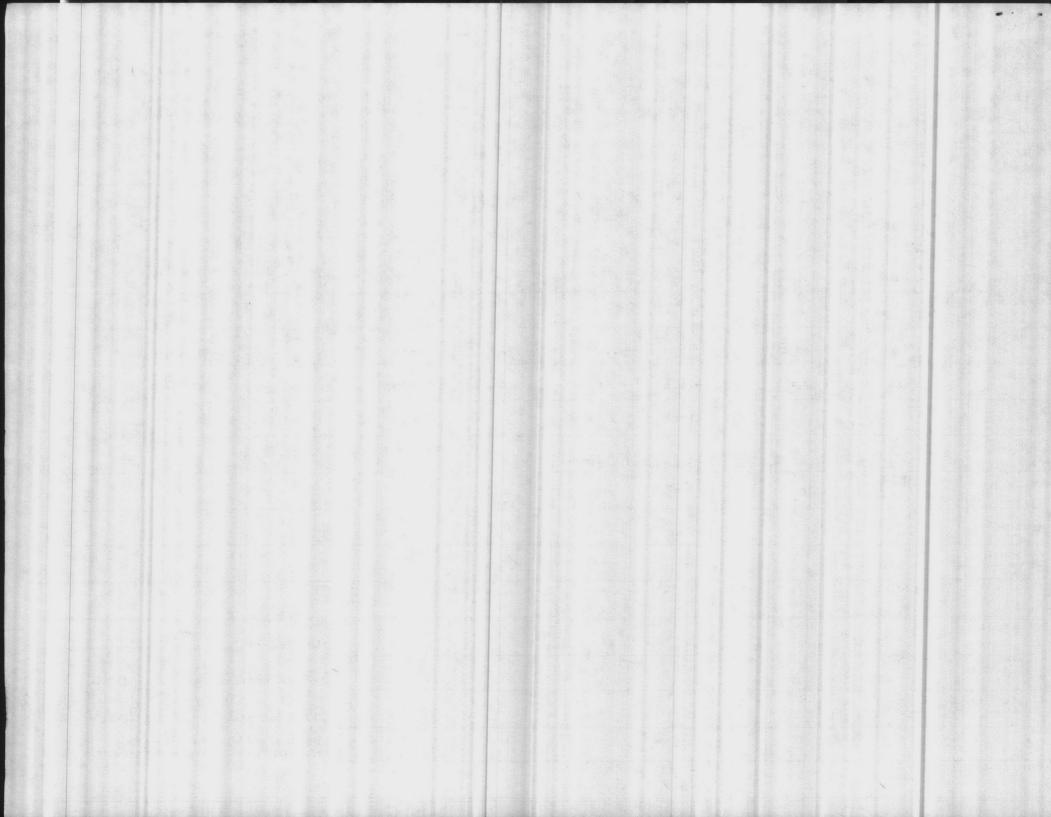
OPEN

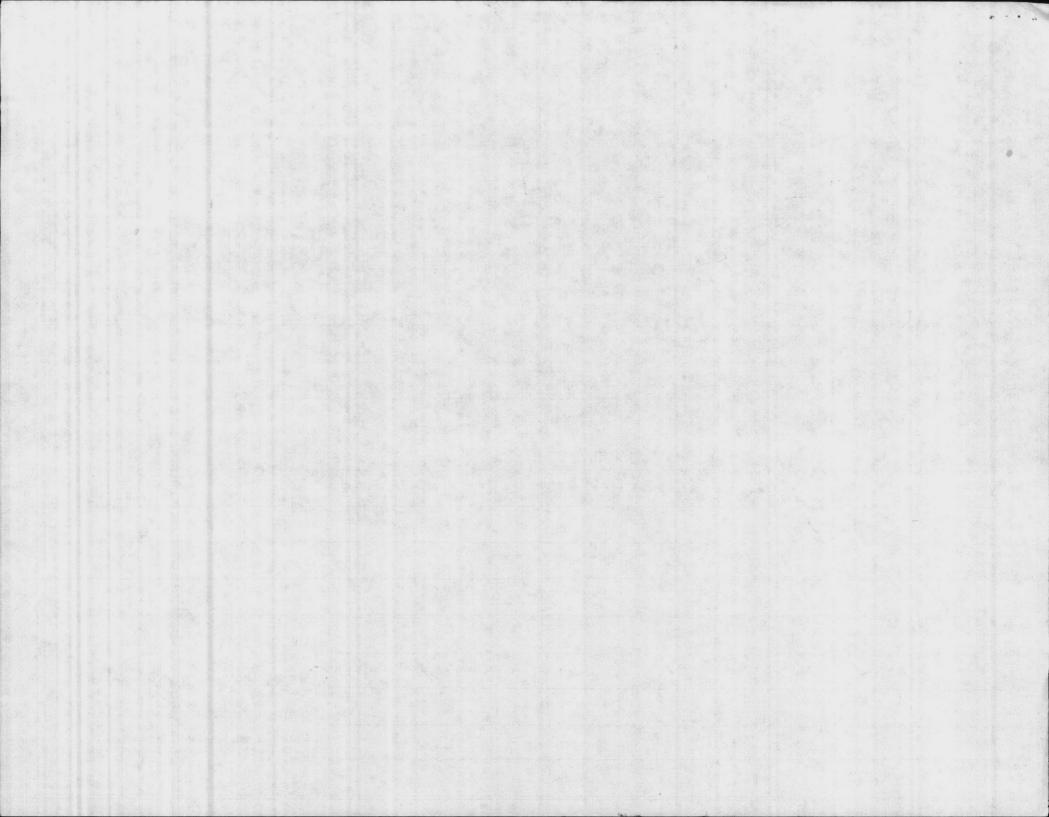

CLOSED

TEMP. SECNAVINST 5212.5B, Part II Chap 11, par. 11300(2) 2 years

ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT DATEGO ANALYZED 9-29 CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED 9-29-87 MCBCL 11330/3 (REV 7-87) COURTHOUSE HADNOT MCAS HOLCOMB RIFLE ONSLOW PLANT POINT NEW RIVER BLVD BAY RANGE BEACH PARAMETER 04-67-048 (UNITS) 04-67-041 04-67-042 04-67-043 04-67-046 04-67-047 8.7 7.8 9,0 8,5 PH-LABORATORY 8.0 1.9 -0.3 40.8 40.1 + 6.5 STABILITY 10,7 -0,4 PHENOLTHALEIN 14 2 0 0 ALKALINITY (PPm) METHYL ORANGE 76 174 64 144 172 148 ALKALINITY (PPm) AS CACO3 16 28 0 4 0 BICARBONATES AS CACO3 145 116 166 72 172 (ppm) CHLORIDES 18 26 22 30 92 ASCI (PPM) ZO HARDNESS AS CACOS 82 54 94 50 80 52 (PPM) IRON AS FE AA Down (ppm) 0,83 1.23 AM FLUDRIDE 0.58 0.10 0,17 .02 0.08 .42 (ppm) PM 0.7 0.6 AM 0.7 TURBIDITY 1.2 0.9 0.8 0.9 (NTUS) CHLORINE 1.0 1.7 RESIDUAL 1.0 1.0 1,0 1.1 (PPm) REMARKS: DUTIL DIE, BMD П EWATER TREATMENT, UTIL DIV, BMD FPMU, NAVHOSP FPMU, MCAS-NR DIVISION OF HEALTH SERVICES REPORT PREPARED 84: REPORT DATE: 9/29/87 Card I NREAD FILE (ATTACH WKST)

CHEMICAL AN		ATER TREA	TMENT PLA	NTS		DATE COLLEGIE	2-87	DATE GO NAVEZ ER?	
PLANT PLANT (UNITS)	HADNOT POINT	MCAS NEW RIVER 04-67-042	HOLCOMB BLVD 04-67-043	COURTHOUSE BAY	RIFLE RANGE 04-67-047	ONSLOW BEACH 04-67-048			
pH-LAGORATORY	8.3	8.9	8.8	P. 3	8.3	7.9			
STABILITY	0.0	+011	+0.3	-0.1	-0.2	-0.3			
PHEMOLTHALEIN AUKALINITY (PPM)	0	6	2	0	4	0			
METHYL ORANGE ALKALINITY (PPM)	60	138	56	172	180	170	28		
CAEBONATES AS CACO3 (PPM)	0	12	4	0	8	0			
BICARBONATES AS CACO3 (PPM)	60	126	52	172	172	170		5.8	
CHLDRIDES AS CI (PPM)	16	68	14	18	40	22		1	
HARDNESS AS CACOZ (PPM)	76	50	60	74	64	56			
Iron as Fe (ppm)				A A Down					
Fluoride Am/	0.98	0.49	1.16	0.11	0.09	0.12	2 30 %		
TUEBIDITY AM	1.4 0.6	0.8	1.3	0.7	0.8	0.9			
CHLORINE RESIDUAL (PPM)	1.0	1.0	1.5	1.3	1.1	1.4	*		

REMARKS:	O. B.	Ronal Ph	: 8,0				COPY TO:	10 🗓	
							WATER TREA	TMENT, UTIL DIV. BMD	
							PMU, NAYH	OSP 10 PMU, MCAS-NR	
		1.4					DIVISION OF	HEALTH SERVICES OF HUMAN RESOURCES	
REPORT DATE:	22-47		Keroet PREPA				U NREAD 40 FILE (ATTACH WKS		



HEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED 9-15-87 9-15-87 CBCL 11330/3 (REV 7-87) HADNOT MCAS HOLCOMB COURTHOUSE RIFLE ONSLOW PLANT POINT NEW RIVER BLVD BAY RANGE BEACH MAMETER 04-67-047 04-67-048 (UNITS) 04-67-041 04-67-042 04-67-043 04-67-046 7.6 7.8 H-LABORATORY 8.0 7.9 85 8.0 - 0.3 TABILITY -0,2 - 0.1 + 0.2 +0.1 0.0 HENOLTHALEIN 0 0 0 0 LKALINITY 0 6 (PPM) ETHYL ORANGE 160 174 LENLINITY 130 72 170 76 (PPm) ACBONATE S 0 AS CACO3 12 0 0 0 0 CARBONATES AS CACO3 (PPM) 160 174 118 170 72 76 HLORIDES 12 32 52 16 ASCI (PPM) AS CACOS 94 68 86 76 58 70 (PPM) CRON AS FE A.A. DOWN (ppm) 1.04 1.0 AM, 0.12 -0.11 0.90 0.10 0.52 (ppm) PM 0.4 0.1 0.7 TUEBIDITY 6.4 0.6 0.4 0.8 0.4 (NTUS) /Pm HLORINE 1.1 0.1 1,2 1.0 1.3 1.0 RESIDUAL (PPM) COPY TO: REMARKS: D'Uni Die, BMD Pond Ph 8.1 Q. B. WATER TREATMENT, UTIL DIV, BMD I PMU, NAVHOSP I PMU, MCAS-NR DIVISION OF HEALTH SERVICES N.C. DEPT OF HUMAN RESOURCES REPORT DATE: REPORT PREPARED BY labert 6. Deffen 9-16-87 I NREAD FILE (ATTACH WKST)

NVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT

CHEMICAL AN	(REV 7-87)	ATER TREA	TMENT PLA	NTS		9-8-8		9-8-87	
PLANT MMETER (UNITS)	HADNOT POINT 04-67-041	MCAS NEW RIVER 04-67-042	HOLCOMB BLVD 04-67-043	COVETHOUSE BAY 04-67-046	RIFLE RANGE 04-67-047	ONSLOW BEACH 04-67-048			
4-Laboratory	8.2	8.8	8.8	7.9	8.2	7.5	1		
MILITY	+ 0.1	+ 1.1	+ 0.7	- 0.3	0.0	-0.6			
EMOLTHALEIN KALINITY (PPM)	0	6	+	0	0	0	and the second		
THYL ORANGE FALINITY (PPM)	64	104	64	168	168	162	*- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
EBONATES (S CACO ₃ (PPM)	0	12	8	0	O	0			
CARBONATES AS CACO3 (PPM)	64	92	56	168	168	162			
HLDRIDES AS CI (PPM)	8	50	12	16	40	24		1,,,	
ARDNESS IS CACOS (PPM)	68	52	68	70.	58	48			
ron as Fe (ppm)				A. A. Dow	n				
LIDRIDE AM/	0.92	6.5	0.96	0.13	0.10	0.12	* · · ·		
(NTUS) PM	0.3	0.7	8.4	0.4	0.3	1.8			
HLORINE RESIDUAL (PPM)	1.0	0.8	1.1	1.3	0.6	1.2	2,		
emarks:	08-	Pond =	80	1	<u> </u>	1	COPY TO:	AD 17	
		7000	9.0				D PMU, NAYH	ATMENT, UTIL DIN HEALTH SERVI OF HUMAN RE	MCAS-NR
REPORT DATE: 9	-8-87		Cobert G.	Deppen			I NREAD	/	ATTACH WKST

ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED DATE (S) MAYZED 9-1-87 9-1-87 MC.BC.L 113:30/3 (BEV 7-87) ONSLOW HADNOT MCAS HOLCOMB COURTHOUSE RIFLE PLANT POINT NEW RIVER BLVD BAY RANGE BEACH PARAMETER 04-67-042 04-67-047 04-67-048 (UNITS) 04-67-041 04-67-043 04-67-046 8.8 8.2 8.4 OH-LABORATORY 8.8 8. 2 7.7 STABILITY - 0,3 + 0.1 -0.2 +0, W -0,1 -0.8 PHENOLTHALEIN 16 ALKALINITY 18 0 0 2 0 (PPm) METHYL ORANGE 147 ALKALINITY 184 77 66 184 172 (PPm) CARBONATES AS CACO3 36 0 32 .0 Ex 0 BICARBONATES AS CACO3 66 110 36 184 180 172 (PPM) CHLORIDES 64 16 18 14 26 ASCI (PPM) 46 HARDNESS AS CACOS 90 72 112 86 74 82 (PPM) IRON AS FE DOWN AA (ppm) 0,12 0.33 Am Funcine 0,52 0,31 0,15 0.09 0,11 0.14 (ppm) PW 0,7 1.0 AM TURBIDITY 2.8 0,3 0,3 0,6 0.5 0.6 (NTUS) /PM CHLORINE RESIDUAL 1.0 0.9 1.7 10 1.2 1,2 (PPM) REMARKS: COPY TO: D-UTIL DIR, BMD П WATER TREATMENT, UTIL DIV. BMD A-PMU, NAYHOSP A-PMU, MCAS-NR DIVISION OF HEALTH SERVICES REPORT DATE: REPORT PREPARED BY: carol I Shous 9-1-87 I NREAD 1 FILE (ATTACH WKST)

ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT DATE COLLECTED - 25-87 CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE(S) ANALYZED 8-25-87 MCBCL 11330/3 (REV 7-87) HADNOT MCAS HOLCOMB COURTHOUSE RIFLE ONSLOW PLANT POINT NEW RIVER BLVD BAY RANGE PHRAMETER BEACH 04-67-042 (UNITS) 04-67-041 04-67-043 04-67-046 04-67-047 04-67-048 8,2 pH-LABORATORY 8.8 8,0 7.6 8.6 8.4 STABILITY -011 -0.4 -0,1 -1.2 40.2 0 PHENOLTHALEIN 8 0 ALKALINITY 0 4 0 0 (PPm) METHYL ORANGE 184 172 ALEALINITY 182 70 1132 60 (PPm) CARBONATE S AS CACOS 0 8 0 0 0 16 (PPm) BICARBONATES 70 172 116 52 182 184 (PPM) CHLORIDES 66 14 38 (PPM) 10 14 28 HARDNESS AS CACOS 92 74 78 72 82 60 (PPM) IRON AS FE AA DOWN (ppm) 0.96 AM 0.70 FLUORIDE 0.61 0.65 0.14 0,11 (ppm) PM 0,15 0.8 AM 0.7 TURBIDITY 0.8 1.3 0.7 (NTUS) PM 0.7 0.9 0.8 CHLORINE RESIDUAL 1. 7 1.1 0.7 1.4 1.1 (PPM) 1.0 REMARKS: COPY TO: 1 Uni Die, BMD П WATER TREATMENT, UTIL DIV, BMD PMU, NAYHOSP PMU, MCAS-NR DIVISION OF HEALTH SERVICES N.C. DEPT OF HUMAN RESOURCES REPORT DATE: REPORT PREPARED BY: 8/25/87 I NREAD FILE (ATTACH WKST)

HEMICA	LAN	ALYSIS - W	ATER TREAT	TMENT PLA	ANTS		DATE COLLECTED		DATE (S) MALYZ	
1CBCL 113	30/3	(REV 7-87)					18-18-8	7	8-18-8	7
PL NAMETER (UNITS)	THA	HADNOT POINT 04-67-041	MCAS NEW RIVER 04-67-042	HOLCOMB BLVD 04-67-043	COURTHOUSE BAY 04-67-046	RIFLE RANGE 04-67-047	ONSLOW. BEACH 04-67-048			
H-LABORATO	DRY	9.2	8.5	8.6	7.9	8.2	7.7			
STABILITY		+0.4	0	+0.3	-0.4	-0.2	-0.6			
PHENOLTHALE ALKALINITY (PPM)		12	6	2	0	0	0			19-19 St (1901)
METHYL ORANG ALKALINITY (PPM)		56	142	62	192	152	174			and the second
AS CACO3 (PPM)		24	12	4	0	0	0			
AS CACO3	ES	32	130	58	192	152	174	**		
CHLORIDES ASCI (PPM)		14	78	16	18	10	26		1	
HARDNESS AS CACOZ (PPM)		50	50	70	56	62	56			
IRON AS FE		-	-							
FLUORIDE (ppm)	7 111		0.55	0.88	0.12	0.10	0.14			
TURBIDITY (NTUS)	Am/ Pm	0.3	0.2	0.2	0.1	0.1	0.1			
CHLORINE RESIDUAL (PPM)		1.0	0.8	1.2	1.2	0.8	NONE			
REMARKS:			×				1	COPY TO:		
								UTIL DIE, BI		
								WATER TRE	LATMENT, UTIL T	DIV. BMD
	9 4 7					,			HOSP RPML	
								N.C. DEPT	HEALTH SER	vices resources
REPORT DA		9.7		REPORT PREP			E Veran	P Eu	E (ATTACH WKS	
_ 8-	-18.8	1		CAROLS	S. SHOKES	5	I NREAD	DA FIL	E (Allacii Mo	

ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED DATE (S) MALYZED MCBCL 11330/3 (REV 7-87) 8-18-87 8-18-87 HADNOT MCAS HOLCOMB COURTHOUSE RIFLE ONSLOW PLANT PHAMETER POINT NEW RIVER BLVD BAY RANGE BEACH (UNITS) 04-67-041 04-67-042 04-67-043 04-67-048 04-67-046 04-67-047 PH-LABORATORY 8.5 8. 2 8.6 7. 7 7.9 STABILITY 7 6.4 0 +0.3 - O. Y -0,2 - 0.6 PHENOLTHALEIN ALKALINITY 6 12 Z 0 0 (PPM) 0 METHYL ORANGE ALKALINITY 142 192 62 56 152 (PPm) 174 CARBONATE S AS CACOX 12 4 0 24 0 0 (PPm) BICARBONATES AS CACO3 130 32 58 197 (PPM) 152 174 CHLORIDES 14 (PPM) 78 16 18 26 10 HARDNESS AS CACOS 50 56 62 (PPM) 50 70 5 6 IRON AS FE AA Down (ppm) 0.85 0.88 AM FLUDRIDE 0.92 0.87 Pm (ppm) 0.55 0.14 0.12 0.10 0.2 0,3 AM TURBIDITY 0.2 0.1 0.3 0.1 (NTUS) Pm 0,5 0.1 CHLORINE RESIDUAL 1.0 0.8 1. 2 1. 2 0.8 N.R. (PPM) REMARKS: COPY TO: DOTIL DIE. BMD N.R. = П-NO RESULTS DWATER TREATMENT, UTIL DIV, BMD DPMU, NAVHOSP DPMU, MCAS-NR DIVISION OF HEALTH SERVICES N.C. DEPT OF HUMAN RESOURCES REPORT DATE: REPORT PREPARED BY: 8-18-87 Carold Shows I NREAD IZ-FILE (ATTACH WKST)

why?

