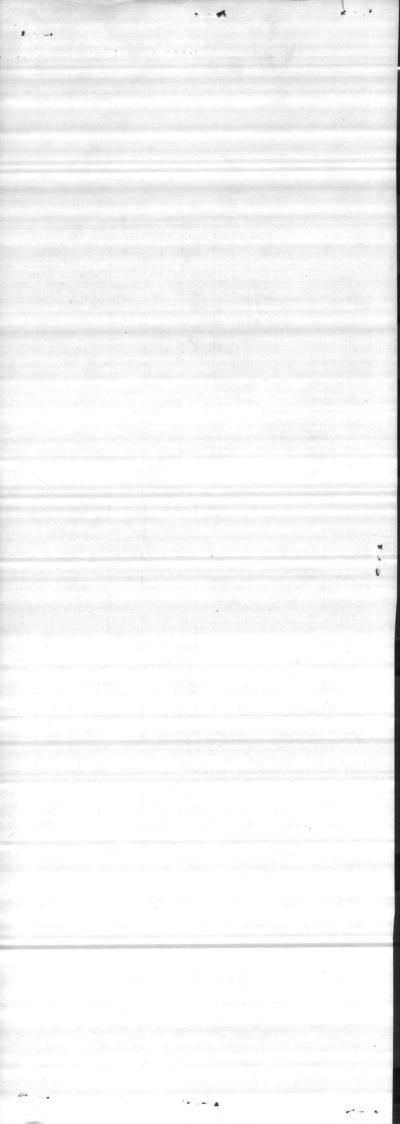


100 G.P.M.

Du

1


DRIVE

7½ H.P.

Armco Iron Screen Used In This Well

HOSPITAL WELL "E-1

=

MR PRICE

LISNH

CHEMICAL ANALYSIS - WATER MCBCL 11330/3 (REV 8-74)

Date 31 Jan 78

	HADNOT	MONTFORD	CAMP	TARAWA	ONSLOW	COURTHOUSE	RIFLE	HOLCOMB	NEW
Parameter	POINT	THIOP	GEIGER	TERRACE	BEACH	BAY	RANGE	BLVD	RIVER
PH		6.9							
PHENOLTHALEIN ALKALINITY		0							
METHYL ORANGE ALKALINITY		80							
CARBONATES AS CaCO3		0							
BICARBONATES AS CaCO3		80							
CHLORIDES AS CL		8							
HARDNESS AS CaCO3	a la serie de la s	90	and and a second		59-				er a like
IRON AS Fe		0.75							
TOTAL PHOSPHATE		4.	Real and						
ORTHO PHOSPHATE									
META PHOSPHATE									
FLUORIDE		0 07			and the second second				
CHLORINE RESIDUAL			1						
REMARKS:		38		Coki	-1-02-1	- NEGO	Tive		
T								-	
							4	*	
NOTE: All results rep conductance. One lite	ported in per of potat	parts per mil	llion unle assumed t	ss otherwis o weigh one	e noted ex kilogram.	cept for pH, t	emperatur	e, and spec	ific
LABORATORY ANALYSIS BY	I: _ R	15				DATE OF A	NALYSIS:		

2 August 1942

Permanent Water Supply, Hospital Area

By Layne Atlantic Company

Report on Well E-1, this area

Location: Seventy feet North of N.E. corner of Medical Warehouse in line with East side.

Drilling Equipment:

Wells:

Rotary Rig and Rotary Bits

Status: 23" diameter hole reamed and cased with 18" I. D. casing to a depth of 24 ft. Anular space around this was filled with cement grout. A 17" hole was then drilled to a depth of 110 ft.

Log of Formation:

0 to 10' Tight sand with little clay 10' to 32' Sandy clay 32' to 52' Very fine sand 52' to 92' Fine sand and shells 92' to 94' Fine sand, shells and blue clay 94' to 110' Fine sand and shells 110' to Very hard rock

Remarks:

Drilled one well about 2000' from this, near laundry and could not get any water from it. Due to the very fine sand, it was necessary to construct a gravel wall well.

