FILE FOLDER

DESCRIPTION ON TAB:

11330.1 Cathodic Pro-183

Tection 1983

 \square

Outside/inside of actual folder did not contain hand written information

Outside/inside of actual folder did contain hand written information *Scanned as next image

Confidential Records Management, Inc. New Bern, NC 1-888-622-4425 9/08 11330.1 CATHODIC PROTECTION

(83)

CLOSED

OPEN

JAN 1985 - DESTROY SECNAVINST 5215.5B, Part II Chap. 11, par. 11300(2) 2 years DEPARTMENT OF THE NAVY OFFICER IN CHARGE NAVAL FACILITIES ENGINEERING COMMAND CONTRACTS CAMP LEJEUNE, NORTH CAROLINA 28542

IN REPLY REFER TO:

JAX/02/MLE/fao N62470-81-C-3562 28 October 1982

From: Officer in Charge of Construction, Jacksonville, North Carolina Area To: Base Maintenance Officer (Water Treatment Plant)

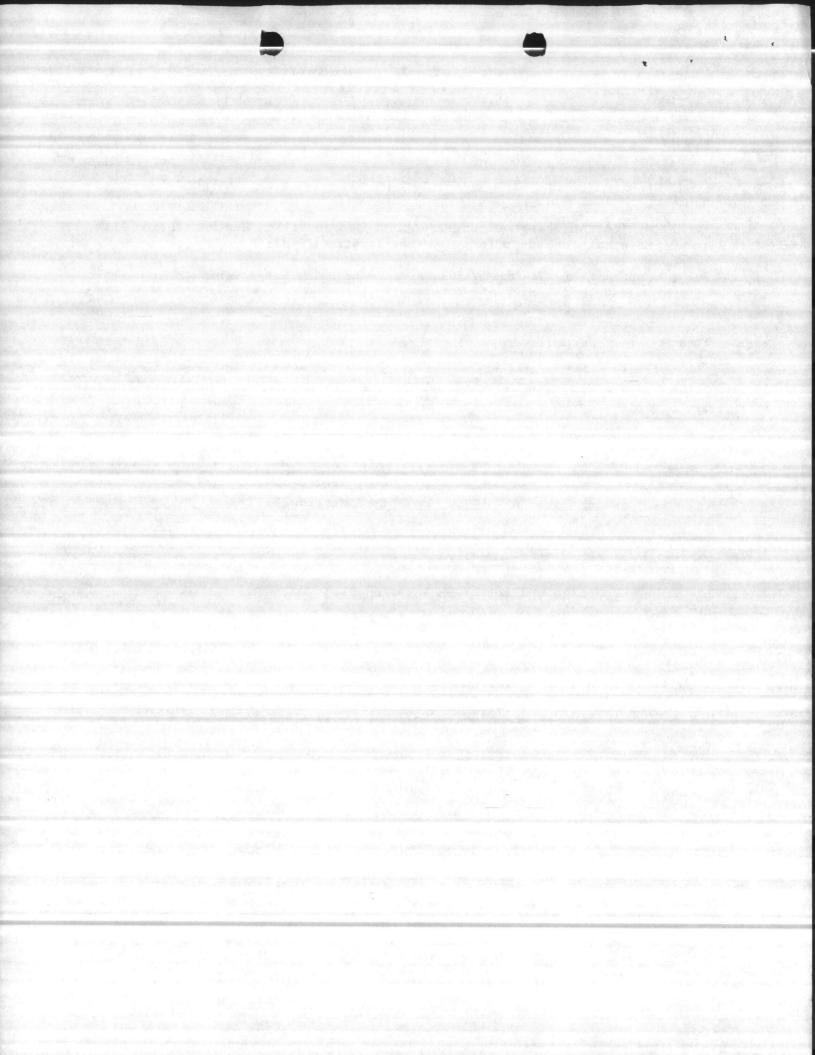
Subj: Contract N62470-81-C-3562, Repair and Paint Water Tanks, MCB, Camp Lejeune, NC

Encl: (1) Cathodic Protection Settings

1. Enclosure (1), submitted by the Contractor under the subject contract, is forwarded for your use in the maintenance and operation of the facility.

M. L. ENNETT

By direction


Received By:

Date:

(sign and return enclosed copy)

Copy to:

Contract folder w/o encl (signed copy)

For: Camp Lejune

Job # 4/30 Tank Size 350 m Tank Location White Street

air Station

Jacksonville N.C.