CHEMICAL MCBCL 113	L AN.	ALYSIS - W/ (REV 7-87)	ATER TREA	TMENT PLA	NTS		8-11-8		8-11-8	
PLA MAMETER (UNITS)	TIME	HADNOT POINT 04-67-041	MCAS NEW RIVER 04-67-042	HOLCOMB BLVD 04-67-043	COURTHOUSE BAY 04-67-046	RIFLE RANGE 04-67-047	ONSLOW BEACH 04-67-048			5
H-LABORATO		(9.1)	8.7	8.6	7.7	8.2	7.6			
TABILITY		-0.6	0.0	+0.2	-0.7	-0.3	-0.7			
HENOLTHALEI LKALINITY (PPM)	7	8	12	2	0	0	0		7	
LEALINITY (PPM)	E.	48	136	60	172	150	160			
AS CACO ₃ (PPM)		16	24	4	0	0	0			
AS CACO3	15	32	112	56	172	150	160			
CHLORIDES ASCI (PPM)		14	74	12	18	24	20		,	
ARDNESS AS CACOS (PPM)		60	50	68	56	42	68			
(ppm)			-	A.A. D	own		_	-		
Eworine (ppm)	Am/ Pm	1.00	0.57	1.00.94	0.12	0.10	0.14			
TURBIDITY (NTUS)	Am/ Pm	0.8 1.5	1.0	0.8.6	0.6	0.7	0.9			
CHLORINE RESIDUAL (PPM)		1.1	0.8	1.1	1.2	1.0	1.1			
Remarks:						-		COPY TO:	.b II—	
								WATER TREA	TMENT, UTIL D	IV, BMD
								PMU, NAYHO	OSP PMU,	MCAS-NR
								DIVISION OF	HEALTH SERV	ices Esources
REPORT DAT	The state of the s			REPORT PREPA	Burne			I NREAD	FILE	(ATTACH WKST

8	-1-8			
		8.16		
	T.8 - 3.7		I de la setal	
		2 2		
	5 3 1 1 1 1	1.00	14 35 8H	
		+	1 42 4 31	
	08/ 01/3	72.7 32.1	30 25	
	02/11/01/20	81 81	+4	
	37 34	132 134		
		Amed LAA		
	4 1 011	11 69 A C12	1.96 006277	
	A SOLIT AND THE	6.3 6.83		
		E-1 1	3.0 - 11 15.1	
7				
		same ()		3-11-8

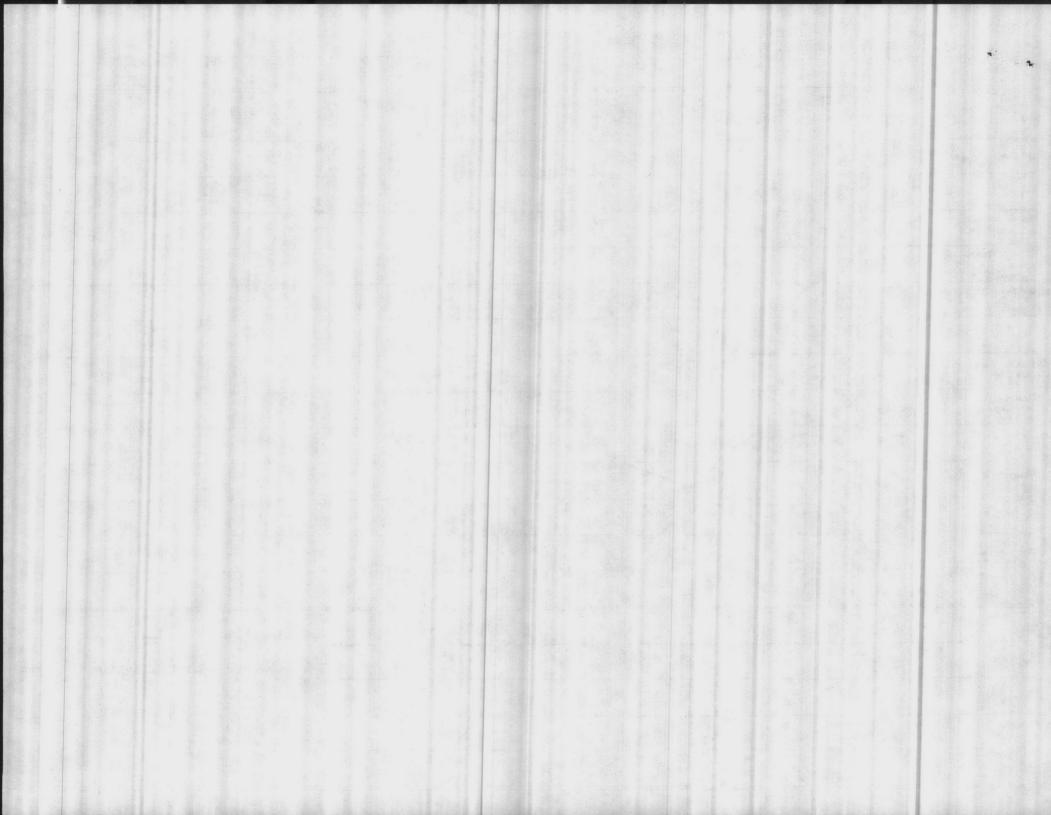
CHEMICAL MCBCL 1135	AN.	ALYSIS - WA	ATER TREA	TMENT PLA	INTS		8-4-8		DATES AVALYZED 8-4-87
PLANETER (UNITS)	(T	HADNOT POINT 04-67-041	MCAS NEW RIVER 04-67-042	HOLCOMB BLVD 04-67-043	COURTHOUSE BAY 04-67-046	RIFLE. RANGE 04-67-047	ONSLOW BEACH 04-67-048		
H-LABORATOR	Y	9.0	8,5	816	7.9	8,3	7,5		
STABILITY		+0.9	+61	T 015	-014	-0.1	-0,7		
HENOLTHALEIN (LKALINITY (PPM)	2.	8	12,	4	0	0			
LETHYL ORANGE LIKALINITY (PPM)		54	152	60	170	160	150		
AS CACO3 (PPM)	8.4	16	24	8	0	0	0		
SICARBONATE AS CACO3 (PPM)	5	38	128	52	170	160	150		
CHLORIDES AS CI (PPM)		1,6	80	14	16	26	14		
ARDNESS AS CACO ₃ (PPM)		60	56	66	54.	54	82		
Iron as Fe (ppm)		-		H.A.	Down			7	
Fluoride (ppm)	Am/ Pm	0.40.64	0.63	107.04	0.12	0.12	0.15		
Tuesidity (NTUS)	Am/ Pm	0.3 0.2	0.2	2:00	0.1	0.1	0,1		
CHLORINE RESIDUAL (PPM)		11)	0.8	1,2	1,2	1.0	1:5		
Remarks:		08-	-Pond=7°	7	<u> </u>			COPY 76:	MD []
								WATER TRE	ATMENT, UTIL DIV, BMD
				10				D PMU, NAVI	105P PMU, MCAS-NE
								DIVISION OF	HEALTH SERVICES
REPORT DATE: REPORT PREPARED					- //	DUW I NREAD DEFILE			

	1 2 2								
		E CAS	1.	2					
	HOLDE			6.72					
				11.00					
	60		100			3.			
	10	85 1	12	1.70		191			
		大		172					
		3-1							
	18 16			178					
	P.S.								
	8								
	G D		+ dust						
	6.0				E I L				
						3			
							- 87	-4-x1	
* .									
					the I die.				

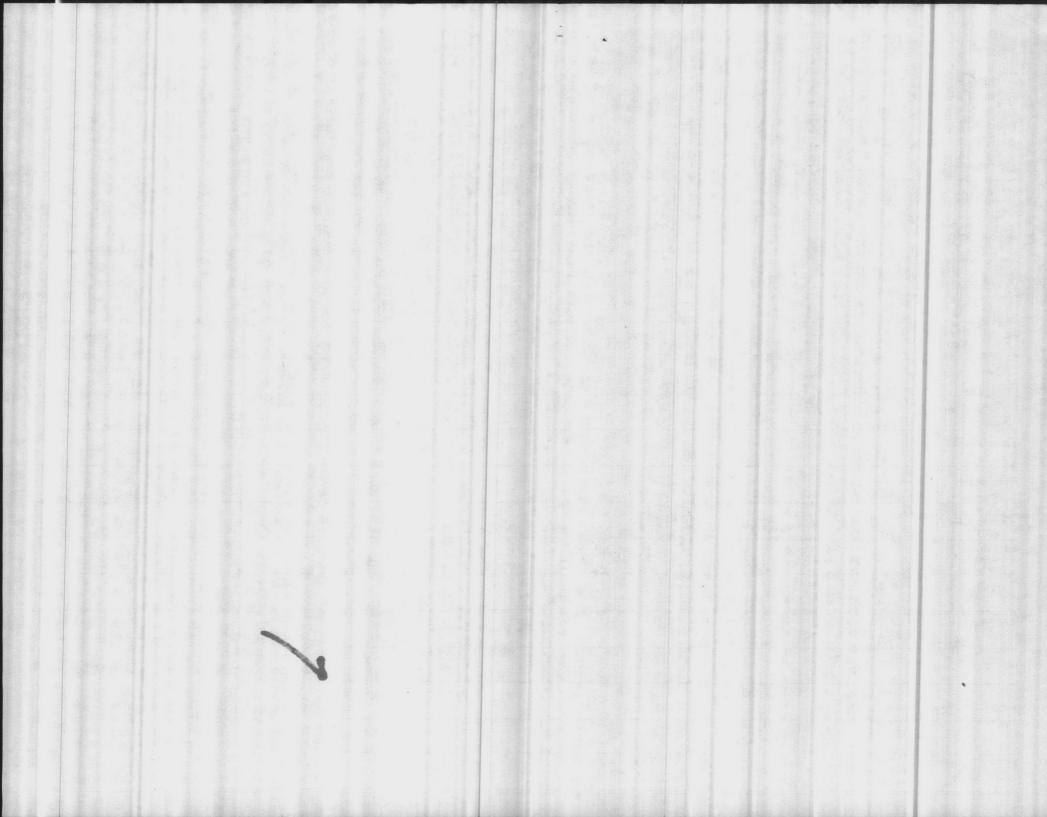
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	WATER IN		11113	TEST EEI	ILD		DATE COLLECTED		7-17-8	
PARAMETER	HADNOT POINT #2	CAMP JOHNSON #3	TARAWA TERRAC	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	7.6	7.7	8.1	8.2						
PHENOLTHALEIN ALKALINITY	0	0	0	0						
METHYL ORANGE ALKALINITY	150	184	120	90						
CARBONATES AS CACO3	0	0	0	0						
BICARBONATES AS CaCO 3	150	184	120	90						
CHLORIDES AS C1	10	8	10	6	S 46.			•		
HARDNESS AS CaCO ₃	160	156	102	90						
IRON AS Fe	A.A. D	own								
FLUORIDE	0.15	0.34	0.25	0.27					1 1 1 1 1	
CHLORINE RESIDUAL										
TURBIDITY	24.1	21.9	23.9	25.1			2.4			
TOTAL PHOSPHATE										
Static	7'	14'6"	7'	19'						
Depth	90'	75'	107'	103'						
STABILITY										
REMARKS								•	COPY TO:	
							_		UTIL DIR	
									O WATER TO	
NOTE: All results reported in	n parts per million i	unless otherwise no	ted except for pH	. temperature.	LABORATORY ANAL	YSIS BY			- PMU	□ MCAS PMU
and specific conduct	tance. One liter of	potable water is as	ssumed to weigh	one kilogram.	_	2~			□ NREAD	□ FILE

ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT CHEMICAL ANALYSIS - WATER TREATMENT PLANTS MCBCL 11330/3 (REV 7-87) DATE COLLECTED DATE(S) ANALYZED 7-21-87 7-31-87 RIFLE ONSLOW COURTHOUSE HADNOT MCAS HOLCOMB PLANT BAY RANGE BEACH POINT NEW RIVER BLVD PARAMETER 04-67-048 04-67-046 04-67-047 04-67-041 04-67-042 04-67-043 (UNITS) 8.5 7.9 8.2 pH-LABORATORY 8.5 8.7 7.6 STABILITY +0.2 -0,4 -0,6 40.3 -01 +0.6 PHENOLTHALEIN ALKALINITY (PPM) 10 6 METHYL ORANGE ALKALINITY 52 60 144 160 160 160 (PPm) CARBONATE S AS CACO3 12 20 BICARBONATES AS CACO3 (PPM) 52 40 160 60 160 CHLORIDES ASCI (PPM) 70 10 50 18 16 10 HARDNESS AS CACOS 60 56 54 60 56. 56 (PPM) IRON AS FE (ppm) 0.98 1,01 AM FLUORIDE 0.94 0.09 6.78 0.12 0.13 0.54 (ppm) PM AM TURBIDITY 0.2 0.1 (NTUS) CHLORINE 1.7 RESIDUAL 1.0 0.8 1.4 1,4 1,0 (PPM) COPY TO: REMARKS: DUTIL DIR. BMD DWATER TREATMENT, UTIL DIV. BMD PMU, NAVHOSP PMU, MCAS-NR DIVISION OF HEALTH SERVICES

N.C. DEPT OF HUMAN RESOURCES REPORT DATE! REPORT PREPARED BY: FILE (ATTACH WKST) I NREAD

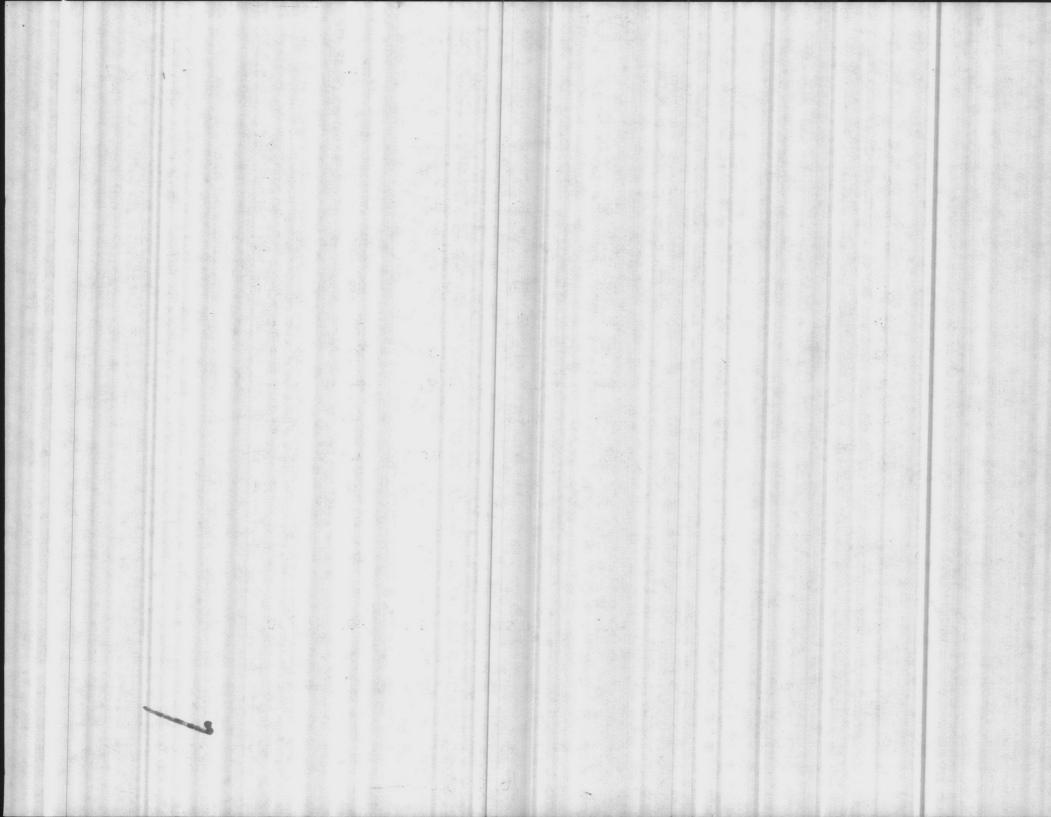


ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT CHEMICAL ANALYSIS - WATER TREATMENT PLANTS MCBCL 11330/3 (REV 7-87) DATE COLLECTED DATE(S) ANALYZED 7-21-87 7-61-87 HADNOT MCAS HOLCOMB COURTHOUSE RIFLE ONSLOW PLANT POINT NEW RIVER PARMETER BLVD BAY RANGE BEACH (UNTIS) 04-67-041 04-67-042 04-67-043 04-67-048 04-67-046 04-67-047 PH-LABORATORY 8.5 8.7 8.2 7.9 7.6 STABILITY 10.3 0.2 -0.4 -0.6 +0.6 -0.1 PHENOLTHALEIN ALKALINITY 6 (PPM) METHYL ORANGE ALKALINITY 60 44 52 160 160 160 (PPm) CAEBONATES AS CACOS 8 20 12 (PPm) BICARBONATES 52 40 127 160 160 160 (PPM) CHLORIDES (PPM) 10 70 10 18 16 50 HARDNESS AS CACOZ 4 60 Filo 56 60 56 (PPM) IRON AS FE (ppm) 0.48 AM FLUORIDE 1.01 0.94 054 0.09 (ppm) 0.12. 0.13 PW TURBIDITY 0.2 0. 0.1 0. 0.6 (NTUS) /Pm CHLORINE RESIDUAL 1.4 1.0 1,4 10 (PPm) REMARKS: COPY TO: DUTIL DIE, BMD MATER TREATMENT, UTIL DIV. BMD PMU, NAVHOSP FMU, MCAS-NR DIVISION OF HEALTH SERVICES N.C. DEPT OF HUMAN RESOURCES REPORT DATE: REPORT PREPARED BY


7-20-87

FILE (ATTACH WKST)

I NREAD


ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY LABORATORY REPORT CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED DATE(S) ANALYZED 7-28-87 7-28-87 MCBCL 11330/3 (BEV 7-87) HADNOT MCAS HOLCOMB COURTHOUSE RIFLE ONSLOW PLANT NEW RIVER RANGE BEACH POINT BLVD BAY PARAMETER 04-67-048 04-67-042 04-67-043 04-67-046 04-67-047 (UNITS) 04-67-041 PH-LABORATORY 8.2 8.6 8.6 8.0 7.5 STABILITY -0,1 -0.3-0.7 +0,4 +0.2 +0.5 PHENOLTHALEIN ALKALINITY (PPM) 0 0 METHYL ORANGE ALKALINITY 56 164 156 138 60 154 (PPm) AS CACOS 8 0 0 16 (PPm) BICARBONATES AS CACO3 (PPM) 154 56 57 122 52 164 CHLORIDES 18 40 (PPM) 70 20 16 HARDNESS AS CACOS 48 50 60 70 56 62 (PPM) IRON AS FE A.A. DOWN (ppm) AM, FLUORIDE 0.99 0.15 0.14 0.11 0.58 (ppm) /Pm 1.12 AM TURBIDITY 0.6 0.2 0.2 0.5 (NTUS) 0.1 CHLORINE 1.3 RESIDUAL 0.8 1,3 1.7 .0 (PPM) COPY TO: REMARKS: D'UNLDE BMD WATER TREATMENT, UTIL DIV, BMD PMU, NAYHOSP PMU, MCAS-NR DIVISION OF HEALTH SERVICES N.C. DEPT OF HUMAN RESOURCES REPORT DATE: REPORT PREPARED BY: ABurns I NREAD IT FILE (ATTACH WKST) 7-22-87

CHEMICAL ANALYSI MCBCL 11330/3 (REV 6-84)							7-17-8	7	DATE OF ANALYSIS 7-17-87		
PARAMETER	HADNOT POINT#2	CAMP JOHNSON #3	TARAWA TERRACE 44	BEACH 5	COURTHOUSE BAY	RIFLE	HOLCOMB BLVD	NEW RIVER			
РН	7.6	7.7	8.1	8.2							
PHENOLTHALEIN ALKALINITY	0	0	0	0							
METHYL ORANGE	150	184	120	90.	+4	77 5.0					
ARBONATES AS CaCO ₃	0	0	0	0							
ICARBONATES S CaCO 3	150	184	120	90							
CHLORIDES AS C1	10	8	10	6				•			
HARDNESS AS CaCO ₃	160	156	102	90							
RON AS Fe	A.A.	DOWN				A CAN					
LUORIDE	0.15	0.34	0,25	0.27							
CHLORINE RESIDUAL											
URBIDITY	24.1	21.9	23,9	25,1							
OTAL PHOSPHATE											
PRTHO PHOSPHATE											
META PHOSPHATE											
TABILITY									1 B	-	
EMARKS									COPY TO:		
									D UTIL-DIR	0	
					- PC				D WATER TREATMENT		
NOTE: All results reported and specific condu	in parts per million ctance. One liter of	unless otherwise no f potable water is as	ted except for pH, ssumed to weigh o	temperature, one kilogram.	LABORATORY ANAI				□ PMU □ MCAS PMU		
					BURNS	S			□ NREAD	□ FILE	

CHEMICAL ANALYSIS MCBCL 11330/3 (REV 6-84)		CATIVIENT PL	1	100			7-14-87		7-14	*87
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.7			7.6	7.8	8.3	8.6	8.6		
PHENOLTHALEIN ALKALINITY	4			0	0	0	4	12		
METHYL ORANGE ALKALINITY	60			150	160	156	56	140		
CARBONATES AS CaCO3	8			0	0	0	8	24		
BICARBONATES AS CaCO ₃	52			150	160	156	48	116		
CHLORIDES AS C1	10			20	14	44	16	70		
HARDNESS AS CaCO ₃	70			54	50	50	60	48		
RON AS Fe	_				A.A	DOWN		_		
FLUORIDE	0.75			0.16	0.13	0.10	1.00	4,55		
CHLORINE RESIDUAL	0.9			1.6	1.2	1.0	1.1	0.9		
TURBIDITY	0.2			0.4	0.1	. 0.1	0.5	0.1		
TOTAL PHOSPHATE	The state of the s									
ORTHO PHOSPHATE										
META PHOSPHATE										
STABILITY	+0.3			-0.8	-0.5	-0.2	+0.6	0.0	1	-
EMARKS									COPY TO:	
										0
										EATMENT
NOTE: All results reported and specific condu	in parts per million ctance. One liter of	unless otherwise no	oted except for p	H. temperature.	LABORATORY ANA	LYSIS BY			D PMU D MCAS PMU	
					163	Burns	_		□ NREAD	LO FILE

.

