 CHC-68	3/16 × 1/8 HPT 1/4 × 1/8 HPT 1/4 × 1/4 HPT 1/4 × 3/8 HPT 3/8 × 1/8 HPT 3/8 × 1/8 HPT 3/8 × 1/4 HPT 3/8 × 3/6 HPT 3/8 × 1/2 HFT	14351 14361 F 14371 14421 14431	1000-36 F200-4 F200-5 F200-6	N4-300 N4-301 N4-302 N4-303 N4-304 N4-305 N4-306	044-129 044-135 044-137	C-133 C-134 C-135 C-135	50 50 50 10 25 25 25 25 25	.22 .27 .36 .28 .30 .38	11.00 11.00 13.50 3.60 7.00 7.50 9.50 11.50	.20 .25 .34 .25 .28 .36	10.00 11.00 12.50 3.40 6.50 7.00 9.00 11.00

FEHALE CONNECTOR			Eq	urvalent	10			30-0A)	S NET	PREF	THENT	
lube to ferale fipe	DYNACON FART NO.	lube Size +* 00)		Robert-	NCC-	Barber Coinan	50)	FER FIG.	PER BOX	PER FIG.	FER ROX	
DC .	CFC-42 CFC-44 CFC-62 CFC-64	, 1/4 > 1/8 FFT 1/4 - 1 4 FPT 2/8 - 1/8 FPT 2 8 + 1 4 FPT	1459 1460 1464 1465	N4-318 N4-319		C-146 C-147 C-149	25 10 10 10	.22 .33 .29 .41	5.50 3.30 2.90 4.10	.27	5.00 3.10 2.70 3.80	

3.2.3.0

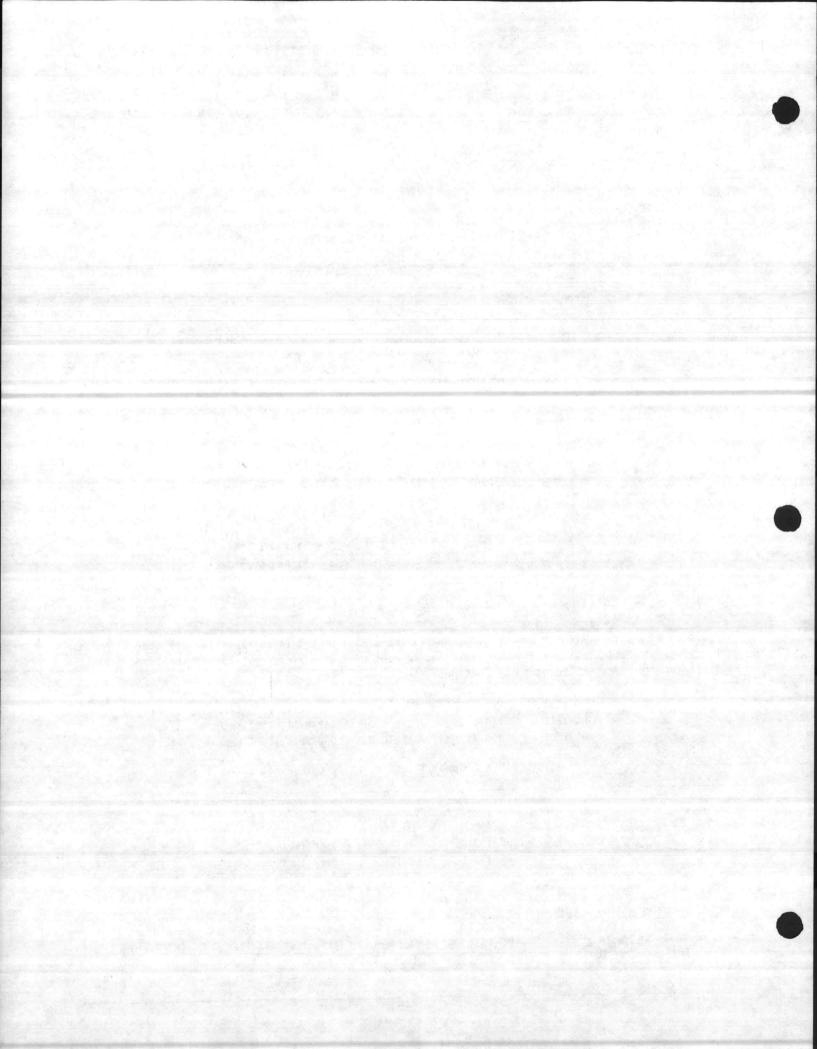
								Page 3
ERASS HUI	620146.50		Equivalent to	10	yy- (-	Ans HET	1.61	FLYKENT
	DYNACO: Part No		Honey- Robert- hill Barber	20.	· PEF	FEF	FEF	FEF
			reil Johnson shaw Fowers Colker	21.	F10	. 601		. 80.
\square	CN-4	1/4	1412 F1006-35 R4-374					• ••••
	(N-o	3/8		10. 19.				5.0
					. 98	8.00		7.45
BRASS SLEEVE			Equivaient in		30-04	IS NET	FREE	- IHENI
(FERRULE)	DYNACON		Hopey- Robert- Mil- Suckey	T.C	 DE 2			
	PART NO	. Iube Size (* 00)	well Johnson shaw Powers Colaan	QI:			FER FIG.	
æ	CF-4							
1	CF-6	1/4	1403 1800-6001 N4-363 1405 F1000-13 N4-364	200		4.00		3.20
		570	1405 F1000-13 N4-364	200	.025	5.00	.02	4.00
					30-DA	YS NET	PREF	AYHENT
DELRIN SLEEVE (FERRULE)	DYNACON		Equivalent To					
Use with "CI"	PART NO.	Tube Size (* 00)	Honey- Robert- MCC- Barber Well Johnson shaw Powers Colman	BOX	PER	PER	PER	PER
Brass insert			Shaw Fowers Lolean	011	FT5.	BOX	FTG.	
	C0-4	1/4	1571 F1000-9 N4-367 C-381	200	.015	3.00	.012	
Ω	CD-8 CD-8	3/8	1572 F1000-10 N4-368 C-382	200	.02	4.00	.012	2.40
U	66-0	1/2	1573 F1000-11 C-385	100			.038	3.80
					30-DAY	0 1/01		
BRASS INSERT	BVILLOON		Equivalent To				PREFR	
	DYNACON PART NO.	Tube Size (* 00)	Honey- Robert- NCC- Barber	BOX	FER	PER	PER	
Use with 'CD' Delrin Sleeve		1000 3120 (00)	well Johnson shaw Powers Colman	QTY	F16.	801	FTG.	
beitin Steere	C1-4	1/4	1575 F1000-198 N4-378 C-384					
,	C1-6	3/8	1576 F1000-184 N4-379 C-365	200	.022 .032	4.40 6.40	.02	4.00
<u> </u>	C1-8	1/2	1577 F1000-8 C-386	100	.05	5.00	.03 .048	4.30
								1.00
SEAL PLUG			Equivalent To		30-6415	RET	FREF	MENT
	DYNACON CANT NA		Konev- Robert- HCC- Barbar	80)	PER	PER	FER	PER
	FART NO.	1068 Size +* (0)	Keil Johnson shaw Powers Colman	QTY	FTG.	807	F13.	
	CX-4	1/4	1558 F1000-14 N4-147 C-***					
		A CONTRACT OF A CONTRACT	1568 F1000-14 N4-147 C-218	50	. 29	19.66	.15	\$.20
NALC MANCH TOO			했던 그럼 영양 사람이 그 방송을 다 같은		36-64+5	NET	FFEF-rt	1EkT
HALE BRANCH TEE Tube to Tube	GINACON		Honey- Robert NG- Raiter					
to Hale Pipe	PART NŰ.	-	Honey- Robert-NCC- Barter well Johnson shan Powers Colwan	60 C		FER	FER	
			Sind TUNELS SULLAG	Wi i	FIG.	503	F16.	hier
and the second se								
	CH8-442					••••		
	CH8-442		18211 6311 6 10 201			••••		

	2.3.j.	DETROIT CONTROLS INC. P. O. Box 221 Southfield, Michigan 4803
Photos For Reference Only	DCI Part	Description
	Tyraps	- Wire Ties
	DC-119W	7 1/2"
	DC-1198	7 1/2" Write 100 Per Package 7 1/2" Black 100 Per Package
	Soft	Copper Tubing
Fu		t Coils (Refrigeration Type)
	DC-1001	1/8 0 0
	DC-1011	1/8 0.D., .030 Wall 1.74 Wt/Ft
	DC-1021	3/16 O.D., .030 Wall 2.88 Wt/Ft 1/4 O.D., .030 Wall 4.02 Wt/Ft
	DC-1031	5/16 O.D., .032 Wall 5.45 Wt/Ft
	DC-1041	3/8 O.D., .032 Wall 6.70 Wt/Ft
	Hard	Copper Tubing
		Lengths Seamless
		asy To Handle Tubes
118月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	DC-1091	3/16 0.D041 Wall 500 ft. Min. Order
	DC-1101	1/4 0.D056 Wall 500 ft. Min. Order
	DC-1111	3/8 0.D107 Wall 250 ft. Min. Order
	DC-1121	1/2 O.D145 Wall Any Quantity
	Polyet	hylene Tubing
the first die fingliest qua	temperature contr lity and is tested	nylene lubing rol installation, and is suitable for all general pur d to meet high standards. All tubing should be marke
FR to conform to Flame Retarden	t specifications.	
DC-1201	1219-44003	1/4 O.D. × .040 Wall, 250' Lengths, Black
	1219-66203	3/8 O.D. x .062 Wall, 250' Lengths, Black
DC-1211	1219-00203	JOU. V. V. VOC WALL, JOU LENGTHS RISCH

10 Lo

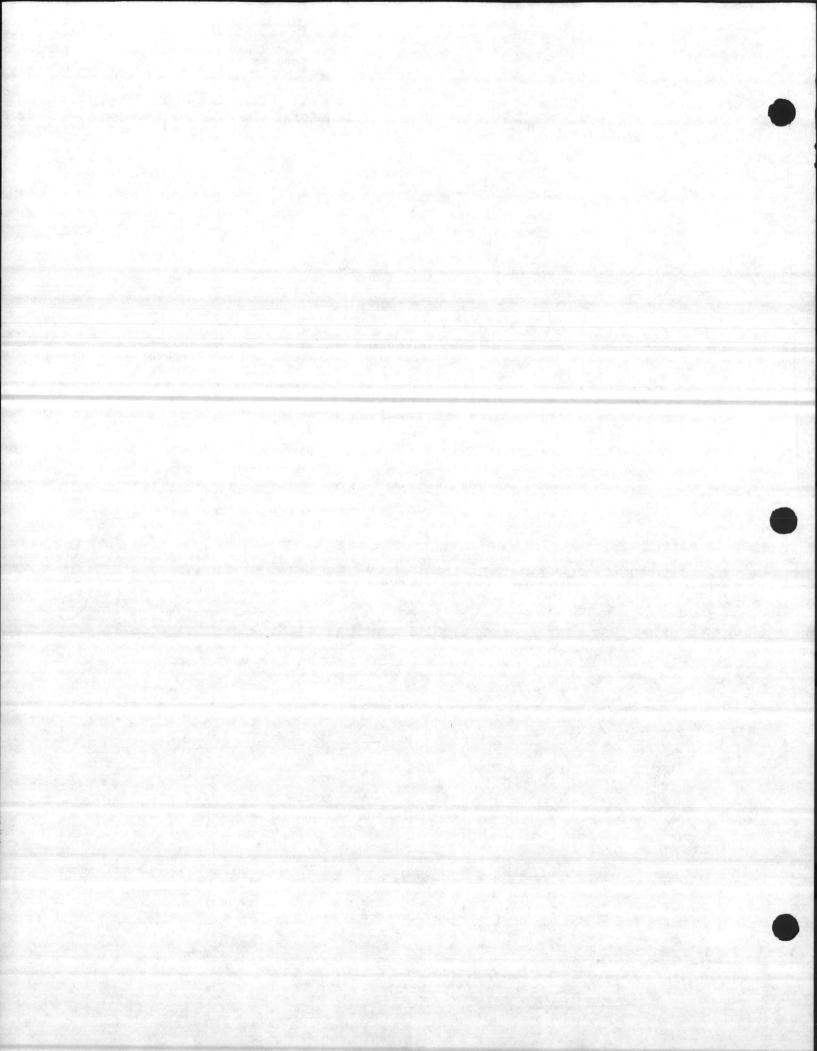
「小田市 おおいやる」

.


Tubing Benders for Copper

 DC-1301
 1/4" O.D. Copper Tubing

 DC-1311
 3/8" O.D. Copper Tubing


Tubing Cutters for Copper

DC-1321	Small Tube Cutter 1/8" - 5/8" O.D. (mini)
DC-1331	Universal Cutter 1/8" - 1 1/8" O.D. (std)
DC-1341	Large Tube Cutter 1/4" - 1 5/8" 0.D.

3-2-3-3

Photos For	3-2-3	DET	ROIT CONTROL P. O. Box 221 Southfield, Mich	
Reference Only	OCI Part	Description		
			Johnson	Honeywe
	2 K-N4-141	14. 14		
IJ	2 N4-142	1/4 x 1/4 3/8 x 3/8	F500-39	1642
	N4-142.1	1/2 x 1/2	F500-38	
Barb 90° Ell			F500-37	
	an An an			di strandik Santani Santa
	2 4: N4-147	1/4		
	2 4 N4-147 2 4 N4-147.1	3/8	F1000-323	
Barb Plug	~ *	578	F1000-241	
r	N4-148			
Barb/Copper Tube Connector		1/4 x 1/4 O.D. Solder		
4.50.000	and a second second			
	N4-200	3/16 O.D.	5200	
the state of the second state of the	N4-201	1/4 O.D.	F300-1	1002
Solder Coupling		3/8 O.D.	F300-2 F300-3	1003 1005
A2223	* 64		C. C. C. C.	and a second
	~) ÷ N4-206	3/8 O.D. x 1/4 O.D.	F300-4	1025
older Reducing Coupling	and an and			
8	من من من			
	N4-210	1/4 O.D.		1172
×		3/8 O.D.		1174
lder 90° Ell				
	and the second second			
	N4-217	3/16 0.0	F366	
	1 4 N4-218	3/16 0.D. 1/4 0.D.	F700-17	1251
T.	N4-217 ¥ N4-218 ∕ ¥ N4-219		F700-17 F700-18 F700-20	1251 1252 1254

Manhattan /Plenum Coble

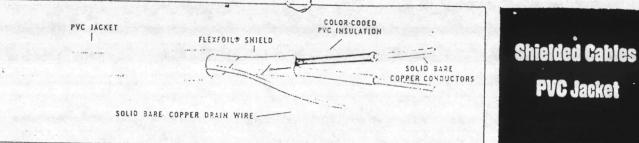
NÉC 760-4 (d)

Multi-Conductors

Fire Protective Signal Cable

6

VOLT		TEMPER		CON	STRUCTION	J A	APPLICA	TION		DEC	
300	N ²	200°C (FEP)	COND S	solid bare copper	a set to a long the set of the set		rol stations, sr	S	PECIFIC	CATIONS
		E	565	JACKET.	EP or FLG	0	cicction, voice	e communical.	noke on &		TED BJECT 1424
			₩.			di	I associated	systeme			
		A AMARA	ब्रिकेन्ट्र-अवन्त्र	BE CONTROL	ALL CLEME BERLINE CHANNEL					MEDISEC	T. 760-4(d)
Unshielde		A A A A A A A A A A A A A A A A A A A	in the second second								-
and the second second	0-JOIID					Unshield	led-Solid		and the second		LINT KAT
						REASON OF	20-30110	A THAT IS A	ETT Direvena		
			に応望る								
#22 XWG	1901101	SALAR RECTOR	Station of the second	A MACH						國際可	諸ない立
M64652	(30110)					#22 AW	G (SOLID)	and here the			A DATE DATE
M64653	1	.013	.037	.197	31	M44652	1 1				_
M64654	2	.013	.037	.212	36	M44653	5	.013	.037	.197	1 31
M64655	6	.013	.037	.227	41	M44654	6	.013	037	.212	36
M64656	8	.013	.037	.227	45	M44655	7	.013		.227	41
M64657	: c g	.013	.0.37	.243	50	M44656	-8	.013	.037	227	45
M64658		.013	.037	259	55	M44657	1	.013	.037	.243	50
4 4WG 5	-	.013	.042	.288	64	M44658	10	013	.037	.259	55
						=20 AWG		1 .013	1 .042	.288	64
.:54672 M54673	4	.013	.037	.214	39	M44672	and the second second	Cherry Carlo			
M64674	5	.013	.037	.231	45	M44673	4	.013	.037	1 .214	39
M64675	6	.013	.037	.248	52	M44674	5	.013	.037	.231	45
M64676	7	.013	.037	.248	57	M44675	6	.013	.037	.248	. 52
M64677	3	013	.037	.266	64	M44676	8	.013	.037	.248	57
464678	9 10	.013	.042	.294	75	M44677	9	.013	.037	.266	64
		.013	.042	.316	82	M44678	10	.013	.042	.294	75
18 AWG 5:	1'0				The Start I	=13 AWG (1 .013	1 .042	1 .316	82
464690	2	.013	.037	.206	32		SOLID)				
154691	3	.013	.037	.216	40	M44690	2	013	.037	.206	32
164692	4	.013	.037	.233	49	M44691 M44692	3	.013	.037	.216	40
164693 164694	5	.013	.037	.252	58	M44692 M44693	4	.013	.037	.233	49
64695	6	.013	.037	.272	68	M44694	5	.013	.037	.252	58
64695 64696	i	.013	.037	.272	75	M44695	6	.013	.037	.272	68
0596 6-:697	8	.013	042	.302	88	M44696	7	.013	.037	.272	75
64698	e sc	013	.042	.323	100	M44697	8	.013	.042	.302	88
	10	.013	.042	.350	115	M44698	9 10	.013	.042	.323	100
AWG (SOLI								.013	.042	.350	115
64710	2	013	.037	.228	41	=16 AWG (S	ULID)				
4711	3	013	.037	.240		M44710	2	.013	.037 ;	.228	41
54712	4	013	.037	.260		M44711	3	.013	.037	.240	53
						M44712	4	.013	.037	.260	66
								24 5	7.7		1
											IRE
	Selar problem				and the state of the			NOT	ALLOW	DED FO	OR


ALL WIRE TYPES.

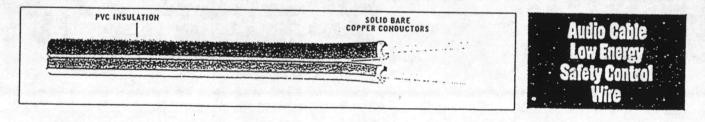
Alt

1.3.4

UL POWER LIMITED FIRE PROTECTIVE SIGNAL CRCUIT CABLE

Stock Color: Red

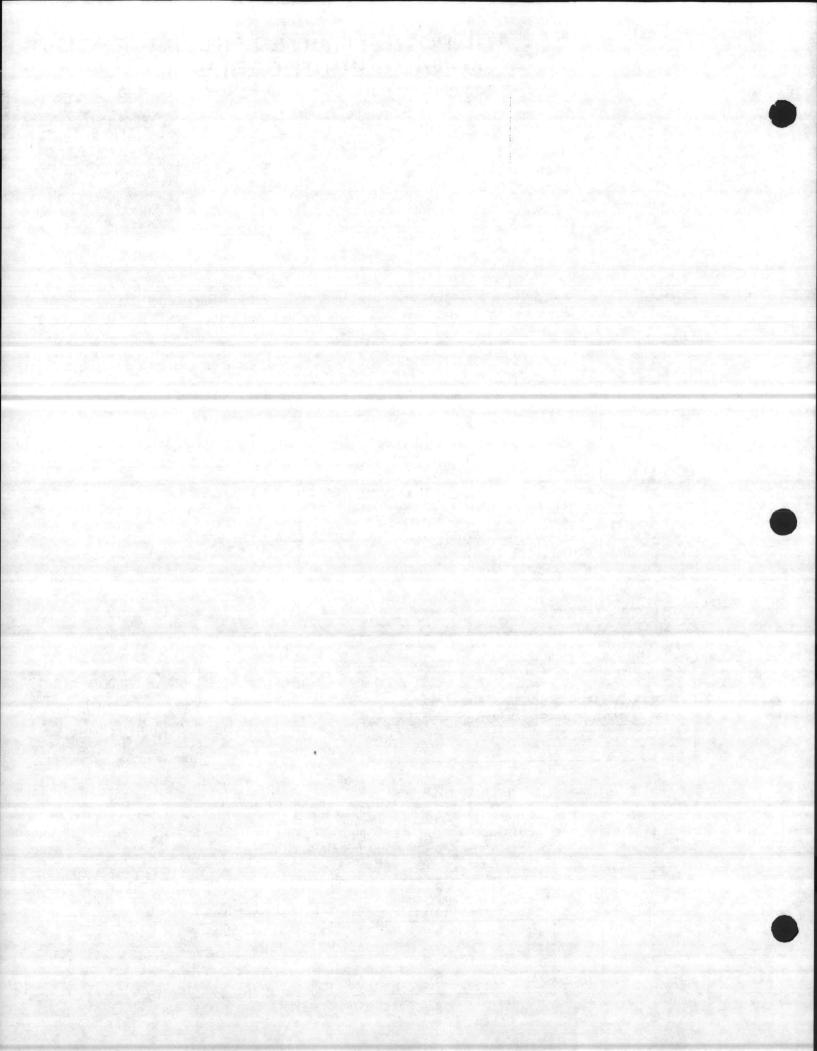
Solid bare copper conductor, color-coded PVC insulation, conductors cabled, wrapped with flexfoil mylar Construction: supported aluminum foil shield with foil facing outside. drain wire, PVC jacket overall.


Specifications:

+ 105°C suggested working voltage 300V. ENTIRE CABLE PASSES VW-1 VERTICAL FLAME TEST.

Applications: These cables are for use in power limited circuits in accordance with NEC Article 760 and as a Power Limited Circuit Cable in accordance with Article 725 Class 2 and Class 3 Circuits. These cables pass the UL 70,000 BTU flame and tray cable test collateral to IEEE 383 flame test and are suitable for tray cable installation. All cables are listed with the California State Fire Marshall.

Put-up:	500.	and	1,000'


COLOR CODE OF CONDUCTORS: COND. COLOR	CATALOG NUMBER	NO. OF COND.	COND. SIZE	COND. STRAND.	SIZE OF DRAIN	NOM. INSUL. THICK. (INCHES)	PERCENT SHLD. COVERAGE	NOM. JKT. THICK. (INCHES)	SUGG. WORK. VLTG.	NOM. O.D. (INCHES)
1. Black 2. Red 3. White	-60415_			Solid		.017	100	.037	300V	.219
o. winte	-60416-			Solid	-22-(solid)-	.017	100	.037		
	CO417	2	18	Solid	20 (solid)	.017	:00	.037	300V	.227
18 AWG 1. White 2. Red	C0418	3	18	Solid	20 (solid)	.017	:00	.037	300V	.240
2-AWG 1. Black	C0419	2 PR	18	Solid	20 (solid)	.017	100	.043	300V	.234 x .36,
2. Green 3. Qrange	C0420	2 NO SHLD	18	Solid		.017	100	.037	300V	.274
4.Blue	- Sector	+SHLD	-22-		22 (solid)	.013				

Stock Color: Black.*

- Construction: Bare copper solid conductors, PVC insulation, conductors parallel, rip-type construction, ridge on one conductor for polarity.
- Specifications: + 105°C. N.F.P.A.-N.E.C. approved UL Power Limited Fire Protective signaling circuit cable. Applications: Burglar alarm, fire detection, audio signal circat wiring. Put-up: 500' spools. Other put-ups also available.)

CATALOG NUMBER	NUMBER OF CONDUCTORS	CONDUCTOR SIZE	CONDUCTOR STRANDING	NOM. O.D. (INCHES)
· C1380	2	18	Solid	105 x .205
·· C1381	3	18	Solid	:05 x .285
· C1382	2	16	Solid	115 x .220
·· C1383	3	16	Solid	:15 x 320

2.3.4 PLENUM CABLES

ARTICLE 760 OF NATIONAL ELECTRIC CODE Fire Frotection Signaling Systems

Construction:

Solid bare copper conductors, color coded FEP TEFLON*, or Halar* insulation, overall RED tinted FEP TEFLON*. Halar* or Kynar* jacket.

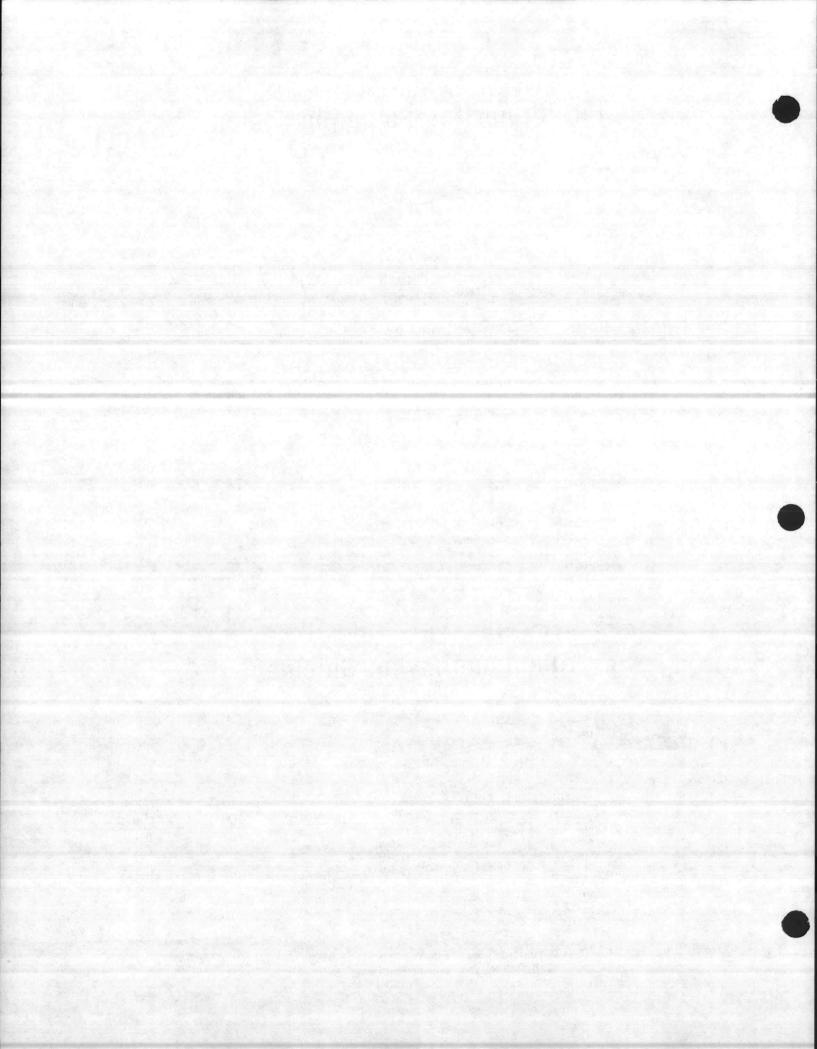
Specifications:

: U.L. listed as Power Limited Fire Protective Signaling Circuit Cable. Also U.L. classified as to fire and smoke characteristics only in accordance with N.E.C. 760-4(d). Can also be used in class 2 and 3 power limited circuits.

Applications:

Carlos and

For fire protective signaling systems and equipment operating at 300 volts or less. May be installed in air plenums or ducts without conduit.


KING NUMBER	NUMBER OF CONDUCTORS	AWG	NOMINAL INSULATION THICKNESS	NOMINAL JACKET THICKNESS	NOMINAL
-K6100	4/Conductors	-22-(solid)	.012		0.D.
K6101	6:Conductors	22 (solid)	.012	035	.189
K6102	8:Conductors	22 (solid)		.035	.218
_K6103	10-Conductors		.012	.035	.233
K6104	2/Conductors		.012	035	267
K6105	3.'Conductors	18 (solid)	.012	.035	.199
K6106	4/Conductors	18 (solid)	.012	.035	.210
K6107	6/Conductors	18 (solid)	.012	.035	.226
K6108	8:Conductors	18 (solid)	.012	.035	.263
K6109		18 (solid)	.012	.040	.283
K6110	2 Conductors	16 (solid)	.012	.035	
	4: Conductors	16 (solid)	.012	.035	.220
K6111	2:Conductors	14 (solid)	.015		.251
K6112	2/Conductors	12 (solid)	.015	.035 .035	.246 .302

Aluminum Mylar-Shielded

CATALOG NUMBER	NUMBER OF CONDUCTORS	AWG	SHIELD	INSULATION	JACKET THICKNESS	NOMINAL
K6113	2 Conductors	13 (solid)	0		IUICKUE22	0.0.
K6114	3 Conductors		Overall	.012	.035	.200
K6115	4 Conductors	13 (solid)	Overall	012	.035	.215
K6116		is (solid)	Overall	.012	.035	.231
	6 Conductors	13 (solid)	Overall	.012	.035	
K6117	2 Conductors	:5 (solid)	Overall	.012	And the state of the second state of the secon	.265
K6118	4 Conductors	15 (solid)	Overall		.035	.225
K6119	2 Conductors	14 (solid)	Overall	.012	.040	.260
K6120	2 Conductors			012	.035	.250
		2 (solid)	Overall	015	035	.300

King Wire stocks New York City Board of Standards and Appeals approved wire for LOCAL LAW 5. Call King for your specific requirements.