Gravel Wall An 8" steel pipe with sections of 8" armco iron Construction: iron screen was placed in the well to a depth of 102". The anular space around this was filled with a special 1/4" washed gravel. SACE STREET IS 1

验:反100 there we have a part of the second and the second states of the second states of topost of white H-1. V is and

will a to to the at a so art in the to intity and . She and the second of some safety

Built + and that don't state the material

CP simple to is the same and premine to Sources for the training of a state of the state of the source of the state of the 化学学校的复数形式 建筑市场 法定的过去式 化合同分子

> BARY BENGI SHEW SHARE STRUCT WIT ON T Call Martha Calles which will don a line of the call diff. If the alle water i se grant til te for Alle transford til get at fort fort

There is an interest the same in the second the all as on 1 all gest total whether is the last include the why here have a standard the solution

conductive to the and the a line builded. With the Line Lander toralized and i an and the second barrent similar to mari analized at The first of the second s . Isterna Basser That Islanta a strike

the ta star

Wells: Permanent Water Supply, Hospital Area

Report on Well-1, this area - Continued

Log of Screen 0 to 52' 8" pipe Setting: 52' to 82' 8" iron screen 82' to 92' 8" pipe 92' to 102' 8" screen

A total of 40' of screen was used.

Air Line: 60" of 1/4" pipe was placed in the well for air line.

Static level: 8"4" below surface

Pumping:

Well was pumped for several hours to clear off sand and clay. Well pumps 100 G.P.M. with a 51' drawdown from static level. This is approximately 1.96 gallons per foot of drawdown.

> N. H. Kellam Asst. Chem. Engineer

sailes to search the construction of an and the construction of th

a participation of an and a state of the sta

Tess Renders Units 571 et 12 an tess Renders Units 171 et 120 et 12 Tess Renders 172 14 Les 1720 14 second 17

Ebergicen Borne 1: 102 - Loine Acres All

All at his of an all all a for an all a set a for an all a set a for a set a All a set a

Ministel of the level of the spin field of the ant state - the spin field of the spin field and state - the spin field of the spin field and spin field of the spin field of the spin field and spin field of the spin field of the

social start

Well at Mack UP. E1. 25,00 10:0 10 d' 10 N 15 30 25 30 たう 35 36 40 . 0 . 1 The P 1. Ac Color Color 1 (my 106 05 Formation 1518-0" hard brokn Sand 1970 48° 287040 White sand Shell rock With sand jockets July 214 8 hard 40 Stone C.C. Mr monkel Kellam 11/2

Mock up ellam \hat{x}_i 0.4 (dipuda .

Nell E-1 ot 1108, tol 102:0' deel arf. W. shad 100 52-0" 8" Pipe 0 70 75 80 85 8" SCREEN 30-0 X 90 10:0" Store -Riffie Car 95 8 SCIERI 100 10-0 CENTENT HOS 106 05 formation 1. 1. X Same Jahr sand with little class 0175 10 32 Sandy Clay 1 13 12 3% Ainer 4 L' fine reme V V Sand (almost Much) Ainel 52 Sand and Shells 14 fine sand shells and block have 1 1. 7 POCK. Genvent Innervicus 1.KC To Haller 1.000 XIX XIXIX 242

Well EI Hospital

WATER ANALYSIS

By N. H. Kellan Date 7/14/42

Sample from Well	E-	/	Hospital		
Total Solids	190	PPM	Dissolved Solids	160	PPI
Suspended Solids	30	_PPM	Volatile Solids		_PPN
Phenol. Alk. as CaCoz	0	PPM	Silica as Sio ₂	. 30	_PPN
Total Alk. " "_	110		Ferrous Iron as Fe	0	11
Carbonates " "-	0		Total Iron as Fe		
Bicarbonates " "	110	11	Aluminum as Al.		
Chlorides as Cl	10		Calcium as Ca		
Sulphates as SO4	18	. 11	Magnesium as Mg		
Nitrites as No2	ace	11	Sodium as Na		
Carbon Dioxide as CO2_	Section and the second				
pH 7.4 Soap Hardn	ess as (CaCO3	140) I	PPM
odor Slight				-	Kongdalje Kongorije Kongorije
REMARKS					
			and the second second second second	n de la constante de la consta En estas persoante de la constante de la constant	

NATES: ANALYS IC

Hada.

Sample from the second shilos beviessin ing solids

Fionol. Alt. as CaCog PHt Silica as Siog Tetal Alk. 0 " Forrous Iron as To Garbonates 🦷 🐖 H. 1 Total from as Fe lifestbonsten " . A tuminum as Al. .fo as sebinolit Calcium as Ca. . . 82 . Mi as mi asnai Sulphates as 302 Hitrites as Non . all as mulbol .

Carbon Dloxide as 60g 30ap Hardness as Ga00g Hq

1020 to state of the second

10.1

PTY (A) TTE

2.