Rectifier # <u>9339</u> Output <u>60</u> Volts <u>28</u> Amps <u>Manufacturer</u> <u>Harco</u> Operating at _____ amps to the bowl _____ amps to the riser at _____ Volts. Tap settings of _____ C ____ F.

Anodes	<u>Strings</u>	Type	Sections	Conditions
Ring # 1	8	CI		OK
Ring # 2	_4	CI	_/	OK
Ring # 3		CI	36	ok
Ring # 4				

SYSTEM CONDITION

All components were inspected and the following conditions exist:

Rectifiers: Operating OK dut operable Kustu la Wiring: Suspension: Other:

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	
A	1300		1500	15	1560	
	1450	_12_	1560	24- 27-	1550 1540 1500	30-/0


After inspection, the system was left operating at 1.5 amps to the bowl and 2 amps to the riser at 4 volts. Tap settings of 1.5 F 1/00 potential.

To insure continous cathodic protection, maintain between _____ amps and _____ amps to the bowl. Maintain between _____ amps and _____ amps to the riser on manual systems.

DO NOT ADJUST AUTOMATIC SYSTEMS WITH OUT PROPER INSTRUCTIONS.

Kenn	ett	R	adam	1
.,	S.	C.P.		

1400

For: <u>Camp Le Junne</u> Jacksonville N.C.

JOB # 57C 314 Tank Size 300 m Clev. Tank Location Force Trop

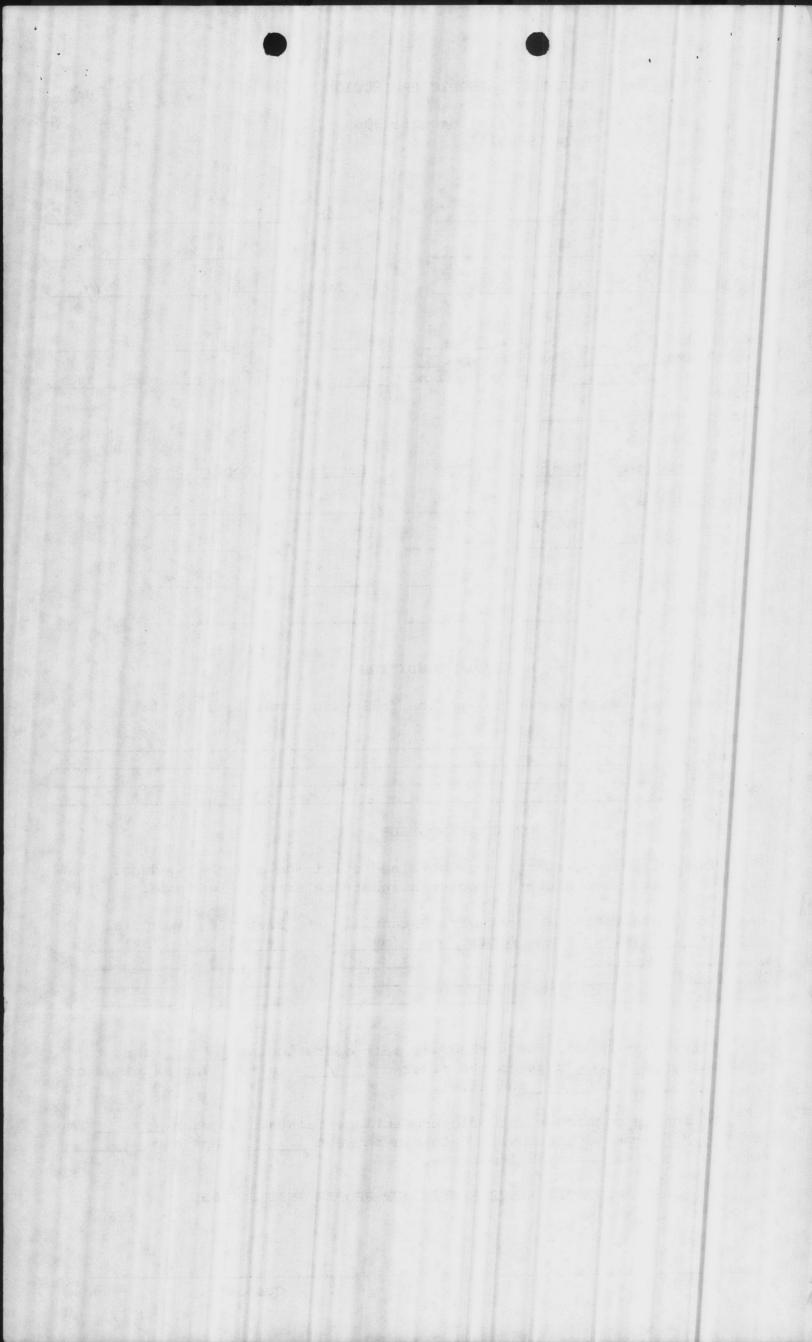
	Output <u>20</u> Volts Manufacturer Harco	18 Amps <u>Man</u> Type
	amps to the bowl	_ amps to the riser at
Tap settings of	_cF.	