Special Application

2.3.4

Recognized AWM 2464, 80C-300 V.

de in

dinner.

Ş

ower Limited 105C-300V Fire Protective Signaling Circuit Cables Jubject 1424 (NEC Articles 760 and 725)

WLISTED

Power limited fire protective signaling circuit cable for use in accordance with NEC article 760 power limited circuits. Also suitable for use as a power limited circuit cable for use in accordance with NEC article 725 class 2 or 3 circuits, but these cables are marked as suitable for appropriate tray cable installations.

Fire Alarm and Tray Cables

The second se

22-Gage

Solid Tinned Conductors

Product Description

Tinned copper, PVC insulated, conductors cabled, Black PVC-jacket. Color code chart No. 1, Technical Information Section.

All cables in this section pass the U.L. 70,000 BTU flame test which is

comparable to IEEE 383 flame test. All cables in this section are listed

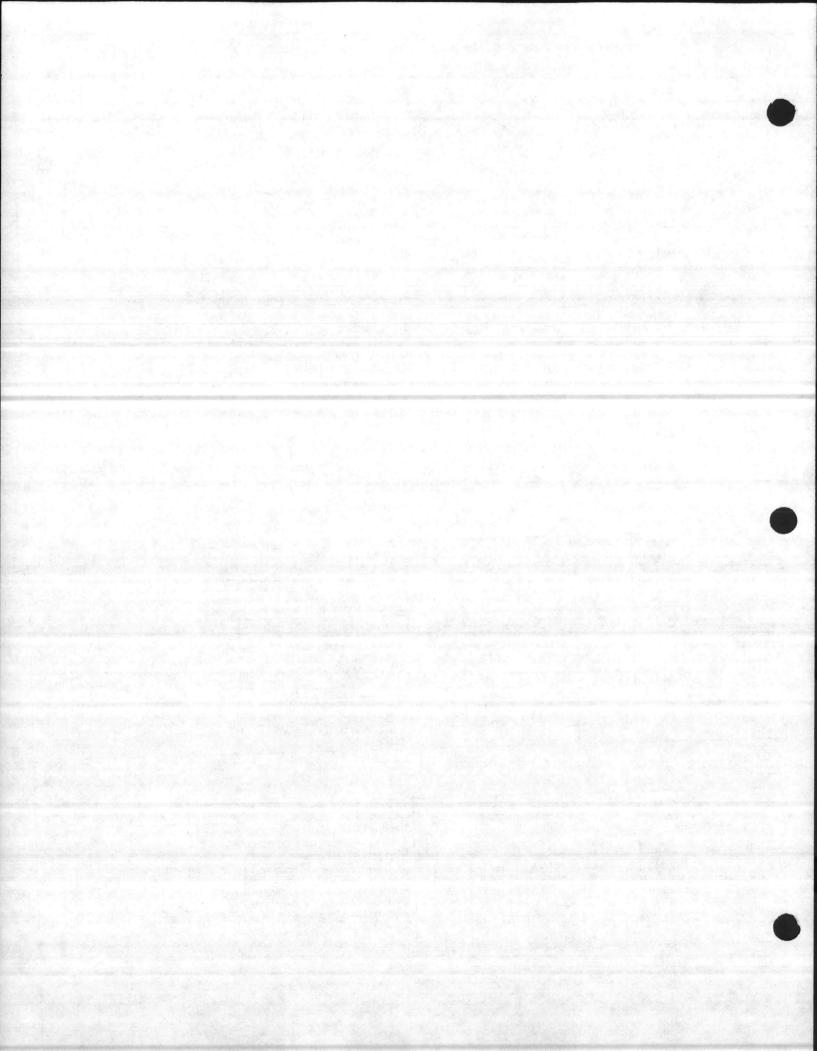
by the California State Fire Marshall listing service. Component

9576†2	6	U-500	U-152.4	1 170	1				and the second	
		U-1000-		17.9 34.9	.013	.33	.039	.99	.234	5.94
9577†°	9	U-500	U-152.4	23.6	.013					1
ILISTED		<u>U-1000</u> -	U-304.8	46.1	.013	.33	.039	.99	.267	6.78
E64959 9584to	12	500	152.4	31.3	.013				San Section	Aler
742-54	104	1000	304.8	63.8	.013	.33	043	1.09	.302	7.67

19 Gage

iid Conductors

	9596†° = @LISTED = E64959	2	U-500 500 1000	U-152.4 152.4 304.8	9.3 9.0 18.2	.030	.76	-	-	.101 x .191	2.56 x 4.85	
	9597†	+ 4				Product Description: One conductor tinned copper, one conductor bare, parallel, red PVC insulation.						
	apa11	55977 4	U-500	U-152.4	20.8 21.6	.016	.41	.040	1.02	.248	6.29	
		1	U-1000 1000							Cinsulated, conductors		
	9598†*	9598†° 6	U-500	U-152.4	29.5	.016	.41				Sec. 1	
RUISTED	1		500 U-1000	152.4	30.3			.042	1.07	·.290	7.36	
© LISTED E64959 912464		U- 1		U-304.8 304.8	58.1 62.1	Product D cabled, red Color code: 6th Orange.	1st Black.					


18 Gage

Solid Conductors

	9571†	2	U-500 U-1000	U-152.4 U-304.8	14.4 28.2	.017	.43	.037	.94	.244	6.20
	E64959				20.2	Product I conductors Color code	cabled, rec	PVL Jackol	e copper. P		J.
Fold	9574†°	2	U-500 U-1000	U-152.4 U-304.8	16.2 31.3	.017	.43	.037	.94	.228	5.79
oldloil' Shield erage	E64959			0 004.0	31.3	Product E conductors #22 AWG s Color code:	tranded tin	ned drain win		/C insulated	

†Passes the VW-1 Vertical Wire Flame Test.

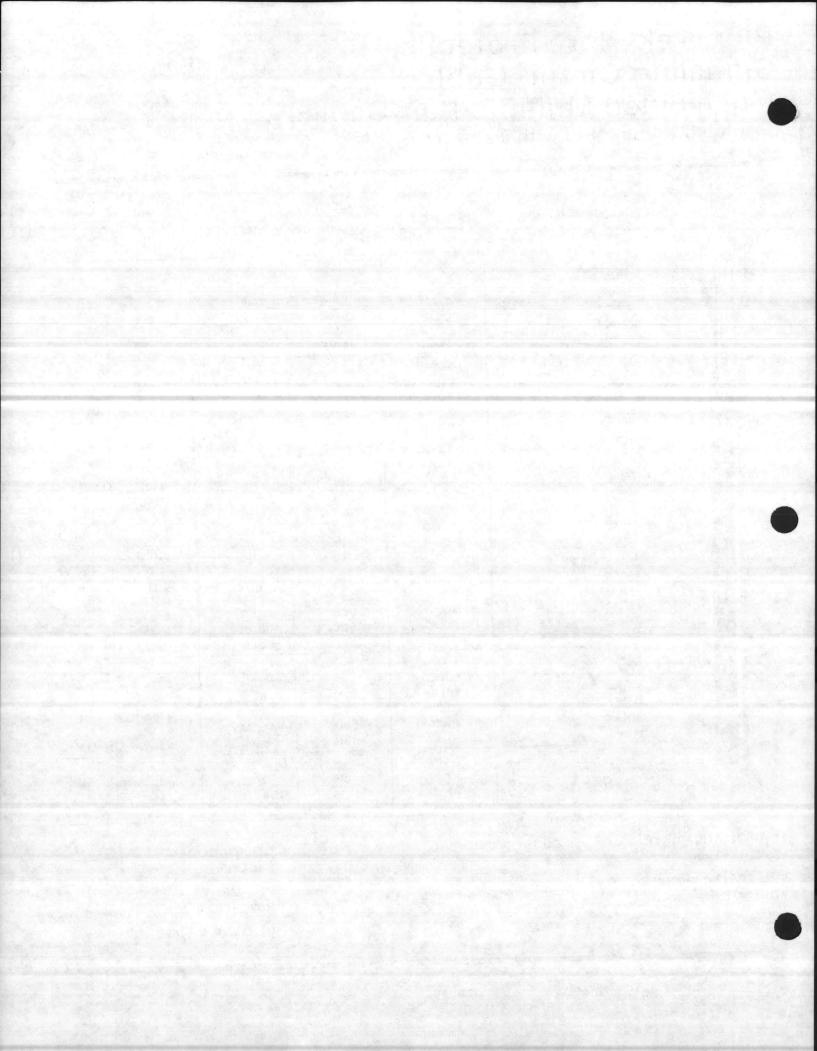
Passes the U.L. 70.000 ETU Flame Test and Is Listed by the California Fire Marshall.

Plen-Tek® Fire Protective Signaling Circuit Cables Inshielded Multiple Pair Cables Sulated & Jacketed with Tek-Flex®

APPLICATION:

For use in accordance with Article 760, Section A and C and Article 725 Class 2 and 3 Circuits. For floor warden and fire control stations, smoke detection, voice communications, supervisory and all associated systems.

CATALOG NUMBER	NUMBER OF PAIRS	AWG. STRANDING	INSULATION NOMINAL THICKNESS (in.)	JACKET NOMINAL THICKNESS (in.)	NOMINAL OVERALL DIAMETER (In.)	WEIGHT PER KFT. (lbs.)
013005		22 AWG				T
247035		SOLID	0.013	0.037	0.243	
247036	3	SOLID	0.013	0.037	0.256	31
247037	4	. SOLID	0.013	0.042	0.288	39
247038	5	SOLID	0.013	0.042	Section Contractory	51
247039	6	SOLID	0.013	0.042	0.3130.338	60
	R. Marchard	20 AWG		Contraction of the	0.000	68
247040	2	SOLID	0.013	0.007		A CONTRACTOR
247041	3	SOLID	0.013	0.037	0.265	39
247042	4	SOLID	0.013	0.042	0.290	53
247043	5	SOLID	the state of the second state of the second	0.042	0.315	64
247044	6	SOLID	0.013	0.042	0.342	77
-			0.013	0.042	0.371	89
247045	2	18 AWG			the second second	100 C
247045	2	SOLID	0.013	0.042	0.303	53
247040	3	SOLID	0.013 :	0.042	0.319	69
247047	4	SOLID	0.013	0.042	0.348	85
	5	SOLID	0.013	0.042	0.379	101
247049	6	SOLID	0.013	0.052	0.432	128
And the second second	per des services de	16 AWG	and the second	produce and a second		
247050	2	SOLID	0.013	0.042	0.337	
247051	3	SOLID	0.013	0.042	0.356	70
247052	4	SOLID	0.013	0.052		92
247053	5	SOLID	0.013	0.052	0.409	125
247054	6	SOLID	0.013	0.052	0.446	150
		14 AWG			0.484	174
247055	2.	SOLID	0.016			
47056	3.	SOLID	0.016	0.052	0.421	110
47057	4.	SOLID	0.016	0.052	0.445	144
47058	5.	SOLID	0.016	0.052	0.486	181
47059	6.		0.016	0.052	0.532	218
		SOLID	0.016	0.052	0.580	256
47060		12 AWG	S. S. Star		Section 1	
	2.	SOLID	0.016	0.052	0.476	149
47061	3.	SOLID	0.016	0.052	0.504	201
47062	4	SOLID	0.016	0.052	0.553	201


For NEC 760 and 725. Class J Carcuits Only

TEMPERATURE RATING: 125°C minimum

SUGGESTED WORKING VOLTAGE: 300V

CONSTRUCTION:

Solid bare copper conductors. Tek-Flex insulation, color coded, conductors cabled, red Tek-Flex jacket, and marker tape beneath jacket. COLOR CODE: See Chart 2 PUT-UP: Bulk, 1000 ft. & 500 ft. reels UL Listed & Classified

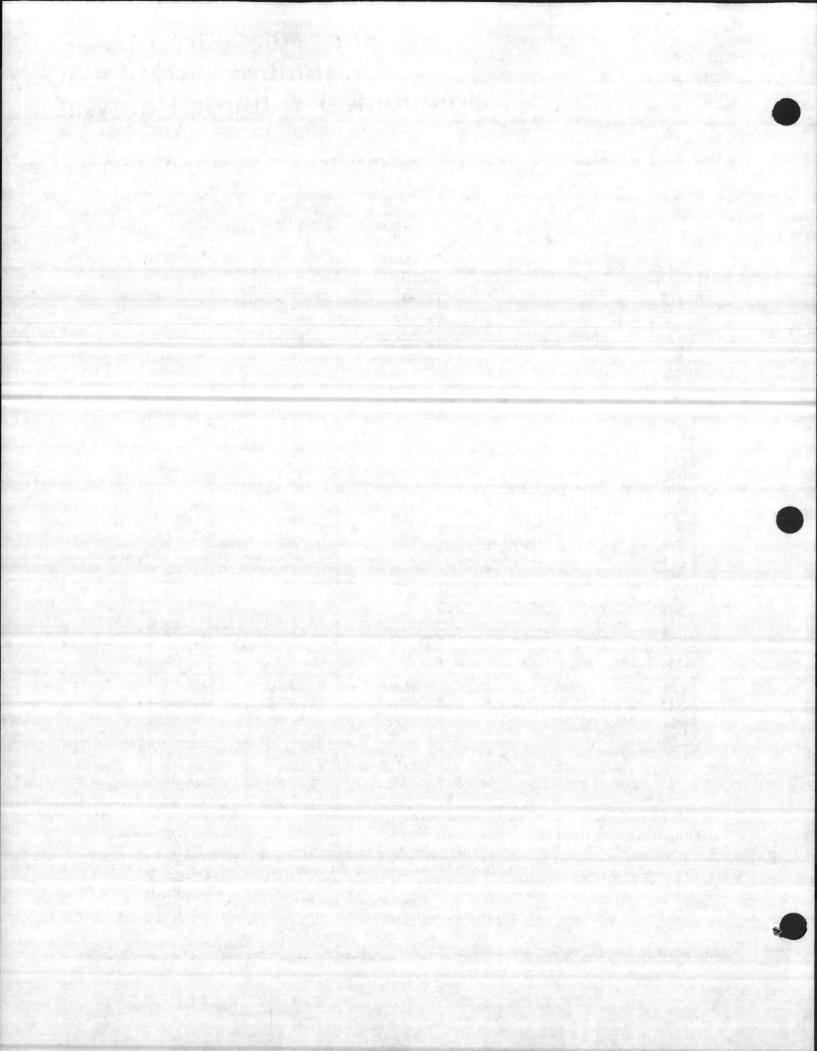
APPLICATION:

For use in accordance with Article 760, Section A and C and Article 725, Class 2 and 3 Circuits. For floor warden and fire control stations, smoke detection, voice communications, supervisory and all associated systems.

Plen-Tek® Fire Protective Signaling Circuit Cables Unshielded Multiple Pair Cables Insulated & Jacketed with Teflon® Fr

CATALOG NUMBER	NUMBER OF PAIRS	AWG. STRANDING	INSULATION NOMINAL THICKNESS (in.)	JACKET NOMINAL THICKNESS (in.)	NOMINAL OVERALL DIAMETER (in.)	WEIGHT PER KFT (Ibs.)
		22 AWG	CAL AGE	and the second	. Section and the	Sec. 1
246035	2	SOLID	0.013	0.037	0.243	36
246036	3	SOLID	0.013	0.037	0.256	45
2 6037	4	SOLID	-0.013	0.042	0.288	58
246038	5	SOLID	0.013	0.042	0.313	68
246039	6	SOLID	0.013	0.042		78
-		20 AWG	and the second s	and the state of the second	Section Bartinet	a transfer of
246040	2	SOLID	0.013	0.037	0.265	44
246041	3	SOLID	0.013	0.042	0.290	60
246042	4	SOLID	0.013	0.042	0.315	73
246043	5	SOLID	0.013	0.042	0.342	86
246044	6	SOLID	0.013	0.042	0.371	99
	and the second	18 AWG		de monta elle	a gran handler	Sec. Trees
246045	2	SOLID	0.013	0.042	0.303	60
2460:46	3	SOLID	0.013	0.042	0.319	77
246047	4	SOLID	0.013	0.042	0.348	94
246048	5	SOLID	0.013	0.042	0.379	112
246049	6	SOLID	0.013	0.052	0.432	143
		16 AWG			Carthe and the same	Contractor
246050	2	SOLID	0.013	0.042	0.337	78
246051	3	SOLID	0.013	0.042	0.356	101
246052	4	SOLID	0.013	0.052	0.409	138
246053	5	SOLID	0.013	0.052	0.446	164
246054	6	SOLID	0.013	0.052	0.484	191
A starte starte	and the second of	14 AWG	a series of the series of the		Contraction of the	
246055	2.	SOLID	0.016	0.052	0.421	122
246056	3.	SOLID	0.016	0.052	0.445	159
246057	4'	SOLID	0.016	0.052	0.486	198
246058	5'	SOLID	0.016	0.052	0.532	238
246059	6'	SOLID	0.016	0.052	0.580	278
	ter ge der Trian	12 AWG				
246060	2.	SOLID	0.016	0.052	0.476	164
246061	3.	SOLID	0.016	0.052	0.504	218
246062	4.	SOLID	0.016	0.052	0.553	275

For NEC 760 and 725. Class 3 Circuits Only.


CONSTRUCTION:

TEMPERATURE RATING: 200°C

SUGGESTED WORKING VOLTAGE: 300V Solid bare copper conductors, Tellon FEP insulation, color coded, conductors cabled, red Tellon FEP jacket, with separator and marker tape beneath jacket. COLOR CODE: See Chart 2

PUT-UP: Bulk, 1000 ft. & 500 ft. reeis. UL Listed & Classified

Herk tes

APPLICATION:

For use in accordance with Article 760. Section A and C and Article 725, Class 2 and 3 Circuits. For floor warden and fire control stations, smoke detection, voice communications, supervisory and all associated systems.

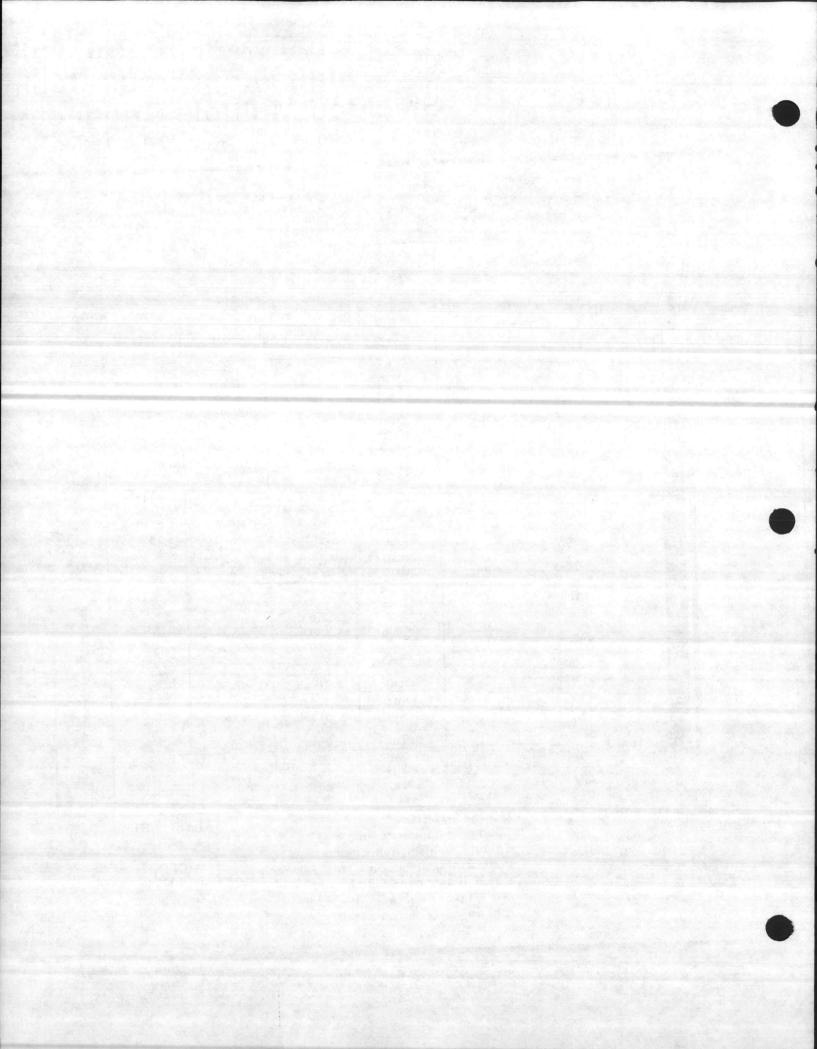
Plen-Tek® Fire Protectiv Signaling Circuit Cable Shielded Multiple Conductor Insulated & Jacketed with Teflon [®] FE

	CATALOG NUMBER	NUMBER OF CONDUCTORS	AWG. STRANDING	INSULATION NOMINAL THICKNESS (In.)		NOMINAL OVERALL DIAMETER (in.)	DRAIN WIRE AWG	WEIG PEF KFT (Ibs.
	-246063	4	22 AWG				C. BARRIE	1
	246064	5	SOLID	0.013	0.037	0.204	34	26-
n	246065	6	SOLID	0.013	0.037	0.219	22	- 39
11	24,6066	7	SOLID	0.013	0.037		22	45
11	246067	8	SOLID	0.013	0.037	0.234	22	45
11	246068	9	SOLID	0:013	0.037	0.250	22	and the second second
//	246069		SOLID	0.013	0.037	0.266	22	53
/		10	SOLID	0.013	0.042	0.295		. 59
a server	0.10070	Carrie La Stat	. 20 AWG		1		22	68
	246070	4	SOLID	0.013	0.037			
	246071	5	SOLID	0.013		0.220	22	42
	246072	6	SOLID	0.013	0.037	0.237	22	49
	246073	7	SOLID	0.013	0.037	0.254	22	55
	246074	8	SOLID	- · · ·	0.037	0.254	22	60
	246075	9	SOLID	0.013	0.037	0.272 *	22	67
	246076	10	SOLID	0.013	0.042	0.300	22	78
	and the second se			0.013	0.042	0.322	22	86
	246077	0	18 AWG	1.	A STATE			
	246078	2.	SOLID	0.013	0.037	0.213		
	246079	3	SOLID	0.013	0.037	0.213	20	37
	the second s	4	SOLID	0.013	0.037	0.223	20	45
	246080	5	SOLID	0.013	0.037		20	54
	246081	6	SOLID	0.013	0.037	0.259	20	63
	246082	7	SOLID	0.013	0.042	0.289	20	77
4	246083	8 .	SOLID	0.013	0.042	0.289	20	84
			16 AWG		0.042	0.309	20	93
	246084	2	SOLID		6	Addis of		
	246085	3	SOLID	0.013	0.037	0.234	18	48
	246086	4		0.013	0.037	0.245	18	40 59
	246087	5	SOLID	0.013	0.037	0.265	18	59 72
	246088	6	SOLID	0.013	0.042	0.297	18	89
	246089	7	SOLID	0.013	0:042	0.320	18	
	246090	8	SOLID	0.013	0.042	0.320	18	102
		0	SOLID	0.013	0.042	0.344	18	113
			14 AWG	ALC: NOT ALC: NOT			10	126
	246091	2.	SOLID	0.016	0.037			
	246092	3.	SOLID	0.016	0.042	0.272	16	67
	246093	4.	SOLID	0.016	0.042	0.279	16	89
		and the second second second	12 AWG		0.042	0.322	16	108
	246094	2.	SOLID	2010		State State	and the second	
	246095	3.	SOLID .	0.016	0.042	0.316	14	96
	246096	4.	SOLID	. 0.016	0.042	0.333	14	123
			SULIU	0.016	0.042	0.362	14	151

TEMPERATUR 200°C

SUGGESTED WORKING VOLTAGE: 300V

Solid bare copper conductors, Teflon FEP insulation, color coded, conductors cabled, Berk Foil shield, tinned copper drain wire, red Tellon FEP jacket, with separator and marker tape beneath jacket.


COLOR CODE: See Chart 1

PUT-UP: Bulk, 1000 ft. & 500 ft. reels. **UL Listed & Classified**

· For NEC 760 and 725. Class 3 Circuits Only

1'

3..... therk-let D

Plen-Tek® Fire Protective Signaling Circuit Cables Shielded Multiple Conductors

APPLICATION:

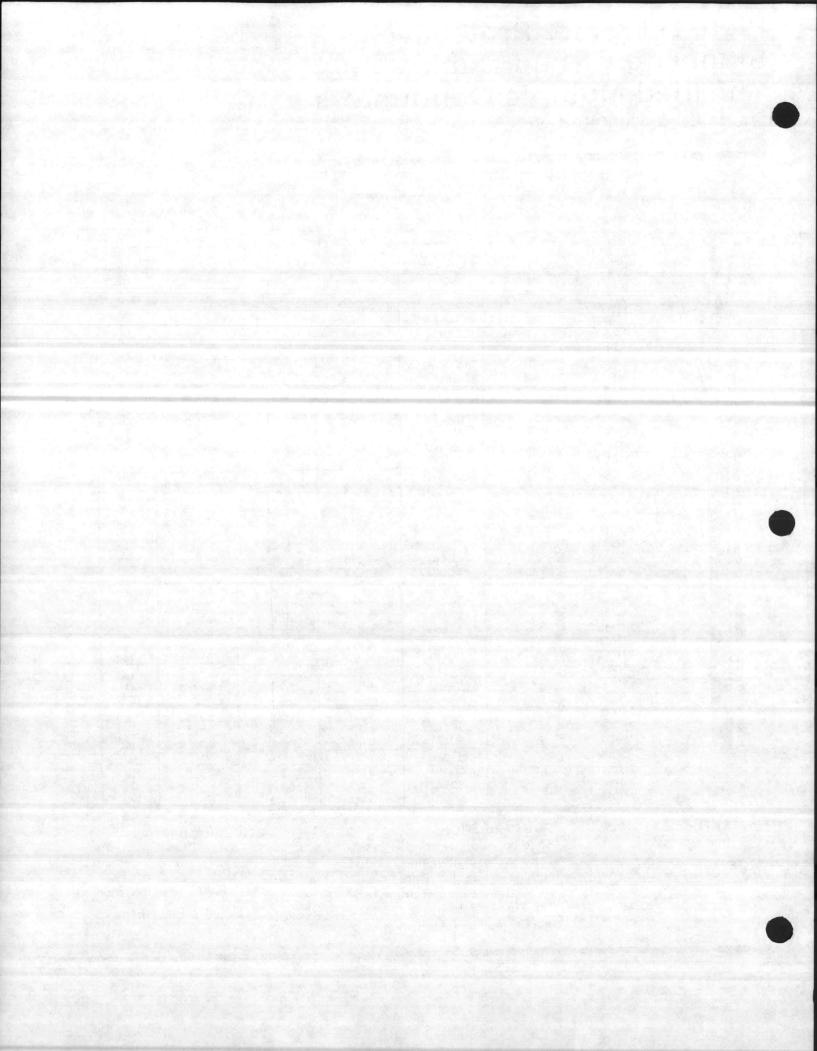
For use in accordance with Article 760, Section A and C and Article 725 Class 2 and 3 Circuits, For floor warden and fire control stations, smoke detection, voice

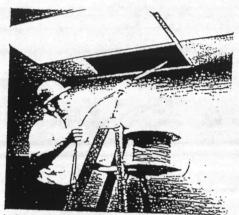
communications, supervisory and a associated systems.

	CATALOG	NUMBER OF
Π	NUMBER	CONDUCTOR
	-247063	4
	247064	5
	247065	6
	247066	7
	247067	8
	297068	9
	247069	10
	247070	4
1 1/	247071	5
k //	247072	6
1Y/	247073	7
1//1	247074	8
	247075	9
	247076	10
	247077	
	247077	2 3
	247079	4
	247080	5
	247081	6
	247082	7
	247083	8
	247084	2
	247085	3
	247086	4
	247087	5
	247088 247089	6
	247089	7 8
		0
	247091	2.
	247092	3.
	247093	4.
	247094	2.