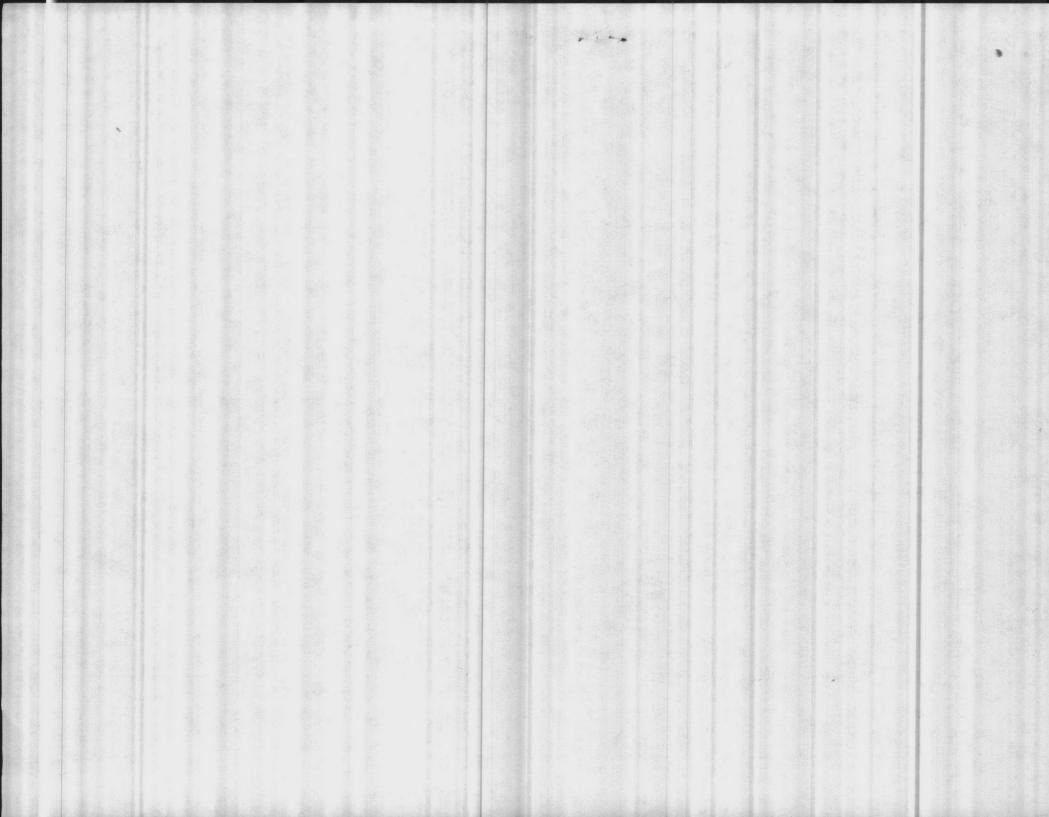
CHEMICAL ANALYSIS MCBCL 11330/3 (REV 6-84)	S - WATER T	REATMENT PL	ANTS				7-7-8		DATE OF ANALYSIS		
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER			
РН	8.8			7.60	8.0	8,4	8.6	3.5			
PHENOLTHALEIN ALKALINITY	6			0	0	2	4				
METHYL ORANGE ALKALINITY	54			150	166	130	60	140			
CARBONATES AS CaCO ₃	12			0	0	4	8	12			
BICARBONATES AS CaCO 3	42			150	166	126	52	128			
CHLORIDES AS C1	14			20	14	48	10	70			
HARDNESS AS CaCO ₃	62		4460	52	50	50	60	50			
RON AS Fe		•		A.A.	Down						
LUORIDE P.M.	1.07			0.17	0.12	0.10	0.99	0.58			
CHLORINE RESIDUAL	1.0			1.5	1,3	1.1	1.2	0.8			
URBIDITY A.N.	0.2			0.2	0.1	0.1	0.3	0.2			
OTAL PHOSPHATE							10.1	0.2			
ORTHO PHOSPHATE											
META PHOSPHATE											
STABILITY	+0.4			-0.8	-0.5	-0.1	103	0.0	-		
REMARKS		g					- 12.2		COPY TO:		
									D OTIL DIR D		
									D WATER TREATMENT		
NOTE: All results reported and specific conduc	in parts per million ctance. One liter of	n unless otherwise n	noted except for plassumed to weigh	H, temperature.	LABORATORY ANA	LYSIS BY	y to the second	443	D PMU MCAS PMI		
					14.0.6	Sun	,		D NREAD DELE		

(57) i

CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED G-30-87 MCBCL 11330/3 (REV. 6-84) 6-30-87 HADNOT CAMP TARAWA ONSLOW COURTHOUSE RIFLE HOLCOMB NEW PARAMETER POINT JOHNSON TERRACE BEACH BAY RANGE BLVD RIVER PH 8.8 7.1 7.9 8,3 8,7 8.6 PHENOLTHALEIN ALKALINITY 8 0 2 METHYL ORANGE ALKALINITY 52 60 160 170 160 110 CARBONATES AS CaCO3 8 8 16 **BICARBONATES** AS CaCO3 44 160 170 52 94 156 CHLORIDES AS C1 10 14 20 20 44 60 HARDNESS AS CaCO3 56 68 68 54 54 60 IRON AS Fe A.A. DOWN A.M. 1.20 1.00 FLUORIDE P.M. 1.15 0.16 0.13 0.13 0.72 0.46 CHLORINE RESIDUAL 0.7 1.2 1,3 1,0 0.8 A.M. 0.2 0.2 TURBIDITY P.M. 0.4 0,1 6.3 0.2 0,2 6.3 TOTAL PHOSPHATE **URTHO PHOSPHATE** META PHOSPHATE STABILITY -1.2 -0.4 40. +0.4 +0. REMARKS COPY TO: BB 294 CHLORIBES 500 DI UTIL DIR D WATER TREATMENT

NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature.

and specific conductance. One liter of potable water is assumed to weigh one kilogram.


16. J. Burns

LABORATORY ANALYSIS BY

MCAS PMU

O NREAD &

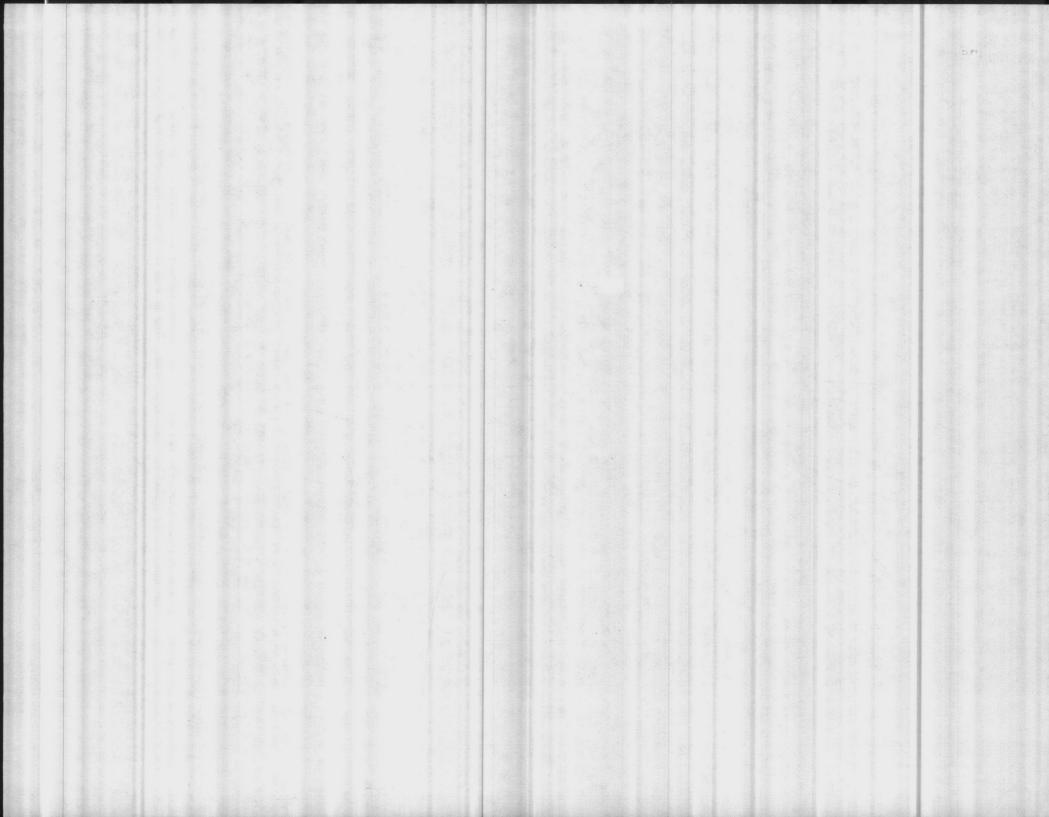
b FILE

CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE OF ANALYSIS 6-9-87 DATE COLLECTED MCBCL 11330/3 (REV. 6-84) 6-9-87 HADNOT CAMP TARAWA ONSLOW COURTHOUSE RIFLE HOLCOMB NEW PARAMETER POINT JOHNSON TERRACE BLVD BEACH BAY RANGE RIVER PH 8.4 7.5 8.3 8,5 8.8 PHENOLTHALEIN ALKALINITY 4 METHYL ORANGE ALKALINITY 54 156 170 150 60 90 CARBONATES AS CaCO3 8 **BICARBONATES** AS CaCO 3 46 82 156 52 150 CHLORIDES AS C1 18 20 24 10 56 HARDNESS AS CaCO3 46 56 64 50 50 IRON AS Fe 40.04 20.04 40.04 40.04 10.04 40.04 0.96 D.M. 0.94 FLUORIDE 0.47 , A. 1.96 0.18 0.13 0.94 0.10 CHLORINE RESIDUAL 0.9 1.2 0.8 1,5 1.1. A.N. 0.1 TURBIDITY 0.4 0.4 0.2 0.1 0.7 TOTAL PHOSPHATE ORTHO PHOSPHATE META PHOSPHATE STABILITY -0.7 +0.4 +0.3 +0.2 REMARKS COPY TO: DUTIL DIR WATER TREATMENT MCAS PMU NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, PMU LABORATORY ANALYSIS BY and specific conductance. One liter of potable water is assumed to weigh one kilogram. A FILE

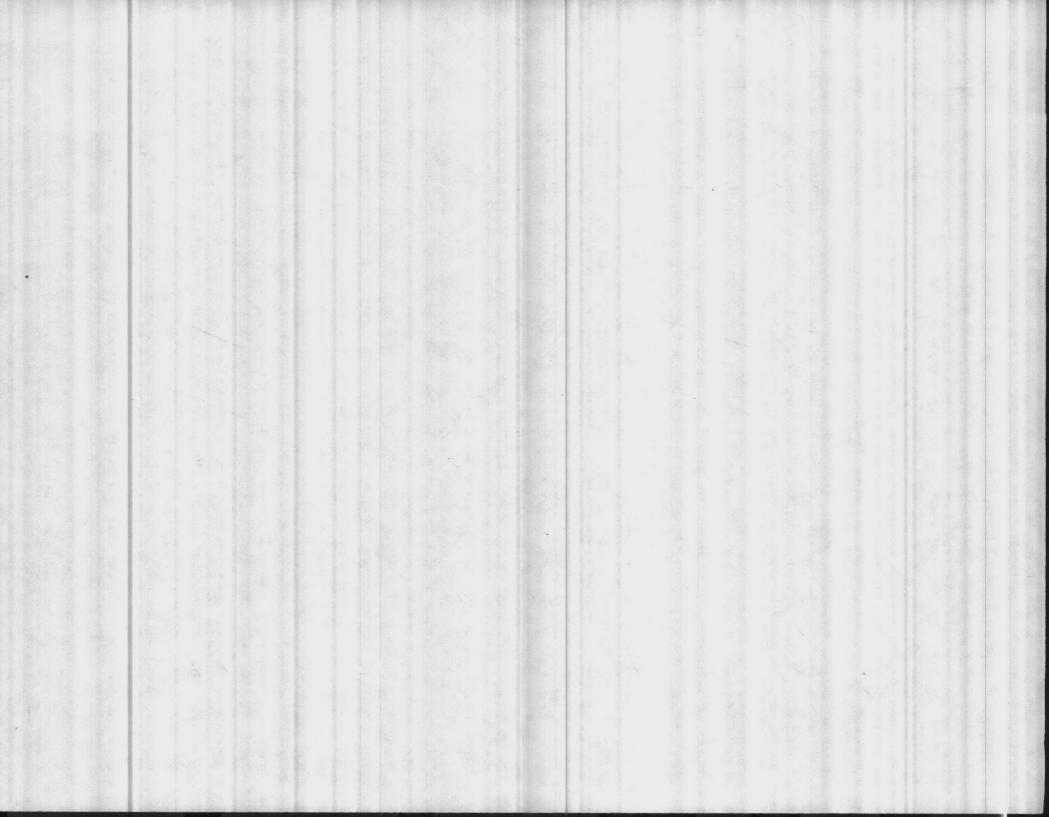
□ NREAD

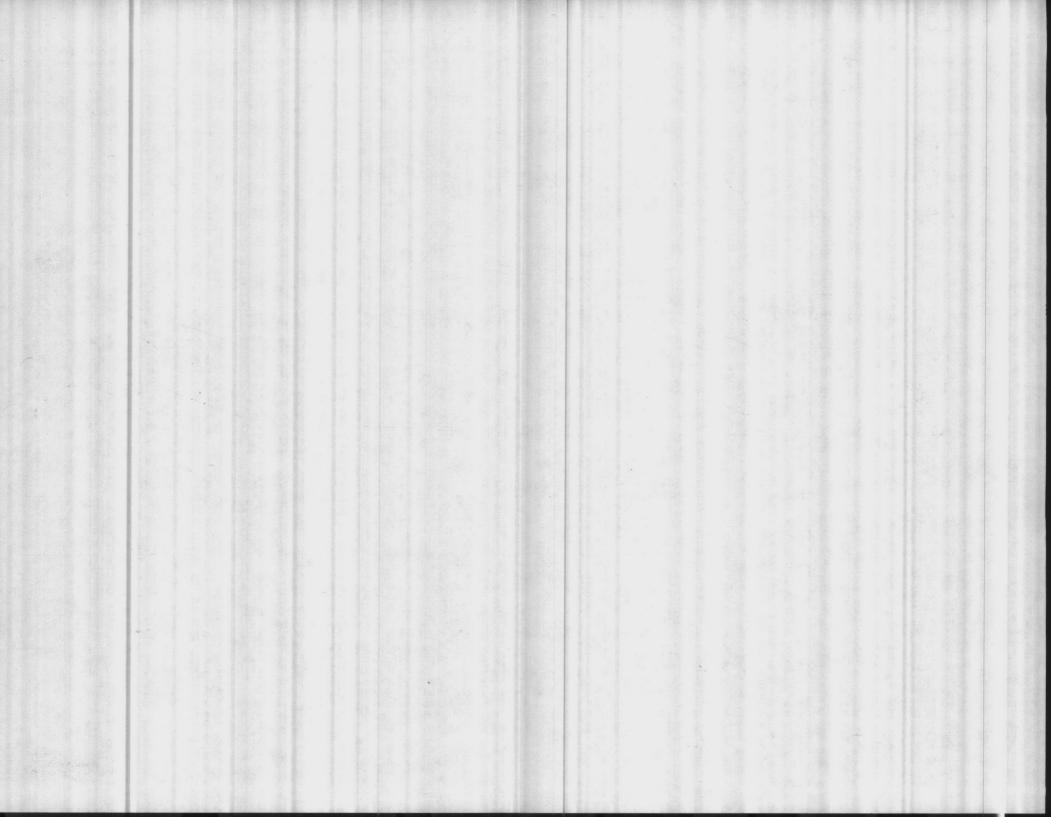
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER T	NEATMENT PL	ANIS				6-16-	87	6-16-87		
PARAMETER	HADNOT POINT	CAMP	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		4	
РН	8.8		7	7.6	8.0	8.3	8.6	8,9			
PHENOLTHALEIN ALKALINITY	4			0	0	4	4	12			
METHYL ORANGE ALKALINITY	50			160	170	150	58	106			
CARBONATES AS CaCO3	8			0	0	8	8	24			
BICARBONATES AS CaCO ₃	42		1.42	160	170	142	50	82			
CHLORIDES AS C1	10			20	14	40	10	. 50			
HARDNESS AS CaCO ₃	64			50	50	56	60	60			
RON AS Fe	_		A.A.	NWOCI			-	_			
FLUORIDE P.M.	1.05		Burn	0.15	0.12	0.11	1.05	0.46			
CHLORINE RESIDUAL	1.0			1.2	1.5	1.1	110	0.8			
TURBIDITY A.M.	0.6			0.2	0.3	0,1	0.2	1.4			
OTAL PHOSPHATE	0.029						0.009	0,063			
ORTHO PHOSPHATE			400							# 3 A	
META PHOSPHATE								12			
STABILITY	+0.4			-0.7	-0.3	-0.1	10.3	10.4			
REMARKS									COPY TO:		
									UTIL DIR		
									WATER TE		
NOTE: All results reported	in parts per million	unless otherwise r	noted except for p	H, temperature,	LABORATORY ANA	LYSIS BY			PMU	MCAS PMU	
and specific conduc	ctance. One liter o	f potable water is	assumed to weigh	one kilogram.	HO.	Zurns			□ NREAD	FILE	

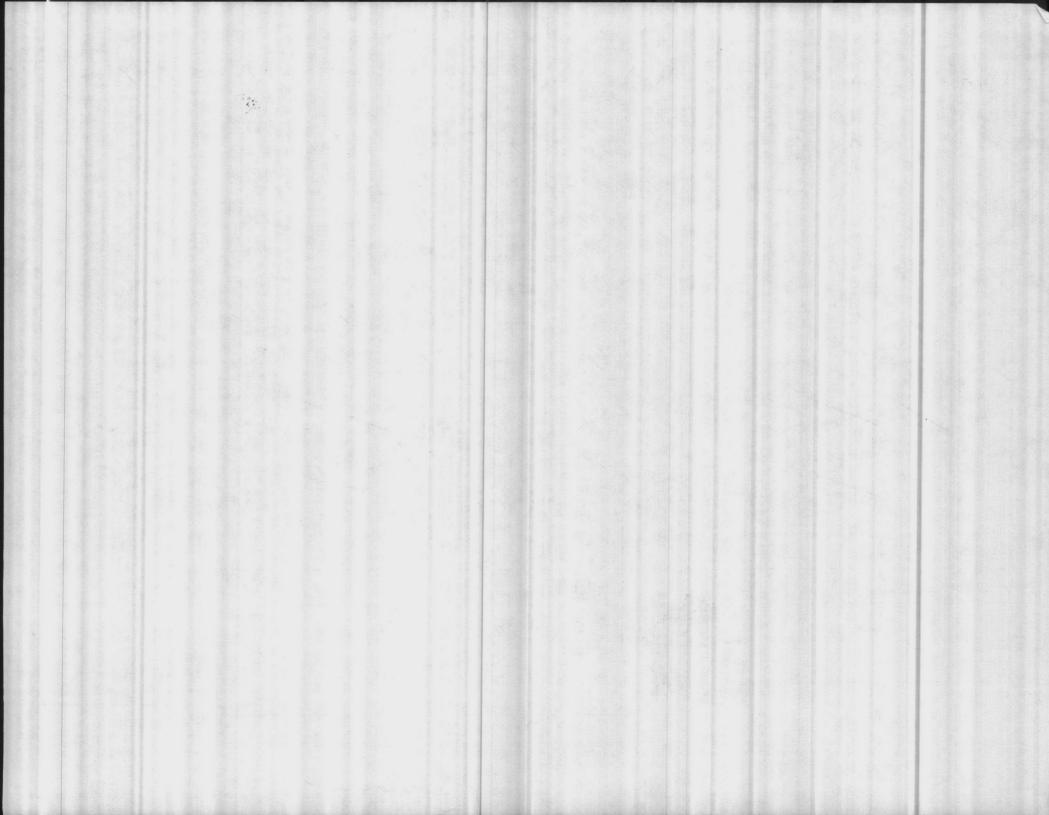
.


18.50 PALE SIE HANDS NEEDEN

CHEMICAL ANALYSIS MCBCL 11330/3 (REV 6-84)	- WATER TR	EATMENT PL	ANTS	,	97.	*	DATE COLLECTED		DATE OF ANAL	ysis 87
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE	HOLCOMB BLVD	NEW RIVER		
РН	8.5			7.7	8.2	8.4	8.5	8.8		
PHENOLTHALEIN ALKALINITY	4			0	0	2	1	6		
METHYL ORANGE	62			160	170	160	60	100		
CARBONATES AS CaCO ₃	8			0	0	4	1 4	12		
BICARBONATES AS CaCO 3	54			160	170	156	56	88	2.7	
CHLORIDES AS C1	14			20	20	46	10	50		
HARDNESS AS CaCO ₃	76/			76 /	56	56	724			
RON AS Fe			A.A.	DOWN						+47
LUORIDE PM	0.80			0.17	0.14	0.11	0.89	0.42		
CHLORINE RESIDUAL	1.1			1,3	1.5	1.0	11.1	0.8		
TURBIDITY P.M.	01			0.2	0.1	-0.1	0.5	0.9		
OTAL PHOSPHATE										
PRTHO PHOSPHATE										
META PHOSPHATE										
STABILITY	+0.1			-0.5	-0.2	0.0	00	1+04		ě - 1
REMARKS	'	4			' ha		10.0	170.7	COPY TO:	
							-		DUTILDIR	0
									D WATER TR	EATMENT
NOTE: All results reported i	n parts per million i	unless otherwise r	noted except for pH	. temperature.	LABORATORY ANA	LYSIS BY			D PMU	MCAS PMU
and openine conduc		potable water is	assumed to weigh	one knogram.	4.0	2			□ NREAD	O VFILE

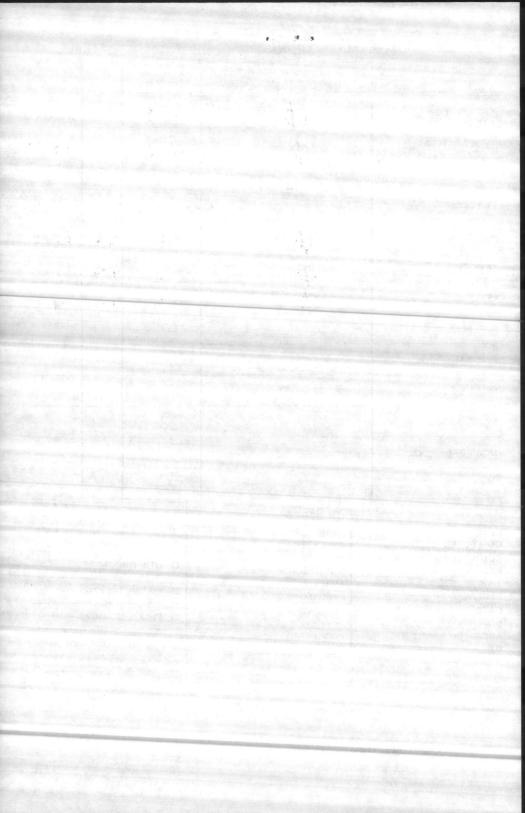

.