Anodes	Strings	Type	Sections	<u>Conditions</u>
Ring # 1	8	CI	_6	OK
Ring # 2	_4	CI	_/	OK
Ring # 3		CI	31	_OK_
Ring # 4				

SYSTEM CONDITION

All components were inspected and the following conditions exist:

Rectifiers: Unmeter Brd Rectifier Works of Wiring: Suspension: Other: Output Amall - no Readings ery


POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
Hon of	700	-6-	1280		
3	1300	12	1240		

After inspection, the system was left operating at	2 amps to
the bowl and amps to the riser at / volts.	Tap settings of
F <u></u>	

To insure continous cathodic protection, maintain between amps and _ 2 amps to the bowl. Maintain between / amps and amps to the riser on manual systems.

For: <u>Camp Le Jume</u> Jacksonville N.C.

Job # 5-5 Tank Size 300m Elev Tank Location 2nd area

Rectifier # $4/08$ Year Model	Output Volts	<u>/</u> 5 Amps Type	
Operating at volts.	amps to the bowl	amps to the riser at	
Tap settings of	CF.		

Anodes	<u>Strings</u>	Type	<u>Sections</u>	Conditions
Ring # 1	10	CI	8	_ok
Ring # 2	5	CI		OK
Ring # 3		CI	31	OK_
Ring # 4				·

SYSTEM CONDITION

All components were inspected and the following conditions exist: To Be replaced Gransformer has sh together intermally her Rectifiers: K Jech Wiring: Suspension: Fain Other:

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
					· · · · · · · · · · · · · · · · · · ·

After inspection, the system was left operating at _____ amps to the bowl and _____ amps to the riser at _____ volts. Tap settings of _____C ___F potential. с ____potential.

To insure continous cathodic protection, maintain between _____ amps and _____ amps to the bowl. Maintain between _____ amps and _ amps to the riser on manual systems.

For: <u>Camp Le Junne</u> Jacksonville N. C.

Y O

5-TC-606 Job # Camp Geiger North Tank Size/00 m Cone Roof

Tank Location

Rectifier #7236	Output 40 ,Volts	8,12 Amps Man Type
Year Model 7	Manufacturer Harco	impo iyo
Operating at volts.	amps to the bowl	amps to the riser at
Tap settings of	$c _ 3_F.$	
		in the second

Anodes	<u>Strings</u>	Type	Sections	Conditions
Ring # 1	_5	CI	6	0R
Ring # 2				OR.
Ring # 3		CI	39	ok.
Ring # 4				
			다 양 밖에 없는 것이 많은 것이 가락했다.	

SYSTEM CONDITION

All components were inspected and the following conditions exist: but operable Rectifiers: Old Wiring: Suspension: Other:

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (my)	Feet Off Bottom	Potential (my)
-0-	1100	-kg-	1200		1200
3	1200	12	1200	21	

After inspection, the system was left operating at 3 amps to the bowl and 2 amps to the riser at 2 volts. Tap settings of A C _ F // potential.

To insure continous cathodic protection, maintain between ______ amps and ______ amps to the bowl. Maintain between ______ amps and _____ amps to the riser on manual systems.

R. R. adams

For: land o epinne

Jacksonville N.C.

Job # Camp Sheiger South Tank Size/10 M Cone Room

S-TC-1070

Tank Location

Rectifier # <u>8/c 1215</u> Output <u>60</u> volts <u>28</u> Amps <u>Month</u>Type _____ Year Model <u>1987</u> Manufacturer <u>Hod</u>all Operating at _____ amps to the bowl _____ amps to the riser at _____ volts. Tap settings of _____C ____F.