CATALOG NUMBER	NUMBER OF CONDUCTORS	AWG. STRANDING	INSULATION NOMINAL THICKNESS (in.)	JACKET NOMINAL THICKNESS (in.)	NOMINAL OVERALL DIAMETER (in.)	DRAIN WIRE AWG	WEIGHT PER KFT (Ibs.)
		22 AWG					1
-247063	4	SOLID	0.013	0.037	0.004	· · · · · ·	-
247064	5	SOLID	0.013	Product Res Contract of the Solid	0.204		30
247065	6	SOLID		0.037	0.219	22	35
247066	7	SOLID	-0.013		0.234	22	39
247067	8	SOLID	0.013	0.037	0.234	22	43
247068	.9	SOLID	0.013	0.037		22	47
247069	10	SOLID		0.037	0.266		52
			0.013	0.042	0.295	22	60
247070	4	20 AWG SOLID	0.010	and the second			1000
247071	5	and the second se	0.013	0.037	0.220	22	37
247072	6	SOLID	0.013	0.037	0.237	22	43
247072	7	SOLID ·	0.013	0.037	0.254	22	49
247073	8	SOLID	0.013	0.037	0.254	22	54
247074		SOLID	0.013	0.037	0.272	22	60
	9	SOLID	0.013	0.042	0.300	22	70
247076	10	SOLID	0.013	0.042	0.322	22	77
0.17077		18 AWG	The solution of the second	Section States	and the second		Section Section
247077	2	SOLID	0.013	0.037	0.213	20	33
247078	3	SOLID	0.013	0.037	0.223	20	40
247079	4	SOLID	0.013	0.037	0.240	20	49
247080	5	SOLID	0.013	0.037	0.259	20	57
247081	6	SOLID	0.013	0.042	0.289	20	69
247032	7 .	SOLID	0.013	0.042	0.289	20	76
247083	8	SOLID	0.013	0.042	0.309	20	85
5 Ingilles		16 AWG	The second second		11 M2 1 M4/17	1.00	
247084	2	SOLID	0.013	0.037	0.234	18	43
247085	3	SOLID	0.013	0.037	0.245	18	54
247086	4	SOLID	0.013	0.037	0.265	18	66
247087	5	SOLID	0.013	0.042	0.297	18	81
247088	6	. SOLID	0.013	0.042	0.320	18	94
247089	7	SOLID	0.013	0.042	0.320	18	104
247090	8	SOLID	0.013	0.042	0.344	18	116
		14 AWG	1		1997		
247091	2.	SOLID	0.016	0.037	0.272	16	~~
247092	3.	SOLID	0.016	0.042	0.279		62
247093	4.	SOLID	0.016	0.042	0.322	16 16	80 100
	Sector Sector	12 AWG	Contraction of the			10	100
247094	2.	SOLID	0.016	0.042	0.316		
247095	3.	SOLID	0.016 .	0.042	0.333	14	89
247096	4.	SOLID	0.016	0.042	0.362	14	114
				0.042	0.302	14	141

TEMPERATURE RATING: 125°C minimum


SUGGESTED WORKING VOLTAGE: 300V


CONSTRUCTION:

Solid bare copper conductors, Tek-Flex insulation, color coded, conductors cabled, Berk Foil shield, tinned copper drain, red Tek-Flex jacket, with separator and marker tape beneath jacket. COLOR CODE: See Chart 1

PUT-UP: Bulk, 1000 ft. & 500 ft. reels. UL Listed & Classified For NEC 760 and 725 Class 3 Circuits Only

Hark hek

LOW INSTALLATION COSTS Easy-to-handle Dekoron plenum cable can be installed quickly. Because of its unique jacket construction, Dekoron cable is more flexible than currently used rigidjacketed cables. Installers can feed it through plenum areas with ease. No snap back to worry about. And, of course, you do not need conduit. Saves installation time and costs.

DEKORON® PLENUM CABLE CABLE CLASSIFIED BY UL

EASY-TO-READ JACKET

Dekoron plenum cable jacket features a printed ID marking system that provides easy readability. Other cable uses a hard-toread marker strip. Printed jacket makes it easy to identify the UL classification for each cable.

UL CLASSIFIED

Duct and plenum cable without conduit is covered by three NEC Articles — 725, 760 and 800. Each article covers a specific application area. Dekoron plenum cable meets all performance characteristics of the three articles and is ideal for the following applications.

•

Fire Alarms

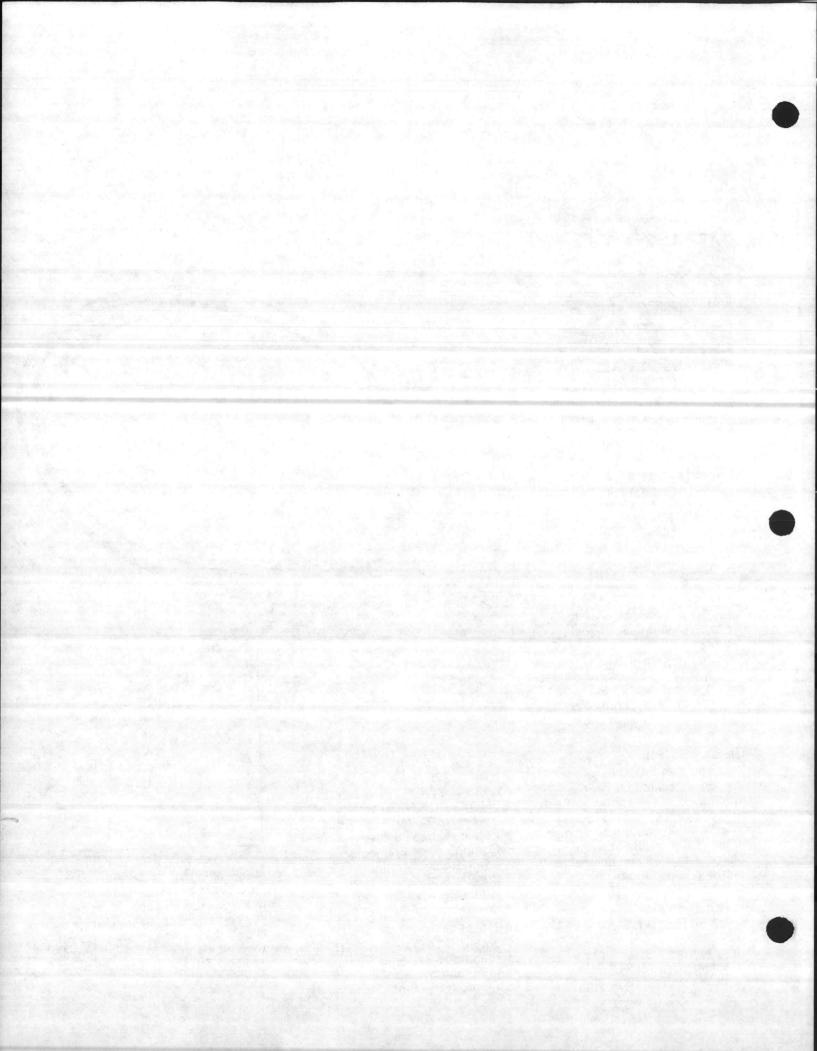
SYSTEMS

ARTICLE 760-4(d)

- Sprinkler Control-Systems
- Smoke Detection Systems

FIRE PROTECTIVE SIGNALING

ARTICLE 725-2(b) CLASS 1, CLASS 2, and CLASS 3 REMOTE-CONTROL, SIGNALING, AND POWER LIMITED CIRCUITS

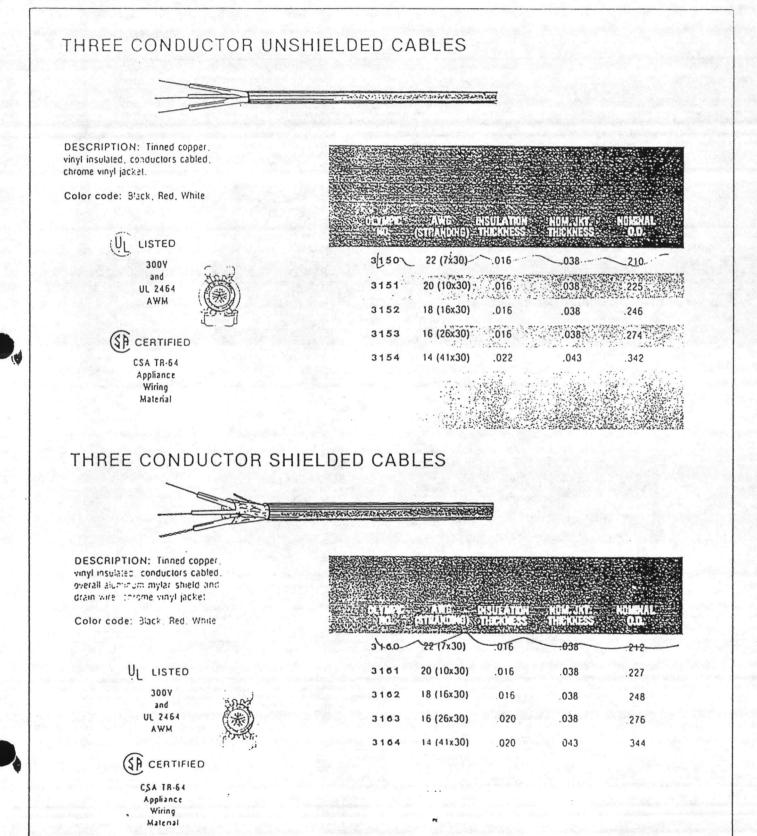

- · Public Address Systems
- Computer Interconnects
- · Point-of-Sale Terminals
- Burglar Alarms
- Office Network Systems
- Environmental Control Systems

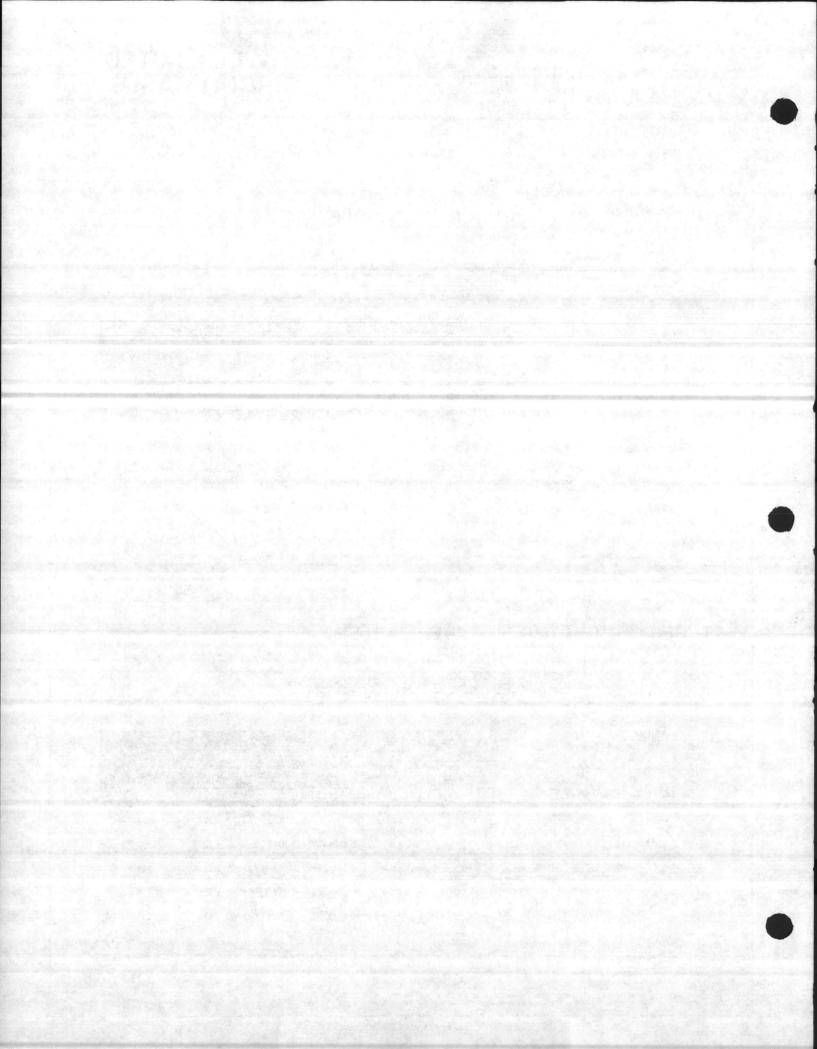
ARTICLE 800-3(d)

- COMMUNICATION CIRCUITS
- Telephone Systems
- Telegraph Systems
- Intercom Systems

2.3

EASY-TO-STRIP JACKET Most cable using rigid fluorocarbon jackets are hard to strip back. Dekoron plenum cable with specially compounded elastomeric jacket allows cable to be easily stripped prevents damage to conductors. In addition, a rip cord is provided.





POWER LIMITED CIRCUIT CABLE

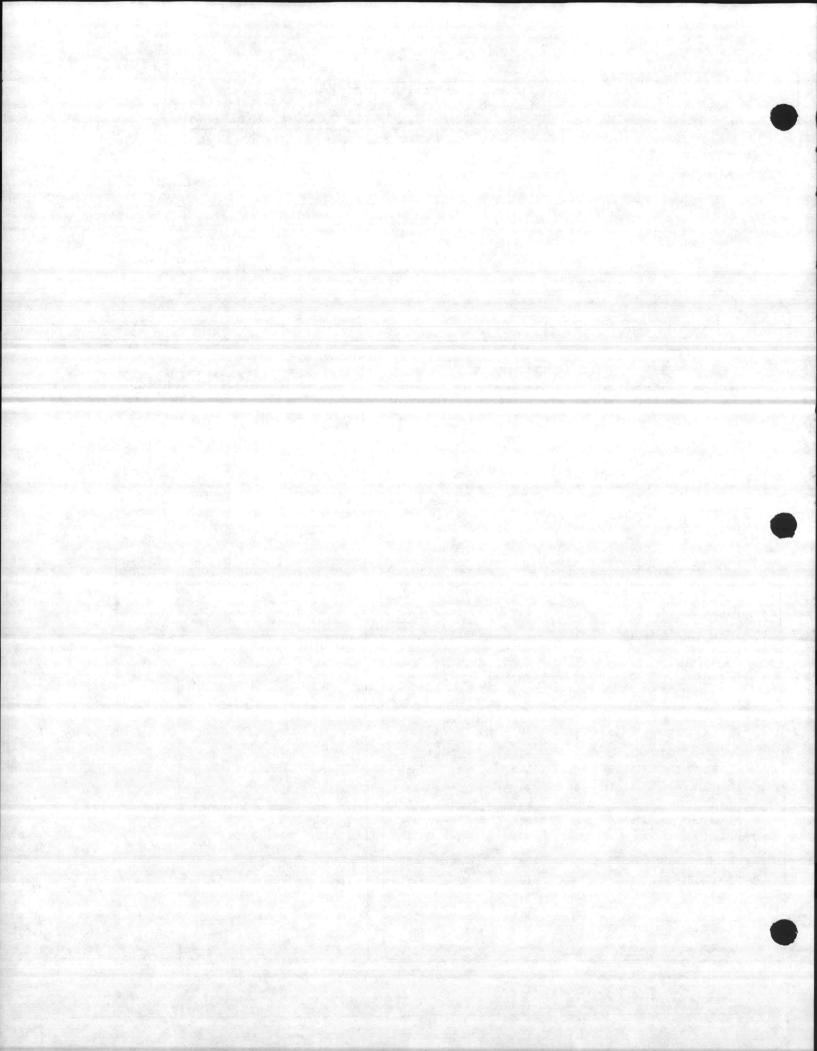
Meets Article 725 of the NEC. Also marked as Tray Cable suitable for class 2.8.3 circuits. Passes the UL 70,000 BTU Flame and Tray Cable test which is comparable to the IEEE 383 Flame Test. UL SUBJECT 13 105° C-300V

.3.6

				.£.	3.4	Ple	enum C	able/ Ť	Ma	nha	Sil
			Lo	w Sm	oke chi NEC 7/2	3 Flame 5-2 (6)	e Spre	ad'			
Multi-Pai	irs						Ро	wer Li	mited		
VOLTAG	GE T	EMPERA	TURE	CONST	RUCTION		LICATIÓ			(Remot	
150		200°C (FE			d bare copper	And the second second		Management.			
(Sug. Wkg. Voll	lage)		41 ang	INSUL: FEP JACKET: FE		public busin syste	address sys	tems (P.A.), ects, security ontrol cables.	(ECT 13
Inshielded-S						Unshielded		ier Ricsin:	ikatin	Cica Erito	
	535	器國北部委員				Children Cell	5010 500		S. B. S.		NTWEE C
						a Dan sei	No. Of				
=24 AWG (S	201101		New UID A		5666 (<u>199</u> 8866)	ALL CONSTRUCTION					
M63930 i	2		.017	1 142		#24 AWG		1			
M63331	_ 3	.007	.017	143	13	₩43330	2	.007	.017	.143	13
M63332	4	.007	.017	.165	22	M43331 M43332	3	.007	.017		18
M63333	: 5	.007	-017_	.181	26	M43332	4	.007	.017	.165	22
M63334 +		.007	.017	.197	31	M43334	6	.007	.017	.181	26
#22 AWG (S		1.00						1 .007 1	.017	.197	-3.1_
M63350	2	i .007 ·	.017	1.159	18	#22 AWG M43350					
M63351	3	.007	.017	.168	23	M43351-	2	.007	.017	.159	18
M63352	4	.007	.017	184	30	M43352		.007	.017	.168	23
M63353	5	.007	.017	202-	36	M43353	4	:007	.017	.184	30
M63354	6	.007	.017	.221	42	M43354	6	.007	.017	202_	36
20 AWG (S								1 .007 1	.017	.221	42
M63370		. 007	017	. 101	~	#20 AWG					
M63371	2	.007	.017	.181	24	M43370	2	.007	.017	.181	24
M63372	4	.007	.017	.192	33	M43371	3	.007	.017	.192	33
M63373	5	.007	.017	.211	41	M43372	4	.007	.017	.211	41
M63374	6	.007	.017	.255	51 60	M43373 M43374	5	.007	.017	.233	51
				1 .200	00	S. Barre	1 6	.007	.017	.255	60
18 AWG (S			ana ang ang ang ang ang ang ang ang ang			#18 AWG	(SOLID)				
M63390	2	.007	.017	.207	33	M43390	: 2	.007	.017	.207	33
M63391	3	007	.017	.220	46	M43391	3	.007	.017	.220	• 46
M63392	4	.007	.017	.242	59	M43392	: 4	.007	.017	.242	59
M63393 M63394	5	.007	.017	: .267	72	M43393	: 5	.007	.017	.267	72
	6	.007	.017	: .293	86	M43394	. 6	.007	.017	293	86
16 AWG (S						#16 AWG	SOLID)				
463410	2	.007 i	.017	.242	48	M43410	2	007	.017	.242	48
M63411	3	.007	017	.258	67	M43411	j 3	.007	.017	.258	67
463412	4	.007	.017	.285	87	M43412	4	.007	.017	.285	87
M63413	5	.007	017	.315	107	M43413	1 5	.007	.017	.315	107
M63414	6	.007	.022	.356	132	M43414	, 6	.007	.022	.356 !	132

. . .

•


Dy.

11

1.1.1

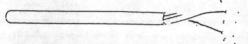
•

•

PLENUM CABLES

ARTICLE 7:25 OF NATIONAL ELECTRIC CODE REMOTE CONTROL SIGNALING & POWER LIMITED CIRCUITS

Construction:

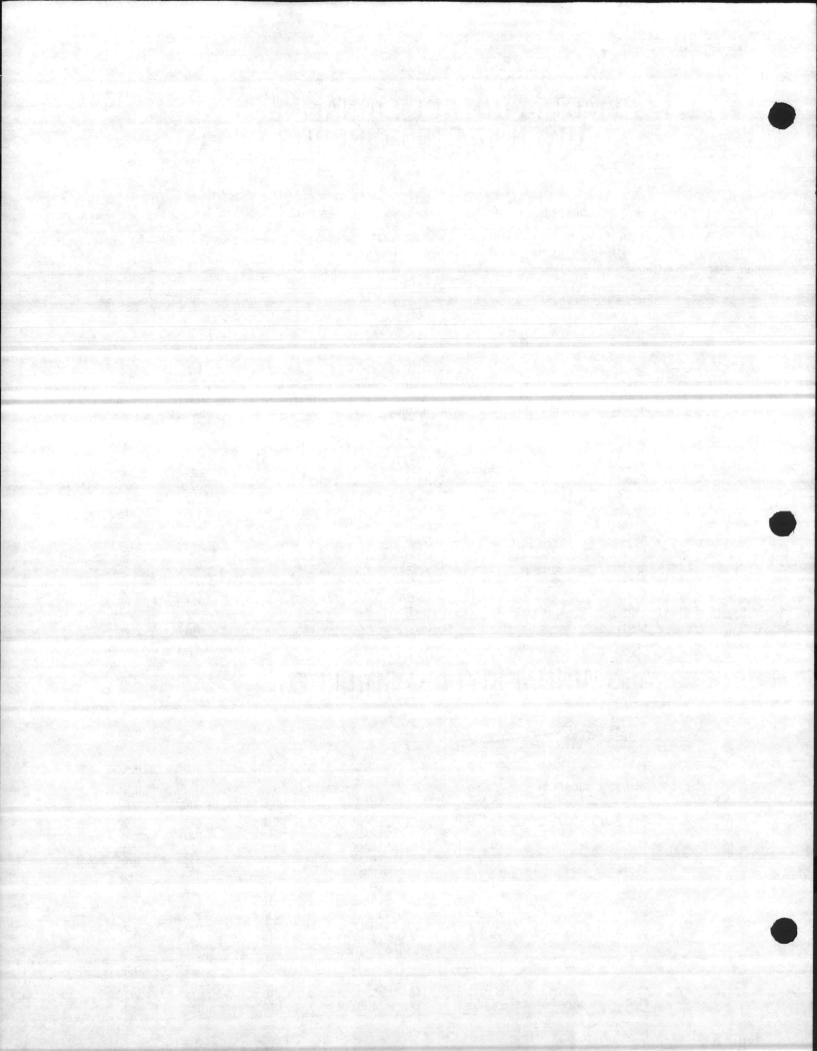

Bare copper conductors, FEP TEFLON* or Halar* insulation; color coded FEP TEFLON®, Halar* or Kynar* jacket. Non-shielded.

Specification:

U.L. listed as Power Limited Circuit Cable for Class 2 Circuits and also classified as to fire and smoke characteristics only in accordance with N.E.C. 725-2 (B).

Applications:

Remote control, signaling and power limited circuits that are not an integral part of a device or appliance. Communication systems, computer systems, background music, etc. may be installed in air plenum and ducts without conduit.



CATALOG NUMBER	NUMBER	AWG. SIZE & CONSTRUCTION	CONDUCTOR INSULATION THICKNESS	JACKET	NOM. Q.D.
K6001	2	22 (7x30)	.010	.022	.150
K6002	3	22 (7x30)	.010	.022	.156
(K6003	4	22 (7x30)	.010	.022	.179
K600,4	5	22 (7x30)	.010	.022	.185
K6005	6	22 (7x30)	.010	.022	.190
K6006	8	22 (7x30)	.010	.022	.205
K6007	10	22 (7x30)	.010	.025	.250
K6008	2	18 (7x26)	.010	.022	.179
K6009	3	18 (7x26)	.010	.022	.190
K6010	4	18 (7x26)	.010	.022	.130
K6011	6	18 (7x26)	.010	.022	.244
K6012	8	18 (7x26)	.010	.025	.244
K6013	2	16 (19x29)	.010	.022	.200
K6014	. 4	16 (19x29)	.010	.022	.200
K6015	2	14 (19x27)	.013	.030	.265

ALUMINUM MYLAR® SHIELDED

CATALOG NUMBER	NUMBER OF CONDUCTORS	AWG STRANDING	SHIELD	NOMINAL INSULATION THICKNESS	NOMINAL JACKET THICKNESS	NOMINAL 0.D.
K6016	MAN	28 (7x30)	OVERALL .	010 1	A .922 A	,158
K6017	040	22 (7x30)	OVERALL	.010	.022	455
K6018	2	20 (7x28)	OVERALL	.010	.022	.168
K6019	2	18 (7x26)	OVERALL	.010	.022	.192
K6020	3	18 (7x26)	OVERALL	.010	.022	.200
K6021	4	18 (7x26)	OVERALL	.010	.022	.205
K6022	2	16 (19x29)	OVERALL	.010	.025	.203
K6023	4	16 (19x29)	OVERALL	.010	.025	.210
K6024	2	14 (19x27)	OVERALL	.013	.025	
K6025	4	22 (7x30)	2 SHIELDED	.010	.022	.260
			2 UNSHIELDED	.010	.022	.176
K6026	4	20 (7x28)	2 SHIELDED	.010	.022	.198
a series that there a			2 UNSHIELDED	hand the second second second second	····	.150
K6027	2 PAIR	22 (7x30)	EA. PR. SHIELDED	.010	.022	.200
K6028	3 PAIR	22 (7x30)	EA. PR. SHIELDED	.010	.022	.260

Special Application

2.3.4

1.13

ower Limited 105C-300V Tray Cables @LISTED @ U.L. Subject 13 (NEC Article 725)

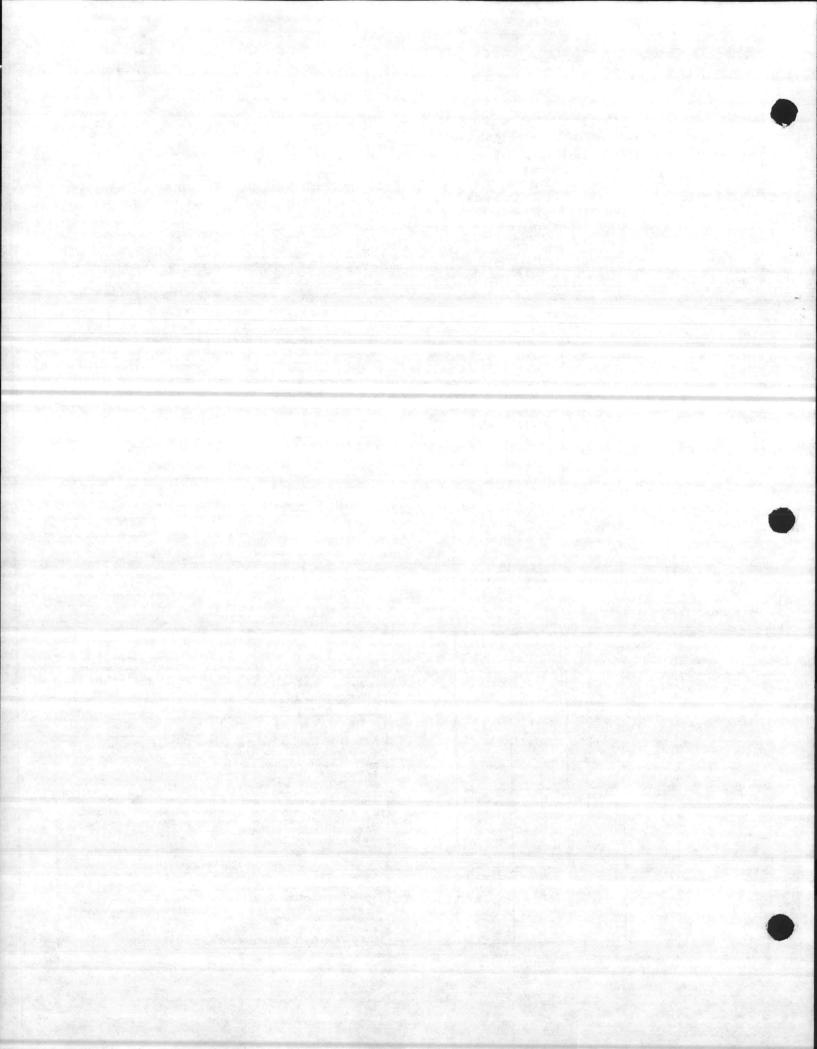
Tn-rated cable. Power limited tray cable, U.L. subject 13, 105C-300V. Appliance Wiring Material style 2464, 80C-300V. Certified to CSA standards as Appliance Wiring Material. Meets Article 725 of the

NEC, Class 2 and 3 requirements. Passes the U.L. 70,000 BTU flame test which is comparable to the IEEE 383 Flame Test. Sunlight Resistant Jacket.

Description Standard Lengtho Standard Le	
American Strandard Ameri American Strandard American Strandard America	

Two-Conductor Unshielded Cables

Product Description


Tinned copper, PVC insulated, conductors cabled, chrome sunlightresistant PVC jacket. Color code: Black, Red.