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER TR	REALMENT PLA	INTS				DATE COLLECTED 5-26	-87	DATE OF ANAI	LYSIS 6-87
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.7			7.4	8.0	8,3	8.7	8,9		
PHENOLTHALEIN ALKALINITY	20			0	0	4	14	12		2
METHYL ORANGE NLKALINITY	58			176	186	200	72	120		
CARBONATES AS CaCO ₃	40			0	0	8	28	24		
BICARBONATES AS CaCO ₃	18			176	186	196	44	196		
CHLORIDES AS C1	16			48	20	44	18	60		
HARDNESS AS CaCO ₃	60			44	54	58	6 <i>z</i>	64		
RON AS Fe	4	AA DOWN						,		
FLUORIDE PM	1.11			0.18	0.16	0.12	0.65	0.54		
CHLORINE RESIDUAL	0.9			1.4	1.4	1.0	1,2	1.0		
URBIDITY AM	0.1			0.2	0.1	. 0./	10	0.4		
OTAL PHOSPHATE										
PRTHO PHOSPHATE										
META PHOSPHATE										
STABILITY	+0.4			-0.9	-0.4	-01	+0.3	+0.1		
REMARKS									COPY TO:	
									TIL DIR	
									WATER TI	REATMENT
IOTE: All results reported and specific conduc	in parts per million ctance. One liter of	unless otherwise no	ted except for place	H, temperature, one kilogram.	LABORATORY ANAL				Ø PMU	MCAS PMU
					Carn	180	11		□ NREAD	FILE


MCBCL 11330/3 (REV. 6-84)							DATE COLLECTED	- 6/	DATE OF ANA	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8		7 1	7.6	8.0	8.4	8.6	8.8		
PHENOLTHALEIN ALKALINITY	4			0	0	2	4	14		15
ETHYL ORANGE LKALINITY	60			170	182	170	66	120		
CARBONATES AS CaCO ₃	8			0	0	4	8	28		
SICARBONATES S CaCO ₃	52			170	182	166	58	92		
CHLORIDES AS C1	14			24	18	26	12 .	66		
HARDNESS AS CaCO ₃	60			52	50	48	78	50		
RON AS Fe		- AA	Nwod	-				\longrightarrow		
LUORIDE AMP	0.80			0.15	0.12	0.09	1.14	0,43		
HLORINE RESIDUAL	1.0			1.4	1.5	1.1	1.0	0.8		
URBIDITY AMP	0.2			0.1	0.1	.01	0.2 0.3	0.5		
OTAL PHOSPHATE										
PRTHO PHOSPHATE				and the		10 To 12				
META PHOSPHATE										
TABILITY	40.4			-0.6	-0.2	+0,1	40.3	+0.3		
EMARKS			* 3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						COPY TO:	
									LUTIL DIR	0
									WATER T	REATMENT
OTE: All results reported and specific conduc	in parts per million stance. One liter of	unless otherwise r	noted except for phassumed to weigh	I, temperature,	LABORATORY ANAL				PMU	MCAS PMU
and specime conduct	and the file of	polable Water 15	accumed to weigh	one knogram.	lard	1 1	three 5/	107	□ NREAD	D'FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER TH	REALMENT PLA	NIS				DATE COLLECTED	87	DATE OF ANA	LYSIS 7-87
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.8			7.7	7. 9	7. 9	8.6	9.0		
PHENOLTHALEIN ALKALINITY	14			0	0	0	2	12		
METHYL ORANGE ALKALINITY	62			172	178	176	62	118		
CARBONATES AS CaCO ₃	28			0	0	0	4	24	4.62.14	
BICARBONATES AS CaCO 3	34			172	178	176	58	94		
CHLORIDES AS C1	26			38	36	64	26.	68		
HARDNESS AS CaCO ₃	82			60	48	72	98	78		
RON AS F	4	AA OOWN						 →		
FLUORIDE AMP	0.89			0.14	0, 11	0,09	0.93	0.40		
CHLORINE RESIDUAL	1.0			1.2	1.2	1.0	1.2	0.8		
TURBIDITY A PA	0.2			0./	0./	. 0.1	0.5	0.4		
TOTAL PHOSPHATE										
ORTHO PHOSPHATE										
META PHOSPHATE						1				
STABILITY	+0.3			-0.5	-0.4	-0.3	+0,1	40.3		
REMARKS			7 3 469 7 3 4						COPY TO:	
									GOTIL DIR	o
			4						MATER T	REATMENT
NOTE: All results reported i	n parts per million	unless otherwise no	ted except for pl	H, temperature,	LABORATORY ANAI	LYSIS BY			Ø ₽MU	□ ∠M eas PMU
and specific conduc	tance. One liter of	potable water is as	sumed to weigh	one kilogram.	Carls	I Show	-/		□ NREAD	G FICE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)							DATE COLLECTED	- 87	DATE OF ANAL	87
ARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.4			7.4	7.9	8.3	8,3	8.4	Tagin Time	
PHENOLTHALEIN ALKALINITY	4			0	0	4	Z	8		
METHYL ORANGE	68		V	134	188	186	56	130		
ARBONATES AS CaCO ₃	8			0	0	8	y	16		
ICARBONATES S CaCO 3	60			134	188	178	52	114		
CHLORIDES AS C1	16			26	20	30	10	58	4.	4
HARDNESS AS CaCO ₃	104			60	5-2	74	78	70		
RON AS Fe	AA Down	v						→	1798	
LUORIDE AM	1.03			0.16	0.11	0.09	0.98	0.41		
CHLORINE RESIDUAL	1.0			1.3	1.5	1.0	0.21	0.8		
URBIDITY AMP	3.1			0.2	0.1	.0.1	0.2	0.8		
OTAL PHOSPHATE										
PRTHO PHOSPHATE										
META PHOSPHATE			145 1 2							
STABILITY	+0.2			-0.5	-0,2	40,2	0	+0.2		
EMARKS				10.7					COPY TO:	
									Ø UTIL DIR	0
									WATER TH	REATMENT
IOTE: All results reported i	in parts per million ctance. One liter of	unless otherwise r	noted except for pH, assumed to weigh	temperature, lone kilogram.	LABORATORY ANA				Ø P MU	MCAS PMU
					Carre	0 1	low		□ NREAD	DE PICE

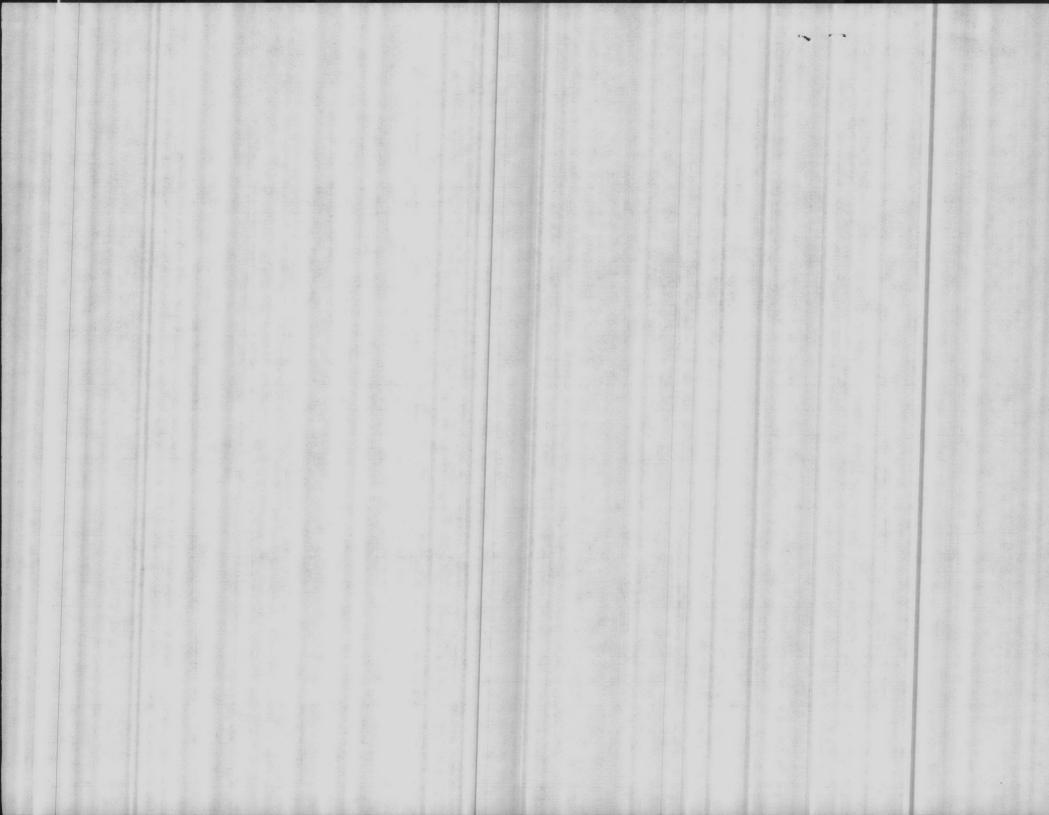

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)							DATE COLLECTED	28-87	DATE OF ANA	28-87
ARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH .	7.8			7.7	7.9	8.1	9.2	8.4		
PHENOLTHALEIN ALKALINITY	0			0	0	0	4	10		
ETHYL ORANGE LKALINITY	62			162	176	192	56	102		
ARBONATES AS CaCO ₃				Season Season						
CARBONATES S CaCO 3										
HLORIDES AS C1	14			26	16	64	16 .	58		
ARDNESS AS CaCO ₃	68			32	64	70	66	76		
RON AS Fe					AH Dow.	-		>		
LUORIDE AMP	6.95			0.14	0.11	0.10	0.89	0.46		
HLORINE RESIDUAL	1.0			1.5	1.0	1.0	1.4	0.8		
URBIDITY AM	0.3		and the same	0.1	0.2	.0.3	0.2	0.2		
OTAL PHOSPHATE										
RTHO PHOSPHATE										
ETA PHOSPHATE										
TABILITY	-0.2			0.2	-0.2	0	11.0	0		
EMARKS									СОРУ ТО:	
									DTIL DIR	0
						£6			WATER T	REATMENT
OTE: All results reported and specific conduc	in parts per million	unless otherwise r	noted except for phassumed to weigh	H, temperature,	LABORATORY ANA			14.00	₽M U	MCAS PMU
and specific collade	Starioe. One liter of	potable water is	assumed to weigh	one knogram.	Perm	1)	hores 4/	Lactor	□ NREAD	7 FILE

BACTERIOLOGICAL ANALYSIS OF WATER

NON-REPORTABLE

BACTERIOLOGICAE /		NON-REPORTABLE					
WATER SAMPLES	TOTAL COLIFORM COUNT MF/100 ML M-ENDO MEDIA	RESIDUAL CHLORINE	рН	TIME			
BB-97	Φ	6,3		0845			
SH-8	ø	0.4		093			
TT POOL							
M.P. POOL	ф	0.5	7.8	1200			
#2 POOL	φ	0.5	7.4	0900			
#5 POOL	Ó	0.5	7.4	0915			
P. P. POOL		Language Contractor		2			
P. P. BABY POOL							
MCAS E-POOL							
MCAS O-POOL		15. 12.00					
MCAS BABY POOL							
LAB	ORATORY DATA			1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
DATE	DATE						
OLLECTED ANALYZED		COPY TO:					
OLLECTED ANALYSIS Y STARTED		□ UTIL D	IR				
IME ANALYSIS		- WATES	TDEAT	ENT			
ECEIVED FINISHED ATE INCUBATOR		□ WATER	IHEAIN	IENI			
DATE RECEIVED	□ PMU □ MCAS PM'U						
ACCEPTED	PROCESSED	□ NREAD □ FILE					
BY SIGNATURE	BY	Andrew Contraction of the State					
SIGNATURE	0						

1. 1 10


REPORTABLE POINTS FOR SDWA

WATER SAMPLES	MARKED	COLIFORM MF/100 ML	RESIDUAL CHLORINE	TIME	WATER SAMPLES	MARKED	COLIFORM MF/100 ML	RESIDUAL CHLORINE	TIME	LABORATORY DATA
RR - 3	1	0	0.9	1130	MCAS - 3502	24	Φ	0.4	0920	TIME RECEIVED / 300 - 1330
RR - 15	2		1.0	1120	MCAS - 2002	25	· ·	0.5	1025	DATE RECEIVED 4-18-87
RR-10	3		1.0	1200	MCAS - 2003	26		0.5	1000	ACCEPTED BY 13 VR N 5
	4		1		MCAS - 2057	27		0.4	1040	DATE ANALYZED 4 - 28 - 87
A+47	5		1.1	0900		28				ANALYSIS STARTED 1310
BB - 7	6		1.0	0815	NRMC - F/S	29		1.0	1245	ANALYSIS FINISHED 1430
BB - 49	7		1.0	0835	PP - 2615	30		0.8	1145	INCUBATOR TEMP 35
BB- 265	8		1.0	0825	PP- O'CLUB	31		0.8	1200	PROCESSED BY 13 vers
	9				BM - 5400	32		1.0	1215	
BA - 103	10		1.2	1015	BM- 1985	33		1.0	1230	CUSTODY DATA
BA-101	11		1.2	1030	LCH - 4022	34		1.0	1300	DATE
	12				LCH- 4000	35		1.0	1315	TIME
TT - 38	13		1.2	0900		36				SIGNATURE
TT - 43	14		1.2	0920	H-1	37		0.7	1100	DATE
тт- 264	15		1.1	474	н- 16	38		0.7	1130	TIME
	16				FC - 303	39		0.7	1000	SIGNATURE
CK- 1506	17		1.0	1000	FC - 420	40		0.7	1030	
M - 139	18		0.9	1100	FC- 540	41		0.7	1045	COPY TO:
M- 130	19		0.9	1045		42		0.9	0900	DE UTIL DIR
	20				HP - 540	43		1,0	0915	WATER TREATMENT
CG - 1	21		0.4	0910	HP - 1300	44	4	0.9	0930	PMU MCAS PMO
TC - 830	22	1	0.5	0835	HP- 1262	45	6	0.9	0945	□ NREAD □ FILE
TC- 6-650	23	6	0.5	0845		46	T		12.00	

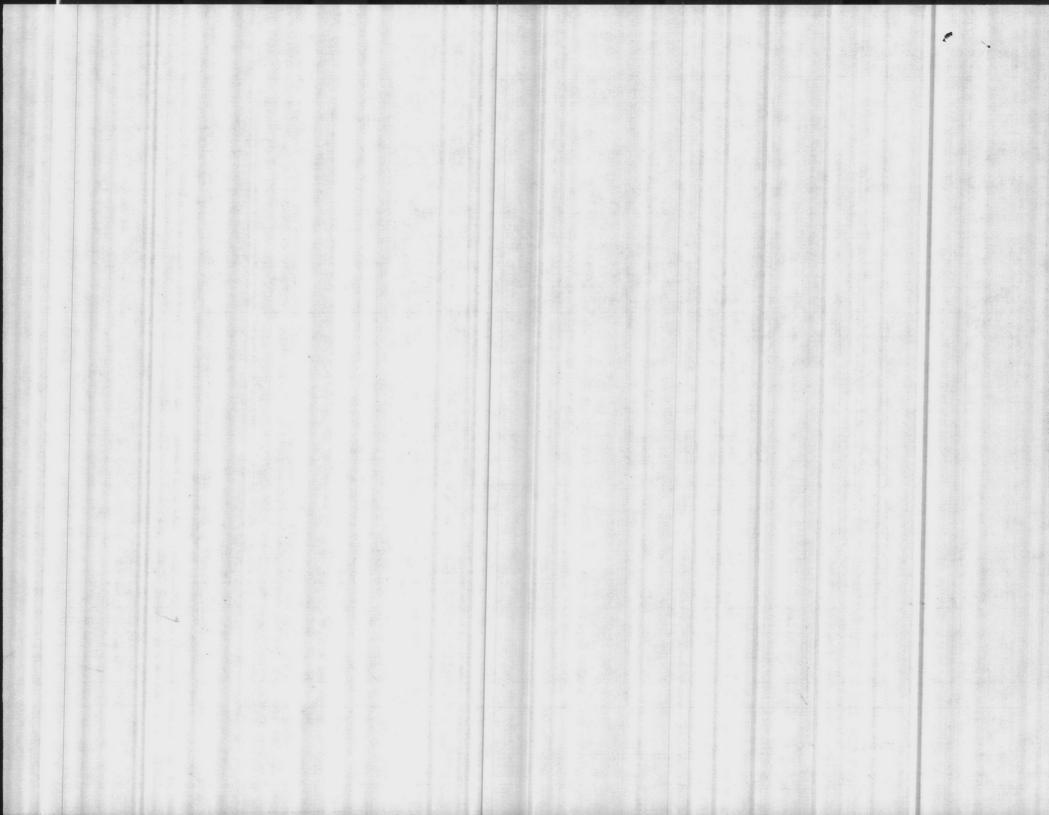
REMARKS

Hd. Burns

4-29-87

REPORTABLE POINTS FOR SDWA

WATER SAMPLES	MARKED	COLIFORM MF/100 ML	RESIDUAL CHLORINE	TIME	WATER SAMPLES	MARKED	COLIFORM MF/100 ML	RESIDUAL CHLORINE	TIME	LABORATORY DATA
RR - 3	1	Q	0.8	0910	MCAS - 3502	24	9	0.5	1125	TIME RECEIVED 13 00 - 1335
RR - 15	2		0.9	09/5-	MCAS - 2002	25		0.5	1120	DATE BECEIVED 4-21-8
RR - 6	3		1.0	0930	MCAS - 10/0	26		0,4	1100	ACCEPTED BY BURNS
	4				MCAS - 128/	27		0.5	100	DATE ANALYZED 4-2/
A-1	5		1.0	0943		28				ANALYSIS STARTED /330
BB - 7	6		0.9	1000	NRMC - FUTO SERVICE	29		1.2	1155	ANALYSIS FINISHED 1437
BB - 49	7		0.8	1025	PP - 2615	30		1.1	1140	INCUBATOR 35, 2
вв- 9	8	1	0.9	1030	PP- 2611	31		1.1	1150	PROCESSED BY C SHURES
	9				BM - 5400	32		1.2	1210	
BA - 103	10		1.0	1100	BM- 820	33		1.1	1220	CUSTODY DATA
BA- 101	11		0.9	1115	LCH - 4022	34		1.0	1240	DATE
	12				LCH- 4000	35		1.1	1235	TIME
TT - 38	13		1. 3	0930		36				SIGNATURE
TT - 43	14		1.0	0945	H-1	37	044	1.0	1125	DATE
TT-2661	15	0 \$	0.9	0955	H-16	38		0.8	1115-	TIME
	16				FC - 303	39		0.9	1005	SIGNATURE
CK- 1603	17		0.5	1005	FC - 420	40		1.0	0955	
M - 139	18		1.0	1050	FC- 540	41		0.8	0945	COPY TO:
M- 178	19		1.62	1030	HP - 236	42		0.8	1100	UTIL DIR
	20				HP - 540	43		0.2	0925	WATER TREATMENT
CG - 1	21		0.5	0910	HP - 1300	44		0.7	0910	PMU MCAS PMO
TC - 830	22		0.1	6920	HP - 1400	45	V	0.8	0902	□ NREAD ☐ FILE
TC- 834	23	1	45	0940		46				0


REMARKS

8 # 15 - TATE NON-COLIFORMS

& & # 37- 8 NON - COLIFORMS

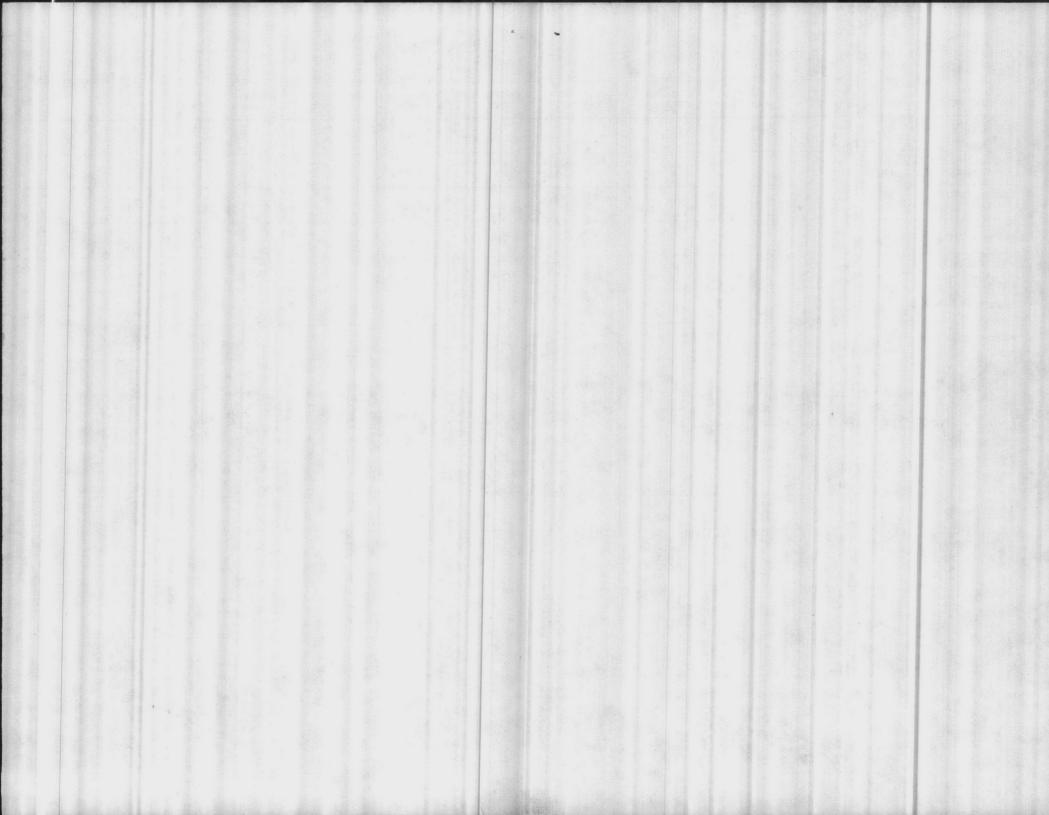
SIGNATURE

Cared Show 4/22/47



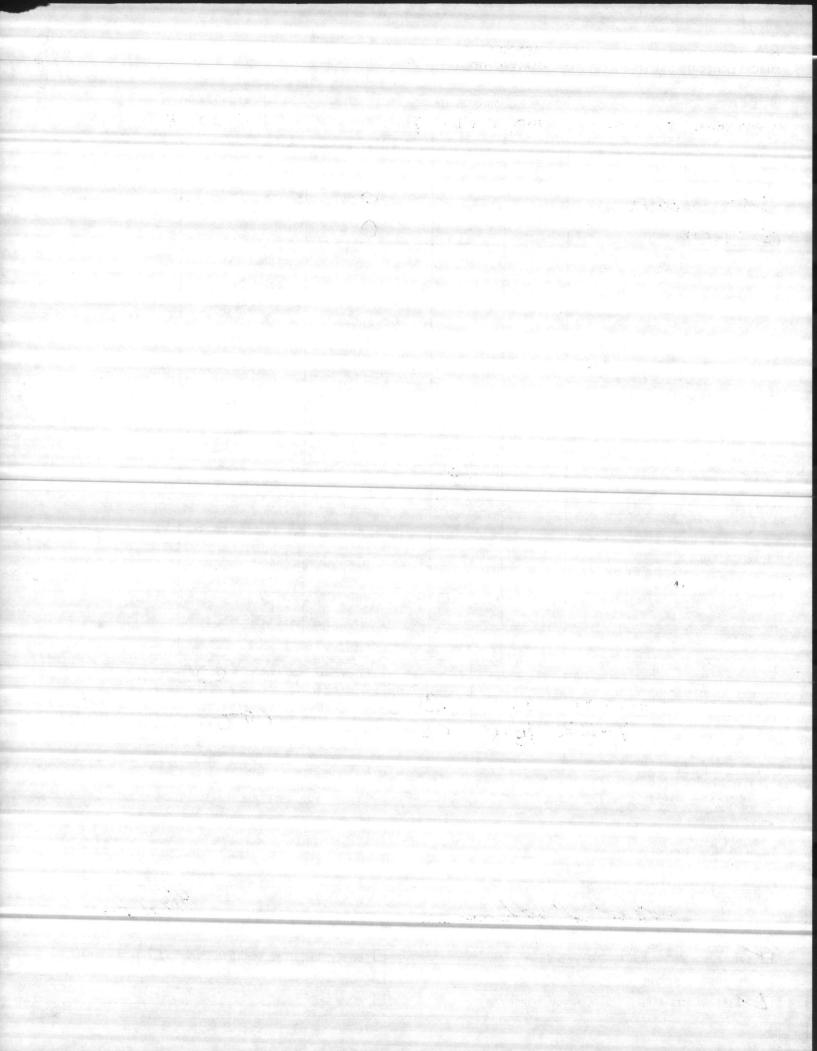
BACTERIOLOGICAL ANALYSIS OF WATER NON-REPORTABLE TOTAL COLIFORM COUNT RESIDUAL WATER SAMPLES MF/100 ML M-ENDO MEDIA CHLORINE pH TIME **BB-97** 1015 SH-8 1025 TT POOL M.P. POOL 7.8 #2 POOL 7.4 #5 POOL 0,2 8.1 P. P. POOL P. P. BABY POOL MCAS E-POOL MCAS O-POOL MCAS BABY POOL LABORATORY DATA DATE DATE COLLECTED 4-21-8 41-21 ANALYZED COPY TO: COLLECTED ANALYSIS OTIL DIR 1330 BY STARTED ANALYSIS WATER TREATMENT RECEIVED 1300 - 1335 1437 **FINISHED** DATE INCUBATOR PMU MCAS PMU 35,2 4-21 RECEIVED TEMP ACCEPTED PROCESSED ☐ NREAD 1 FILE