Anodes	Strings	Type	<u>Sections</u>	<u>Conditions</u>
Ring # 1	_5	CI	6	
Ring # 2				
Ring # 3	_/	CI	39	
Ring # 4		1. 		

SYSTEM CONDITION

All components were inspected and the following conditions exist:

Rectifiers:	Wide.	Range	- Br -	Tine-	Jass		
Wiring:	OK	- , co regje		<u></u>	- ag		
Suspension: Other:	1 OK		Λ.	- 1		<u> </u>	-
Other:	leared	angle	Akorled	1 Ro	saiden	Rob	A State Party
					april -		

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (my)	Feet Off Bottom	Potential (mv)
Mon O	1390		1600	15	1700
3	1500	12	1700	21	1700

After inspection, the system was left operating at $_{.5}$ amps to the bowl and $_{.2}$ amps to the riser at $_{.2}$ volts. Tap settings of $_{.4}$ C $_{.5}$ F $_{.6}$ $_{.6$

To insure continous cathodic protection, maintain between ______ amps and _____ amps to the bowl. Maintain between _____ amps and _____ amps to the riser on manual systems.

DO NOT ADJUST AUTOMATIC SYSTEMS WITH OUT PROPER INSTRUCTIONS.

41	Ω	n	0		
X.	K.	Uc	tar	ns	/
		S.C.P.		No.	

Customer

	•		•	
	SOUTHERN CA	ATHODIC PROTE	CTION	
	P.O. Box 24			
		.e, Georgia 3	0633	
~	(404) 795-31	.42		
Ca	mp Legunn	e		
For: Ta	wara Tessac	e	Job #	STT-40
6	In Base		Tank Size	250 m Elev.
			Tank Loca	tion Jawasa Jenace
Year Model	$\frac{60}{2}$ Manufactor	turer <u>Hasc</u>	~	aps <u>Man</u> Type to the riser at <u>4</u>
Anod	les <u>Strings</u>	Type	Sections	Conditions
Ring	#1	CI	8	ok_
Ring	# 2	CI		0K
Ring	# 3	CI	36	ok
Ring	# 4			

SYSTEM CONDITION

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
off.	0	800		1200		1500
	3	1300	_12_	1450	2/	

After inspection, the system was left operating at /	amps to	
the bowl and amps to the riser at volts.	Tap settings o	f
the bowl and <u>3</u> amps to the riser at <u>2</u> volts. <u>A</u> C <u>3</u> F <u>950</u> potential.		

To insure continous cathodic protection, maintain between $\frac{0}{4}$ amps and $\frac{3}{12}$ amps to the bowl. Maintain between $\frac{1}{12}$ amps and $\frac{2}{4}$ amps to the riser on manual systems.

DO NOT ADJUST AUTOMATIC SYSTEMS WITH OUT PROPER INSTRUCTIONS.

1/6	R A	
K.K.	adams	
and a support of the support	S.C.P.	P. CO. CO.

Customer

For: <u>Camp Le Junne</u> Jacksonville N.C.

Midway Park Sm.P. - 4004 Job # Tank Size 200 m El Tank Location Midway Back

Rectifier # 800.2834	Output Volts = 20 Amps Man Type
Year Model 1980	Manufacturer Hood-all
	amps to the bowl 1.5 amps to the riser at 10
Tap settings of \underline{B}	_c_ <u>3</u> _F.

Anodes	<u>Strings</u>	Type	Sections	Conditions
Ring # 1	_8	CI	8	ok
Ring # 2	4	CT	4	OK.
Ring # 3	1	CI	_3/	OK
Ring # 4				

SYSTEM CONDITION

All components were inspected and the following conditions exist:

Rectifiers:	ok.						
Wiring:	OK		A.		a the second	and the second second	
Suspension;	ER a	nodes i	Where in	stalled	improdo	ily, and	des were
Other:y	ing on	Bottom a	of Jank	2, Rei	installed	modes.	property
0	0	and the second second	7	Made	new s	plices!	the for the second seco
		POTENTIA	L PROFIL	E		pareso	

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Potential Bottom (mv)	Feet Off Potential _Bottom (mv)	Feet Off Potential Bottom (mv)
The 0 2.0 Y	9 3.0	
Rectifier was se	I too kigh Causing et	cessive Readings. Reduced
After inspection,	the system was left opera	ting at <u>-5</u> amps to volts. Tap settings of

A c 2 F 3,0 potential. To insure continous cathodic protection, maintain between

amps and . amps to the bowl. Maintain between _____ amps and amps to the riser on manual systems.