	9407†	U-500	U-152.4	10.2	22	.0.16-	.41	.038	.97	.200	5:08-
					(7x30)	U.L. LISTE	D as Tray Cal	ole soitable lor	Class 2 and 3	circuits.	
& LISTED	9408†°	100- U-500	30.5 U-152.4	2.6 11.8	20	.016	.41			.214	5.44
E34972 300V and		U-1000	U-304.5	22.6	(10x30)	U.L. LISTE	D as Tray Cal	le suitable for	Class 2 and 3	circuits.	
94 4.000 0464 Ø	9409†°	100 U-500	30.5 U-152.4	3.3 14.4	18	016	.41	.038	.97	.230	5.84
Appliance Wiring	10.00	U-1000	U-304.5	27.8	(16x30)	U.L. LISTE	D as Tray Cat	le suitable for	Class 2 and 3	circuits.	
Material	9410†°	100 U-500 U-1000	30.5 U-152.4 U-304.5	19.3	16 (26x30)		.41		.97	.260	6.60
	94111			- 38.0		U.L. LISTER	Jas Iray Cac	e suitable for	Class 2 and 3 (ircuits.	1.
	94117-	100 U-500	30.5 U-152.4	6.4 29.7	14 (41x30)	.022	.56	.043	1.09	.324	8.23
		1000	304.5	69.9	(41230)	U.L. LISTED	D as suitable f	or Class 2 and	3 circuits.	Section Section	
	9412† ^C	100 500	30.5 152.4	9.6 50.5	12	.032	.81		1.32	.424	10.77
		1000	304.5	97.1.	(65x30)	U.L. LISTED) as suitable (or Class 2 and	3 circuits.	Per Succession	1999

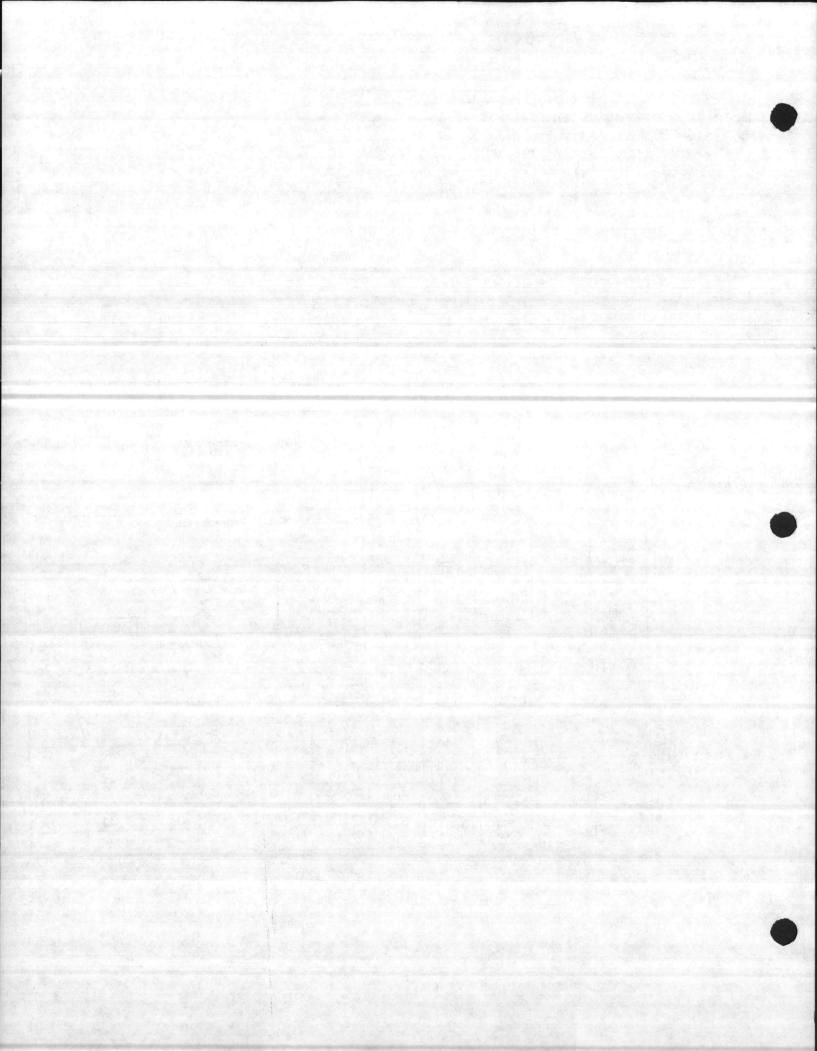
Two-Conductor Shielded Cables

Z-Fold	9322†:	100	30.5 U-152.4	2.6	22 (7x30)	.016	.41	.038	.97	.202	5.13		
Beldfoil	/	U-1000	U-304.5	22.0	1	Product Description: Tinned copper, PVC insulated, conductors cabled with Beldfoil tape shield, 22 AWG stranded tinned copper drain wire, chrome sunlight-resistant PVC jacket. Golor code: Black, Red. U.L. LISTED as Tray Cable suitable for Class 2 and 3 circuits.							
100% Shield Coverage	9320†°	· 100 · U-500	30.5 U-152.4	3.0 13.1	20	.016	.41	.038	.97	.216	5.49		
LISTED 34972 00V and 2 4		· U-1000	U-304.5	25.4	(10x30)	Product Description: Tinned copper, PVC insulated, conductors cabled with Beldfoil tape shield, 22 AWG stranded tinned copper drain wire, chrome sunlight-resistant PVC jacket. Color code: Black, Red. U.L. LISTED as Tray Cable suitable for Class 2 and 3 circuits.							
Vateria!	9318† 100 30.5 U-500 U-152.4		3.8	18 (16x30)	.016	.41	.038	.97	.236	5.99			
ienal		U-1000	U-304.8	32.8	(10,30)	sunlight-res Color code:	istant PVC jac Black, Red.	Tinned coppe 20 AWG strand cket. e suitable for (led linned cop	oper drain win	ors cabled e, chrome		
	9316†°	100 U-500	30.5 U-152.4	4.9	16	.016	.41	038	.97	.262	6.65		
		U-1000	U-304.5	22.6 44.2	(26x30)	sunlight-resi Color code:	istant PVC jac Black, Red.	Tinned coppe 8 AWG strand ket. e suitable for (ed linned cop	ted, conducto per drain wire	re cabled		

Passes the VW-1 Vertical Wire Flame Test. Passes the U.L. 70.000 BTU Flame Test.

Multi-Con Unshielded	COOPER INDUSTAILS BEL										
Controlar	nd Audio	Cable	s	\bigcirc	and Stag	and the second of the	Service Ser	a a de la compañía de	inger der		
	AN INACOUNT	N CHOZADAN	DA CIZIER THE						Sec. And		
		日照時表	Stand			S.S. Un	ulation		achas		
Description		引起公式	SALARY AND				CLUG83	. Th	Ickness.		O.D.
								Inch			
	ALL DE ADOCTOR 2.C.	-O PREASTROOM	A NGARES	A LEELEN					. mm	- Inch	
19 Gage											
Solid Conductors						Product D	escripti	on			
PVC Insulated	d					Bare copper Suggested	working vol	lace: 300	uclors cab	led. Chrome	e PVC ja
	. 8487†	1		1			j				
	80C	3	U-500 500	U-152.4 152.4	13.0	.015	.38	.025	.64	.192	4.8
	·	-	U-1000	U-304.8		Color cod	le: Brown, G	Fray, Tan.		1.102	4.0
			1000	304.8	25.8						
18 Gage .					and a state						
Stranded Conduc	tore (16,20)					Product D	escriptio	n			
PVCInsulated	1015 (10x30)					Tinned coppe	er, PVC ins	ulated, conc	Juctors cab	led Chrome	DVC in
	•									ico. Oniome	FVCja
(100	8489†	4	100	205	1	1	1				
Tana			250	30.5 76.2	5.1	.018	.46	.032	.81	.264	6.7
duip	W. Same	Aller and	U-500	U-152.4	23.1	Color code	e chart No. 1	I. Technical I	nformation	Section.	1
		- Alland	500 U-1000	152.4 U-304.8	23.9	F-Joina,					
110	1		1000	304.8	45.2	1. 1. 1.					
	8465†	5	100	· 30.5							
		and the second second second second			61	018	:40	1	1		-
	1.	1000	U-500	U-152.4	6.1 28.7	.018	:46	.037	.94 .	.286	7.26
\$42535			500	U-152.4 152.4	28.7 29.2			.037 , Technical II			7.26
54.2535 300V 60C				U-152.4	28.7						7.26
51 2535 300V 60C	8467†	7	500 U-1000	U-152.4 152.4 U-304.8	28.7 29.2 56.3 60.3	Color code	chart No. 1	, Technical I	nformation	Section.	7.26
912535 300V 60C	8467†	7	500 U-1000 1000 100 250	U-152.4 152.4 U-304.8 304.8 30.5 76.2	28.7 29.2 56.3 60.3 8.0 20.0	Color code	chart No. 1 .46	, Technical I	nformation s	Section.	- 10.05
912535 300V 60C	8467†	7	500 U-1000 1000 100 250 500	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4	28.7 29.2 56.3 60.3 8.0 20.0 38.6	Color code	chart No. 1 .46	, Technical I	nformation s	Section.	- 1 1.
942535 300V 60C			500 U-1000 1000 250 500 1000	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0	Color code .018 Color code	echart No. 1 .46 chart No. 1,	, Technical I	nformation s	Section.	- 1 1.
912535 300V 60C	8467† 8469†	7	500 U-1000 1000 250 500 1000 1000 250	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1	Color code .018 Color code .018	.46 .46 .46 .46	. Technical II .037 , Technical Ir .037	.94 .94 Mormation S	Section.	8.23
912535 300V 60C			500 U-1000 1000 250 500 1000 1000 250 500	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 152.4	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8	Color code .018 Color code .018	.46 .46 .46 .46	, Technical II .037 , Technical Ir	.94 .94 Mormation S	Section.	8.23
94.2535 300V 60C	8469†	9	500 U-1000 1000 250 500 1000 1000 250 500 1000	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7	Color code .018 Color code .018	.46 .46 .46 .46	. Technical II .037 , Technical Ir .037	.94 .94 Mormation S	Section.	8.23
\$12535 300V 60C			500 U-1000 1000 250 500 1000 100 250 500 1000 10	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6	Color code .018 Color code .018	.46 .46 .46 .46	. Technical II .037 , Technical Ir .037	.94 .94 .10rmation S .94 .10rmation S	Section. .324 Section. .379 Section.	8.23 • 9.63
942535 300V 60C	8469†	9	500 U-1000 1000 250 500 1000 100 250 500 1000 10	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3	Color code .018 Color code .018 Color code .018	.46 .46 chart No. 1 .46 chart No. 1. .46	, Technical II .037 , Technical Ir .037 Technical In .040	.94 .94 .10rmation S .94 .10rmation S .1.02	Section. .324 Section. .379 Section.	8.23 • 9.63
94.2535 300V 60C	8469† 8466†	9	500 U-1000 1000 250 500 1000 100 250 500 1000 10	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6	Color code .018 Color code .018 Color code .018	.46 .46 chart No. 1 .46 chart No. 1. .46	, Technical II .037 , Technical Ir .037 Technical In	.94 .94 .10rmation S .94 .10rmation S .1.02	Section. .324 Section. .379 Section. .412	8.23 • 9.63
94.2535 300V 60C	8469†	9	500 U-1000 1000 250 500 1000 100 250 500 1000 10	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3 64.1 126.1 17.6	Color code .018 Color code .018 Color code .018	.46 .46 chart No. 1 .46 chart No. 1. .46	, Technical II .037 , Technical Ir .037 Technical In .040 R, Technical I	.94 Information S .94 Iformation S 1.02 Information	Section. .324 Section. .379 Section. .412 Section.	8.23 • 9.63 10.46
912535 300V 60C	8469† 8466†	9	500 U-1000 1000 250 500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 500 1000 500 1000 500	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3 64.1 126.1 17.6 87.9	Color code .018 Color code .018 Color code .018 Color code .018	.46 chart No. 1 .46 chart No. 1 .46 chart No. 2F .46	, Technical II .037 , Technical Ir .037 Technical In .040 R, Technical I	.94 Normation S .94 formation S 1.02 Information 1.14	Section. .324 Section. .379 Section. .412 Section. .505	8.23 • 9.63 10.46
942535 300V 60C	8469† 8466† 8468†	9 12 15	500 U-1000 1000 250 500 1000 100 250 500 1000 100 250 500 1000 100 250 500 1000 100 500 1000 100 500 1000	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 152.4 304.8 30.5 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3 64.1 126.1 17.6 87.9 172.8	Color code .018 Color code .018 Color code .018 Color code o .018 Color code o	.46 chart No. 1 .46 chart No. 1 .46 chart No. 2F .46	, Technical II .037 , Technical Ir .037 Technical In .040 R, Technical I	.94 Normation S .94 formation S 1.02 Information 1.14	Section. .324 Section. .379 Section. .412 Section. .505	8.23 • 9.63 10.46
94.233 300V 60C	8469† 8466†	9	500 U-1000 1000 250 500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 500 1000 500 1000 500	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 152.4 304.8 30.5 152.4 304.8 30.5	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3 64.1 126.1 17.6 87.9 172.8 20.0	Color code .018 Color code .018 Color code .018 Color code of .018 Color code of .018 Color code of .018	.46 chart No. 1 .46 chart No. 1 .46 chart No. 2F .46 chart No. 2F .46	, Technical II .037 , Technical Ir .037 Technical In .040 R, Technical I .045 R, Technical I	.94 Normation S .94 formation S 1.02 Information 1.14 nformation	Section. .324 Section. .379 Section. .412 Section. .505 Section. .505	8.23 • 9.63 10.46
94.2535 300V 60C	8469† 8466† 8468† 8619†	9 12 15	500 U-1000 1000 250 500 1000 100 250 500 1000 100 250 500 1000 100 250 500 1000 100 500 1000 100 500 1000 100 500 1000 1000	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 152.4 304.8 30.5 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3 64.1 126.1 17.6 87.9 172.8	Color code .018 Color code .018 Color code .018 Color code of .018 Color code of .018 Color code of .018	.46 chart No. 1 .46 chart No. 1 .46 chart No. 2F .46 chart No. 2F .46	, Technical II .037 , Technical Ir .037 Technical In .040 R, Technical I .045 R, Technical I	.94 Normation S .94 formation S 1.02 Information 1.14 nformation	Section. .324 Section. .379 Section. .412 Section. .505 Section. .505	8.23 • 9.63 10.46 12.83
94.2535 300V 60C	8469† 8466† 8468†	9 12 15	500 U-1000 1000 250 500 1000 100 250 500 1000 100 250 500 1000 100 250 500 1000 100 500 1000 100 500 1000	U-152.4 152.4 U-304.8 304.8 305 762 152.4 304.8 30.5 762 152.4 304.8 30.5 762 152.4 304.8 30.5 152.4 304.8 30.5 152.4 305 152.4	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3 64.1 126.1 17.6 87.9 172.8 20.0 99.3 195.0	Color code .018 Color code .018 Color code .018 Color code o .018 Color code o .018 Color code o	.46 chart No. 1 .46 chart No. 1, .46 chart No. 2F .46 chart No. 2F .46 chart No. 2F .46 chart No. 2F	, Technical II .037 , Technical Ir .037 Technical In .040 R, Technical I .045 R, Technical I .045 R, Technical I	.94 formation S .94 formation S 1.02 Information 1.14 nformation	Section. 	8.23 • 9.63 10.46 12.83
912535 300V 60C	8469† 8466† 8468† 8619†	9 12 15 19	500 U-1000 1000 250 500 1000 100 250 500 1000 100 250 500 1000 100 250 500 1000 100 500 1000 100 500 1000 1000 1000 1000 1000	U-152.4 152.4 U-304.8 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 76.2 152.4 304.8 30.5 152.4 304.8 30.5 152.4 304.8 30.5 152.4 304.8	28.7 29.2 56.3 60.3 8.0 20.0 38.6 81.0 10.1 25.7 51.8 103.7 12.6 31.3 64.1 126.1 17.6 87.9 172.8 20.0 99.3	Color code .018 Color code .018 Color code .018 Color code of .018 Color code of .018 Color code of .018	.46 chart No. 1 .46 chart No. 1, .46 chart No. 2F .46 chart No. 2F .46 chart No. 2R .46	, Technical II .037 , Technical Ir .037 Technical In .040 R, Technical I .045 R, Technical I .045 R, Technical I .045 R, Technical II .045	.94 Information S .94 Iformation S 1.02 Information 1.14 Information 1.14 1.14 1.52	Section. .324 Section. .379 Section. .412 Section. .505 Section. .505 Section. .505	8.23 • 9.63 10.46 12.83

Vire Flame Test.


1

and a

))

All and a state of the

))

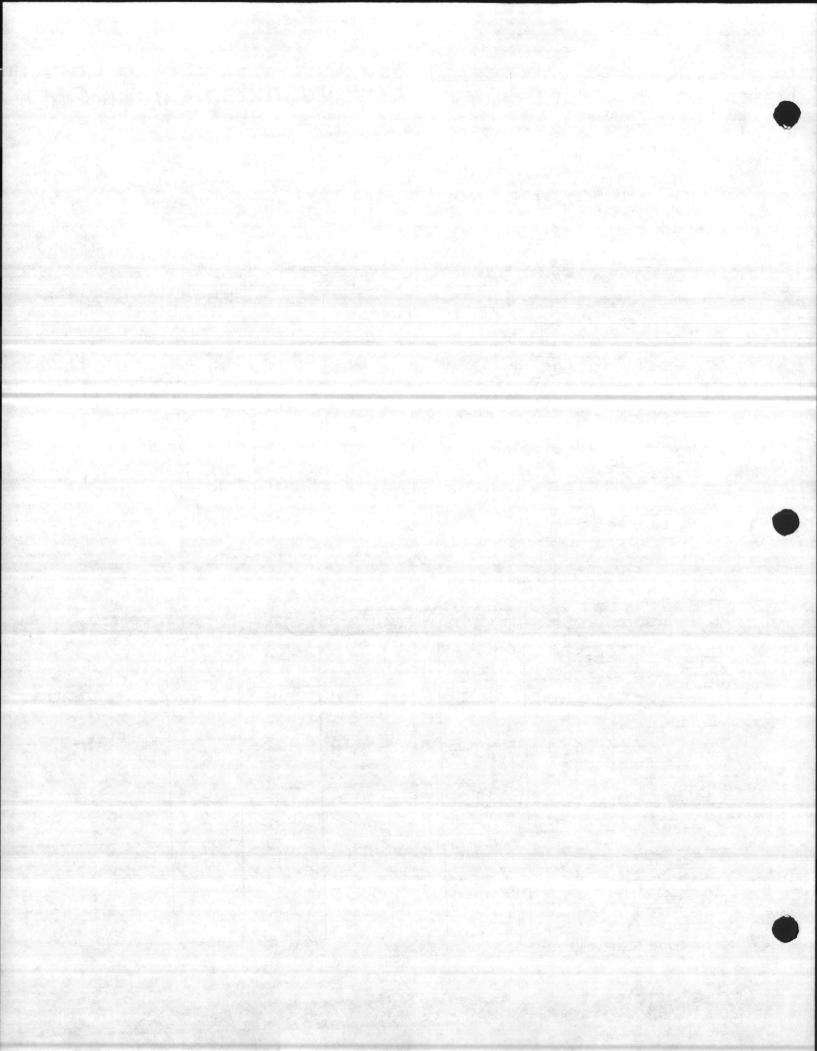
For use on Class 2 circuits as described in Article 725 of the National Electric Code and for use with intercom systems, remote control, burglar alarms and other low voltage systems.

Power Limited Circuit Cables

Plen-Tek Power Limited Circuit Cables Class 2

Article 725-2(b) includes remote signaling and power limited circuits that are not an integral part of a device or appliance. This exception permits use of fluoropolymer materials for direct installation without conduit in air-handling spaces. UL Listed and Classified, Subject 13.

UNSHIELDED PLENUM MULTICONDUCTOR


252388	16 AWG Solid	2		1	NOMINAL OD	
	Bare Copper	2	Tek-Flex	Tek-Flex .017"	.168"	27
52349	18 AWG Solid Bare Copper	2	Tek-Flex	Tek-Flex .017"	.146"	20
57147	18 AWG (7x26) Tin Copper	2	Tek-Flex	Tek-Flex	.158"	21
52351	18 AWG Solid	1. T.Y.		.017"		21
	Bare Copper	4	Tek-Flex	Tek-Flex .017"	.164"	34
52353	18 AWG Solid Bare Copper	6	Tek-Flex	Tek-Flex .017"	.200"	48

SHIELDED PLENUM MULTICONDUCTOR

252564			DIELECTRIC	SHIELO	JACKET MATERIAL		WEIGHT/KFT
	18 AWG Solid Bare Copper	2	Tek-Flex	Foil + Drain	Tek-Flex .017"	.148"	24
257582	18 AWG (7x26) Tin Copper	2	Tek-Flex	Foil + Drain	Tek-Flex .017"	.160"	25
257584	18 AWG (7x26) Tin Copper	4	Tek-Flex	Foil + Drain	Tek-Flex .017"	.185"	40
257484	22 AWG (7x30) Tin Copper	2	Tek-Flex	Foil + Drain	Tek-Flex .017"	.127"	15
258484	22 AWG (7x30) Tin Copper	2	FEP	Foil + Drain	FEP .017"	.127"	17
257486	22 AWG (7x30) Tin Copper	4	Tek-Flex	Foil + Drain	Tek-Flex	.146"	23

References for a second of the second second second second the second second second second second second second

Berk-Tek

Plen-Tek® Power Limited Circuit Cable Class 2 — Unshielded Ulti-Conductor Cables

Insulated & Jacketed with Teflon® FEP

APPLICATION:

For use on Class 2 circuits as described in Article 725 of the National Electric Code and for use with intercom systems, remote control, burglar alarms, and other low voltage systems.

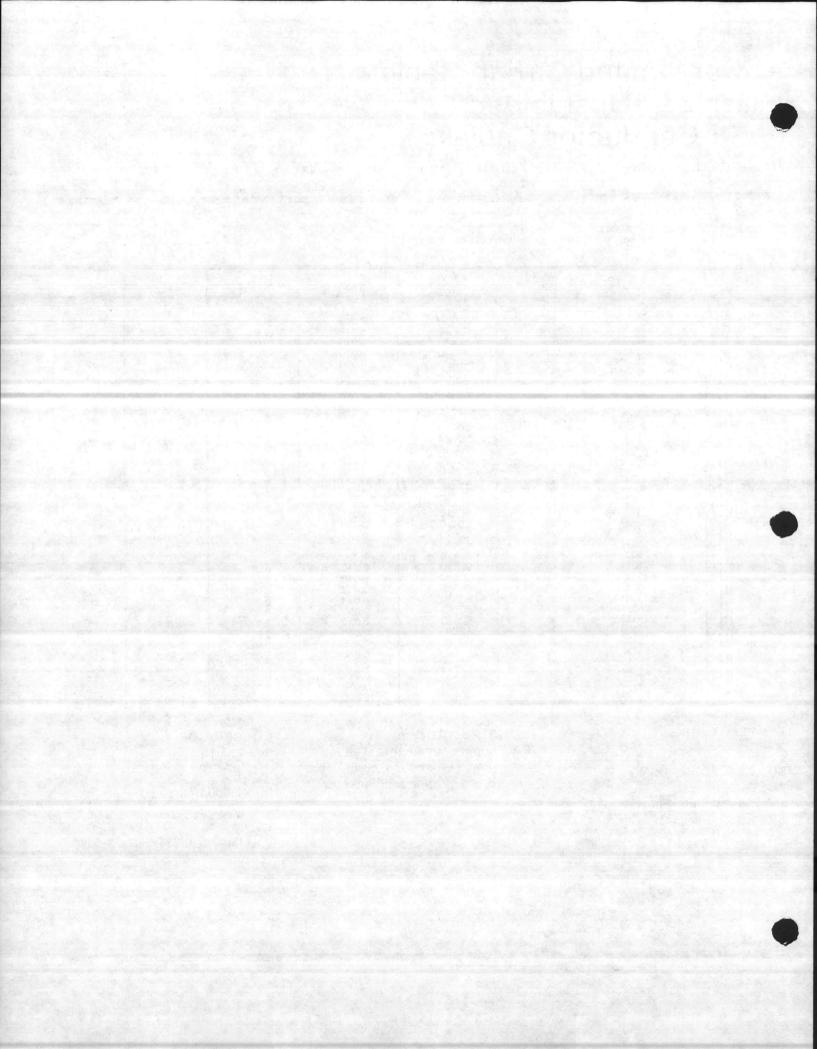
18 AWG SOLID

A	CATALOG NUMBER	NUMBER OF CONDUCTORS	AWG. STRANDING	INSULATION NOMINAL THICKNESS (in.)	JACKET NOMINAL THICKNESS (in.)	NOMINAL OVERALL DIAMETER (in.)	WEIGHT PER KFT (Ibs.)
11		Net 495 12	18 AWG	and the second second	Contract Street	Mark. Angleska	
11	253349	2.	SOLID	0.010	0.017	0.142	18
	253350	3.	SOLID	0.010	0.017	0.150	24
	253351	4	SOLID	0.010	0.017	0.164	31
111	253352	5	SOLID	0.010	0.017	0.180	38
MI	253353	6	SOLID	0.010	0.017	0.196	45
NY I	253354	7	SOLID	0.010	0.017	0.195	51
111	253355	8	SOLID	0.010	0.017	0.213	57
LL I	253356	9	SOLID	0.010	0.017	0.229	64
m	253357	10	SOLID	0.010	0.017	0.250	71
	253358	11	SOLID	0.010	0.017	0.250	77
	253359	12	SOLID	0.010	0.017	0.258	83
	253360	13	SOLID	0.010	0.017	0.272	90
	253361	14	SOLID SOLID SOLID	0.010	0.017	0.272	96
14 15 1	253362	15	SOLID	0.010	0.017	0.288	103
X	253363	16	SOLID	0.010	0.017	0.288	
E	253364	17	SOLID	0.010	0.017	0.304	109
ž	253365	18	SOLID	0.010	0.017	0.304	115
1 2	253366	19	SOLID	0.010	0.017	0.304	121
1 E	253367	20	SOLID	0.010	0.017	0.321	127
ES	253368	21	SOLID	0.010			134
1 a	253369	22	SOLID	0.010	0.017	0.321	140
5	253370	23	SOLID	0.010	0.022	0.347	152
SAFE FY CABLES by DERK-TEK	253371	24	SOLID	0.010	0.022	0.347	158
12	253372	25	SOLID	0.010	0.022	0.368	165
1 5	253373	26	SOLID		0.022	0.368	171
	253374	27	SOLID	0.010	0.022	0.365	177
10	253375	28	SOLID	0.010	0.022	0.376	183
z	253376	29	SOLID	0.010	0.022	0.390	190
PLCN TCK -	253377	30	SOLID	0.010	0.022	0.390	196
-	253378	31	SOLID	0.010	0.022	0.390	202
	253379	32	SOLID	0.010	0.022	0.406	209
	253380	33	SOLID	0.010	0.022	0.406	215
	253381	34	SOLID	0.010	0.022	0.406	221
	253382	35	SOLID	0.010	0.022	0.422	228
1 Maile	253383	36	SOLID	0.010	0.022	0.422	234
	253384	30	SOLID	0.010	0.022	0.422	240
	253384		SOLID	0.010	0.022	0.422	246
		38	SOLID	0.010	0.022	0.439	253
	253386 253387	39	SOLID	0.010	0.022	0.439	259
	255387	40	SOLID	0.010	0.022	0.439	265

TEMPERATURE RATING: 200°C

SUGGESTED WORKING VOLTAGE: 150 volts maximum in accordance with NEC guidelines.

CONSTRUCTION:


Bare copper conductors, Teflon FEP insulation, color coded, conductors cabled, gray Teflon FEP jacket.

COLOR CODE: See Chart 1

PUT UP: Bulk, 1000 ft. & 500 ft. reels

UL Listed & Classified

Hertk-letk D

APPLICATION:

For use on Class 2 circuits as described in Article 725 of the National Electric Code and for use with intercom systems, remote control, burglar alarms, and other low voltage systems.