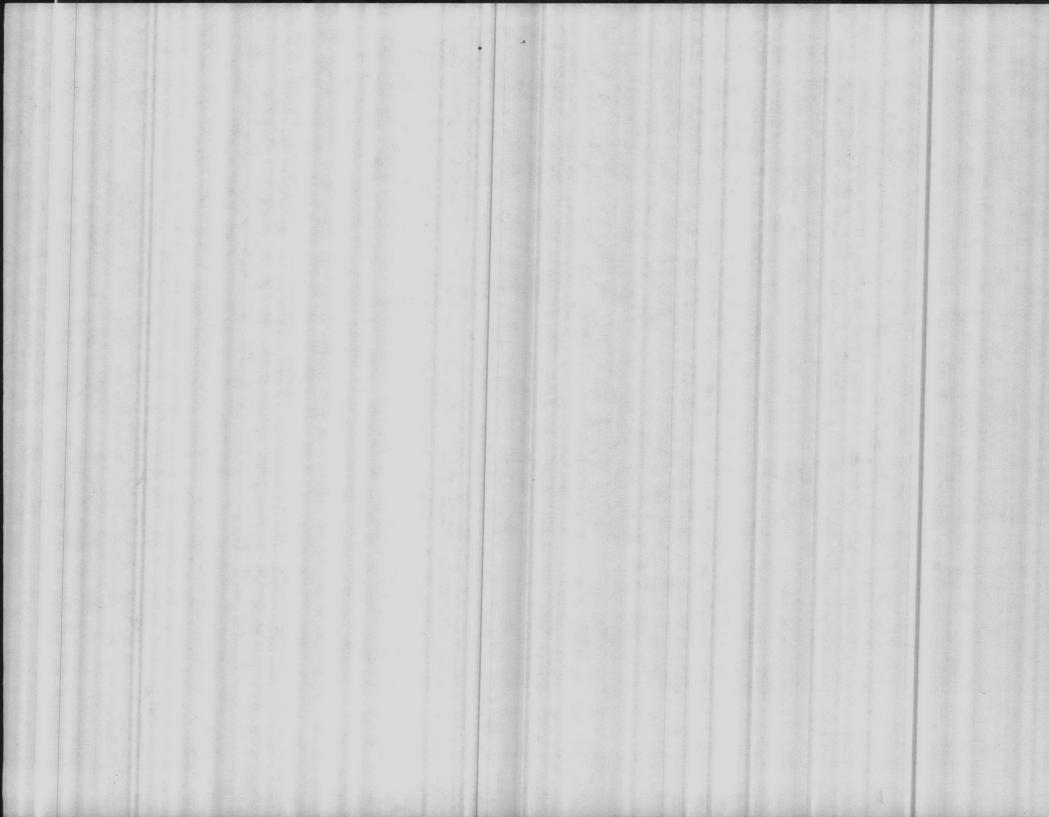
SIGNATURE


REMARKS

BURNS

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WAIEN II	PL	MINIO				DATE COLLECTED	1	DATE OF ANALYSIS 4-7-87		
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		1	
PH .	8.6	1 (S. 10)		7.4	8.0	8.3	8.5	8.7			
PHENOLTHALEIN ALKALINITY	2			0.	0	. 0	2				
ETHYL ORANGE LKALINITY	50			156	170	160	60	10			
ARBONATES AS CaCO ₃	4			0	0	0	4	112			
ICARBONATES S CaCO ₃	46			156	170	160	56	92			
HLORIDES AS C1	10			20	14	44	6	50			
ARDNESS AS CaCO ₃	64			48	68	60	64	50			
RON AS Fe			A.A.	NowN				100			
LUORIDE P.M.	0.74		A.B.	0.16	0.12	0.10	1.10	0.52			
HLORINE RESIDUAL	1.0			1.5	1.6	1.0	1.4	0.8			
URBIDITY 12. M.	0.5			0.4	0.2	0.1	0.1	0.5			
OTAL PHOSPHATE					10,2	0,1	0,2	10.0			
RTHO PHOSPHATE											
ETA PHOSPHATE											
TABILITY	+0.3			-0.8	-0.2	0.0	+0.1	+0.1			
EMARKS									СОРУ ТО:		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					UTIL DIR		
									WATER T	REATMENT	
OTE: All results reported and specific conduc	in parts per million	unless otherwise n	oted except for ph	I, temperature,	LABORATORY ANAI				APMU	MCAS PMU	
and specific college	number. Offer filer of	potable water is a	assumed to weigh	one kilogram.	962.15	surve			D NREAD	IN FILE	

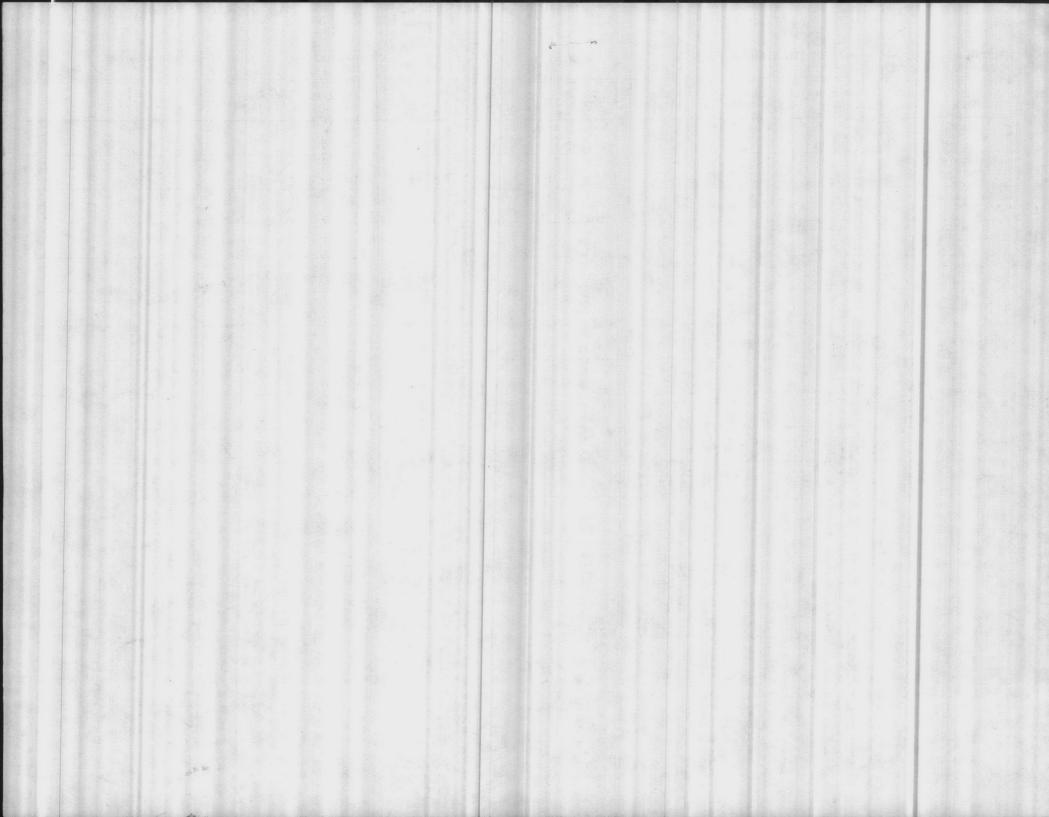

. .


QUALITY CONTROL LABORATORY REPORT MISCELLANEOUS BACTERIOLOGICAL ANALYSIS OF WATER

FILE: MCBCL 11330/8 (REV. 11-85) DATE COLLECTED SAMPLE COLLECTED BY WATER TYPE 4-22-87 WATER PLANT OVERHEAD TANKS COLIFORM TIME TOTAL FECAL LOCATION CL₂ 0 SLCH 4004 5-1000 COLIFORM ANALYSIS BY: MF) MPN DATE TIME INITIALS 4-22-87 DILUTIONS SAMPLES RECEIVED 4-22 20 SAMPLES ANALYZED REMARKS


DATE	4/23/87
☐ BASE PREVENTIVE MEDICINE	☐ MCAS PMU

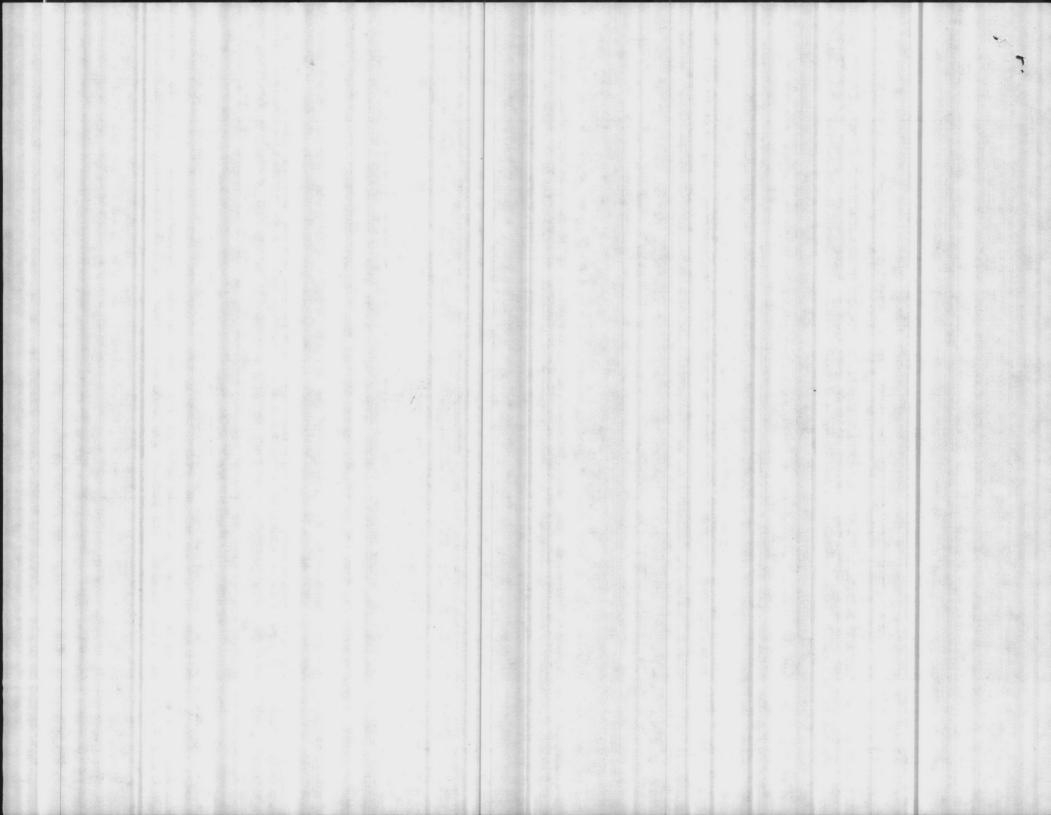
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TI	REATMENT PL	ANTS		N. T.		DATE COLLECTED 7		DATE OF ANALYSIS 4-21-87	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		1
PH	8.8			7.4	7.6	8.1	8.5	8.6		
PHENOLTHALEIN ALKALINITY	4			0	0	0	6	10		
METHYL ORANGE ALKALINITY	50			160	180	170	60	116		
CARBONATES AS CaCO ₃	8			0	0	0	12	20		
BICARBONATES AS CaCO ₃	42			160	180	170	48	96		
CHLORIDES AS C1	10			20	16	50	14	60		
HARDNESS AS CaCO ₃	60			56	46	56	60	44		
RON AS Fe				A.A. S	NOWA					
FLUORIDE A.N.	1.10			0.16	0.14	0.12	0.93	0.51		
CHLORINE RESIDUAL	1.0			1.2	1.4	1.0	1,2	0.8		
TURBIDITY A.M.	0.1			0.2	6.1	0.1	0.2	0.3		
TOTAL PHOSPHATE										
ORTHO PHOSPHATE										
META PHOSPHATE									Page 1	
STABILITY	+0.5			-0.6	-0.4	0.0	+0.2	+0.2		
REMARKS									СОРУ ТО:	
NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, and specific conductance. One liter of potable water is assumed to weigh one kilogram.									WATER TREATMENT Description of the part o	
									□ NREAD FILE	


CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84))		1	•			DATE COLLECTED 4-14-87		DATE OF ANALYSIS 7	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		1
PH .	8.7			7.5	7.6	8.3	8.8	20	1 2	
PHENOLTHALEIN ALKALINITY				0				9,0		
METHYL ORANGE					0	, 0	4	12		
ARBONATES AS CaCO ₃	60			160	170	170	62	110		
ICARBONATES	12			0	0	0	8	24		
S CaCO ₃	48			160	170	170	54	86		
HLORIDES AS C1	10			20	20	66	10	60		
ARDNESS AS CaCO ₃	74	1		50	54	64	80	50		
ON AS Fe				A.A.	DOWN		30			
LUORIDE A.M.	0.91						1.03			
,2.M.	1.13			0.18	0.14	0.12	0.74	0.48		
HLORINE RESIDUAL	1.1			1.4	1.4	1.1	1.2	1.0		
DRBIDITY A.M.	0.2			0.2	0.2	0.2	0.2			
OTAL PHOSPHATE	0.7			10.2	VIL	0.7	0.4	0.3		
RTHO PHOSPHATE		17.7								
ETA PHOSPHATE								1		
ABILITY	40,3			-0.6	-0.5	101	1/1/3			
MARKS				0.0	0.3	+0.1	+0.3	1+0.2		
									COPY TO:	
									DUTIL DIR	o
T- 10									WATER TO	REATMENT
All results reported in parts per million unless otherwise noted except for pH, temperature, and specific conductance. One liter of potable water is assumed to weigh one kilogram.								D PMU D MCAS PMU		
16.2 journe								NRFAD THE		

CHEMICAL ANALYSIS — WATER TREATMENT PLANTS MCBCL 11330/3 (REV. 6-84)							DATE COLLECTED 7		DATE OF ANALYSIS 7	
PARAMETER	HADNOT POINT	CAMP	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		`
РН	7.9			7.5	8.1	7.8	8.3	8.7		
PHENOLTHALEIN ALKALINITY	0			0	0	0	2	16		
METHYL ORANGE ALKALINITY	56			168	194	186	58	148		
CARBONATES AS CaCO3	0			0	0	0	4	32		
BICARBONATES AS CaCO ₃	56			168	194	186	54	116		
CHLORIDES AS C1	6			26	16	48	10	60		
HARDNESS AS CaCO ₃	60			5-4	60	62	66	44		
IRON AS Fe			AA	15	DOW	N				
FLUORIDE AM / PM	0.19/0.17			0.14	0.12	0.11	0.92/0.93	0.58		
CHLORINE RESIDUAL	1.0			1.2	1.2	1.1	1.5	0.8		
TURBIDITY AM /PM	0.1/0.7			0.1	0.1	0.1	0.1/0.1	0.2		
TOTAL PHOSPHATE										
ORTHO PHOSPHATE										
META PHOSPHATE										
STABILITY	-0.4			-0.6	-0.2	-0.5	-0.1	0		
REMARKS									COPY TO:	
pH OB POND = 7.8									UTIL DIR -	
									WATER TREATMENT	
NOTE: All ex-									1	MCAS PMU
NOTE: All results reported and specific condu	in parts per million uctance. One liter of	potable water is	noted except for phassumed to weigh	one kilogram.	13 and				PMU	MCAS PMU

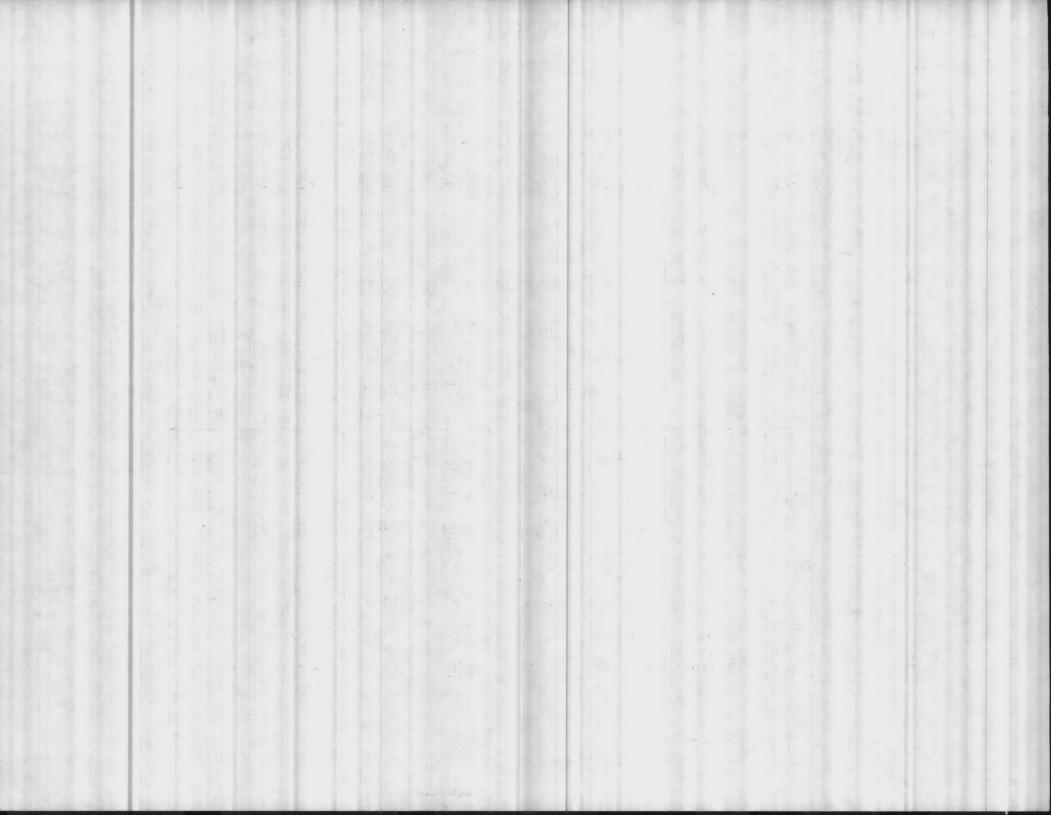
CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE OF ANALYSIS DATE COLLECTED MCBCL 11330/3 (REV. 6-84) 3-24-87 3-24-87 HADNOT CAMP TARAWA ONSLOW COURTHOUSE RIFLE HOLCOMB NEW PARAMETER POINT **JOHNSON** TERRACE BEACH BAY RANGE BLVD RIVER PH 8.4 7.4 8.4 8.8 PHENOLTHALEIN ALKALINITY 20 METHYL ORANGE **ALKALINITY** 70 56 160 174 156 130 CARBONATES AS CaCO3 8 40 8 **BICARBONATES** AS CaCO 3 62 90 174 148 48 160 **CHLORIDES AS C1** 10 18 50 20 10 60 HARDNESS AS CaCO3 68 64 54 54 **IRON AS Fe** DOWN A.M. 0.61 0.98 **FLUORIDE** P.M. 0.65 0.14 0.11 0.09 0.52 CHLORINE RESIDUAL 0.8 1.2 A.M. 1.2 TURBIDITY 2.M 1.8 0.1 0.1 1.1 0.1 TOTAL PHOSPHATE **ORTHO PHOSPHATE** META PHOSPHATE STABILITY +0.4 -0.6 -0.1 -0.1 10.2 +0.2 REMARKS COPY TO: DUTIL DIR WATER TREATMENT NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, MCAS PMU LABORATORY ANALYSIS BY and specific conductance. One liter of potable water is assumed to weigh one kilogram. FILE T NREAD