14	? adams
D.D	· Mams
And the second statement of the	S.C.P.

For: Cang Legune Jacksonville N.C.

Job # \$ 5-71-624 Tank Size 150 m Elev Tank Location Montford foint

Montfort Point

Rectifier # 12210	Output Volts 10 Amps manufype
Year Model	Manufacturer Atarce
Operating at	amps to the bowl amps to the riser at
volts. R	1
Tap settings of \square	CF.

Anodes	<u>Strings</u>	Туре	<u>Sections</u>	<u>Conditions</u>
Ring # 1	6	CI	6	ot
Ring # 2			an a	
Ring # 2 Auser Ring # 3		CI	20	And the second
Ring # 4				

SYSTEM CONDITION

All components were inspected and the following conditions exist:

Rectifiers:	OK					
Wiring:	OR		and the second second	and the second		
Suspension:	ok		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		and the second	
Other:						


POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
off_O	900	6	1350	15	1300
on O	1300	9	1325		1300
	13.90	_12_	1325	in the second	a state of the second sec

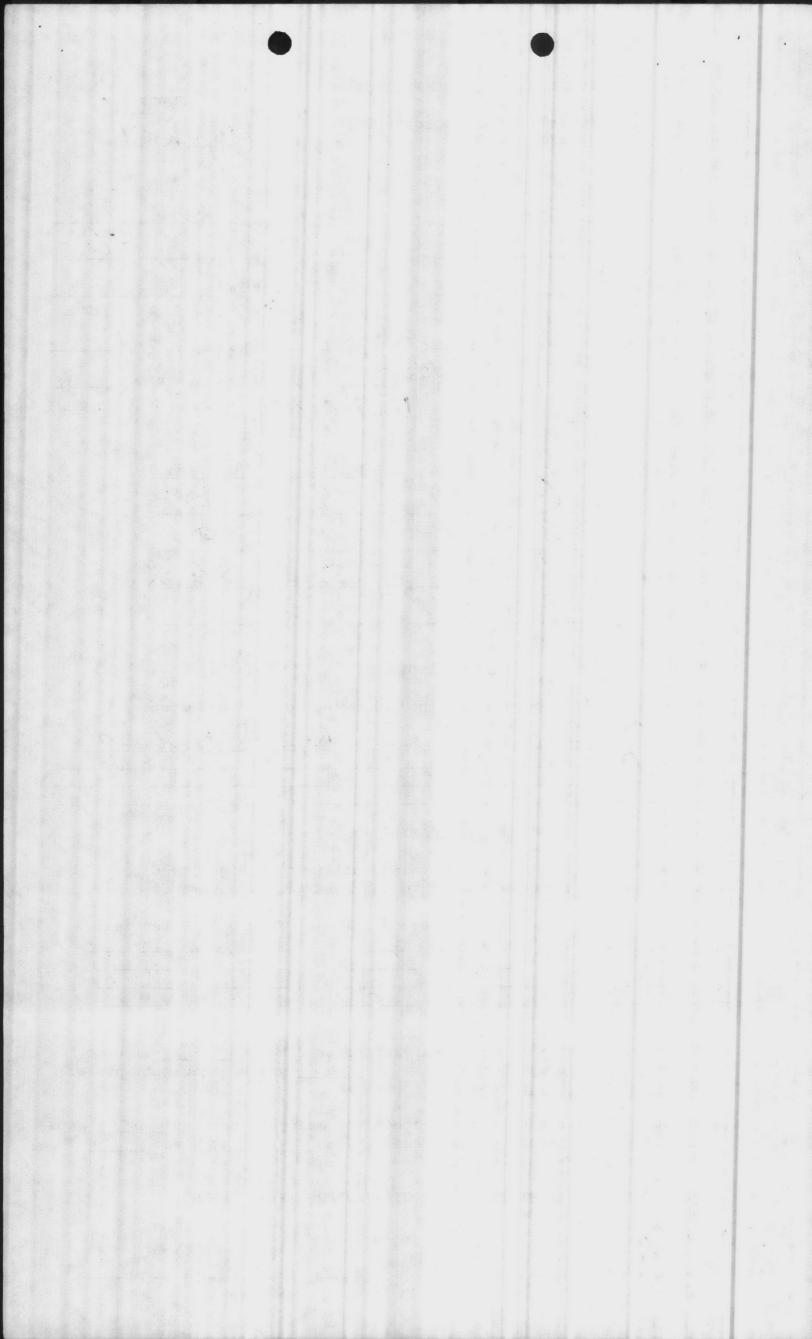
After inspection, the system was left operating at 3 amps to the bowl and 3 amps to the riser at 1.5 volts. Tap settings of ACT F_.950 potential.