18 AWG SOLID

Fower Limited Circuit Cable Class 2 — Unshielded Multi-Conductor Cables

Insulated & Jacketed with Tek-Flex®

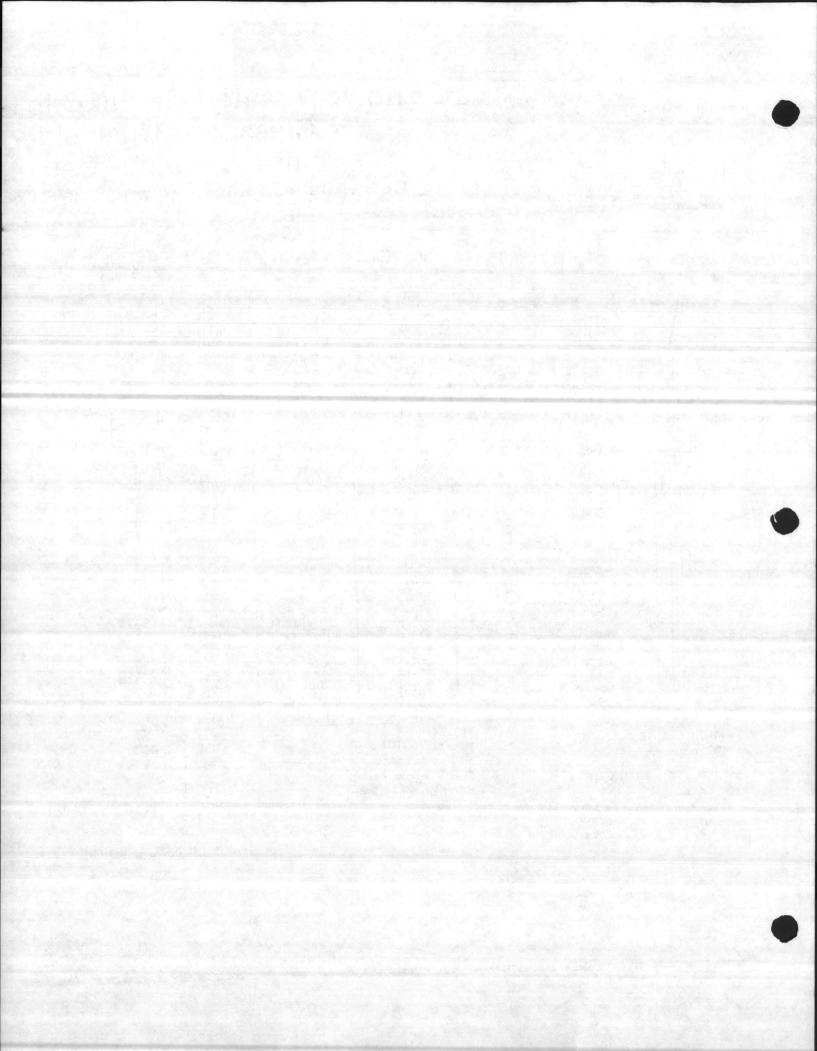
CATALOG NUMBER	NUMBER OF CONDUCTORS	AWG. STRANDING	INSULATION NOMINAL THICKNESS (in.)	JACKET NOMINAL THICKNESS (in.)	NOMINAL OVERALL DIAMETER (in.)	WEIGH PER KFT (Ibs.)
252349 252350 252351 252352 252352 252353 252356 252356 252357 252356 252357 252358 252360 252361 252361 252362 252361 252362 252363 252364 252365 252366 252366 252370 252370 252370 252370 252371 252372 252373 252375 252376 252375 252376 252377 252378 252376 252377 252378 252379 252380 252381 252382 252381 252382 252383 252384 252385 252385	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40	18 AWG SOLID	0.010 0.010	0.017 0.012 0.022	0.142 0.150 0.164 0.180 0.196 0.213 0.229 0.250 0.250 0.250 0.258 0.272 0.272 0.288 0.272 0.288 0.304 0.304 0.304 0.304 0.321 0.321 0.321 0.347 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.390 0.390 0.390 0.390 0.406 0.406 0.422 0.422 0.422 0.422 0.439 0.439	17 23 29 35 42 48 54 61 67 73 79 85 91 98 103 110 115 121 128 133 144 150 157 162 168 174 181 187 192 205 211 217 223 229 234 241 247

TEMPERATURE RATING: 125°C minimum

SUGGESTED WORKING

VOLTAGE:

150 volts maximum in accordance with NEC guidelines.


CONSTRUCTION:

Bare copper conductors, Tek-Flex insulation, color coded, conductors cabled, gray Tek-Flex jacket. COLOR CODE: See Chart 1

PUT UP: Bulk, 1000 ft. & 500 ft. reels

UL Listed & Classified

Derk-Ink

Electronic Cables & Wires

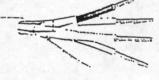
Shielded, Overall

Tinned conductors, poly insulation, mylar aluminum shield overa with drain wire, PVC outer jacket.

	No o' Cond	AttrG Size	Conductor Stranding	AWG :: Drain Wete	tion, ins Inceres	Mon. Jacked The moss	Nor an O I
	X	22	7/30	24	.015	025	170
	3	22	7/30	24	015	025	180
	4	22	7/30	24	015	025	195
host	5	22	7:30	24.	.015	025	210
	6	22	7/30	24	015	025	225
	7	22	7/30	2.1	-0.15	025	225
	8	22	7/30	24	015	025	245
	9	22	7/30	24	015	025	260
	10	22	7/30	24	015	025	.280
	11	22	7/30	24	015	.025	280
	12.	-22	7/30	24	015	.025	300
	23	20	7/28	22	.015	.025	.185
	3	20	7/28	22	.015	.025	.205
ZOGA OK	_ 4	20	7/28	22	.015	.025	.205
70 6	3	20	7/28	22	.015	.025	.220
C all it	6	20 20	7/28	22	.015	.025	.220
OR	7	20	7/28	22	.015	.025	.250
	8	20	7/28	22	.015	.025	.265
1	9	20	7/28	22	.015	.025	.280
i inter	10	20	7/28	22	.015	.025	.320
1	11	20	7/28	22	.015	.025	.335
~	12	20	7/28	22 22 22 22 22 22 22 22 22 22 22 22 22	.015	.025	.370
				1 1 1 1 1 1 1	.015	.025	.385
	2	18	16/30	20	.018	.030	.225
	3	18	16/30	20	.018	.030	.240
	4	18	16/30	20	.018	.030	.250
	23	16	26/30	18	.030	.030	.310
	3	16	26/30	18	.030	.030	.325
	23	14	19/27	16	.030	.035	.350
	3	14	19/27	16	.030	.035	.365
	2	12	19/25	14	.037	.040	.410

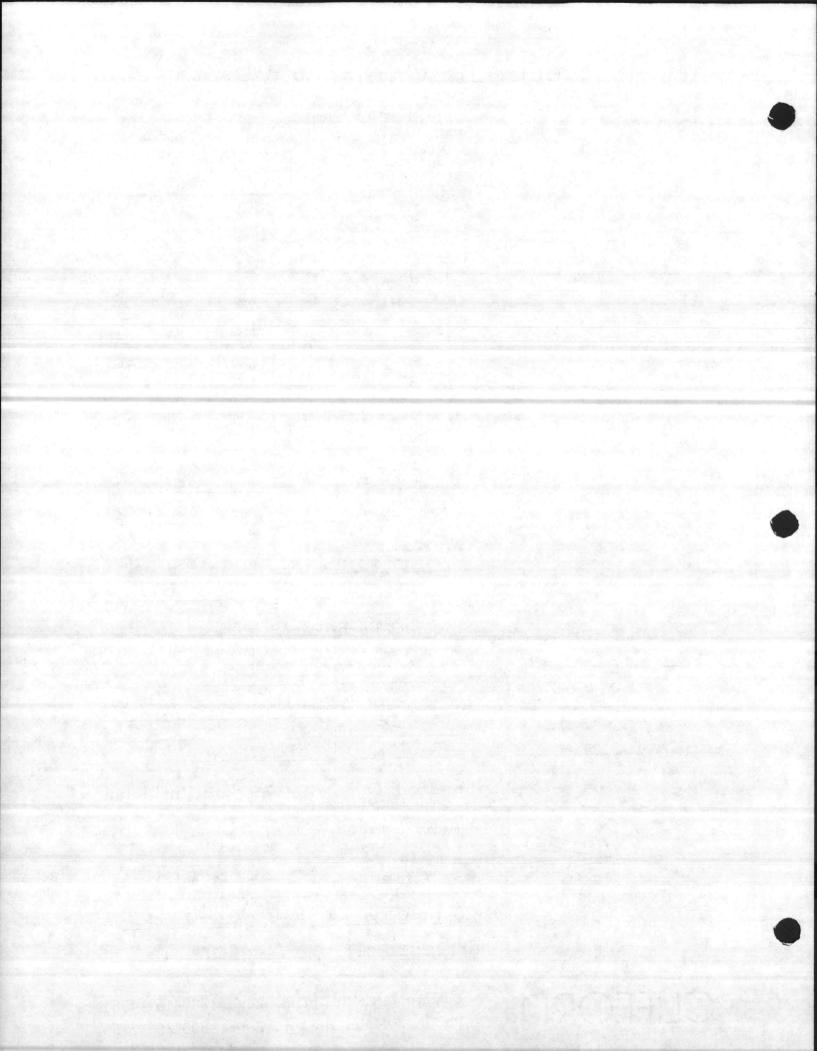
Shielded, Each Pair

Tinned conductors, poly insulation, mylar/aluminum shield with drain over EACH pair, PVC outer jacket.


NO OF	COND	COND STRAND.	NOM INSULATION THICKNESS (INCHES)	NOM JACKET THICKNESS (INCHES)	PERCENT SHIELD COVERAGE	SUGGESTED WORKING VOLTAGE	NOM OF
4	22	7:30	C:010	.025	100-	24004	185

Shielded, One Pair - One Pair Unshielded (Type PI-PO Pair In, Pair Out)

Tinned conductors, poly insulation, mylar/aluminum shield with drain over ONE pair only, PVC outer jacket.


COND	CONDUCTOR SIZE	COND STRAND	NOM INSULATION THICKNESS (MICHES)	NOM JACKET THICKNESS INCHESI	PERCENT SHIELD COVERAGE	-C.1 0 0
^	1 22		2			
i	2.22 shielded		010	020	100	185

Eastern & Central Time Zones: 800-451-4381 Pacific & Mountain Time Zones: 800-255-2253

CLIFFORD

Treves

COMMUNICATION AND CONTROL CABLE

2.3. 4

Multiconductor 80°PVC-150 Volts, 300 Volts.

			1		SOLID					
Alpha No.	No. of Cond.	Condi AWG	uctor Strand	Nom. Ins. Inches	Thickness	Nom. Jkt. Inches			0.D.	Voltage
1793 E	CZ	(22 0	4	.010			mm	Inches	mm	Ratings
1797	2	18			1.25~	_032	-18!	2.154	3.91	LSON
1798	3	18		.016	.41	.020	.50	.190	4.83	300V
1798/4			1	.016	.41	.020	.50	.200	5.08	
	4	18	1	.016	.41	.020	50			300V
1799	2	16	1	.016			.50	.220	5.59	300V
				.010	.41	.020	.50	215	EAC	

			31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			.50	.215	5.46	5 300
						1.		Sec. 1	and the second second
	and the second second second		Nom. Ins.	Thickness	Nom. Jkt		s Nom	inal O.D.	Volta
2	22					mm	Inches	mm	Ratin
3	22					.81	.164	4.17	150
4	/22		1 .9.0	1		/ /	.169/	4:29	/1503
2	20		0				.194	4.93	/ Usdy
3	20						.180	4.57	300V
4	20					.50	.190	4.83	300V
5						.50	.215	5.46	300V
6						.50	.233	5.92	300V
7					.020	• .50	.255	6.48	300V
8					.020	.50	.255	6.48	300V
					.020	.50	.270	6.86	: 300V
					.020	.50	.300	7.62	3007
					.020	.50	.335	8.51	300V
					.020	.50	.350		3007
					.030	.76	.395		3007
					.020	.50	.200		300V
					.020	.50	.210		300V
				and the second se	.020	.50	.240		300V
				.41	.020	.50			300V
				.41	.020	.50			300V
			.016	.41	.020				
				.41	.025				.300V
				.41	000				300V
			.016	.41 .	.025				300V
			.016	.41 .					3000
		16/30	.016	41 .					300V
		16/30	.016 .	41 .					300V
		16/30	.016 .	41 .0					3007
		26/30	.016 .4	41 .(300V
	16	26/30	.016 .4						300V
	16	26/30							300V
	14	41/30							300V
3		41/30							350V
	12	65/30							350V
3	12		020 .5		20 .5	.30	0 7.	.62	350V
	Conc 2 3 4 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 10 12 15 2 3 4 5 6 7 8 9 9 10 12 15 2 3 4 5 6 7 8 9 9 10 12 15 2 3 4 5 6 7 8 9 9 10 12 15 2 3 4 5 6 7 8 9 9 10 12 15 2 3 4 5 6 7 8 9 9 10 12 15 12 15 15 19 25 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 2 3 4 2 3 2 3 4 2 2 3 2 2 3 2 2 3 4 2 2 3 2 2 3 2 2 3 4 2 2 3 2 2 3 4 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 3 2 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	Cond. AW 2 22 3 22 4 22 2 20 3 20 4 20 5 20 6 20 7 20 8 20 9 20 10 20 12 20 15 20 2 18 3 18 4 18 5 13 6 18 7 18 8 18 9 18 10 18 12 18 15 18 19 18 2 16 3 16 4 16 2 14 3 14 2 12	Cond. AWG Strand 2 22 7/30 3 22 7/30 4 22 7/30 2 20 10/30 3 20 10/30 3 20 10/30 4 20 10/30 5 20 10/30 6 20 10/30 6 20 10/30 7 20 10/30 8 20 10/30 9 20 10/30 10 20 10/30 12 20 10/30 12 20 10/30 13 18 16/30 3 18 16/30 4 18 16/30 5 18 16/30 6 18 16/30 9 18 16/30 10 18 16/30 12 18 16/30	Cond. AWG Strand Inches 2 22 $7/30$ -010 3 22 $7/30$ $.010$ 4 22 $7/30$ $.010$ 4 22 $7/30$ $.010$ 4 20 $10/30$ $.016$ 3 20 $10/30$ $.016$ 4 20 $10/30$ $.016$ 4 20 $10/30$ $.016$ 5 20 $10/30$ $.016$ 6 20 $10/30$ $.016$ 7 20 $10/30$ $.016$ 9 20 $10/30$ $.016$ 10 20 $10/30$ $.016$ 12 20 $10/30$ $.016$ 12 20 $10/30$ $.016$ 12 20 $10/30$ $.016$ 3 18 $16/30$ $.016$ 4 18	No of Cond. Conductor AWG Nom. Ins. Thickness Inches mm $\hat{2}$ 22 7/30 $\oplus 10$.25 $\hat{3}$ $\hat{22}$ 7/30 $\oplus 10$.25 $\hat{4}$ 22 7/30 $\oplus 10$.25 $\hat{4}$ 20 10/30 .016 .41 $\hat{5}$ 20 10/30 .016 .41 $\hat{5}$ 20 10/30 .016 .41 $\hat{6}$ 20 10/30 .016 .41 $\hat{7}$ 20 10/30 .016 .41 $\hat{9}$ 20 10/30 .016 .41 $\hat{12}$ 10 .016 .41 $\hat{12}$ 18 $16/30$.016 .41 $\hat{13}$ 18 $16/30$.016<	Cond. AWG Strand Inches mm Inches $\hat{\ell}$ 22 7/30 $\hat{4}10$.25 .032 3 22 7/30 .010 .25 .032 4 22 7/30 .010 .25 .032 2 20 10/30 .016 .41 .020 3 20 10/30 .016 .41 .020 4 20 10/30 .016 .41 .020 5 20 10/30 .016 .41 .020 6 20 10/30 .016 .41 .020 7 20 10/30 .016 .41 .020 9 20 10/30 .016 .41 .020 10 20 10/30 .016 .41 .020 12 20 10/30 .016 .41 .020 12 20 10/30 .016 <t< td=""><td>No of Cond. Conductor AWG Nom. Ins. Strand Inches mm Inchess mm 2 22 7/30 $0$10 .25 .032 .81 3 2^2 7/30 $0$10 .25 .032 .81 4 22 7/30 $0$10 .25 .032 .81 2 20 10/30 .016 .41 .020 .50 3 20 10/30 .016 .41 .020 .50 4 20 10/30 .016 .41 .020 .50 5 20 10/30 .016 .41 .020 .50 6 20 10/30 .016 .41 .020 .50 7 20 10/30 .016 .41 .020 .50 10 20 10/30 .016 .41 .020 .50 12 20 10/30 .016 .41 .020</td><td>No.ol Cond. Conductor AWG Nom. Ins. Strand Inches Inches Mom. Ins. mm Thickness Inches Nom. Inches Inches Nom. Inches Inches Nom. Inches Inches Nom. Inches Inches Nom. Inches Inches Inches Inches Inches Nom. Inches Inches I</td><td>No of Cond Conductor AWG Nom. Ins. Strand Thickness Inches Nom. Ist. Inches Thickness mm Nom. Ist. Inches Thickness mm Nom. Inc. 2 22 7/30 410 .25 .032 .81 .164 4.1/j 3 22 7/30 610 .25 .032 .81 .164 4.1/j 4 22 7/30 .016 .41 .020 .50 .180 4.57 3 20 10/30 .016 .41 .020 .50 .190 4.83 4 20 10/30 .016 .41 .020 .50 .215 5.46 5 20 10/30 .016 .41 .020 .50 .255 6.48 7 20 10/30 .016 .41 .020 .50 .255 6.48 9 20 10/30 .016 .41 .020 .50 .300 7.6 10 20 <t< td=""></t<></td></t<>	No of Cond. Conductor AWG Nom. Ins. Strand Inches mm Inchess mm 2 22 7/30 0 10 .25 .032 .81 3 2^2 7/30 0 10 .25 .032 .81 4 22 7/30 0 10 .25 .032 .81 2 20 10/30 .016 .41 .020 .50 3 20 10/30 .016 .41 .020 .50 4 20 10/30 .016 .41 .020 .50 5 20 10/30 .016 .41 .020 .50 6 20 10/30 .016 .41 .020 .50 7 20 10/30 .016 .41 .020 .50 10 20 10/30 .016 .41 .020 .50 12 20 10/30 .016 .41 .020	No.ol Cond. Conductor AWG Nom. Ins. Strand Inches Inches Mom. Ins. mm Thickness Inches Nom. Inches Inches Nom. Inches Inches Nom. Inches Inches Nom. Inches Inches Nom. Inches Inches Inches Inches Inches Nom. Inches Inches I	No of Cond Conductor AWG Nom. Ins. Strand Thickness Inches Nom. Ist. Inches Thickness mm Nom. Ist. Inches Thickness mm Nom. Inc. 2 22 7/30 410 .25 .032 .81 .164 4.1/j 3 22 7/30 610 .25 .032 .81 .164 4.1/j 4 22 7/30 .016 .41 .020 .50 .180 4.57 3 20 10/30 .016 .41 .020 .50 .190 4.83 4 20 10/30 .016 .41 .020 .50 .215 5.46 5 20 10/30 .016 .41 .020 .50 .255 6.48 7 20 10/30 .016 .41 .020 .50 .255 6.48 9 20 10/30 .016 .41 .020 .50 .300 7.6 10 20 <t< td=""></t<>

Passes UL UL 2509. UL 2575

DESCRIPTION

- Each conductor tinned copper
- Color coded polyvinylchloride insulation
 Gray polyvinylchloride jacket

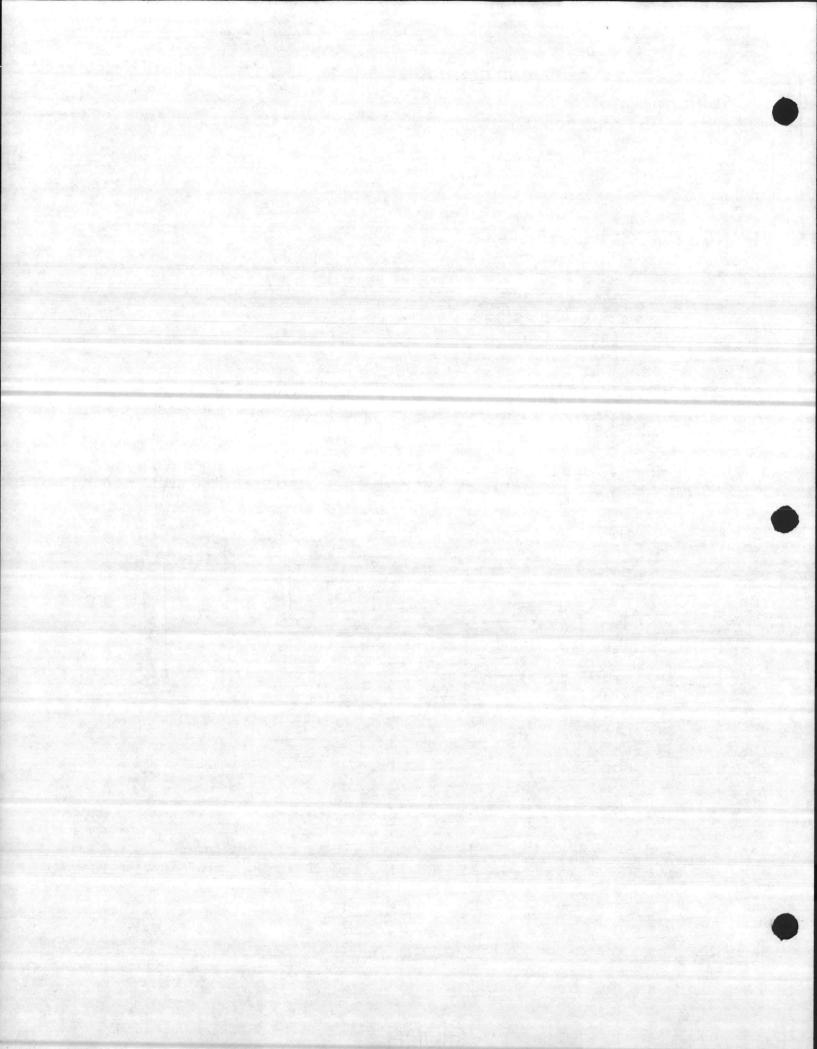
NA.

- Items with .010" ins. per UL 2576 Items with .016" ins. per UL 2509

CHARACTERISTICS

Temperature Range: -20°C to +80°C (UL 80°C)

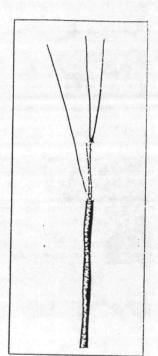
These items not listed by UL. DLOR CODE: Chart D Page 58


STANDARD PUT-UP: 100 Ft., 500 Ft., 1000 Ft.

alpha

A STATE OF A CASE OF A CAS

ALCONT. AND A


(D):

Multiconductor Foil Shield 60° C PE/PVC-300 Volts

*UL 2092, 2093, 209

Alpha No.	No. of Cond.	Conc	ductor Strand	Nom. Ins. T Inches	hickness mm	Nom. Wall Inches				Cond.
2400 /	2	24		.016			mm	Inches	mm	Color Code
			7/32		.41	,020	.50	1.160	4.06 1	1, 3
2401	2	22	7/30	.016//	.41	,020	.50	/ .170	4.32/	1.3/
2402	2	22	7/30	,016 /	.41 /	<i>¦</i> 020	.50	.170	/4.32	1.2
2403	3	,22	7/30	.016/	.41	.020	.50	.185	4.70	1.2.3/
2 104~	4/	82	7730_	016	×.41		.50	.210	5.33-	-1-23.4
2411	2	20	10/30	.016	.41	.020	.50	.186	4.72	1, 3
2412	2	20	10/30	.016	.41	.020	.50	.186	4.72	1, 2
2413	3	20	10/30	.016	.41	.020	.50	.205	5.21	1, 2, 3
2414	4	20	10/30	.016	.41	.020	.50	.225	5.72	1, 2, 3, 4
2421	2	18	16/30	.016	.41	.020	.50	.210	5.33	1, 3
2422	2	18	16/30	.016	.41	.020	.50	.210	5.33	1, 2
2423	3	18	16/30	.016	.41	.020.	.50	.230	5.84	1, 2, 3
2424	4	18	16/30	.016	.41	.020	.50	.255	6.48	1, 2, 3, 4
2432	2	16	26/30	.016	.41	.020	.50	.245	6.22	1, 2
2433	3	16	26/30	.016	.41	.020	.50	.270	6.86	1, 2, 3
2442†	2	14	41/30	.020	.50	.030	.76	.310	7.87	1, 3
2444†	2	12	65/30	.020	.50	.030	.76	.350	8.89	1. 3

COLOR CODE: 1-Black: 2 -Red: 3-Clear: 4-Green. -2 Cond.-UL 2092. 3 Cand.-UL 2093. 4 Cond.-UL 2094. TNOT UL LISTED.

DESCRIPTION

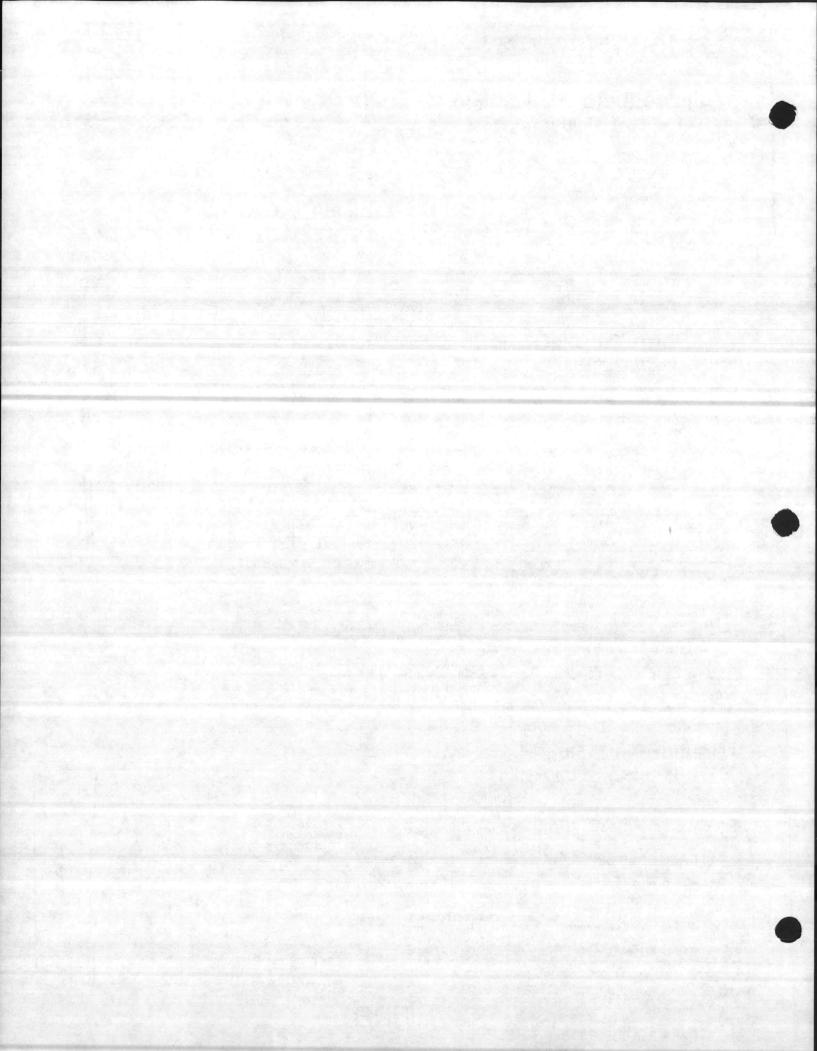
- Each conductor stranded tinned copper
- Color coded polyethylene insulation Conductors cabled
- Wrapped Mylar supported aluminum
- foil shield
- Drain wire
- · Gray polyvinylchioride jacket

CHARACTERISTICS

Suggested Temperature Range: -20°C to +80°C (UL + 60°C)

STANDARD PUT-UP: 100 FT., 500 FT., 1000 FT.