HEMICAL ANALYSIS	- WATER T	FREATMENT PL	ANTS				3-17-8	7	DATE OF ANALYSIS	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
h	8.2	8.2	8.6	7.6	8.3	8.4	8.6	8.8		
HENOLTHALEIN LKALINITY	0	0	2	6	0	0	2	12		
METHYL ORANGE LKALINITY	58	66	58	162	178	162	52	144		
ARBONATES AS CaCO ₃	0	0	4	0	0	D	4	24		
ICARBONATES S CaCO 3	58	66	54	162	178	162	48	120		
HLORIDES AS C1	8	8	8	18	20	48	8	58		
ARDNESS AS CaCO ₃	66	64	66	60	68	56	66	54		
RON AS Fe				AA	DOWN					
LUORIDE PM	0.25	0.65	D. 69	0.17	0.12	0.10	0.80	0.58		
HLORINE RESIDUAL	1.0	1.0	1.0	1.2	1.2	1.1		0.1		
URBIDITY PM	0.1	0.2	No SAMPLE	0.1	0.1	0.1	0.1	0.1		
OTAL PHOSPHATE		0.4								
ORTHO PHOSPHATE		0.2								
META PHOSPHATE		0.2								
TABILITY	0.0	+0.2	+0.1	-0.4	+0.2	+0.1	+0.2	+0.5		
REMARKS									COPY TO:	
	DB	Pond	pH = 8	30					OTIL DIR	
	0.0	DNO	Yn- C	5.0					WATER TREATMEN	NT
NOTE: All results reported and specific conduc	in parts per millio ctance. One liter	on unless otherwise of potable water is	noted except for pH assumed to weigh	i, temperature, one kilogram.	LABORATORY ANA	1		0	DPMU LMCA	AS PMU
					Lyndia	3. Las	re or Fly	Duns	□ NREAD 40 F	ILE

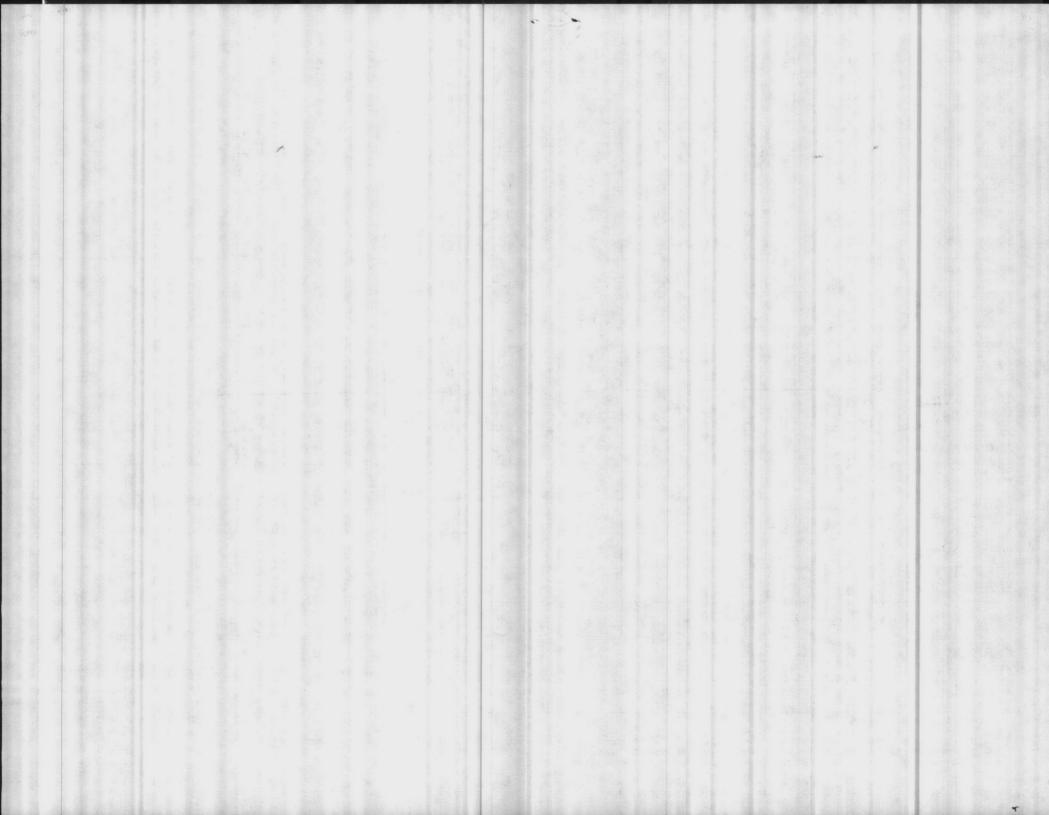


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		HEATMENT PL	ANIS				3-10-8	37	3-10-87
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	
РН	8.5	7.5	8.7	7.5	8.1	8.3	8.9	8.8	
PHENOLTHALEIN ALKALINITY	2	0	4	0	0	2	6	8	
METHYL ORANGE ALKALINITY	50	164	60	150	166	160	56	130	
CARBONATES AS CaCO ₃	4	0	8	0	0	4	12	16	
BICARBONATES AS CaCO ₃	46	164	52	150	166	156	44	114	
CHLORIDES AS C1	14	10	10	20	10	50	10	60	
HARDNESS AS CaCO ₃	64	60	70	58	54	60	66	42	
IRON AS Fe	_	_	A.A.	DOWN		_		_	
FLUORIDE P.M.	0.76	0.17	0.77	0.13	0.10	0.09	0.95	0.54	
CHLORINE RESIDUAL	1.1	1.0	0.9	1.1	1.2	1.0	1.2	0.8	
TURBIDITY P. 11	0.1	1.5	0.8	0.2	0.1	0.1	0.2	0.7	
TOTAL PHOSPHATE		2.18				(2+2) (1-2)			
ORTHO PHOSPHATE		1.03							
META PHOSPHATE		1.15							
STABILITY	10.2	-0.6	+0.5	-0.7	-0.1	0.0	+0.6	+0.1	
REMARKS									COPY TO:
									DOTIL DIR D
									WATER TREATMENT
NOTE: All results reported					LABORATORY ANA	LYSIS BY			PMU MCAS PML
and specific condu	ctance. One liter of	of potable water is	assumed to weigh	one kilogram.	Buens.	4 ,300	Ar a		□ NREAD □ FILE

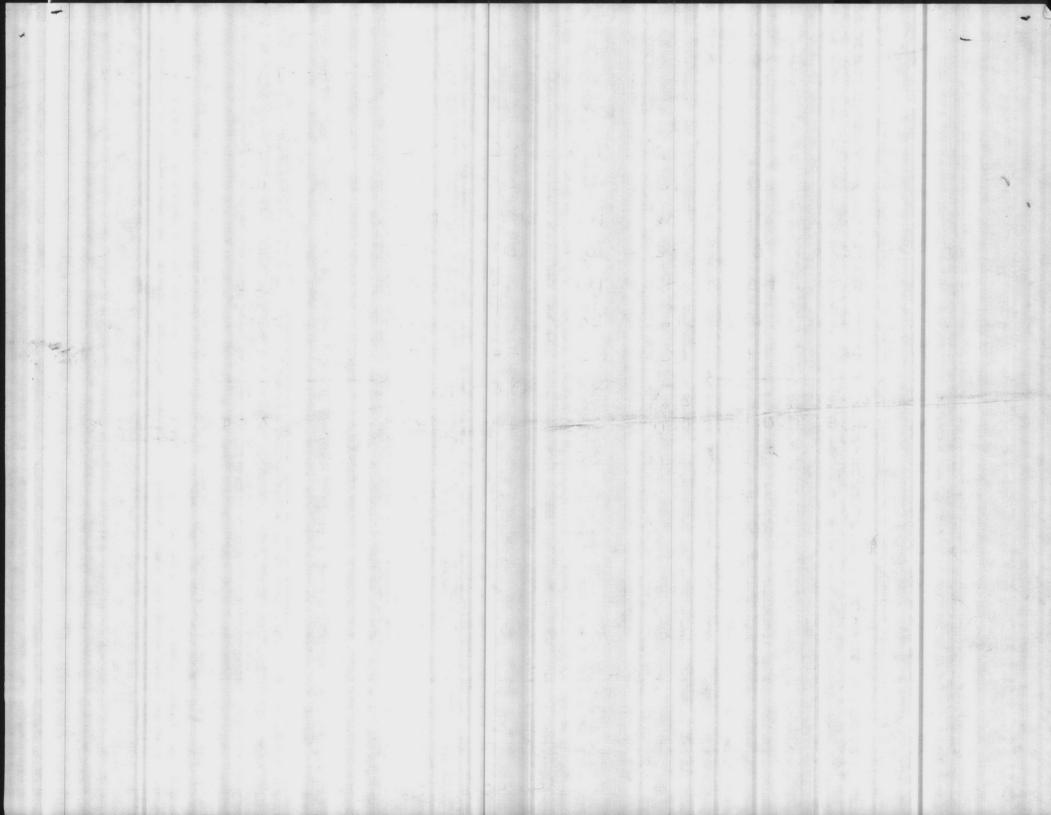
CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE OF ANALYSIS DATE COLLECTED MCBCL 11330/3 (REV. 6-84) 3-10-87 3-10-87 HADNOT CAMP COURTHOUSE TARAWA ONSLOW RIFLE HOLCOMB NEW POINT PARAMETER JOHNSON TERRACE BEACH BAY RANGE BLVD RIVER 8.5 7.5 8.7 7.5 8.1 8.3 8.9 8.8 PHENOLTHALEIN ALKALINITY 2 8 0 0 6 2 METHYL ORANGE ALKALINITY 50 164 166 60 150 56 160 130 CARBONATES AS CaCO2 8 0 0 4 12 16 **BICARBONATES** 46 AS CaCO 3 44 164 52 150 166 156 114 CHLORIDES AS C1 14 10 20 50 10 60 10 10 64 HARDNESS AS CaCO3 42 70 58 66 60 54 60 IRON AS Fe A.A. DOWN A.M. 0.76 1.01 **FLUORIDE** 0.09 P. M. 0.83 0.17 0.13 0.77 0.10 0,54 0.95 CHLORINE RESIDUAL 1.0 0.9 1,2 0.8 1.2 1,0 1.1 1,1 A.M 0.1 0.2 TURBIDITY P.M h5 0.7 0.8 0.2 0.1 0.1 0.1 0,2 TOTAL PHOSPHATE 2.18 **ORTHO PHOSPHATE** 1:03 META PHOSPHATE 1115 STABILITY -0.6 +0.5 +0.1 10,2 -0.1 +0.6 REMARKS COPY TO: DOTIL DIR WATER TREATMENT MCAS PMU NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, LABORATORY ANALYSIS BY PMU and specific conductance. One liter of potable water is assumed to weigh one kilogram. BUENS & BARBEE FILE ☐ NREAD



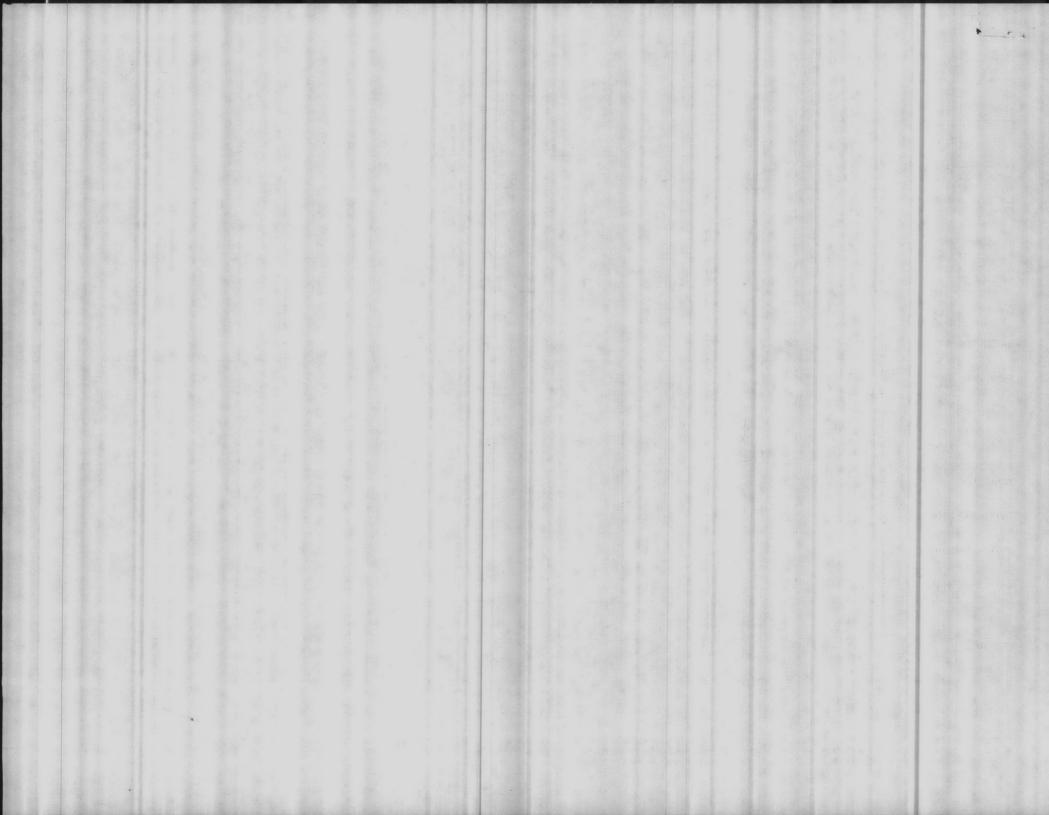
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	— WATER T	REATMENT PL	ANTS	ZEWSTEN	2 504002		DATE COLLECTED	5-87	2-25-	LYSIS
PARAMETER	HADNOT POINT	CAMP	TARAWA TERRACE	ONS OW BEACH	COURTHOUSE	RIELE RANGE	HOLCOMB BCVD	NEW- BIVER		
РН	8.3									
PHENOLTHALEIN ALKALINITY	٤								1 2 2 3	
METHYL ORANGE ALKALINITY	62									
CARBONATES AS CaCO ₃	4									
BICARBONATES AS CaCO ₃	58									
CHLORIDES AS C1	6									
HARDNESS AS CaCO ₃	68									
RON AS Fe										
FLUORIDE	1.23									
CHLORINE RESIDUAL	0.9									
FURBIDITY	1.4									
TOTAL PHOSPHATE										
ORTHO PHOSPHATE										
META PHOSPHATE										
STABILITY	+0.2									
REMARKS									СОРУ ТО:	
									UTIL DIR	o
									WATER T	REATMENT
NOTE: All results reported i	in parts per million tance. One liter o	unless otherwise r	noted except for pl assumed to weigh	H, temperature, one kilogram.	LABORATORY ANAI			43 × 1- r	□ PMU	☐ MCAS PMU
					05/2	26			□ NREAD □ FILE	


3

DATE OF ANALYSIS CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED 87 MCBCL 11330/3 (REV. 6-84) HADNOT CAMP TARAWA **ONSLOW** COURTHOUSE RIFLE HOLCOMB NEW PARAMETER POINT JOHNSON TERRACE BEACH BAY RANGE BLVD RIVER NO PH 7.4 8.2 8.9 8.4 7.4 8.3 9.0 SAMPLE PHENOLTHALEIN ALKALINITY 0 0 0 20 METHYL ORANGE ALKALINITY 74 44 176 174 148 156 154 CARBONATES AS CaCO3 8 8 0 D 0 8 40 **BICARBONATES** 108 36 AS CaCO3 176 174 146 66 156 CHLORIDES AS C1 16 44 12 56 10 20 16 HARDNESS AS CaCO3 62 54 10 68 64 60 64 IRON AS Fe DOWN ANI 1.14 1.60 FLUORIDE 0.10 PM 1.16 0.17 1.47 0.15 0.12 0.55 CHLORINE RESIDUAL 1.2 1.1 1.4 1.0 0.8 1.0 ANI 1.9 0.7 TURBIDITY 1.1 1.9 0.6 0.3 0.7 1.0 TOTAL PHOSPHATE 2.4 ORTHO PHOSPHATE 1.0 META PHOSPHATE 1.4 STABILITY +0.8 +0.5 +0.8 REMARKS COPY TO: fond OB PH = 8.1 UTIL DIR WATER TREATMENT MCAS PMU NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, PMU LABORATORY ANALYSIS BY and specific conductance. One liter of potable water is assumed to weigh one kilogram. FILE ☐ NREAD

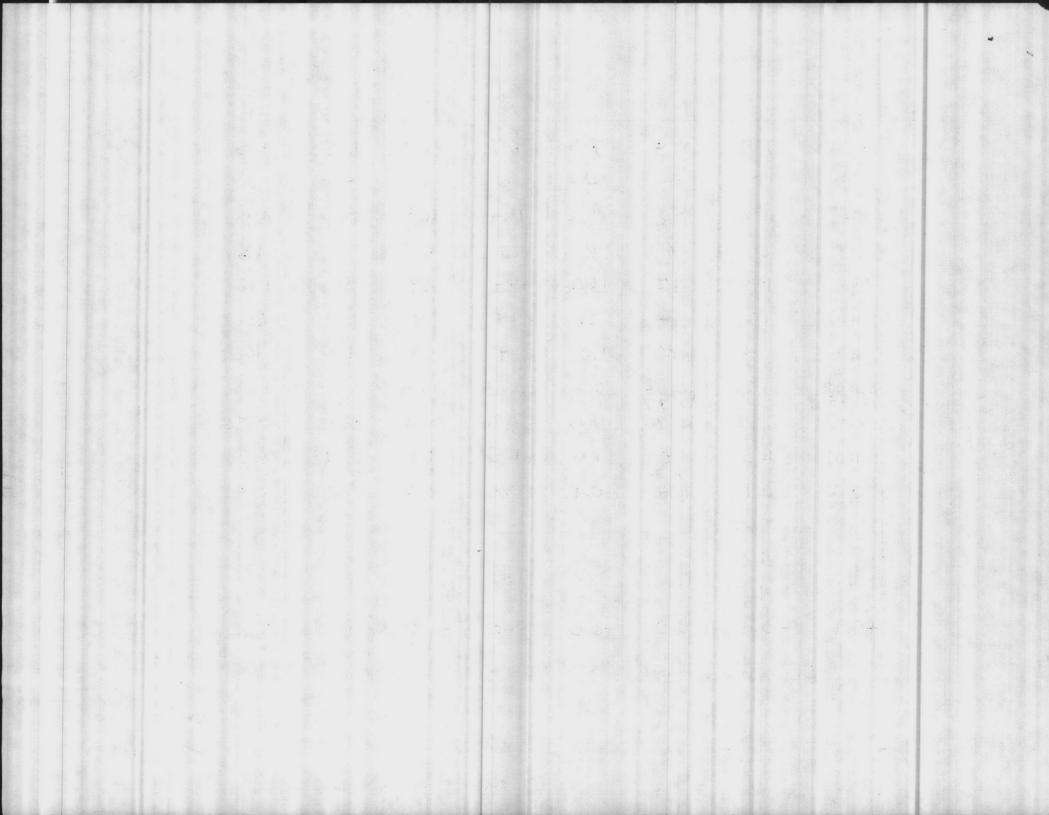


Keza


and specific condu	ctance. One liter of	of potable water is	assumed to weigh	one kilogram.	, .				□ NREAD	#P-FILE
NOTE: All results reported	in parts per million	n unless otherwise	noted except for p	H, temperature,	LABORATORY ANA	LYSIS BY			WATER T	MCAS PMU
									UTIL DIR	
REMARKS									COPY TO:	
STABILITY	+1.3	-0.6	+2.0	-0.8	-0.2	0.0		+0.5		
META PHOSPHATE		1.3								
ORTHO PHOSPHATE		1.1								
TOTAL PHOSPHATE		2.4								
TURBIDITY PM	1.7	3.3	2.0	3.1	1.2	1.4		1.4		
CHLORINE RESIDUAL	0.9	1.2	1.0	1.5	1.5	1.0		0.9		
FLUORIDE AM	0.76	0.15	0.76	0.14	0.10	0.09		0.51		
IRON AS Fe	-			AA	DOWN					
HARDNESS AS CaCO ₃	66	56	66	70	54	56		56		
CHLORIDES AS C1	14	14	20	174	20	50		52		
BICARBONATES AS CaCO ₃	36	184	18	170	166	162		110		
CARBONATES AS CaCO ₃	16	0	40	D	12	12		40		
METHYL ORANGE ALKALINITY	52	184	58	170	178	174		150		
PHENOLTHALEIN ALKALINITY	8	0	20	0	6	6		20		
PH	93	8.0	9.7	7.9	8.6	8.7	SAMPLE	9.2		
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
MCBCL 11330/3 (REV. 6-84)	HADNOT							NEW	2-17-	87

CHEMICAL ANALYSIS - WATER TREATMENT PLANTS DATE COLLECTED DATE OF ANALYSIS MCBCL 11330/3 (REV. 6-84) 2-10-87 2-10-87 HADNOT CAMP COURTHOUSE TARAWA **ONSLOW** RIFLE HOLCOMB NEW POINT JOHNSON TERRACE RIVER RANGE BLVD PARAMETER BEACH BAY ND PH 9.3 8.5 8.2 8.2 SAMPLE PHENOLTHALEIN ALKALINITY 6 0 16 0 0 12 D METHYL ORANGE ALKALINITY 180 60 36 174 166 160 146 CARBONATES AS CaCO3 32 24 12 0 0 D D **BICARBONATES** AS CaCO 3 48 180 166 174 160 122 CHLORIDES AS C1 12 18 50 ID 20 60 HARDNESS AS CaCO2 62 66 64 62 54 54 50 IRON AS Fe DOWN 0.82 0.83 AM FLUORIDE PM 0.85 0.12 0.71 0.09 0.13 0.11 0.54 CHLORINE RESIDUAL 1.0 1.3 1.1 1.0 1.0 0.8 0.8 AM 1.9 7.8 TURBIDITY PM 0.9 1.0 0.7 1.0 2.4 0.9 TOTAL PHOSPHATE 1.70 ORTHO PHOSPHATE 1.00 META PHOSPHATE 0.70 STABILITY +0.4 +0.3 REMARKS COPY TO: Pond pH = 8.3 DB UTIL DIR WATER TREATMENT MCAS PMU NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, LABORATORY ANALYSIS BY PMU and specific conductance. One liter of potable water is assumed to weigh one kilogram. FILE □ NREAD