WATER ANALYSIS

By N. H. Kellan Date 7/10/42

Total Solids	PPM	Dissolved Solids	PPM
Suspended Solids	PPM	Volatile Solids	PPM
		anna dh'anna ann an taong ann a' taon	
Phenol. Alk. as CaCo3	<u></u> PPM	Silica as Sio2	PPM
Total Alk. " "	00 "	Ferrous Iron as Fe	"
Carbonates " "	0. "	Total Iron as Fe	
Bicarbonates " "	00 "	Aluminum as Al.	11
Chlorides as Cl	// "	Calcium as Ca	11
Sulphates as SO4	Ħ	Magnesium as Mg	
Nitrites as No ₂	11	Sodium as Na.	H
Carbon Dioxide as CO2	11		n ann an <u>Anna</u> Charles an Anna Anna Anna Anna Anna Anna Anna A
pH 7.4 Soap Hardness	as CaCO3_	140	PPM
odor Very Slight			n and a second second and a second second and a second s
	uter and a second s		

WATER ADALYS IS

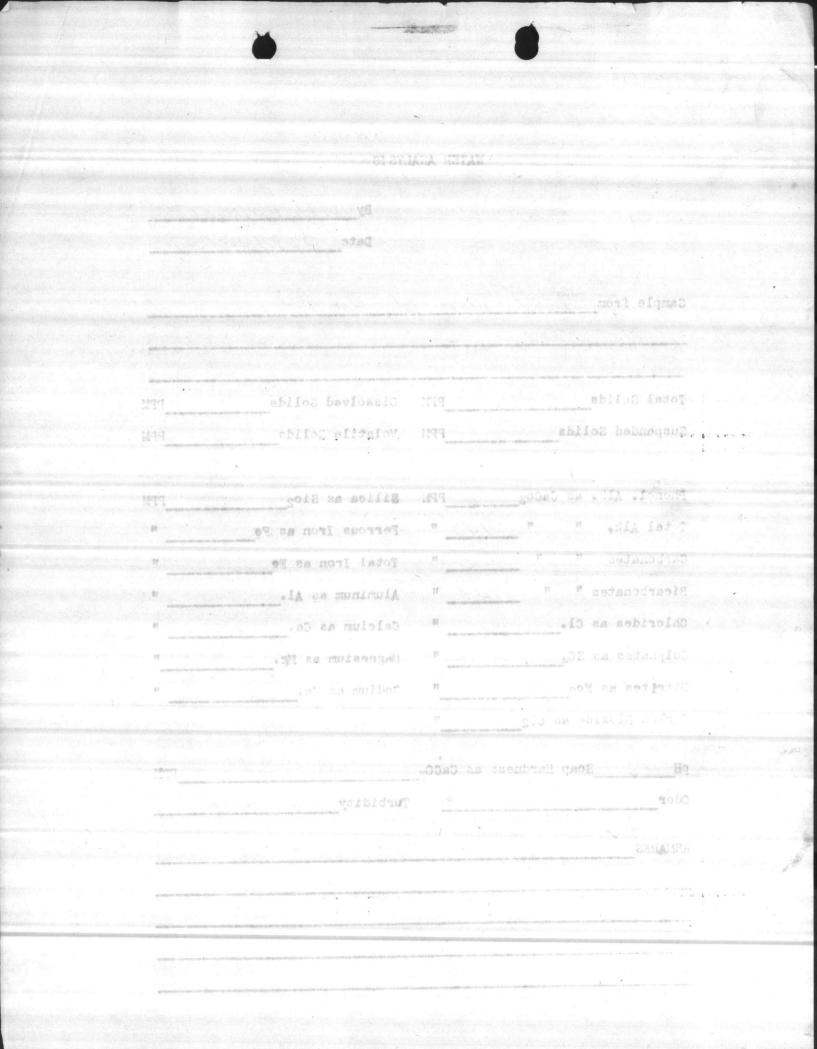
Disto

Sample from

Califon Dioxide as CO2

pH _____Soap Hurdness as CaCo. Odor

RTSARKS


the second se

te en seu en sector a de esse data por trada por telefondador en sector de sector de

WATER ANALYSIS

By N. W. Rellam Date 7/8/42

Total Solids	PPM	Dissolved Solids	PPN
Suspended Solids		Volatile Solids	PPM
Phenol. Alk. as CaCoz	0 ppm	Silica as Sio ₂	PPM
Total Alk. " "	40 "	Ferrous Iron as Fe	п
Carbonates " "	0."	Total Iron as Fe	11
Bicarbonates " "	10 "	Aluminum as Al.	11 -
Chlorides as Cl	17 "	Calcium as Ca	11
Sulphates as SO4		Magnesium as Mg	11
Nitrites as No2 Trace		Sodium as Na.	11
Carbon Dioxide as CO2			
oH 7.6 Soap Hardness	as CaCO3_		PPM
odor Slight		Turbidity Yorg high	í
REMARKS			
this site	dico	itaved	