- Voltage Rating: 300 volts
- · Light weight
- Small cable diameter
- Provides 100% shield coverage


Miniature Foil Shield 105°C PP/PVC-200 Volts

		TWO C	ONDUCTOR			
,/ Alpha No.	Conc	Strand	Nom. Jkt. Inches	Thickness mm7	Nomina Inches	al 0.D. mm
2460†	22	Solid	.018	.45	.118	3.00
2461t	22	7/30	.020	.50\	.135	3.43
COLOR CODE: Black, Re: TNOT UL LISTED.		- Chester		STANDAR	D PUT-UP: 100 FL.	500 FL. 1000 FL
• Each conductor : tinned copper • Color coded pol, insulation		ded	-20°C t	rature Range o +105°C	:: Voltage: 200 V	/olts

1

- insulation
- Nominal Ins in thess .008" (.20 mm)
- · Aluminum, Mylar foil shield with drain wire
- · Gray polyvinylch pride jacket
- - alpha

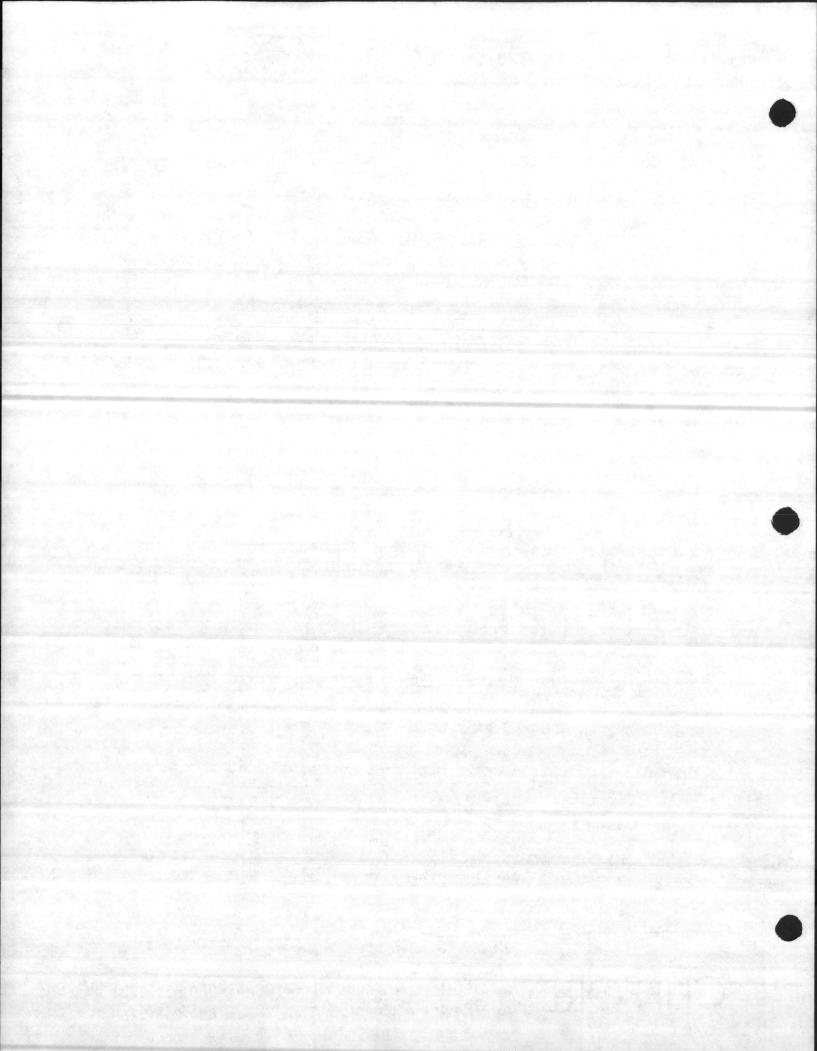
Electronic Cables & Wires

.2.3.4

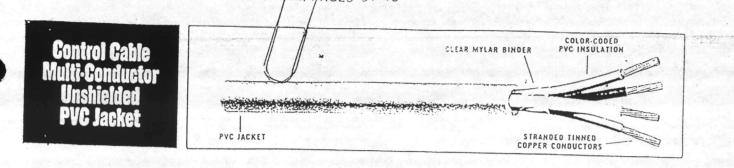
Multi-Conductor Unshielded

Tinned conductors, Poly insulation, PVC outer jacket.

e service frank	No of Cond.	Cona Size	Con-i. Strand.	Nom Ins Thickness (Inches)	Nom Jacket Thickness (Incres)	00 OD (Inches)
22 AWG	2 3 4 5 6 7 8 9 0 11 12 5 8 9 0 11 12 5 3 0 0 5 6 9 10 11 12 15 8 25 3 0 0 5 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10		7/30 7/30 7/30 7/30 7/30 7/30 7/30 7/30	.012 .010 .010 .010 .010 .010 .010 .010	.025 .030 .030 .030 .030 .030 .030 .030 .03	165 170 180 195 210 230 245 265 270 270 270 270 270 270 270 270 270 270
20 AWG	2 3 4 5 6 7 8 9 10 11 12 14	20 20 20 20 20 20 20 20 20 20 20 20 20	7/28 7/28 7/28 7/28 7/28 7/28 7/28 7/28	.015 .015 .015 .015 .015 .015 .015 .015	030 030 030 030 030 030 030 030 030 030	.200 .230 .230 .256 .265 .300 .310 .350 .350 .370 .370 .390 .405
18 AWG	234579215	18 18 18 18 18 18 18 18 18	16/30 16/30 16/30 16/30 16/30 16/30 16/30	.018 .018 .018 .018 .018 .018 .018 .018	.030 .030 .030 .030 .030 .030 .030 .030	.236 .245 .265 .285 .310 .375 .400 .420
16 AWG	23	16 16	26:30 26/30	023 023	030 030	265
14 AWG	23	14 14	19/27 19:27	030	030 030	335 340
12 AWG	23	12 12	19/25 19/25	030 .030	030 030	375 380


•

CLIFFORD


Eastern & Central Time Zones: 800-451-4381 Pacific & Mountain Time Zones: 800-255-2253

or call collect: 802-234-9921

7

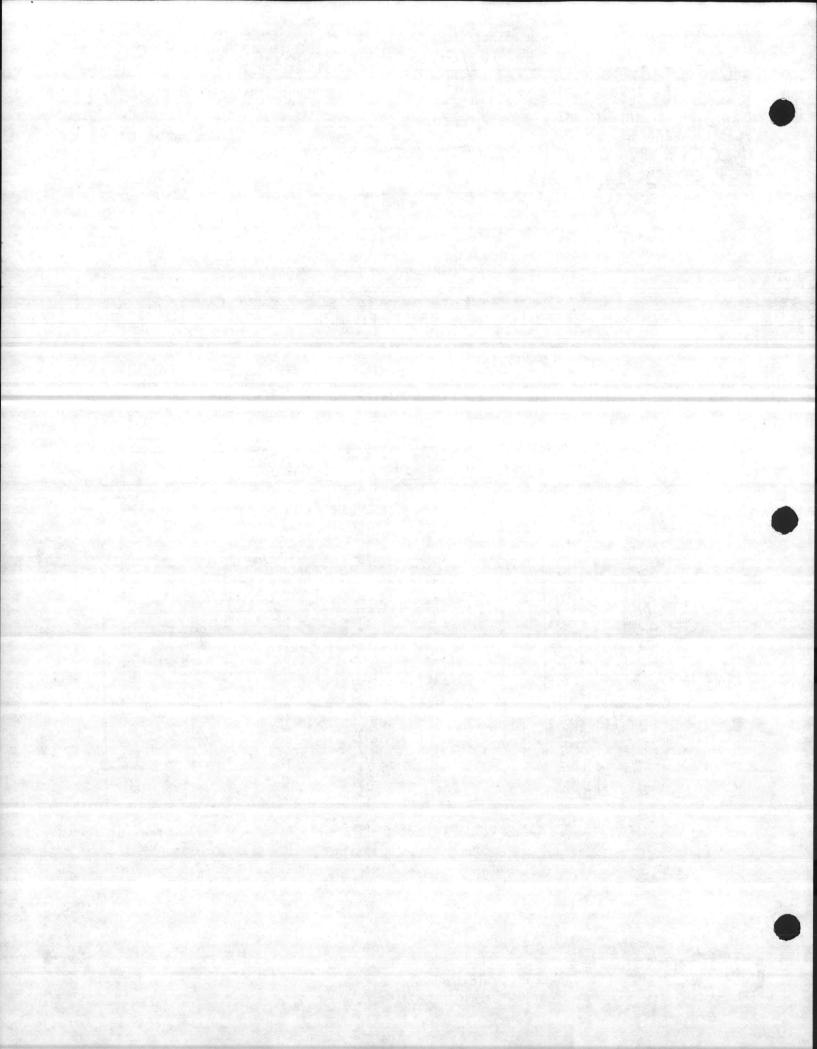
INSTRUMENTATION AND CONTROL CAELE, MAGES 31-40

Stock Color: Chrome gray jacket.

- Construction: Tinned copper conductors, color-coded PVC insulation, mylar binder overall (no mylar binder on Cat. Nos. C2404, C2420, C2421, C2422), PVC jacket, conductors cabled.
- Specifications: -20°C to +60°C. Suggested working voltage 18 gauge 400V; 16 gauge 12 gauge 600V. ENTIRE CABLE PASSES VW-1 VERTICAL FLAME TEST.
- Applications: Interconnecting cables for electronic equipment, control circuits, broadcast and studio use, temperature control systems.

Put-up: 100', 500' and 1000' spools. (Other put-ups also available.)

	CATALOG NUMBER	NUMBER OF CONDUCTORS	CONDUCTOR	CONDUCTOR	NOM. INSULATION THICKNESS	NOM. JACKET THICKNESS	NOM. O.D
COLOR CODE OF CONDUCTORS				<u> </u>	(INCHES)	(INCHES)	(INCHES)
						Sec. 1	
DUCTOR	· C2404	1	10	UL listed			a new parts
1Black	· C2420	4	18	16/30	.018 (UL-2464)	.030	.265
2White	· C2421	5	18	16/30	.018 (UL-2274)	.037	.300
3Red 4Green	· C2422	0	18	16/30	013 (UL-2276)	.037	.324
5Orange	C2412	12	18	16/30	.018 (UL-2278)	.037	.379
6Blue	C2423	15	18	16/30	.018 (UL-2281)	.040	.430
7White/Black 8Red/Black	C2424	19	18	16/30	.018 (UL-2284)	.045	.485
9Green/Black	C2433	25	18	16/30	.018 (UL-2288)	.045	.510
0Orange/Black		25	18	16/30	.018 (UL-2598)	.060	.625
1Blue/Black 2Black/White	C2425 C2434	4	16	19/29	.030	.045	.375
	C2434	5	16	19/29	.030	.045	.410
Green/White	C2425	/	16	19/29	.030	.045	.445
Blue/White Black/Red	C2435	.9	16	19/29	.030	.045	.510
	C2427	12	16	19/29	.030	.060	.610
Orange/Red	C2420	15	16	19/29	.030	.060	.675
Blue/Red	C2425	19	16	19/29	.030	.065	.725
OrangelGreen	1 222010 - 10.2	25	16	19/29	.030	.065	.830
Black/White/Red	C2430	4	14	19/27	.045	.045	.480
White/Black/Red Red/Black/White	C2437	5	14	19/27	.045	.060	.555
Green/Black	C2431	1	14	19/27	.045	.050	.605
/White	C2438	9	14	19/27	.045	.065	.715
Per IPCEA Color Code.	C2432	12	14	19/27	.045	.065	.800
	C2439	15	14	19/27	.045	.080	.920
	C2440	4	12	65/30	.045		
	C2442	7.	12	65/30	.045	.045	.540
	C2444 ·	10	12	65/30	.045	.080	.675


ClFirst color in stripe combination is body color. Second or third colors are stripes. Example: White, Black Red. Other striped combinations available to order.

Color Cose Chart 1. P 14

CO

ELECTRONIC CABLES ELECTRICAL DIVISION

ECTRICAL METALLIC TUBING (E.M.T.) Specifications

When you specify Allied E.M.T., you can be sure of full value Full protection for the electrical system, economical installation, and total coce compliance for the raceway system.

Allied E.M.T. is easy to cut, bend and join. It provides smooth, continuous raceways for fast wire pulling. (Allied E.M.T. is also known by the descriptive brand name E-7 Pull" (liswail.)

Allied E.M.T. resists rust, impact, and chemical attack. II provices radiation protection and magnetic shielding. It is manufactured from the highest grade mild strip steel-steel that combines damage-resistant strength with ductility that assures easy bends and cuts to prevent waste of time and material. It bends without flattening, rippling, kinking, or spliffing.

The exterior of Allied E.M.T. is first hot-dip gaivanized? on the patented Allied Flo-Coat* process and then chromated. These two uniformly applied coats form an uninterrupted double barner against rust.

The interior wall of Allied E.M.T. is coaled with a specially formulated silicone epoxy-ester lubricant for easier fishing and wire pulling, even through multiple 90° bends.

Recognized as an equipment grounding conductor (1.50 Article 250-9151

> HOT-DIP GALVANIZED coaline physically bonded to steel seals out rust.

> > UNDERWRITERS' LABORATORIES lacel signifies compliance with U.L. 797. ···· · · · · · · · · · · · · ·

CHECMATE COATING over zinc for long life and bright appearance.

> EASY-PULLING INTERIOR coated with a protective lubricant that helps wires glide through.

UNIFORM WALL THICKNESS

DUCTILE STEEL for easy cuts and bends. Reduces waste and installation time.

Specifying Allied E.M.T.

To specify Allied E.M.T., include the followinc: All thinwall conduit (Electrical Metallic Tubing) shall be as manufactured by Allied Tube & Conduit Corporation. This tubing shall be galvanized steel, bear an Underwriters' Laboratories label, and shall conform to Federal

Specification WWC-563 (latest revision) and American National Standards Institute (A.N.S.I.) Specification C80.3. Installation of E.M.T. shall be in accordance with Article 348 of the National Electrical

Weights and Dimensions for Electrical Metallic Tubing

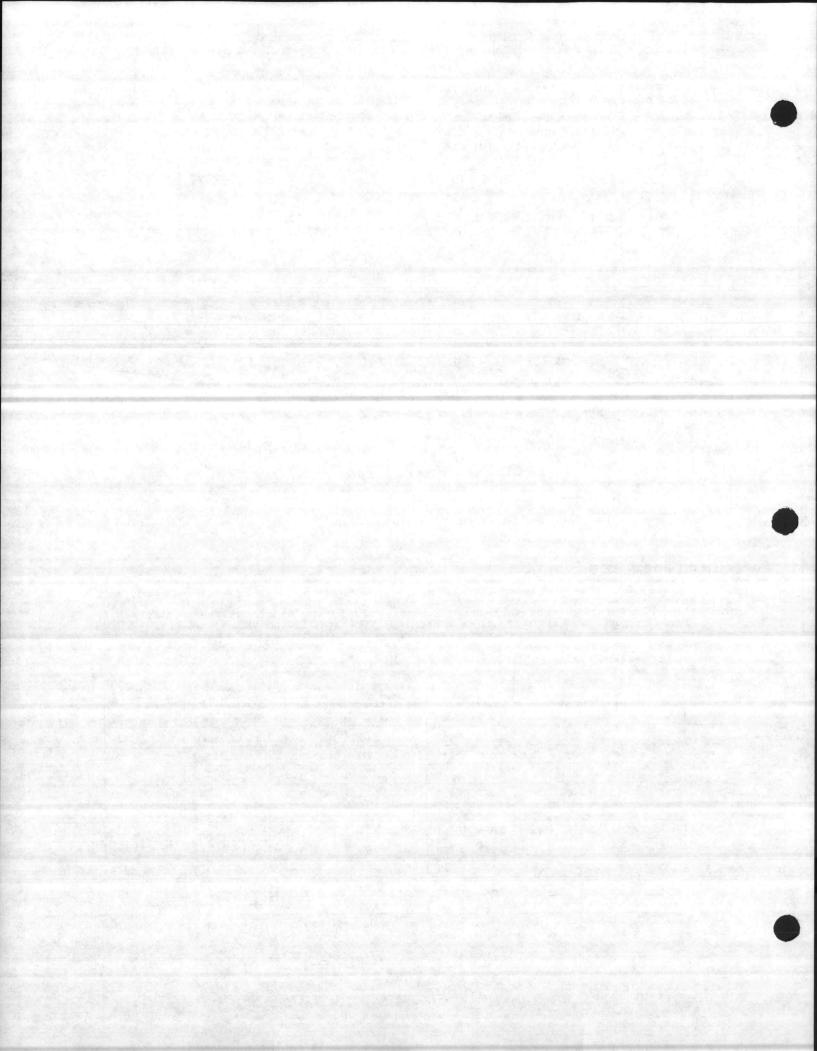
·...

......

ing

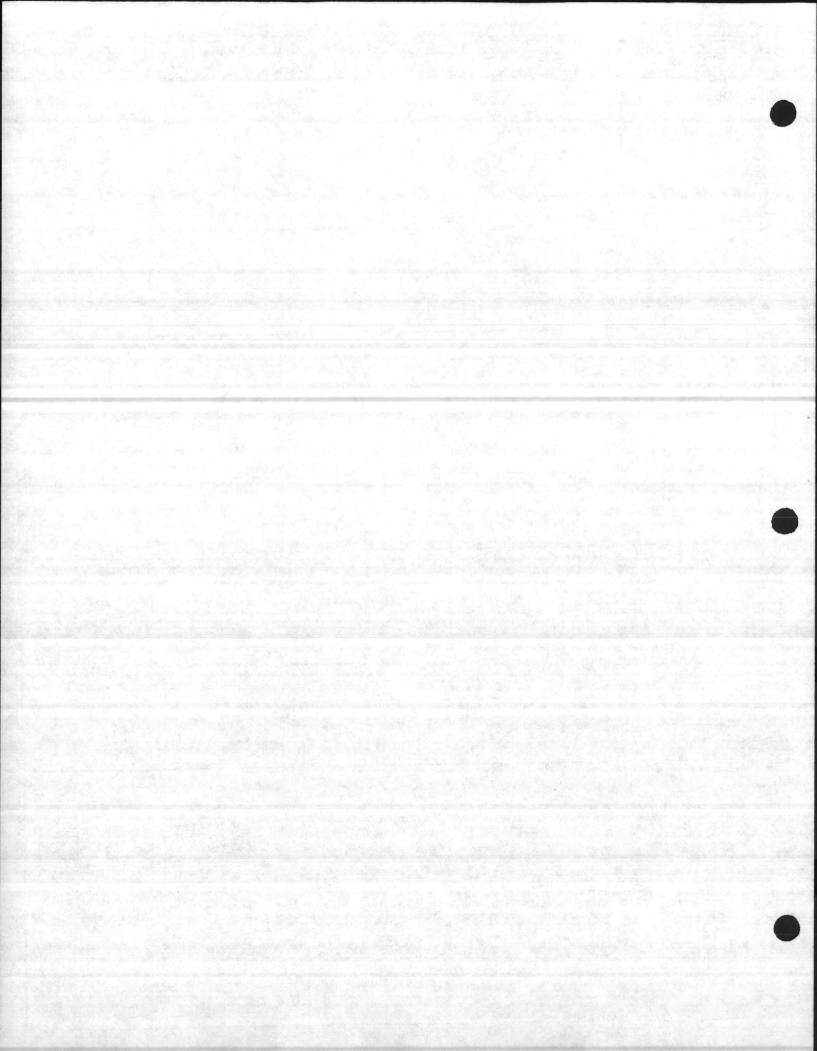
Code and U.L. General Information Card ≠ FJMX. 1 1.7. 120 24

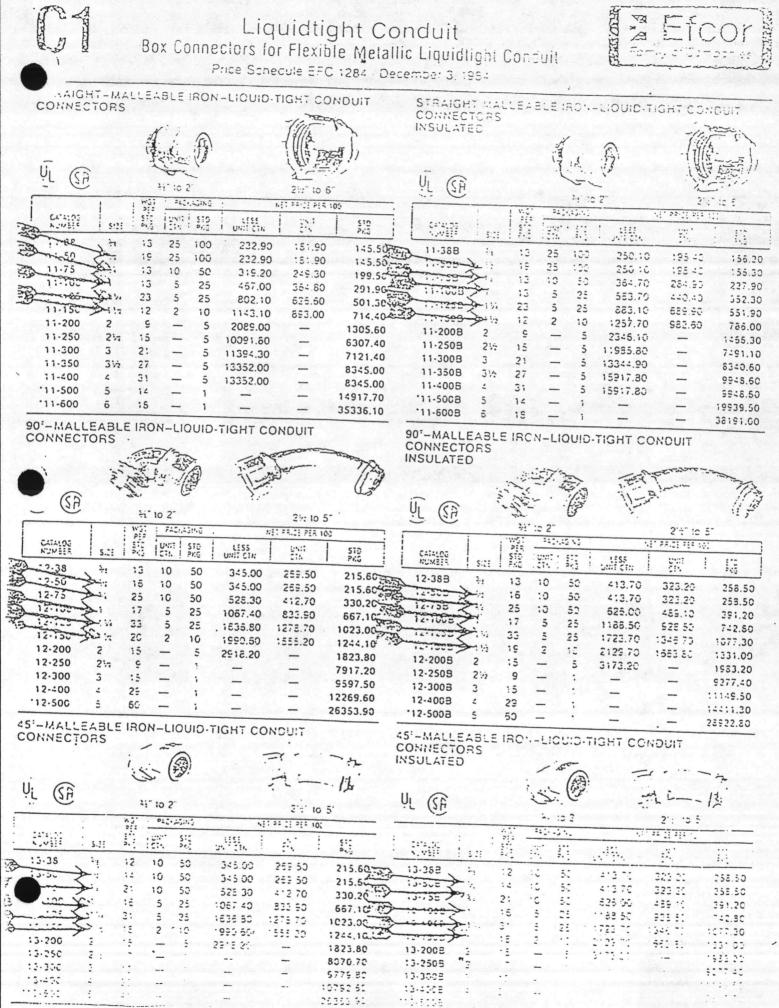
Trade . Size,		. W1. per (30.5m)	Nor Ovtat	ninal de Dia.	No Well T	minal hickness	Finlah	ngth of •d Condult	1	Ouandty n Primary Buncle	O In D	La ster	App of B	noz m	Vol	lume La ster ndle
	10	- 10 - 1	· In ·	· mm	. In .	v. mm		····· m .	· · π	1.25 m	1:5: 1 :		· · · · · · ·		- : cu R:	1. cum -
1 : 4	29	:3.15	0.706	** 17.9	0.042	. 1.067	1 10.	3.05	110	0	5,000	1.524	1.450	2 658	23.3	.659
1. 24 .	45	20.41	0.922	23.4	0.049	1.245	1:10	3.05	1.10	0.3.30.48	5,000	37.1.524	: 2,250	1,021	1:33.0	5.934
学 !!	65	29.48	1.163	29.5	0.057	1.448	1:10	3.05	5	15.24	2,500	762	1.625	: 15737	31.8	
> 1	96	43.55	1.510	. 38.4	0.065	.* 1.651*	1:10	3.05	1.5	0 15.24	12:000	510	1:920		1:45.2	1.279
30:00	:11	50.35	1.740	44.2	0.065	1.651	1 10	3.05	5	15.24	1,500	457	1.665	1755	1:39.0	.1.104
2	141	53.96	2.197	55.8	0.065	1.651	10	3.05	3	9.14	-1.000	305	1.410	- 6-40	41.7	1.151
2':	215	97.52	2.875	73.0	0.072	. 1.829	1 10	3.05	1:4		5610	136	1.312	595	46.7	1.322
3	250	1:7.94	3.500	88.9	0.072	1.829	· 10	13.05	13-	1222	520	* : 7 159	1.552	1704	55.0	1.585
3142	325	:47.42 !	4.000			2.108		· 3.05		: 5-3				and the second se		
2)	390	:75.90	4.500	114.3	0.083	- 2.108	1:10	3.05		6-3-1- 1)						

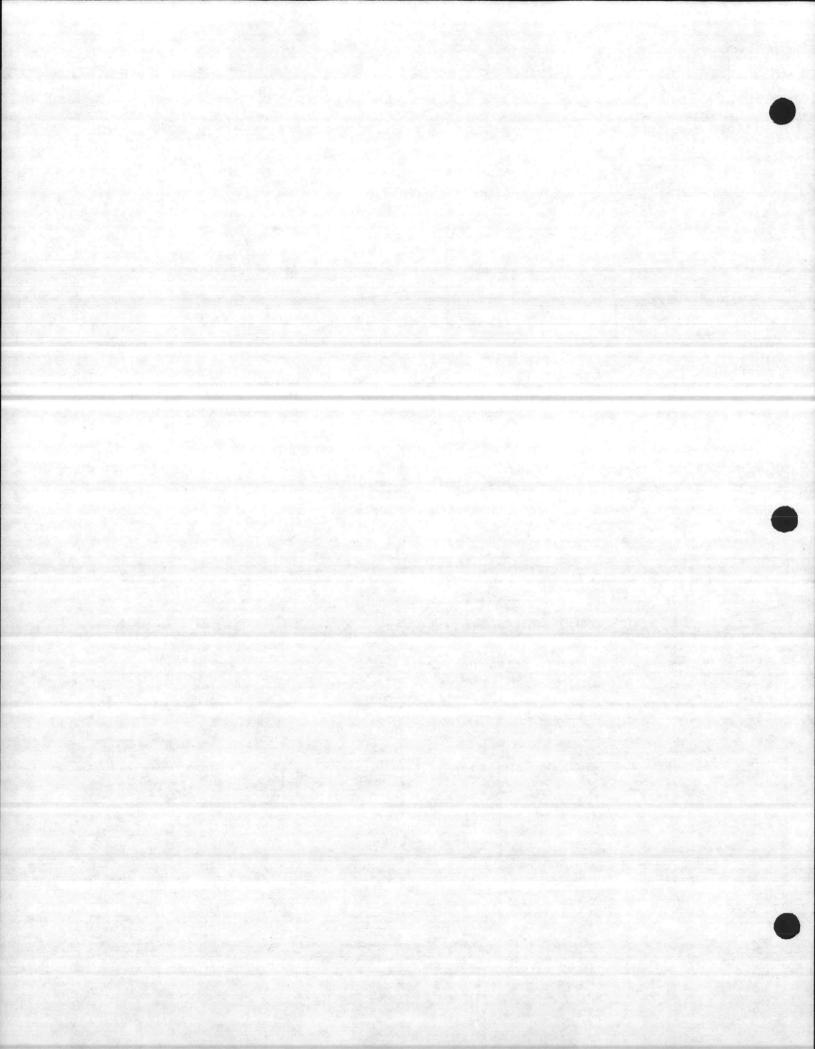

"Custe same e services. = 005 in (13m =.010 in (.25 mm) for trade size 214". =.015 n. 1.35 = 000 n (\$1 mm) by Length Gerance : 25' 5 35 mm ות יי ייייייייייייי

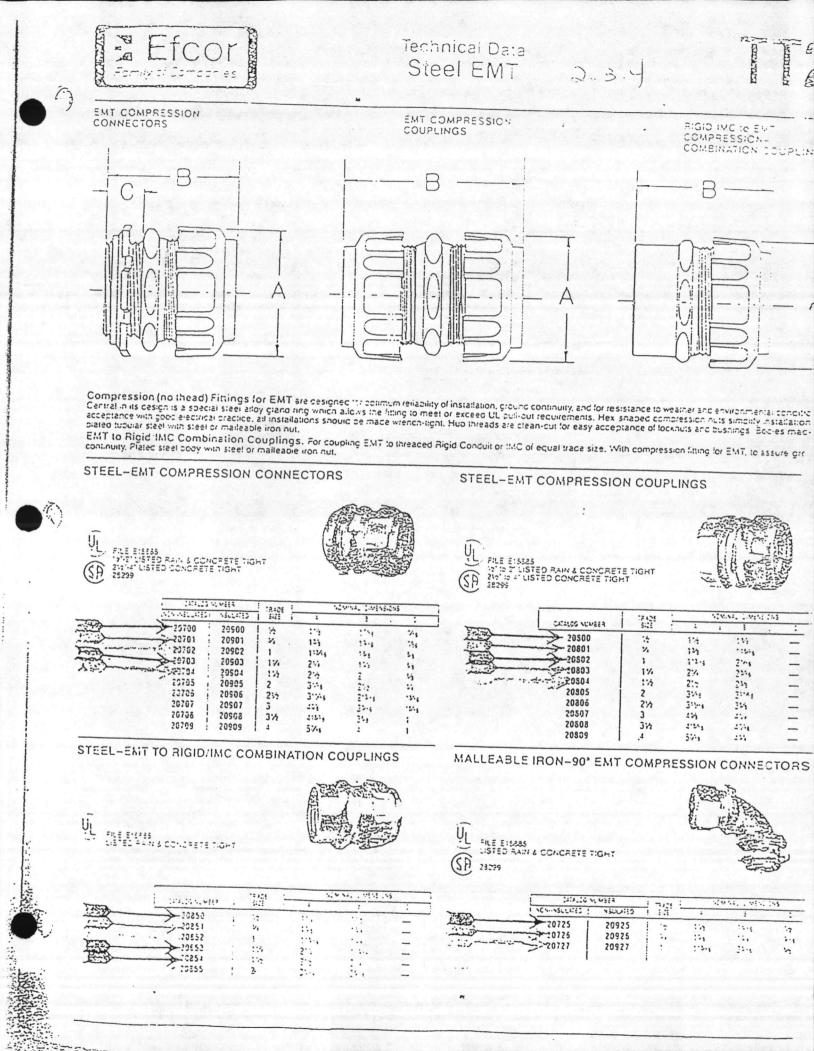
1511

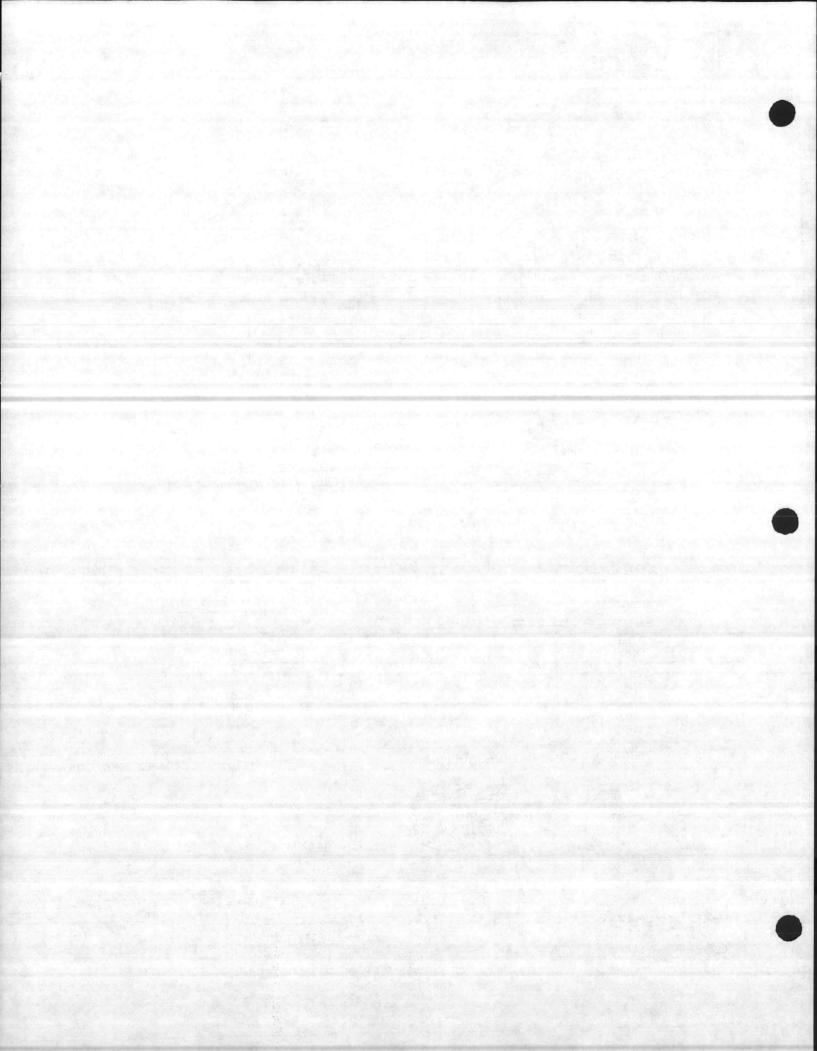
16100 S. Lathrop, Harvey, IL 60426 Phone: (312) 339-1610, Telex: 25-4352 Primary manufacturing facilities in Harvey, IL and Priladelphia: PA

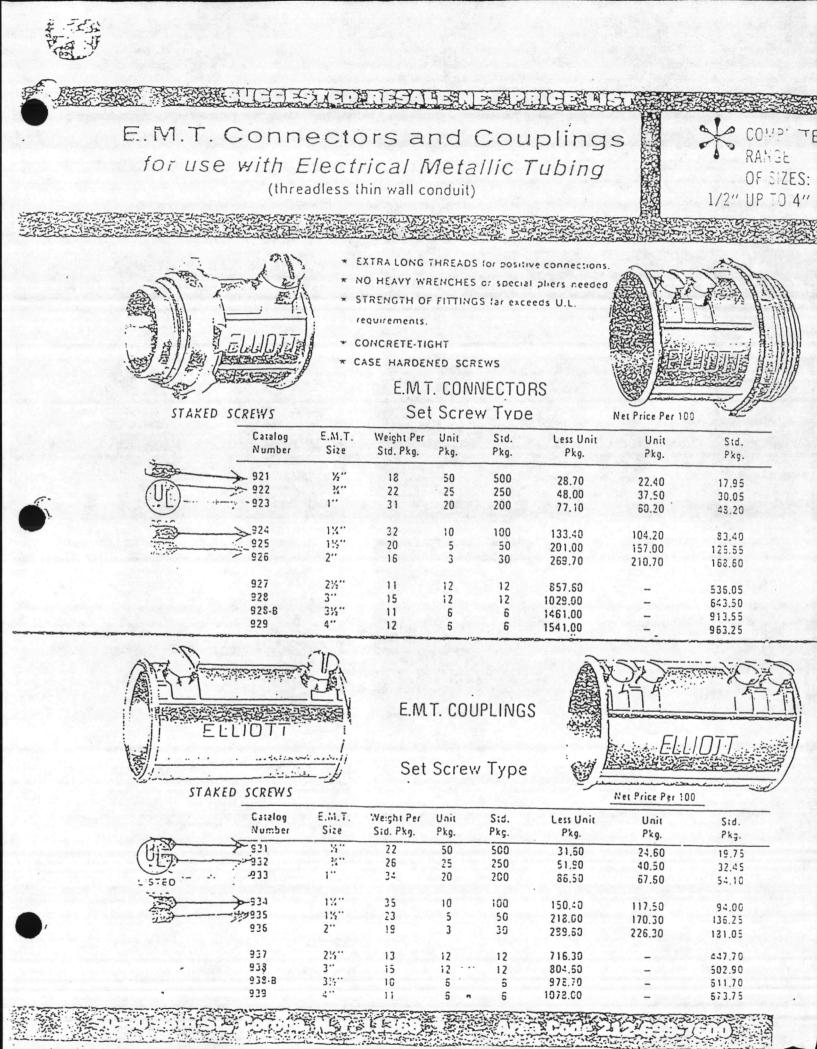

@1980 A.T.

