REPORT ON CAPACITY OF WELLS VS WATER DEMAND AND WATER PLANT CAPACITY
 AT THE
 MARINE CORPS AIR FACILITY, NEW RIVER JACKS ONVILLE, NORTH CAROLINA

AUGUST 1968

> UTILITIES DIVISION ATLANTIC DIVISION,

Prepared by:

REPORT ON CAPACITY OF WELLS VS WATER DEMAND AND WATER PLANT CAPACITY
 AT THE
 MARINE CORPS AIR FACILITY, NEW RIVER JACKS ONVILLE, NORTH CAROLINA

Existing Facilities

Based on a 16 -hour pumping day, theoretically the existing seven wells will produce approximately 905,000 gallons of water per day. However, due to the fact that all wells deliver to a common treatment plant influent line and that the distance between the treatment plant and each well varies considerably in some cases, the wells cannot produce at their established pumping rate. The number and location of the wells in service govern the volume of water which is pumped to the treatment plant.

With normal plant operation, the raw water influent line discharges to a Graver Reactivator. This process unit has a capacity of 980 gpm .

The two installed pressure filters were designed to produce not less than 500 gpm each at a rate not to exceed $3 \mathrm{gpm} / \mathrm{sq}$. ft.

Storage capacity consists of two concrete, ground-level reservoirs, each having a capacity of 200,000 gallons and one 300,000 gallon elevated storage tank. A 300,000 gallon concrete, ground-level reservoir is located beside Building 2003, the booster and fire pumping station for the MOQ area. This pumping station is not used; however, the pumps are checked regularly.

Facilities Under Construction

Contract NBy-88179 provides for two new wells and a 350,000 gallon elevated tank.

Water Usage and Demand

The average volume of well water pumped per day to the water treatment plant during the period of October 1966 thru September 1967 approximated 635,000 gallons. The greatest volume of raw water used in one day during this period was 872,000 gallons.

Current water data are given below.

		RAW WATER		
Month	Total Pumped (gals.)	Maximum day	Minimum day	Average day
Oct.	67	$17,369,000$	724,000	432,000

POTABLE WATER

Month	Total Pumped (gals.)	Maximum day	Minimum day	Average day
(gals.)				

During the first three and one-half weeks of July, 1968 daily pumping varied from 599,000 to 896,000 gpd.

Well Capacity

905,000 gpd - existing well capacity (16 hrs . well operation/day)
288,000 gpd - capacity of two new wells - contract NBy-88179 (16 hrs. well operation/day)
$\overline{1,193,000} \mathrm{gpd}$ - total well capacity when contract NBy-88179 is completed, provided necessary raw water lines to water treatment plant are provided.

Treatment Plant Capacity

980 gpm - capacity of Reactivator at Water Treatment Plant
80 gpm - water usage in treatment process
$\overline{900}$ gpm - capacity of treatment plant with no outage time
$900 \mathrm{gpm}-18 \mathrm{gpm}(2 \%$ filter outage time) $=882$ gpm plant export capacity
882 gpm x 960 min . (16 hour plant operation) $=846,720 \mathrm{gpd}$ export capacity
882 gpm x 1440 min. (24 hour plant operation) $=1,270,080$ gpd export capacity

Conclusions:

1. It will be necessary to operate th:e water treatment plant 24 hours per day to meet increasing water demand.
2. The existing plant capacity does not allow for a growth factor.
3. The existing plant will not meet design criteria on page 5-9-3 of Design Manual, Civil Engineering, NAVFAC DM-5 when industrial uses are considered even when a growth factor is not used.
4. Any increase in personnel and/or increase in industrial uses will create serious water deficiencies.
5. For every 3 wells required for production, 4 wells should be provided to permit adequate outage time for repair, etc.