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		HEATMENT PL	ANTS				DATE COLLECTED	1	DATE OF ANAL	
ARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
н	8.4	7.2	8.4	7.4	7.9	8.0	8.3	8.5		
PHENOLTHALEIN ALKALINITY	4	0	4	0	0	0	0	10		
IETHYL ORANGE LKALINITY	56	174	50	174	178	168	74	144		
CARBONATES AS CaCO ₃	8	0	8	0	0	0	0	20		
SICARBONATES S CaCO ₃	48	174	42	174	178	168	74	124		
CHLORIDES AS C1	12	12	16	18	18	48	10	56		
HARDNESS AS CaCO ₃	62	68	74	52	60	62	76	54		
RON AS Fe	10.04	0.21	0.06	0.17	L0.04	40.04	40.04	0.05		
LUORIDE DM	1.17	0.14	0.76	0.13	0.10	0.09	1.04	0.53		
CHLORINE RESIDUAL	1.0	1.2	1.0	1.5	1.3	1.0	1.0	1.0		
URBIDITY PM	0.9	1.7	0.8	1.1	1.2	0.9	3.2	1.6		
OTAL PHOSPHATE		3.0							100	
PRTHO PHOSPHATE		1.2						7		
META PHOSPHATE		1.8								
TABILITY	+0.6	-0.7	+0.6	-0.7	-0.1	- 0.1	+0.2	+0.1		
EMARKS									COPY TO:	i josa
		0.15	Pond	PH =	1.8				UTIL DIR	0
									WATER TI	REATMENT
OTE: All results reported and specific condu					LABORATORY ANA	LYSIS BY			PMU	MCAS PMU
		1000	The state of the s		L. Lane	4 H.	Burns		□ NREAD	FILE


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER T	REATMENT PL	ANTS				DATE COLLECTED 1-27-8	37	1-27-	87
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		- 4
PH	8.8	7.6	8.9	7.6	8,2	8.1	NO SAMPLE	8.8		
PHENOLTHALEIN ALKALINITY	6	0	6	0	0	0	_	12		
METHYL ORANGE ALKALINITY	52	174	42	158	182	162	_	150		
CARBONATES AS CaCO ₃	12	0	12	0	0	0	_	24		
BICARBONATES AS CaCO ₃	40	174	30	158	182	162	_	126		
CHLORIDES AS C1	14	16	18	30	20	56	_	64		
HARDNESS AS CaCO ₃	58	64	78	48	52	54	_	58		
RON AS Fe	1	A. A.	Powy	-			_			
FLUORIDE P.M.	0.99	0.17	0.81	0.15	0.12	0.11		0.57		
CHLORINE RESIDUAL	0.9	1,4	1.0	1.6	1.5	1.0	_	0.7		
TURBIDITY P. M	0.6	1.5	0,6	0.4	0,3	0,3	_	1,0		
TOTAL PHOSPHATE		3,33								
ORTHO PHOSPHATE		1,21								
META PHOSPHATE		2.12								
STABILITY	10.6	-0.5	+0.9	-0.5	0.0	-0.1		10,2		
REMARKS									COPY TO:	
									b UTIL DIR	
									WATER TRI	EATMENT
NOTE: All results reported and specific condu	in parts per millio	on unless otherwise	noted except for phassumed to weigh	I, temperature,	LABORATORY ANA	LYSIS BY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	LE PMU (LMEAS PMU
and specific condu	ctarice. One mer	or potable water is	assumed to weigh	one knogram.	LANE &	13 ven	48		□ NREAD	IN FILE


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	LANTS				DATE COLLECTED		I-20-	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.1	7.5	9.0	7.4	8.1	8.3	8.7	8.8		
PHENOLTHALEIN ALKALINITY	0	0	8	0	٥	4	4	8		
METHYL ORANGE NEKALINITY	54	186	44.	160	184	160	52	176		
CARBONATES AS CaCO ₃	0	0	16	0	0	8	8	16		
BICARBONATES AS CaCO ₃	54	186	28	160	184	152	44	160		
CHLORIDES AS C1	12	10	16	18	18	54	14	72		
HARDNESS AS CaCO ₃	62	54	68	160	54	60	60	56		
RON AS Fe	40.04	0.18	40.04	0,29	20.04	40.04	20,04	10.04		
LUORIDE AM	0.77	0.12	0.60	0.11	0.09	0.08	0.84	0.58		
CHLORINE RESIDUAL	1.0	1.0	1.1	1.1	1.4	1.0	0.8	0.8		
URBIDITY AM	0.2	1.5	0.3	0.5	0.4	0.1	0.3	0,2		
OTAL PHOSPHATE		2.2								
DRTHO PHOSPHATE		1.0								
META PHOSPHATE		1.2								
TABILITY	-0.4	-0.6	+0.9	-0.5	-0.2	0.0	+0.2	+0.1		
EMARKS									СОРУ ТО:	
		NR I	D. 1 -1	1 - 7	,				UTIL DIR	0
		OB -	Pond pt	H = 1,8	3				WATER TE	REATMENT
NOTE: All results reported and specific condu					LABORATORY ANA	ALYSIS BY	7	The state of the s	PMU	MCAS PMU
and specific conde	The more	- polacio mater io	and to worgh	Cho Khogiani.	Burns	. 1	Laca		□ NREAD	FILE

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED		Januar Januar	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	Junuar	9 13,110
РН	8.6	7.4	8.4	7.3	7.7	8.0	8.5	8.5		
PHENOLTHALEIN ALKALINITY	4	0	4	0	0	0	4	6		
METHYL ORANGE ALKALINITY	54	178	50	162	184	164	56	148		
CARBONATES AS CaCO ₃	8	0	8	0	0	0	8	12		
BICARBONATES AS CaCO ₃	46	178	42	162	184	164	48	136		
CHLORIDES AS C1	10	12	14	20	14	50	16	60	-	
HARDNESS AS CaCO ₃	62	64	80	110	64	62	64	46		
IRON AS Fe	40.04	0,21	40.04	0.22	10.04	20.04	40.04	0.06		77
FLUORIDE PM	0.85	0.17	0.77	0.15	0.11	0.11	0.90	0.56		
CHLORINE RESIDUAL	1.0	1.5	1.0	1.0	1.5	1.1	0.9	0.9		
TURBIDITY PM	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1		
TOTAL PHOSPHATE		2.2								
ORTHO PHOSPHATE		1.0								
META PHOSPHATE		1.2								
STABILITY	+0.1	-0.5	0.0	-0.5	-0.3	-0.1	+0.1	0.0	\$19.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2	
REMARKS		0 0							COPY TO:	
		B Hono	H PH =	8.0					OTIL DIR	0
									WATER T	REATMENT
NOTE: All results reported and specific condu					LABORATORY ANA	ALYSIS BY			PMU	MCAS PMU
			To the		BURNS	+	Lane		□ NREAD	PILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		neatwent Pl	LAINIS				1-6-87		DATE OF ANAL	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE	HOLCOMB BLVD	NEW RIVER		
Ή	8.6	7.7	8.7	7.4	7.8	8.1	8.9	8.7		
PHENOLTHALEIN ALKALINITY	4	0	2	0	0	0	4	6		
METHYL ORANGE LKALINITY	82	186	52	162	160	154	56	152		
CARBONATES AS CaCO ₃	8	0	4	0	0	0	8	12		
BICARBONATES AS CACO ₃	74	186	48	162	160	154	48	140		
CHLORIDES AS C1	12	14	16	24	24	46	16	66	115 000	
HARDNESS AS CaCO ₃	88	54	58	52	58	48	64	58		
RON AS Fe	40.09	0.15	40.04	0.12	40.04	40.04	40.04	10.04		
FLUORIDE PM	0.18	0.15	No sample 0.96	0.16	0.12	0.11	0.92	0.56		
CHLORINE RESIDUAL	0.7	1.2	1.0	1.3	1,3	1.0	1.2	0.9		
URBIDITY AM	0.7	0.3	NO SAMPLE 0.5	0.5	0.5	0.2	0.1	0.1		
OTAL PHOSPHATE		1.8								
ORTHO PHOSPHATE		0.9								
META PHOSPHATE		0.9								
STABILITY	+0.1	-0.6	0.0	-0.6	-0.4	-0.2	+0.1	-0.1		
REMARKS								/ 1	сору то:	1
	OB	Pond	bH =	7.9					UTIL DIR	0
									D WATER TO	REATMENT
NOTE: All results reported					LABORATORY ANA	ALYSIS BY		102 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₽ MU	MCAS PMU
and specific condu	ictance. One liter	or potable water is	assumed to weigh of	one kilogram.	L. Lane		C. Shore		□ NREAD	FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED	-86	12 - 30 - 86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	
Н	8.4	7.4	8.7	7.5	8.1	8.3	8.4	8.5	
HENOLTHALEIN LKALINITY	6	0	4	0	0	2	4	6	
ETHYL ORANGE LKALINITY	70	166	44	160	180	150	60	150	
CARBONATES AS CaCO ₃	12	0	8	0	0	4	8	12	
SICARBONATES S CaCO 3	58	166	36	160	180	146	52	138	
CHLORIDES AS C1	14	10	14	20	20	34	12	80	
HARDNESS AS CaCO ₃	72	60	70	60	50	50	64	50	
RON AS Fe	20.04	0.17	40.04	0.14	40.04	40.04	10.04	40.04	
FLUORIDE P.M.	0.30	0.16	1.31	0.16	0.13	0.11	0.88	0.72	
CHLORINE RESIDUAL	1.0	1,3	1.0	0.5	1.3	1.0	1.0	0.8	
TURBIDITY AIN,	1.0	1.2	5.5	0.1	0.1	0.1	0,1	6.4	
OTAL PHOSPHATE		1.8					# 1 m		
DRTHO PHOSPHATE		1.1						na antengen er formen.	
META PHOSPHATE		0.7							
STABILITY	10.2	-0.5	10.2	-0.5	-0.1	0.0	+0.1	0.0	
REMARKS									COPY TO:
									UTIL DIR 🗆
									WATER TREATMENT
NOTE: All results reported	in parts per millio	n unless otherwise	noted except for pH	, temperature,	LABORATORY ANA	LYSIS BY			PMU MCAS PM
and specific condu	ctance. One liter	or potable water is	assumed to weigh	one kilogram.	BURN	12			□ NREAD 1 FILE

THE RESTRICTION OF THE PROPERTY OF THE PROPERT A GO TO THE MENT OF THE SERVICE STATES 1.0 1 16 RICHARD OF THE STATE OF THE STA 1 4 Hotel Blooms I to a form the letter that make it THE PROPERTY OF THE PARTY OF TH HOSPINOS HALL 14 18 85 70 B 160 1 1 4-1 8 160 1 180 14 450 States 14 18 1 18 1 18 12 18 18 1

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED		12-23	-86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.6	7.3	8.7	7.5	7.7	8.2	8.7	8.6		
PHENOLTHALEIN ALKALINITY	4	0	6	0	0	0	8	14		+
METHYL ORANGE ALKALINITY	50	170	40	170	176	170	46	140	And And	
CARBONATES AS CaCO ₃	8	0	12	0	0	0	16	28		
BICARBONATES AS CaCO ₃	42	170	28	170	176	170	30	112		
CHLORIDES AS C1	12	10	12	20	16	30	10	60		
HARDNESS AS CaCO ₃	64	58	74	56	48	56	56	46		
RON AS Fe	40.04	0.23	0.15	0.15	10.04	20.04	40.04	40.04		
FLUORIDE P.N.	1.08	0.14	0.91	0.13	0.10	0.09	0.64	0.55		
CHLORINE RESIDUAL	1.0	1.1	1.0	1.3	1.4	1.0	1.1	0.8		
TURBIDITY P.H.	0.3	0.4	2.8	0.1	0.1	0.1	0.6	0.1		
OTAL PHOSPHATE		2.6							a security of	,
DRTHO PHOSPHATE		1.4								*
META PHOSPHATE		1.2					b			
STABILITY	+0.3	-0.6	+0.3	-0.4	-0.4	0.0	10.2	+0.1		
REMARKS					140	-		•	COPY TO:	
									b UTIL DIR	
									WATER T	REATMENT
									-	/

LABORATORY ANALYSIS BY

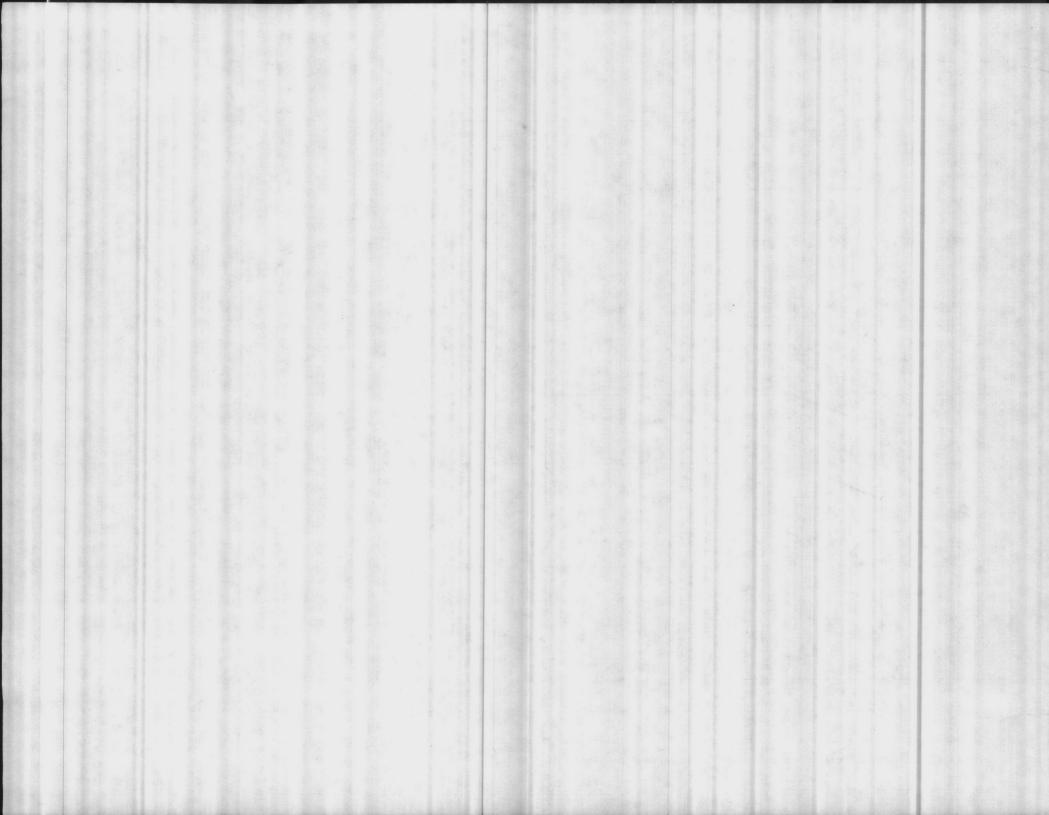
LANE + BURNS

□ NREAD

NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, and specific conductance. One liter of potable water is assumed to weigh one kilogram.

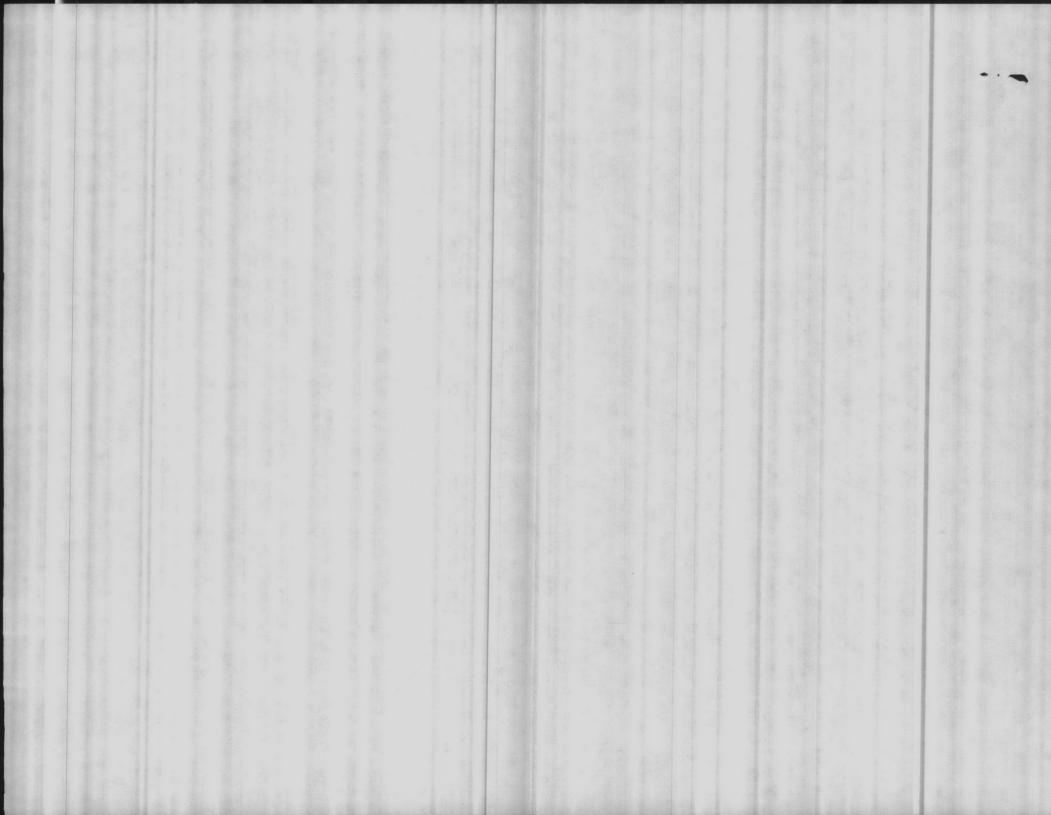
TEN TON 6 1 JKylok at Bours the little 民主義院中一直 [89] [10] > R. H. Stories R. H. H. Dr. 3 0 BARRY PART to

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TE	REATMENT PL	ANTS				DATE COLLECTED	36	DATE OF ANAL	6-86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	9.0	73	8.5	7.3	7,8	8.0	NO/SAMPLE	8,4		
PHENOLTHALEIN ALKALINITY	10	0	2	0	0	0	11	12		
METHYL ORANGE ALKALINITY	40	190	40	166	194	160	11	136		
CARBONATES AS CaCO ₃	20	ð	4	0	0	0	11	24		
BICARBONATES AS CaCO 3	20	190	36	166	194	160	11	112		
CHLORIDES AS C1	10	10	14	20	20	50	, 1	60		
HARDNESS AS CaCO ₃	50	60	64	52	52	54	11	46		
IRON AS Fe	20.04	0.22	40.04	0.14	20.04	20.04	11	40.04		
FLUORIDE JO, M.	0.92	0.15	085	0,14	0.10	0.09	(1)	0.56	91	
CHLORINE RESIDUAL	1.1	1,4	110	1.3	1.2	1.0	(1	0.8		
TURBIDITY P. M.	0.2	1.2	0.1	0.1	0.1	0.6	11	0.1		
TOTAL PHOSPHATE		2.6								
ORTHO PHOSPHATE		1.4								
META PHOSPHATE		1.2								
STABILITY	+0.4	-0.4	to. 3	-0.5	-0.2	0.0	11	0.0		
REMARKS									СОРУ ТО:	
						- N			Q OTIL DIR	o
									NATER T	REATMENT
NOTE: All results reported and specific condu					LABORATORY ANA	LYSIS BY			D PMU	MCAS PMU
3,000,000			io noigh	9,4,1,1	LANE 4	BUEN	S		□ NREAD	DIFICE


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TREATMENT PLANTS						DATE COLLECTED		DATE OF ANALYSIS	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.6	7.5	8.7	7.5	8.0	8.3	8.5	8.7		
PHENOLTHALEIN ALKALINITY	6	0	4	0	0	2	4	16		
METHYL ORANGE ALKALINITY	60	170	44	160	170	140	50	144		
CARBONATES AS CaCO ₃	12	0	8	0	0	4	8	32		
BICARBONATES AS CaCO ₃	48	170	36	160	170	136	42	112		
CHLORIDES AS C1	10	10	14	20	14	20	10	60		
HARDNESS AS CaCO ₃	64	60	60	60	50	56	56	46		
RON AS Fe	20.04	0.27	20.04	0.15	20.04	20,04	20.04	20,04		
FLUORIDE P.M.	082	0.17	0.98	0.16	0.13	0.11	0.91	0.58		
CHLORINE RESIDUAL	0.9	1,3	1,1	1.3	1.5	1.0	1.2	0.8		
TURBIDITY P. N.	0.1	1.6	0.8	0.1	0,1	0.9	0,4	0.1		
TOTAL PHOSPHATE		2.0								
ORTHO PHOSPHATE		1.1								
META PHOSPHATE		0.9								
STABILITY	40.3	-0.4	10.1	-0.5	-0.2	0.0	+0,2	+0.1		
REMARKS									COPY TO:	
									dottil DIR -	
									WATER TREATMENT	
NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, and specific conductance. One liter of potable water is assumed to weigh one kilogram.								D PMU DL MCAS PMU		
and specific conduc	ctance. One liter o	of potable water is	assumed to weigh	one kilogram.	TUNE 4	B			□ NREAD	AL FILE

THE STATE OF THE S Color Carl Hell - E 3 E184 Q -1 Q 1 8 8 1 17 0 1 88 0 3/1 100 100 150 0 0 1 12 34 6 6 5 94 14 6 4 10 - 48 5 10 1 1 4-5