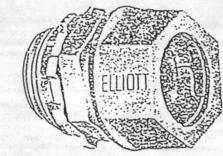



こうたけ E IIII Pasible Steel Metallic Concuit ~ 2.3.4 Paler to pages : 1-1 + 10 THE REPORT OF THE PARTY OF THE ione Designations Feet Per Coil Los. Per 51.7 NIN S 100 Feet 250 26 Reler to A: E and the standard of the last standard and the standard and the standard stand :00: Branch Price Sheet 47 55 102 125 162 213 253 to: Prices. 1. 50 50 50 25 25 1 . 17.17. 313 25 Flexible Aluminum Metallic Concuit Prices vary according to cones and are F.O.B. Southern Ca. fornia. 13/1-1 Lbs. Per 100 Feet SI:e Feel Size Lbs. Per Feel Per Coil Per Coil 100 Feet 11151 q 250 Reler 2. 73 25 25 25 25 25 Refer 16 100 to Branch 90 to Branch Price Sheet for Prices. 2: Price Sheet 108 35 -3 56 50 3% for Prices. 17. 50 25 Electri-Flex Flexible Liquidtight Conduit ACCENTER OF THE OWNER ישטינאראוןוויאראון אנע איבון אבאראנאראויציאיזעעריא 141447411111 Moisture-proof and oil-proof polyvinyl chlorice cover, black, grey or white, is extruded over galvanized steel liexible tubing. ACCORDENCE Size Ft. Per Coil Less Coil Coil to Size Ft. Per Coil Less Coil Coil to (Per 100 F1.) 1000 Feet (Per 100 Ft.) 1000 Feet (Per 100 Ft.) (Per 100 F1.) Type EF \$ 57.20 64 55 85 40 130 30 170 25 250 S 64.50 73.30 12222 5 265.60 324.20 50 50 25 25 FR 200 \$ 2:1.25 \$5.:0 ::7 55 292.40 545.40 778.75 :75 ····· 1:1 502.50 I-s 17." 100 857 :0 :92.65 :207 65 " ALVIE 1095.40 Fibre Conduit Taperec End Class 600—Multi purpose for EB or OB service Class 1200—Extra strength for OB service Class 2000—Severe DB service Meet Federal IVEWA and UC requirements In 8 and 10 loct lengths with one coupling Available couplings include fluch style clastic (Factory installed) internal sick for internal joining and Lore Refer to pages 1-1-1-2 for Cone Cesignations Size Class 500 Ione 1 Zone 2 Class :200 Class 1200 Zone 2 Class 1200 Class 2000 Las. Per Zone 1 LDS. Per Class 500 Zone 2 Class 500 Los. Per 100 Feel Per 100 F1.) ICC Feel Class 2000 Class 2000 (Per :00 F:) :Per 100 F1.) :Per :30 Ft.) (Per :CO FI) 100 Feer (Per 100 F1.) \$ 44 60 57 00 65 00 130 00 190 00 /0 14 55 25 117 -55 23.150 ::5 5 50 50 1 49 20 75 CO CZ CO :30 3 3 35.00 106 00 147 00 \$ 97 75 121 90 169 05 65 55 74 75 47 50 :73 200 280 64 -5 ----2:6 50 -253 00 196.95 _ •


::







2.3.1

1 >3 , > 0

E.M.T. Connectors and Couplings for use with Electrical Metallic Tubing (threadless thin wall conduit)

ELLIOTT

E.M.T. CONNECTORS

Compression Type

- * EXTRA LONG THREADS for positive connections.
- * NO EXTRA WRENCHES or special pliers needes.
- * STRENGTH OF FITTINGS far exceeds U.L. recurements
- * CONCRETE-TIGHT * STEEL LOCK.NUT

Net Price Per 100 Catalog E.M.T. Weight Per Unit Std. Less Unit Unit S:d. Humber Size Std. Pkg. Pkg. Pkg. Pkg. Pko. Pkg. > /." 901 24 25 250 46.10 35.00 28.85 -!! 30 25 250 63.90 49.90 39.95 23 10 100 106.80 83.50 66.80 20 11/1 5 50 198.20 155.30 124.30 1%" 24 5 50 229.60 225.30 181.05 906 2" 8 10 10 416.20 250.55 907 2%" 12 12 12 1357.00 843.35 908 3" 18 12 12 . 1295.00 1135.20 902-B 3%" 10 5 2645.00 6 1653.40 909 ... 12 6 2951.00 5 1844.55

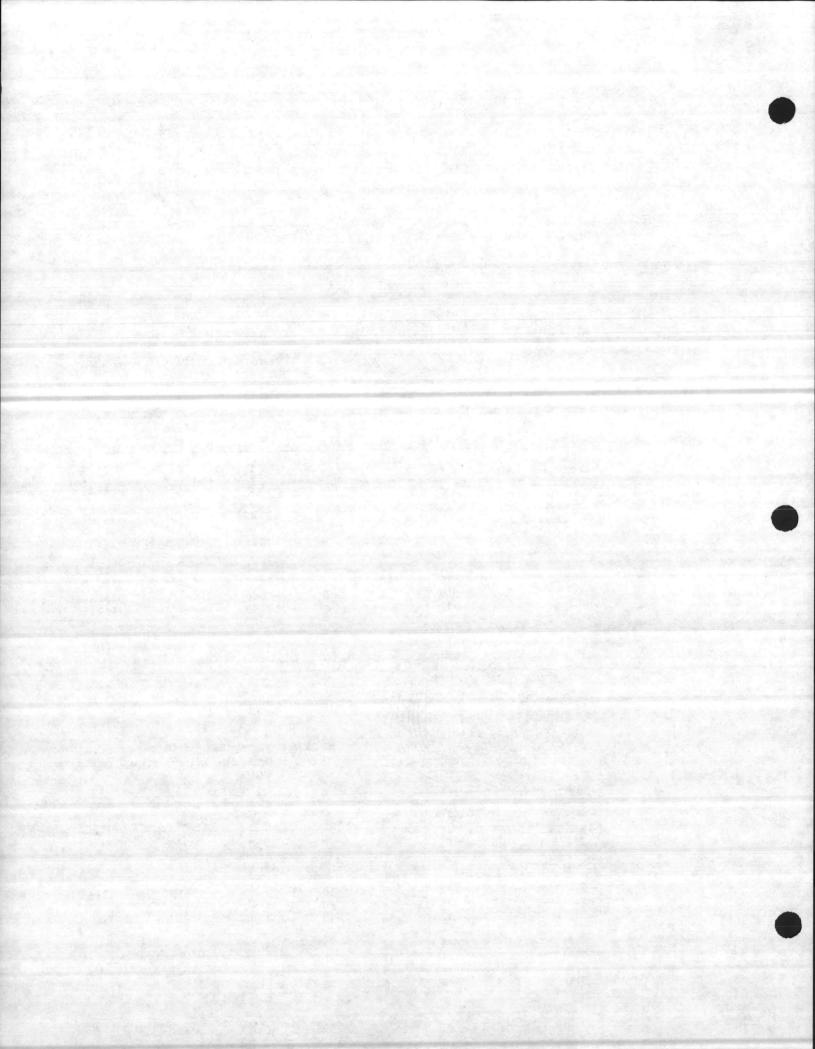
E.M.T. COUPLINGS

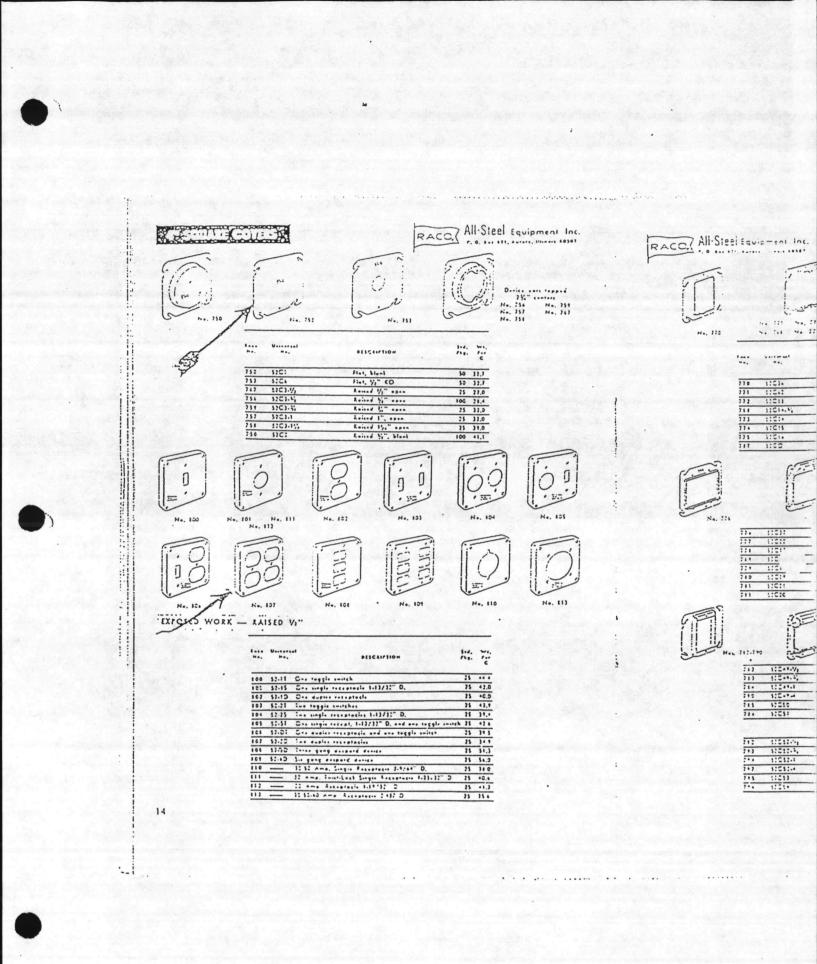
Compression Type

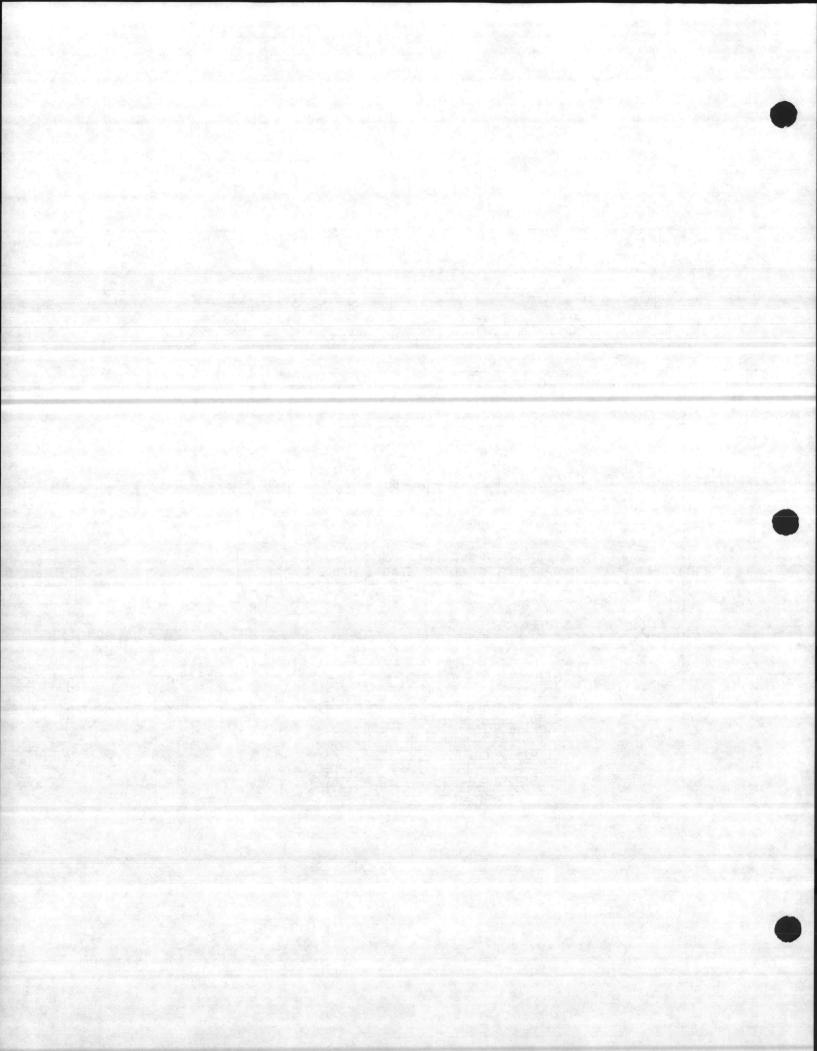
* NO EXTRA WRENCHES or special pliers needed.

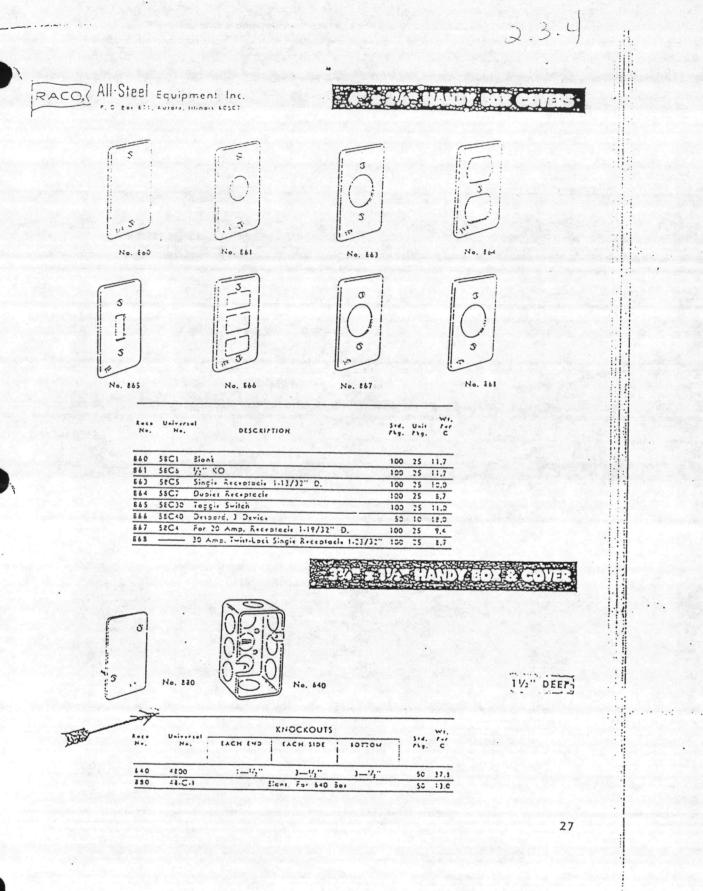
* STRENGTH OF FITTINGS far exceeds U.L. requirements

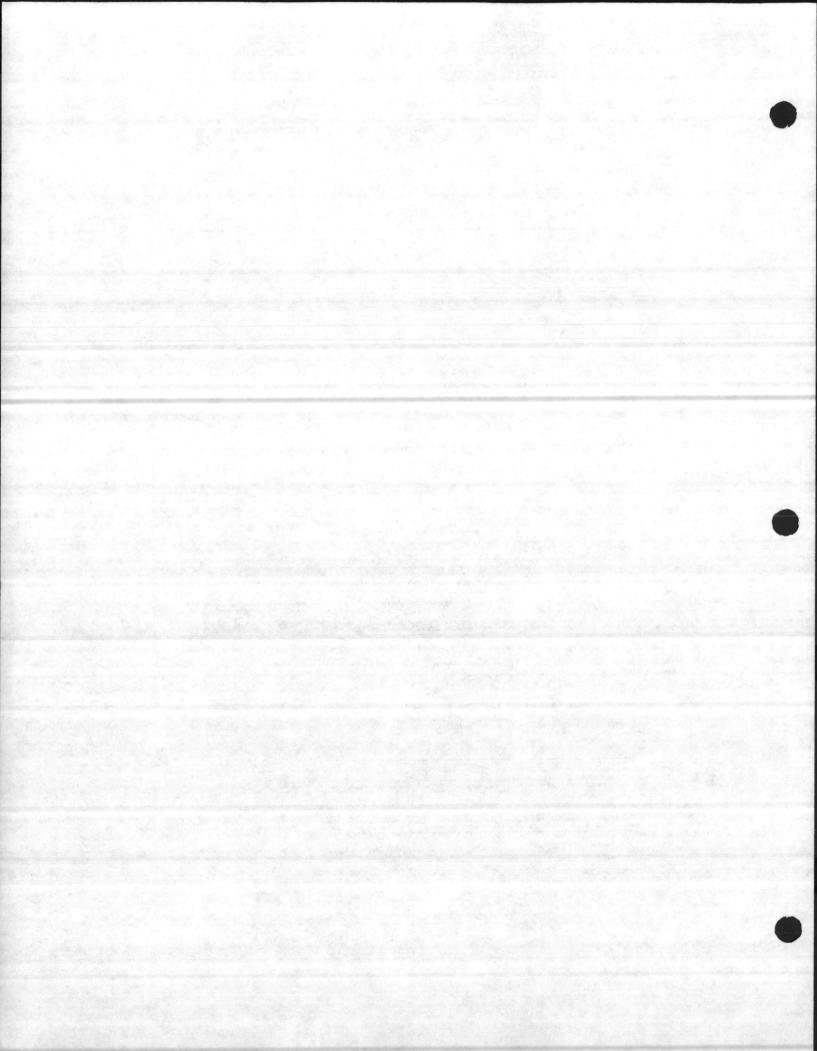
* CONCRETE.TIGHT Net Price Per 100

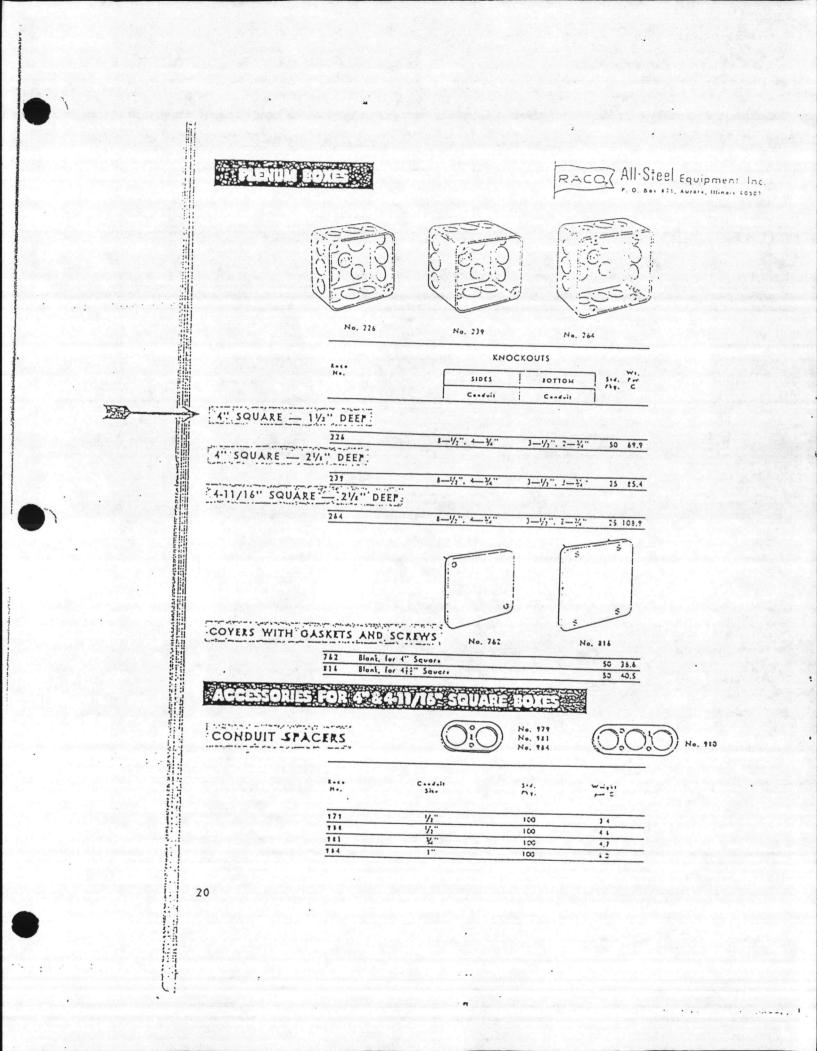

							A CARLES AND A CARLES
Catalog Number	E.M.T. Size	Weight Per Std. Pkg.	Unit Pkg.	Sid. Pkg.	Less Unit Pkg.	Unit Pkg.	Std. Pkg.
	× %"	30	25	250	56.00	+3.70	35.00
	→ X	30	20	200	77.40	50.50	48.40
	÷"	25	10	100	127.60	39.70	79.75
	> 1::-	22	5	50	217.00	169,50	
D	1%"	26	5	50	311.50	243.30	135.65
916	2"	12 .	10	10	423.00	-	194.70 254.40
917	2%"	15	12	12	1732.00		
918	3	24	12	12	2220.00	101 - T. Aug	1082.65
918.8	3%"	14	6	6	3103.00	_	1430.05
919	£	16	6	6	3463.00		1939.70 2164.70

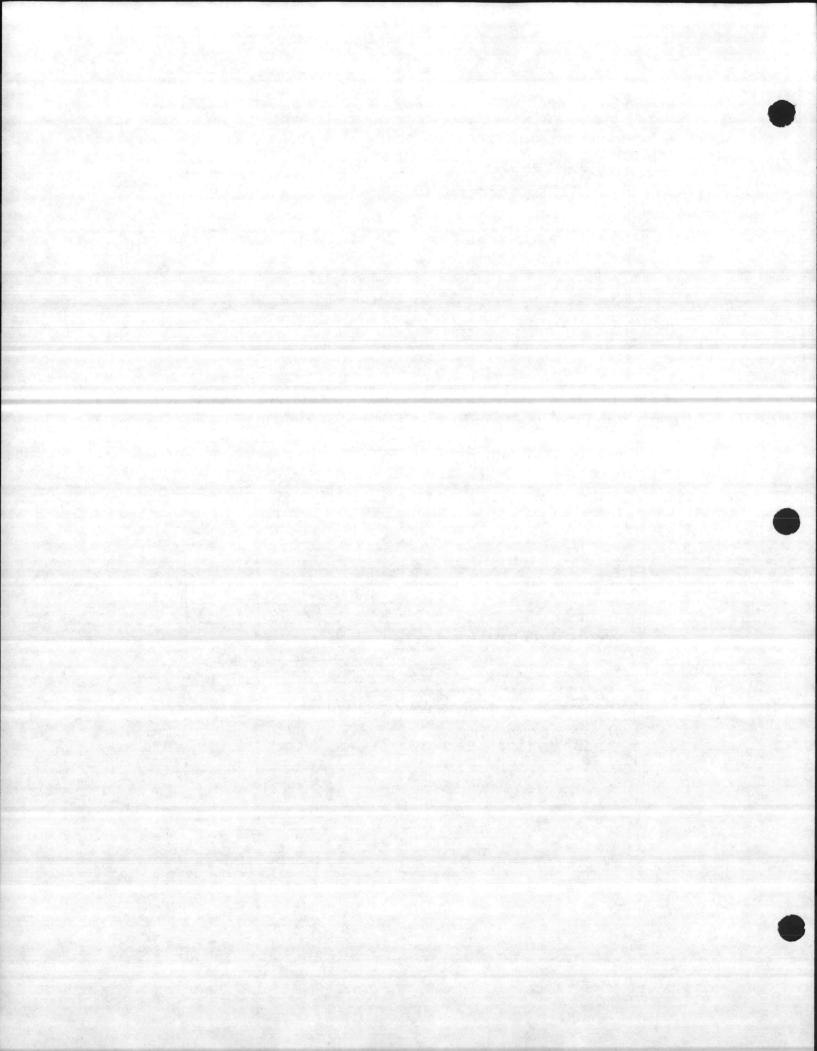



794C

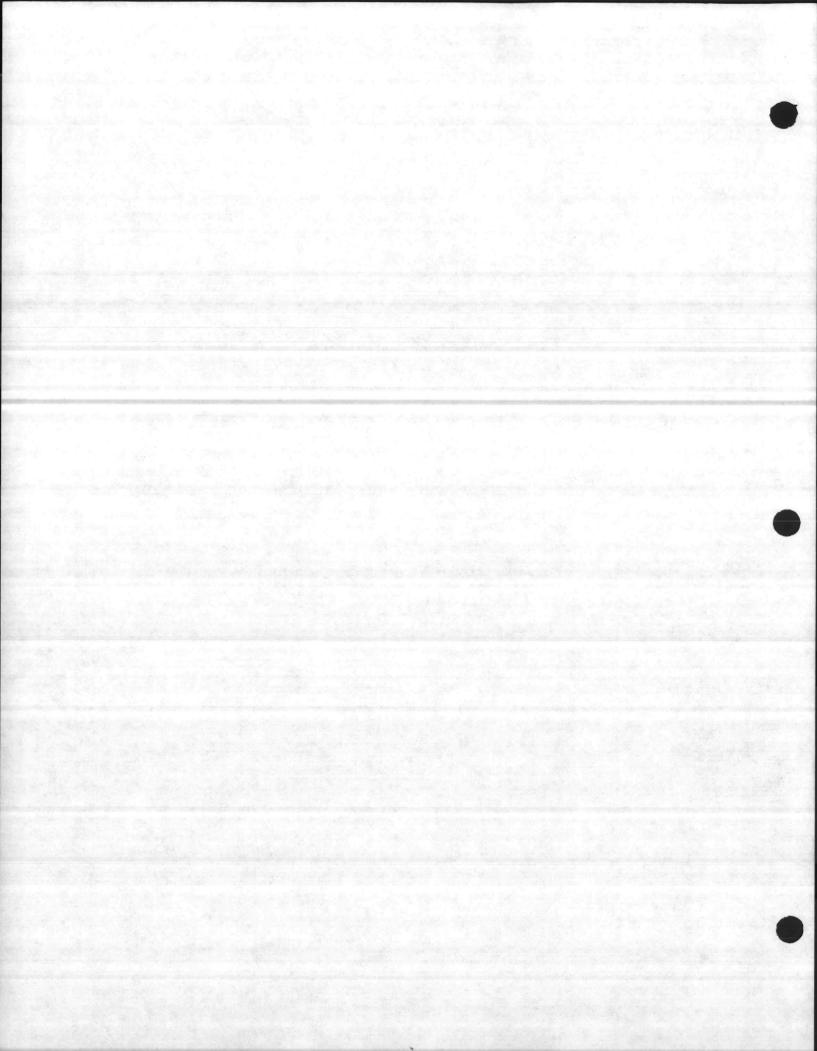


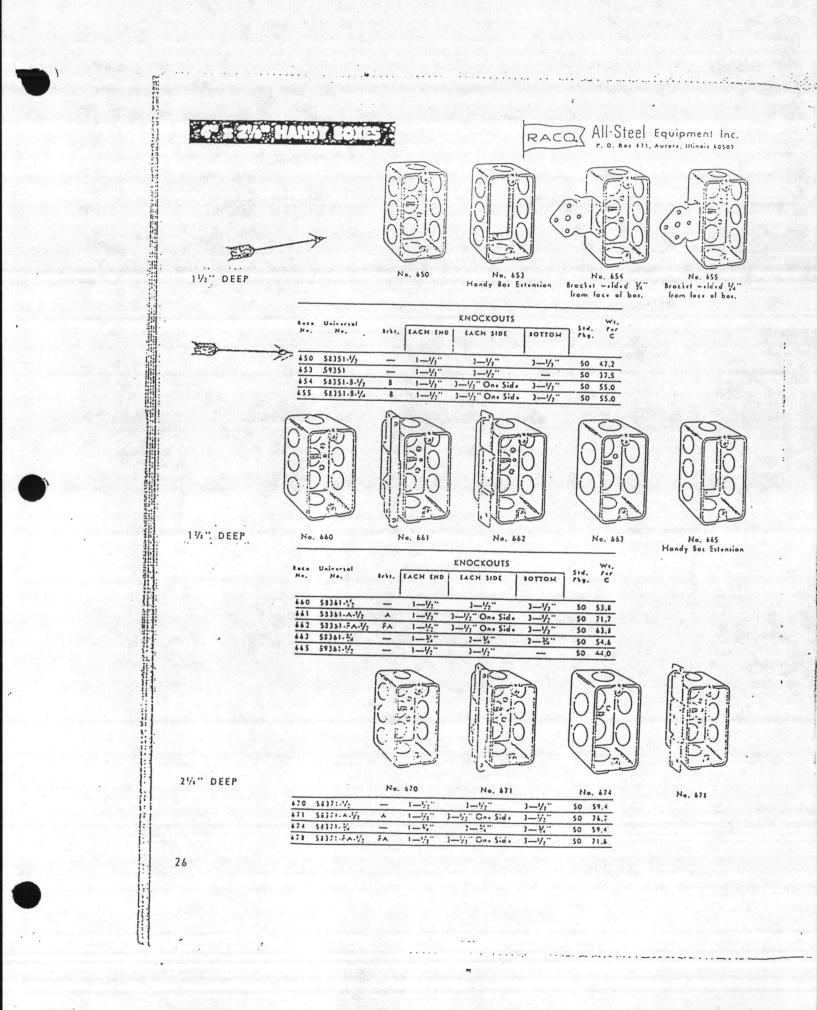


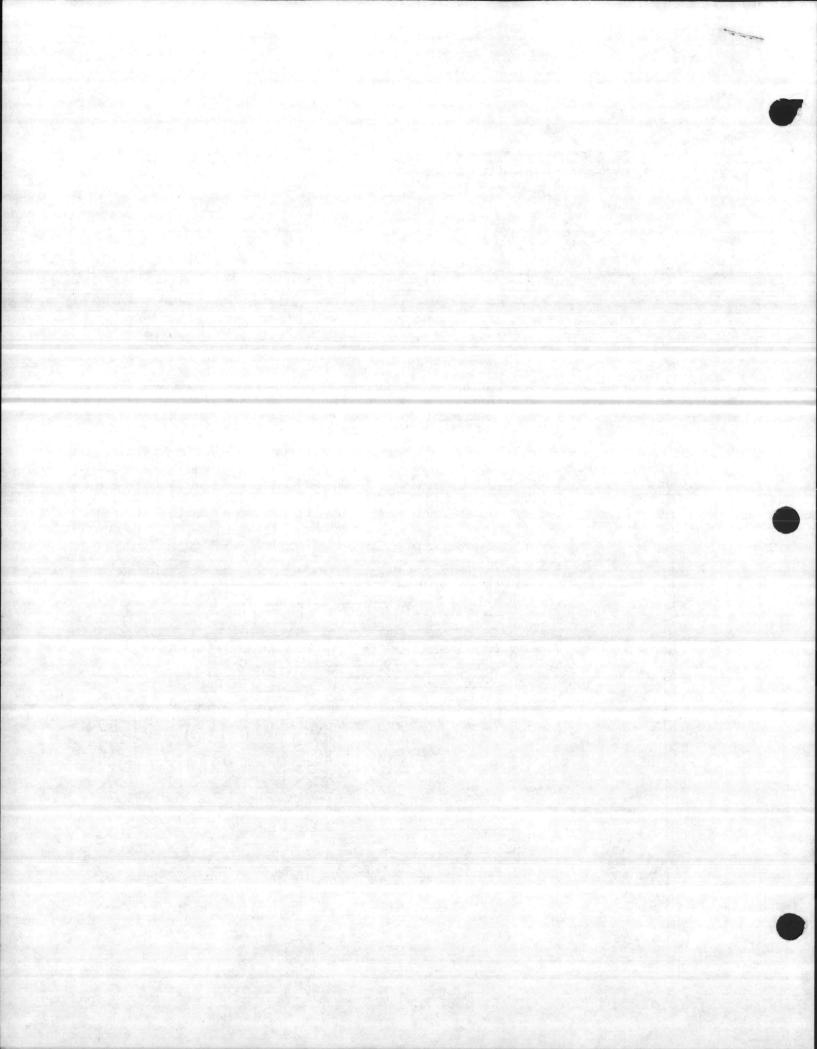




·....


2.3.4




.....

1

SHUNTFLO® Direct Reading Axial-Turbine Meter For Steam, Air or Gas

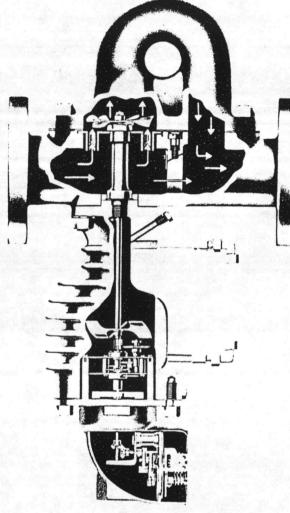


Fig. 1 - Shuntflo Open View

B I F Shuntflo meters are found wherever accurate records must be kept of steam, air or gas production or usage. The Series 400 Shuntflo is a totalizing meter designed to measure the flow of steam, air or gas up to 300 psig and 750° F. Self-contained and self-operating, it requires no mercury, pressure piping, compressed air or electricity.

OPERATION

As gas flows through the meter body, a portion of flow is diverted to drive the fan shaft assembly, rotating on a jewel bearing. A second set of blades on the fan shaft, rotating in damping fluid, acts as a damper or governor.

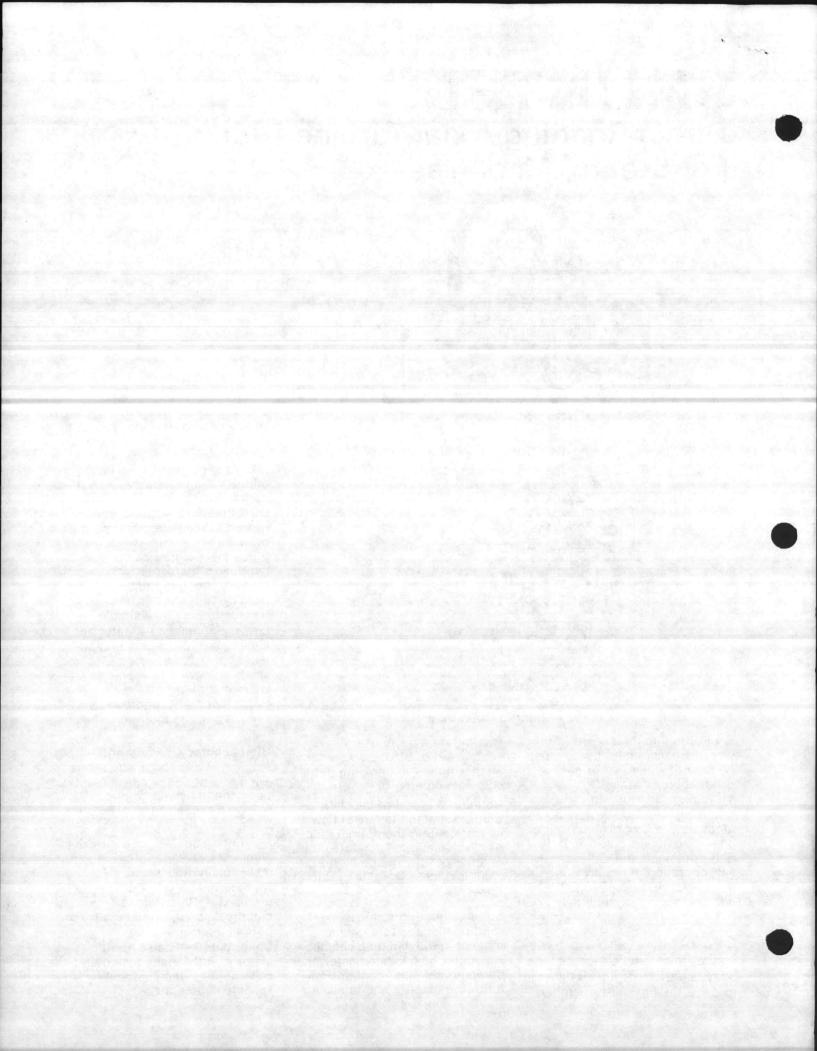
Rotational speed of the shaft is proportional to the rate of flow at all rates within the normal range of the meter. Therefore, the number of turns made by the shaft is a measure of the total flow.

Suitable gearing reduces the rotational speed to a driving magnet in the damping chamber. A counter box, located below the damping chamber contains a following magnet and totalizer.

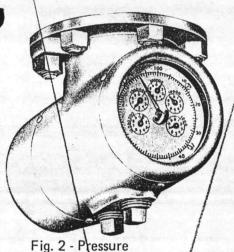
FEATURES

Open upper limit — Meter has an overload capability allowing it to register accurately at rates up to 150 percent of rated capacity on steam service. Overloads of up to 200% can be handled for up to ten minutes duration once every 12 hours.

Direct reading - Counter is geared to read directly in pounds of steam or cubic feet of gas or air. Since there is no need to use multipliers there is less chance of reading and computation errors. Both cyclometer, dial and pointer type counters are available. Low maintenance - Meter has a minimum of parts. Installation takes only a few minutes. Counter can be removed or replaced without shutting off flow. Capacity can be modified by exchanging the internal orifice plate.


High accuracy, wide range — Accuracies of ±2% of actual flow can be achieved — dependent upon the individual application — over a range of 10:1 for meters 2" and up.

No stuffing box — Magnetic drive eliminates leakage found in mechanical drive units.


No external power source required — Requires no compressed air, or electricity for normal operation.

Calibration — Each Shuntflo Meter is individually tested and calibrated for the customer's specific conditions.

©1979, BIF A UNIT OF GENERAL SIGNAL 11/82 superceeds 10/82

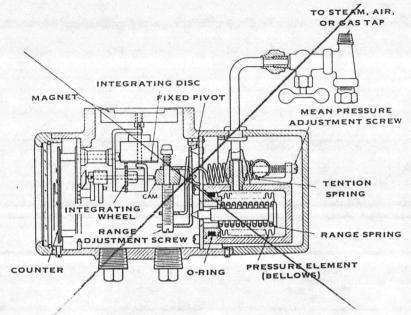
Accessories

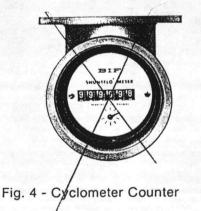
Compensating Counter *Pressure Compensating Counter: The Model 406-01 Counter automatically and continuously corrects Shuntflo Meter readings for line pressure variations, thereby giving a more precise accounting of steam, air or gas consumption. Self-contained and self-operated, it can replace the standard Counter on any Shuntflo Meter. An integrating disp (Fig. 3) in the Counter is driven by the primary Shuntflo Meter and in turn drives the integrating wheel and related change gears. Automatic correction for the flow metering effects of variations in line pressure is accomplished by a pressure element (bellows) which moves the integrating wheel in relation to the integrating disc. The Pressure Compensating Counter can be quickly installed without disassembly of the meter proper. Pressure tube, fittings and shut off valve are included. Available pressure ranges are

shown below: Min Gauge Max Gauge Pressure (psig) Pressure (psig)

	ø	to	30	
	10	to	60	
	20	to	90	
	30	to	120	
	40	to	150	
	50	to	180	١
	60	to	210	-
A	70	to	300	

*Patented in United States; patent pending in Great Britain




Fig. 3 - Pressure Compensating Counter

Combined Counter And Contactor:

This Counter combines the standard register Counter of the Shuntflo with an Electric Contactor to operate a remote totalizer or demand meter. A shaft, connected to the standard gearing of the counter and geared to give direct or desired ratio of shaft revolutions to revolutions of the large dial hand, imparts a calculated number of impulses to the contactor by means of cams.

It is thus possible to give one contact for each hundred pounds of steam, to operate a totalizer; or to give 67 contacts per interval at a rated capacity; to operate a demand meter.

The Counter-Contactor can be quickly installed without disassembly of the meter proper. The dust-tight aluminum housing is provided with a ½ inch NPT female conduit connection.

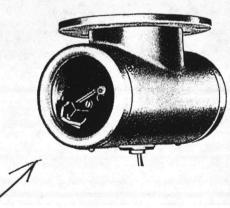
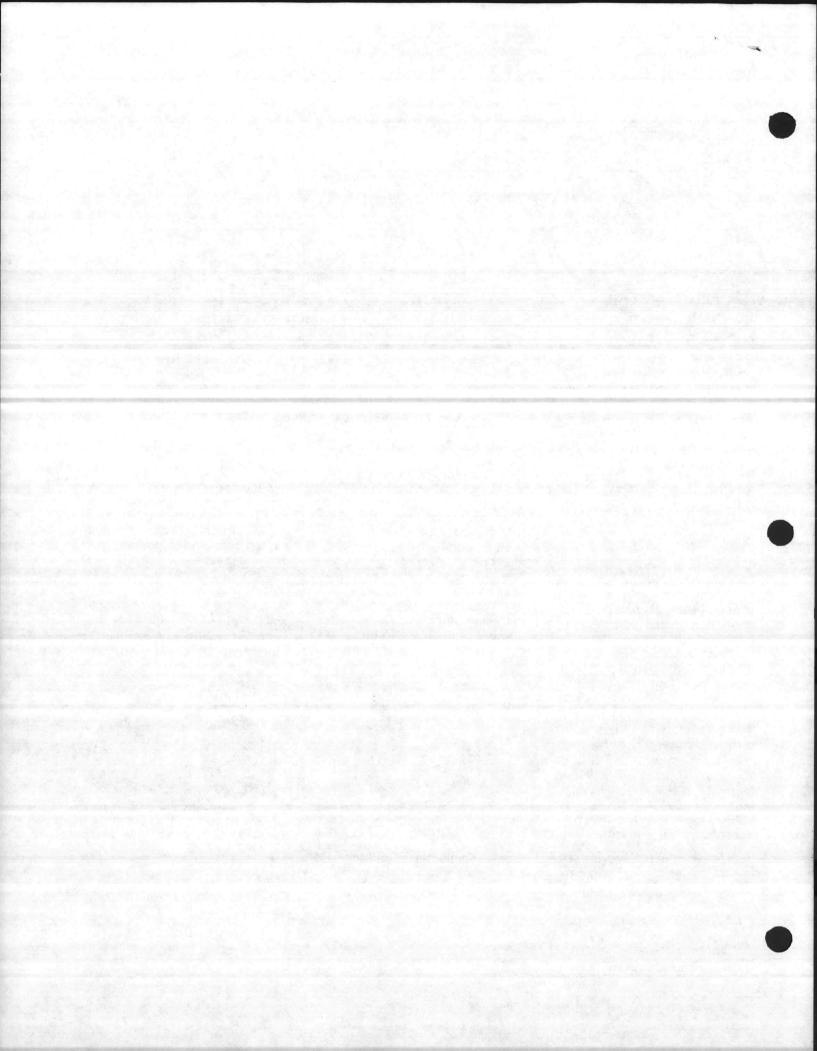



Fig. 5 - Combined Counter and Contactor Rearview.

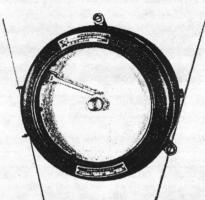


Fig. 6 - Demand Meter Demand Meter, Model 9351-09:

An impulse type Recorder, General Electric, Type G9, GS9 or GS12 as commonly used by electric companies. The Demand Meter records short interval averages rather than instantaneous flow.

It counts impulses feceived during a pre-determined time interval and records the total on a chart. The pen moves a certain distance for each impulse received, and returns to zero at the end of the time interval. Total length of the line is determined by the total number of impulses during the interval, indicating the total flow for that interval.

Standard Demand Meters have 15 or 30 min. intervals, 3-wire operation, 7, 16 or 32 day chart rotation. Special arrangements have 5 or 60 min. intervals, 2-wire operation and 2 speed chart drives for 1 and 7, 7 and 16, 7 and 32 day rotation.

A common chart arrangement is to show rated capacity at 67 contacts per interval. This will allow 33 units to indicate, if necessary, any overload on the meter within that range. The full range of the chart 100 contacts per interval, may be used to show rate capacity.

Remote Totalizer (Fig. 7): Electrically operated, has five digits, is enclosed in a metal case. Wall or flush panel mounted, it is actuated by a contactor device in the Counter.

Fig. 7 - Remote Totalizer

Gauge Glass Assembly

Shuntflo Meters measuring the flow of air or gas require this installation. It is a visual liquid level indicator to show the presence of damping fluid in the meter.

Extra Orifices

Capacity changes, because of seasonal flow conditions, new plant demands, additional heating or equipment, may be effected by changing orifice plates. These can be provided with calculation for installation in the field, or may be provided with calibration as extra plates with a new meter.

Engineering Specifications

Loss of pressure -

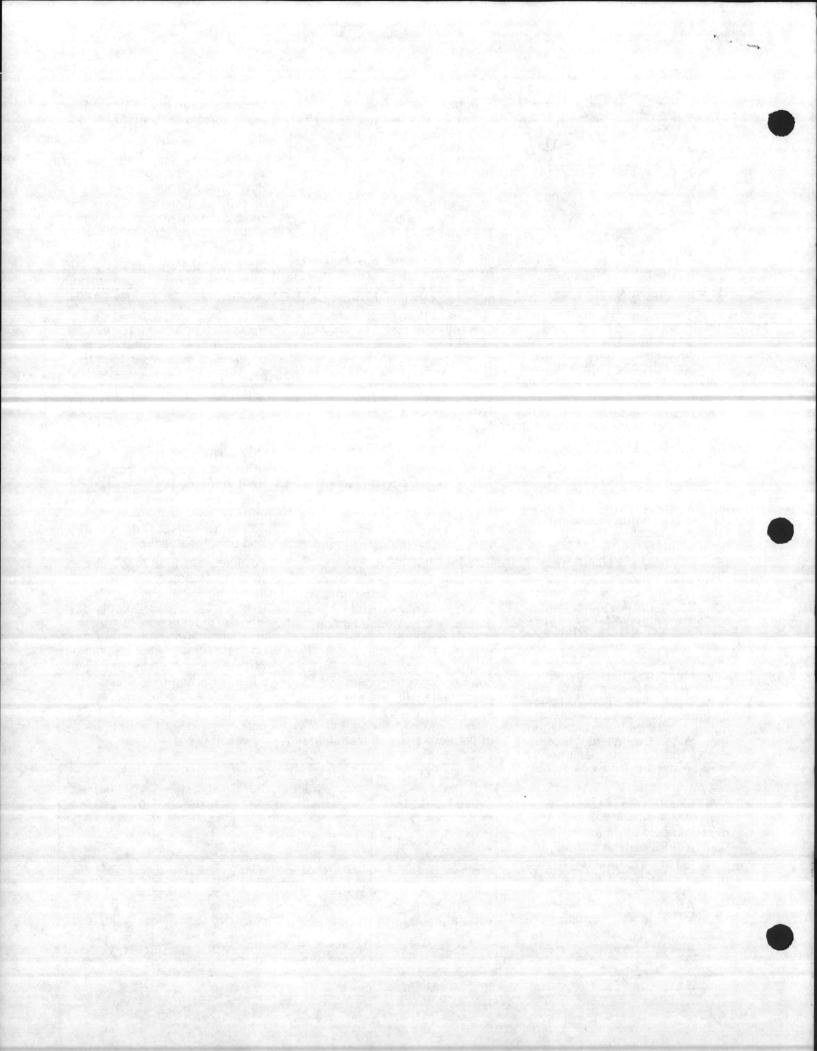
Approximately 20 inches of water for meters with line pressure of 50 psig or less. Approximately 80 inches of water for meters with line pressure over 50 psig.

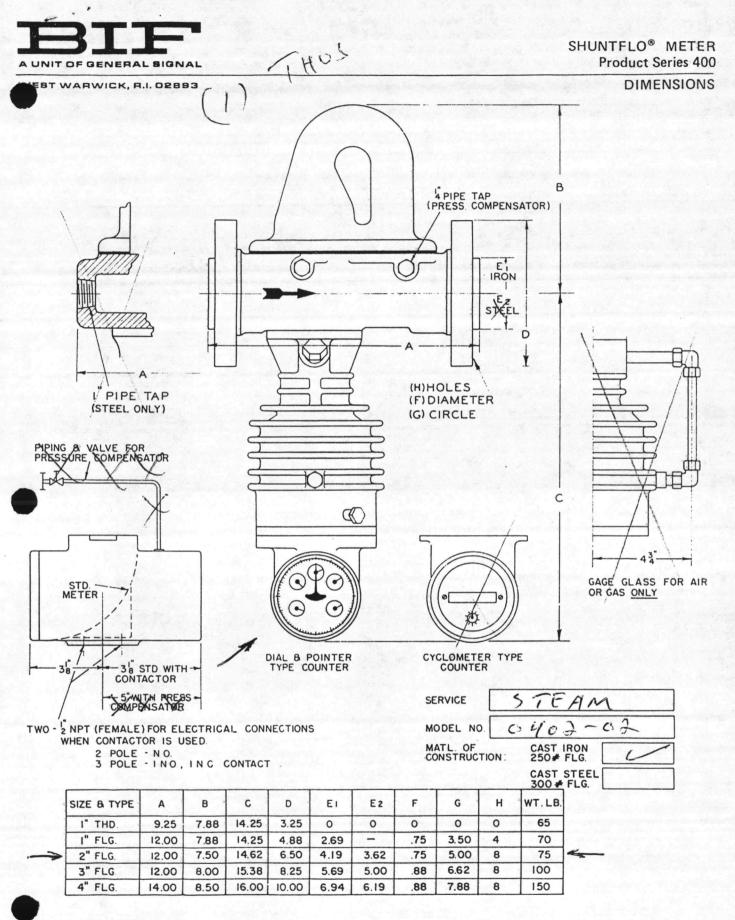
Damping Liquid — For steam service, the damping liquid is water, replenished and maintained by condensation during operation,* for air or gas service, damping liquid may be kerosene, water, anti-freeze solution, or other liquid compatible with the gas being metered. A gauge glass is recommended for visual check of the liquid on gas installation. Meters are factory calibrated using the same damping fluid.

Space requirements — Accurate metering requires straight sections of pipe upstream and downstream of the meter. Straight sections must be of the same nominal size as the meter, and at least as long as shown in the table below.

Materials of Construction — All parts subject to pressure are high tensile gray iron, bronze or cast steel.

Pressure and temperature capabilities — The Shuntflo meter provides excellent service for pressures to 250 psig and temperatures to 450° F. Heavy duty meters are available for pressures to 300 psig and temperatures to 750° F.

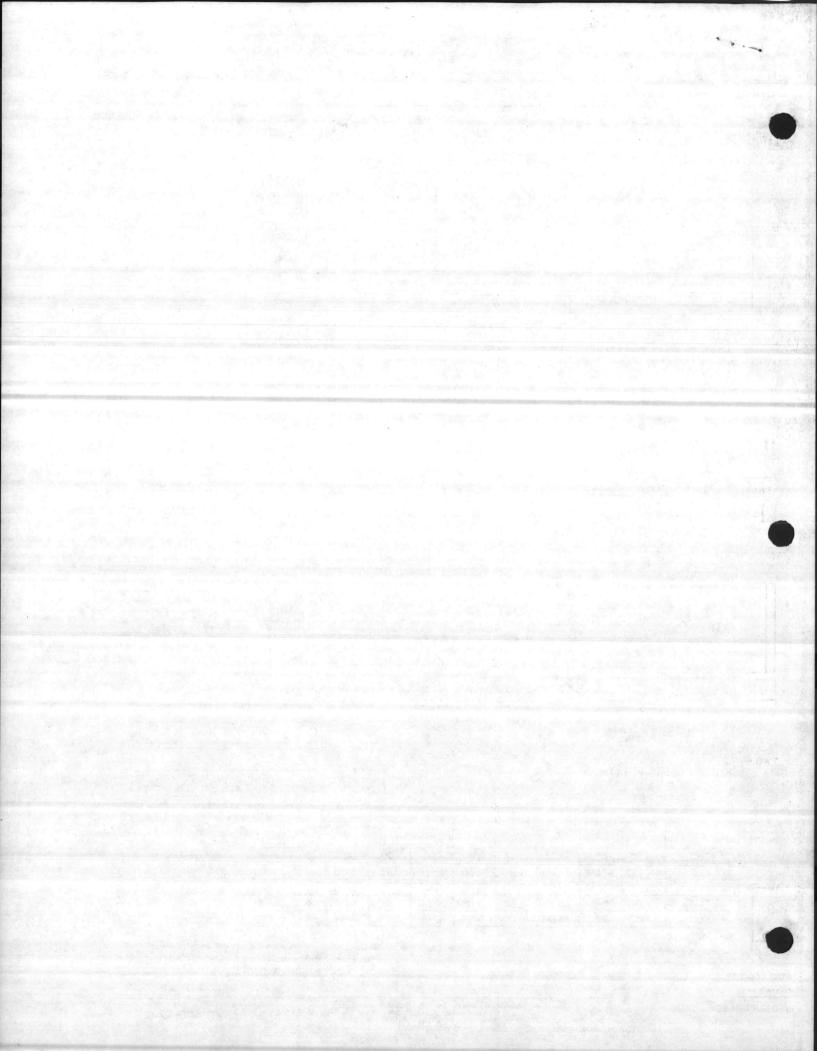

Size—The 1 in. steel meter has threaded ends, 1 in. iron has 250 lb. flanged ends.


2, 3, and 4 in. sizes have flanged ends (250 lb. cast iron ANSI Std., 300 lb.steel ANSI Std.) for horizontal installation.

For line sizes 5 in. to 24 in. a by-pass assembly is used, including a 2 in. meter, high tensile iron (or steel) flanged elbows, main line orifice plate, and 2 in. fittings required to make up the by-pass assembly, but not the main line flanges. Shut-off valves are required. These valves can be furnished by B I F or the customer but meter must be calibrated at B I F with the valves in place.

Meter Type and Size	Fittings Upstream	Pipe Diameters Upstream	Pipe Diameters Downstream
In-Line (1, 2, 3, 4 inch)	Any	12	6
	1 elbow or 2 elbows same plane	10	5
By-Pass (5 inch and larger)	2 or more elbows not in same plane	25	5
	Gate Valve (if not kept wide open)	25	5

*After initial filling.



ADD 400-1 (A) Printed in U S A FOR OPTIONAL VARIABLES SPECIFIC TO CUSTOMERS ORDER REFER TO ORDER DATA SHEET.

4/80 SUPERSEDES 12/69

Notice of Confidential Information INFORMATION CONTAINED HEREIN IS CONFIDENTIAL IS THE PROPERTY OF BIF A UNIT OF GENERAL SIGNAL CORPORATION IS TO BE USED SOLELY FOR THE PURPOSE PROVIDED AND IS NOT TO BE DISCLOSED TO OTHERS WITHOUT THE WRITTEN CONSENT OF BIF