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TREATMENT PLANTS						DATE COLLECTED 12-2-86		DATE OF ANALYSIS 86	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8	7.7	8,9	7.6	8.0	8.4	8.8	8.7		
PHENOLTHALEIN ALKALINITY	6	0	6	0	0	0	4	8		
METHYL ORANGE ALKALINITY	62	184	46	166	176	166	52	166		
CARBONATES AS CaCO ₃	12	0	12	0	0	0	8	16		
BICARBONATES AS CaCO 3	50	184	34	166	176	166	44	150		
CHLORIDES AS C1	12	14	20	20	18	24	12	58		
HARDNESS AS CaCO ₃	66	74	84	50	54	50	58	60		
RON AS Fe	20.04	0.19	40.04	40.04	0,11	10.04	20.04	KO.04		
FLUORIDE P.M.	1,20	0.20	20.04	0,18	0.15	0.12	1.16	0.64		
CHLORINE RESIDUAL	1.0	1,3	1.0	1.4	1.5	1,0	1,0	0.8		
TURBIDITY P. M.	0,1	0.4	0.1	0.1	0,1	2.0	0.3	0.4		
TOTAL PHOSPHATE		2.2								
ORTHO PHOSPHATE		1.)								
META PHOSPHATE		1.1								
STABÎLITY	+0.5	-0,4	+0.3	-0.4	-0.2	+0.1	+0.2	+0,2		7
REMARKS									СОРУ ТО:	
									OTIL DIR	
									WATER TREA	TMENT
NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, and specific conductance. One liter of potable water is assumed to weigh one kilogram.									LO PMU 6	MCAS PMU
			io noign	3.4	LANE.	+ 13 UR	NS		□ NREAD 2	FILE


- WATER II	REALMENT PL	ANTS				DATE COLLECTED	86	DATE OF ANALY	86
HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		1 1
8.2	7.2	8.2	7. 3	7.9	7.7	8.0	8.3		
4	0	0	0	0	0	0	10		
68	168	50	168	184	184	62	154		
8	0	0	0	0	0	0	20		
60	168	50	168	184	184	62	134		
16	14	14	24	22	46	16	66		
80	62	74	52	46	62	68	48		ĮĮ.
20.04	0.14	40.04	10.04	20.04	40.04	40.04	10.04		
0.45	0.20	0.91	0.18	D. 14	0.13	0.89	0.58		
1.0	1.1	1.0	1.5	1.1	1.0	0.9	1.0		
0.40.4	0.9	0.3	0.4	0.5	0.4	0.82.1	0.6		
	2.7			- IF					
	1.3								
	1.4								1 1 1
0	-0.6	0	-0.7	-0.3	-0.4	-0.3	-0.1		1/6
								СОРУ ТО:	
	DB 1	houg by	4 = 7.	7				UTIL DIR	
								WATER TRI	EATMENT
in parts per million	unless otherwise r	noted except for pH	temperature:	LABORATORY ANA	LYSIS BY			PMU d	MCAS-PML
ctance. One liter o	f potable water is	assumed to weigh	one kilogram.	0 0					FILE
	HADNOT POINT 8. 2 4 68 8 60 16 80 40.04 0.45 0.47 1.0 0.45 0.47	HADNOT POINT CAMP JOHNSON 8.2 7.2 4 0 68 168 8 0 60 168 16 14 80 62 40.04 0.14 0.45 0.47 0.20 1.0 1.1 0.40.4 0.9 2.7 1.3 1.4 0 -0.6 08	POINT JOHNSON TERRACE 8. 2 7. 2 8. 2 4 0 0 68 168 50 8 0 0 60 168 50 16 14 14 80 62 74 20.04 0.14 20.04 0.45 0.47 0.30 0.91 0.40 0.9 0.98 1.0 1.1 1.0 0.40 0.9 0.9 1.3 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HADNOT POINT JOHNSON TERRACE BEACH 8.2 7.2 8.2 7.3 4 0 0 0 68 168 50 168 8 0 0 0 60 168 50 168 16 14 14 24 80 62 74 52 40.04 0.14 40.04 40.04 0.45 0.47 0.20 0.98 1.0 1.1 1.0 1.5 0.40 0.9 0.9 0.88 1.3 1.4 0 -0.6 0 -0.7	HADNOT CAMP TARAWA TERRACE ONSLOW COURTHOUSE BAY	HADNOT CAMP TARAWA TERRACE BACH COURTHOUSE RIFLE RANGE RANGE	HADNOT CAMP TARAWA TERRACE BACH COURTHOUSE RIFLE RANGE BLVD	HADNOT CAMP TARAWA ONSLOW BEACH COURTHOUSE RIFLE RANGE HOLCOMB RIVER RANGE RAN	HADNOT JOHNSON TARAWA ONSLOW BEACH FIFTE FAME FAME FIFTE FAME FAME

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TF	REATMENT PL	ANTS				DATE COLLECTED	<u>C</u>	DATE OF ANAI	-86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH .	8.5	7.3	8.6	7.3	7.7	8.0	8.3	8.6		
PHENOLTHALEIN ALKALINITY	4	0	6	0	0	0	2	18		
METHYL ORANGE LKALINITY	54	170	46	156	170	160	50	140		
ARBONATES AS CaCO ₃	8	0	12	0	0	0	4	36		
ICARBONATES S CaCO 3	46	170	34	156	170	160	46	104		*
HLORIDES AS C1	10	10	10	20	16	26	10	60		
IARDNESS AS CaCO ₃	64	56	80	56	48	52	64	46		
RON AS Fe	20.04	0.18	20.04	0.09	0.05	0.05	40.04	40.04		
LUORIDE P.M	1.44	0.20	0.79	0.18	0.16	0.14	0.94	0.63	- 4/8	
CHLORINE RESIDUAL	1.1	1.3	1.0	1.3	1,4	1.1	1,0	0.9		
URBIDITY	0.2	2.2	0.6	0.1	0.)	0.1	0.7	0.1		
OTAL PHOSPHATE		1.8								
DRTHO PHOSPHATE		1,0								
META PHOSPHATE		0.8								
STABILITY	+0.3	-0.6	+0.3	-0.8	-0.4	-0.2	-0.1	10.1		
EMARKS								1, 14	COPY TO:	
									UTIL DIR	
									WATER T	REATMENT
IOTE: All results reported	in parts per million	unless otherwise	noted except for pH	, temperature,	LABORATORY ANA	LYSIS BY			PMU MCAS PMU	
and specific condu	ctance. One liter of	potable water is	assumed to weigh	one kilogram.	BUENS	3 + L A	a ulle		□ NREAD	À FILE


13 8 8 8 8 1 1 1 1 1 1 to lead to the property of the same 19 1 19 1 19 1 105 to a route life AND THE REAL PROPERTY OF THE PARTY OF THE PA 日本内 30000 2011 1000 日 15 7 日 The state of

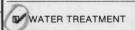
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		LEATMENT PL	ANTS				DATE COLLECTED		DATE OF ANA	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
'H	8.7	7.4	8.7	7.7	8.2	8.0	8.6	8.7		
HENOLTHALEIN LKALINITY	4	0	10	0	0	0	6	16		
ETHYL ORANGE LKALINITY	54	176	48	170	168	170	56	148		
ARBONATES AS CaCO ₃	8	0	20	0	0	0	12	32		
ICARBONATES S CaCO 3	46	176	28	170	168	170	44	116		S84-6
HLORIDES AS C1	10	14	16	24	20	44	16	60	100	
ARDNESS AS CaCO ₃	74	68	74	54	44	62	78	52		
ON AS Fe	10.04	0.21	0.24	0.12	10.04	10.04	10.04	10.04		
LUORIDE Amm	0.95	0.18	0.81	0.17	0.13	0.12	0.77	0,59	1.1	
HLORINE RESIDUAL	1.0	1.2	1.0	1.5	1.5	1.6	0.9	0.7		
URBIDITY AMPM	0.6	1.1	0.7	0.5	0.4	0.5	0.8 3.5	0.8		
OTAL PHOSPHATE		1.95							5 (5 A)	
RTHO PHOSPHATE		1.11								
META PHOSPHATE		0.84								
TABILITY	+0.4	-0.8	+0.1	-0.5	-0.1	-0.2	+0.2	+0.1		
EMARKS	0B Po	~ 1 od	+= 8.1						COPY TO:	
	00 10	na pr	1- 0.1					X	UTIL DIR	
									D WATER T	REATMENT
OTE: All results reported and specific condu	in parts per million actance. One liter of				LABORATORY ANA	LYSIS BY	A Court of the Court	The second	PMU D_MCAS PMU	
		1			L. Lane	. 4	T. Darb	20_	□ NREAD	FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		EATMENT PL	ANTS				DATE COLLECTED	,	DATE OF ANAL	YSIS 86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA' TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	9.2	7.3	8.5	7.4	7.7	8.0	8,4	8.6		
HENOLTHALEIN LKALINITY	10	0	4	0	0	0	2	18		
ETHYL ORANGE LKALINITY	42	170	58	150	170	170	54	146		
ARBONATES AS CaCO ₃	20	0	8	0	0	0	4	36		
ICARBONATES S CaCO 3	22	170	50	150	170	170	50	110		
HLORIDES AS C1	10	10	16	18	14	40	10	60		
ARDNESS AS CaCO ₃	52	60	70	58	72	60	70	44		
ON AS Fe	40.04	0.24	40.04	0.12	0.06	L0.04	0.04	L0.04		
LUORIDE AMPA	1.08	0.25	0.83	0.20	0.15	0.14	1.08	0.59		
HLORINE RESIDUAL	1.1	1.4	1.0	1,5	1.4	1.0		0.8		
URBIDITY AMOM	0.5	0.9	0.5	0.4	0.4	0.6	0.60.9	0.9		
OTAL PHOSPHATE		1.9								
RTHO PHOSPHATE		1.2								
ETA PHOSPHATE		0.7								
TABILITY	+0.7	- 0.7	+0.4	-0.7	-0.3	-0.1	+0.4	+0.3		
EMARKS									СОРУ ТО:	1
)B Pon	7 = 8	.D pH						UTIL DIR	
									WATER TE	
OTE: All results reported	in parts per million	unless otherwise r	oted except for pH.	temperature,	LABORATORY ANA	LYSIS BY		of April 4 h	₫ PMU	MCAS-PMU
and specific condu	ctance. One liter of	potable water is	assumed to weigh o	one kilogram.	H. Burn		L. Lane		□ NREAD	DATE.

The

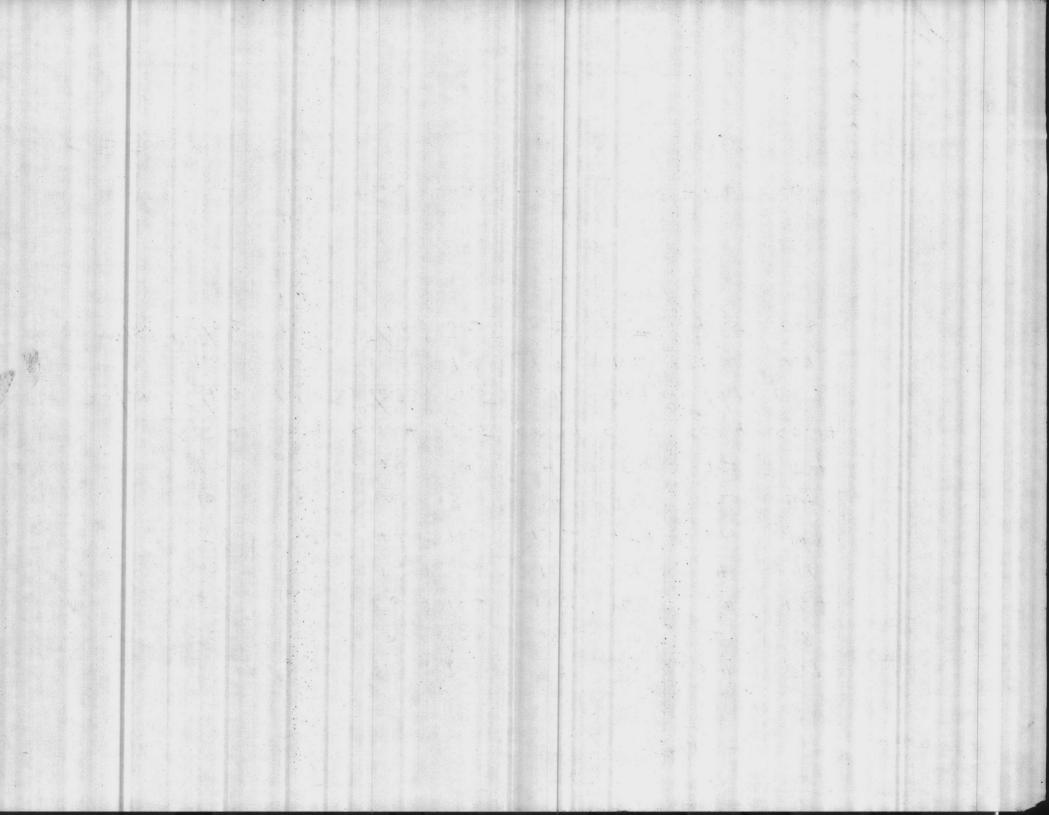
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	o — WATER TR	EAIMENI PL	ANTS				DATE COLLECTED	86	DATE OF ANAL	28-86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.3	7.2	8.5	7.6	8.0	8.2	8.6	8.7		
PHENOLTHALEIN ALKALINITY	4	0	4	0	0	0	4	22		
METHYL ORANGE NEKALINITY	54	170	58	160	170	170	50	150		
CARBONATES AS CaCO ₃	8	0	8	0	0	0	8	44		
BICARBONATES AS CaCO ₃	46	170	50	160	170	170	42	106		
CHLORIDES AS C1	14	10	10	20	14	38	10	64		
HARDNESS AS CaCO ₃	64	60	70	72	62	60	60	48		
RON AS Fe	10.04	0.20	40.04	0.19	40.04	40.04	40.04	40.04		
FLUORIDE AM PM	1.05	0.17	0.55	0.17	0.13	0.11	0.87	0.59		
CHLORINE RESIDUAL	1.0	1.0	1.0	1.4	1.3	1.0	0.8	0.8		
TURBIDITY AMPM	0.50.4	1.0	0.6	0.5	0.5	0.5	1.34.9	1.0		
OTAL PHOSPHATE		2.7								
DRTHO PHOSPHATE		1,5								
META PHOSPHATE		1,2								
STABILITY	-0.2	- 1.0	+0.3	-0.6	-0.2	-0.1	+0.3	+0.7		
REMARKS									СОРУ ТО:	
01	B Par	9 = 1	78 OH						10 UTIL DIR	0
	0 (81)		. o hit						WATER T	REATMENT
NOTE: All results reported and specific condu	in parts per million ctance. One liter of				LABORATORY ANA	LYSIS BY	1 1		PMUMCAS PMU	
					H. Burns	4	& Lane		□ NREAD	FILE

CYNON IN LINE 是这种的人们的 中心 医动脉 Bay. to Beautiful Die I and 19 CO STREET STOP FOR STAR BY A STAR AND THE STREET HERE TO SEE STREET . 1 . 3 . 0 . 1 . 1 . 0


CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED	6	DATE OF ANA	1-86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	9.0	7.3	8.4	7.2	7,8	7,9	8,3	8.4		
PHENOLTHALEIN LKALINITY	14	0	4	0	0	0	4	ID		
METHYL ORANGE NEKALINITY	56	178	56	164	186	162	96	160		
CARBONATES AS CaCO3	28	0	8	0	0	0	8	20		
BICARBONATES AS CaCO ₃	28	178	48	164	186	162	88	140		
CHLORIDES AS C1	10	12	14	20	22	38	16	66		
HARDNESS AS CaCO ₃	64	70	74	52	64	70	90	44		
RON AS Fe	20.04	0.20	40.04	0.18	20.04	10.04	10.04	10.04		
FLUORIDE AM PM	0.93	0.17	0.64	0.14	0.10	0.9	0.84	0.53		
CHLORINE RESIDUAL	1.1	1.0	1.0	1,3	1.6	1.1	0.9	0.8		
TURBIDITY AMPM	0.90.4	1.1	0.2	0.3	0.2	0.3	0.2	0.6		
OTAL PHOSPHATE		1.8								
DRTHO PHOSPHATE		0.9								
META PHOSPHATE		0.9								
STABILITY	+0.7	-0.6	+0.2	-0.7	-0.2	-0.1	+0.3	+0,2		
REMARKS									сору то:	
08	Pond	- PH =	= 8.0						D'UTIL DIR	
			Harris II						b WATER T	REATMENT
NOTE: All results reported	in parts per million uctance. One liter of	unless otherwise	noted except for pH,	, temperature,	LABORATORY ANA	LYSIS BY			РМИ	MCAS-PMU
and specific collec	dotance. One liter of	potable water is	assumed to weigh (one knogram.	L. Lane	- and	T. Boy	00_	□ NREAD	FILE

						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	HAVAR			179	- ()			
	The state of the s		19					
	(4) 「10000000 1 17 17 17 17 17 17 17 17 17 17 17 17 1							
		S. S						
	() + () + () + () + () + () + () + () +							
			50 P					
			0	THE STATE OF THE S		N S		
		34	15.4					
	let let		3 4					
			9. 7			8 3 8	7	
						E mase	1814	21-20

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TR	REATMENT PL	ANTS				DATE COLLECTED	86	DATE OF ANA	eT86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.0	7.3	8.6	7.8	8.4	8.5	8.4	8.7		
PHENOLTHALEIN ALKALINITY	0	0	8	0	8	4	2	8		
METHYL ORANGE LKALINITY	58	194	60	162	168	162	64	164		
ARBONATES AS CaCO ₃	0	0	16	0	16	8	4	16		
ICARBONATES S CaCO ₃	58	194	44	162	152	154	60	148		
CHLORIDES AS C1	10	8	12	18	14	18	12	54	d	
IARDNESS AS CaCO ₃	60	70	78	64	46	50	72	54		
RON AS Fe	<0.04	0.19	< 0.04	0.15	< 0.04	<0.04	<0.04	<0.04		
LUORIDE AM PM	1.08/1.13	0.16	1.03/0.93	0.15	0.11	0.09	0.95/0.93	0.63		
HLORINE RESIDUAL	1.0	1.5	1.0	1.4	1.4	1.2	1.1	0.7		
URBIDITY AM/PM	0.2/0.2	0.9	0.4/1.0	0.2	0.2	0.5	0.2/0.5	0.3		
OTAL PHOSPHATE	compared to	1.4								
PRTHO PHOSPHATE		0.8								
META PHOSPHATE		0.6		24						
TABILITY	-0.4	-1.0	+0.2	-0.6	-0.2	0	+0.1	0		
EMARKS									сору то:	
OBPON	D PH = 8	.3							UTIL DIR	


NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, and specific conductance. One liter of potable water is assumed to weigh one kilogram.

LABORATORY ANALYSIS BY

MCAS-PMU PMU

FILE □ NREAD

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	, — WATER T	TEATWENT TE	ANTO				DATE COLLECTED	86	DATE OF ANALYSIS 9-29-86		
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER			
РН	8.5	7.4	9.1	7,4	8.2	8.3	8,5	8.7			
PHENOLTHALEIN ALKALINITY	4	0	4	0	0	4	4	16			
METHYL ORANGE ALKALINITY	50	178	36	160	170	150	56	148			
CARBONATES AS CaCO ₃	8	0	8	0	0	8	8	32			
BICARBONATES AS CaCO ₃	42	178	28	160	170	142	48	106			
CHLORIDES AS C1	10	10	12	16	14	24	12	60	1 3		
HARDNESS AS CaCO ₃	64	70	68	50	40	48	62	44			
IRON AS Fe	20.04	0.20	0.08	0.29	20,04	40.04	0.05	20.04	100		
FLUORIDE P.M.	1.10	0.15	0.18	0.15	0.11	0.10	0.92	0.64			
CHLORINE RESIDUAL	1.0	1.3	1.0	1.5	1.3	1,0	1.1	0.8	The state of the		
TURBIDITY P.M.	0.3	1.4	0,2	0.5	0.9	0,2	0.5 =5.2	0.5			
TOTAL PHOSPHATE		1.6									
ORTHO PHOSPHATE		0.8									
META PHOSPHATE		0.8									
STABILITY	+0.1	-0.7	40.8	-0.6	0.0	0.0	+0,1	+0.2			
REMARKS									COPY TO:	47.	
				424					OTIL DIR	0	
									WATER T	REATMENT	
NOTE: All results reported					LABORATORY ANA	LYSIS BY	Signature of the second		IÓ PMU	MCAS PMU	
and specific conduc	ciance. One liter (of potable water is	assumed to weigh	one kilogram.	BURNS	+ Lar	3		□ NREAD	# FILE	

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TE	REATMENT PL	ANTS				DATE COLLECTED	6	DATE OF ANAL	86 86
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.5	7.4	9.7	7.4	7.8	8.1	8,5	8.6		
PHENOLTHALEIN LKALINITY	4	0	18	0	0	0	4	14		
ETHYL ORANGE LKALINITY	54	176	40	160	170	140	56	160		
ARBONATES AS CaCO ₃	8	0	36	0	0	0	8	28		
ICARBONATES S CaCO ₃	46	176	4	160	170	140	48	132	5, 2, 5	
HLORIDES AS C1	10	10	10	18	16	20	10	64		
IARDNESS AS CaCO ₃	64	72	50	54	64	52	64	60		
ON AS Fe	40.04	0.23	40.04	0.18	40.04	10.04	20.04	20.04	4	
LUORIDE AM PM	0.56	0.15	0.18	0.16	0.11	0.09	0.94	0.62		
HLORINE RESIDUAL	1.1	1.2	1.0	1.4	1.4	1.0	1.1	0.8		
URBIDITY AM	0.2	1.6	6.3	0.2	0.2	0.2	0.4	0.4		
OTAL PHOSPHATE		1,8								
PRTHO PHOSPHATE		0.9								
META PHOSPHATE		0.9								
TABILITY	+0.5	-0.6	+0.7	-0.7	-0.3	-0.1	+0.4	+0.2		
EMARKS	18 D		11 - 0 -		A _{rea} low				COPY TO:	
	0B 40	d Pai	H = 8.3	5					OTIL DIR	o
				4 74					D WATER TR	REATMENT
OTE: All results reported and specific condu					LABORATORY ANA	LYSIS BY	• 150		PMU DMCAS PMU	
			and to noigh	graiii	H. Bun	W 4	L. Lar	9 _	□ NREAD	FILE

红色 医一种 中国 机 工作 医 11 10 11 1-5 1 36 13 the little to the little property of the sound 1.1 के विशेष कि सिंह कि विशेष के लिए हैं। विशेष कि विशेष कि を作う 第2466号 MOZA 1211 140 25 第5章 1110 THE RESIDENCE 1.10 東西は40 | 1/2 RELIES HER HES THE LIES 1 ~

11330.2 CHEMICAL ANALYSES