To insure continous cathodic protection, maintain between $\underline{-2}$ amps and $\underline{-5}$ amps to the bowl. Maintain between $\underline{-2}$ amps and $\underline{-2}$ amps to the riser on manual systems.

Capehart

For: Car	ng Leju	nne	Job #	5-830
		NR		300 m Elev.
Jack	sonville	<u> </u>	Tank Loca	tion <u>fousing</u> area
Rectifier # . Year Model		t <u>36</u> voi acturer Han		ps <u>Man</u> . Type
Operating at volts. Tap settings	amps	to the bowl		o the riser at
Tap sectings	or <u> </u>	F. <i>U</i>	100. 17	
Anodes	<u>s</u> <u>Strings</u>	Type	Sections	Conditions
Ring #	ŧ 1 <u>6</u>	CI		PK
Ring #	# 2 <u>3</u>	<i>Ir</i>		2 OK
Ring #	± 3		32	<u>BROK</u>
Ring #	ŧ 4		and the second sec	<u></u>
	1	SYSTEM CONDII	ION	

POTENTIAL PROFILE


The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
0	1400	9	1500	18	1580
3	1400	12	1550	21	1580
6	1500	15	1550	24	1575
					and the second s

After inspection, the system was left operating at 3 amps to the bowl and 3 amps to the riser at 5 volts. Tap settings of A C 3 F 900 potential.

To insure continous cathodic protection, maintain between ______ amps and ______ amps to the bowl. Maintain between ______ amps and _____ amps to the riser on manual systems.

. , 1	0	∩ A	
V	N		
A	N.	adams	
	s.	C.P.	

For: Camp Le Junne Jacksonville H. C.

ton #310 Job # _ Tank Size _ 350 m Elev. Tank Location Campbell St.

July 1, 1982 Campbell St.

Rectifier # <u>8/C/9/6</u> Year Model <u>/98/</u>	Output <u>40</u> W Manufacturer	olts /2 Amp	s Manua Type
Operating at volts.	amps to the bowl		the riser at
Tap settings of	F.		

Anodes	<u>Strings</u>	Type	Sections	<u>Conditions</u>
Ring # 1		CI	_8	OK
Ring # 2	4	CI		OK
Ring # 3	_/	CI	_36_	OK
Ring # 4				

SYSTEM CONDITION

All components were inspected and the following conditions exist:

Rectifiers:	OK	
Wiring:	OK	
Suspension:	OR	
Other:		

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off <u>Bottom</u>	Potential (mv)	Feet Off Bottom	Potential (mv)
Hon O	900		$\frac{1200}{1200}$	-15- 18	1190
	1150		1190	21	1150

After inspection, the system was left operating at 100 amps to the bowl and 4 amps to the riser at 3 volts. Tap settings of 4 C 2 F 100 potential.

To insure continous cathodic protection, maintain between ______amps and ______ amps to the bowl. Maintain between ______ amps and ______ amps to the riser on manual systems.

DO NOT ADJUST AUTOMATIC SYSTEMS WITH OUT PROPER INSTRUCTIONS.

YD	NI	1	
<u>A. M.</u>	ua	ams	_
S	.C.P.		

Customer

For: Camp L	e Junne		JOD # <u>5-/00</u>
			Tank Size <u>3</u>
1			Tank Location
Rectifier # Year Model	_ Output Manufacturer	Volts _	Amps
Operating at volts.	amps to the boy	wl	amps to the
Tap settings of	CF.		
Anodes	Strings Tumo		-+

Anodes	Strings	Type	Sections	Conditions
Ring # 1	10	CI		ok
Ring # 2	_5	CI		ok_
Ring # 3		CI	31	_oK
Ring # 4		10 		

SYSTEM CONDITION

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
mon o	820		1450	-15-18	1350
	1420	_12_	14.00	21/24	1280

After inspection, the system was left operating at 1.5 amps to the bowl and .3 amps to the riser at .4 volts. Tap settings of $A_C_3F_p$ potential.

To insure continous cathodic protection, maintain between ______ amps and ______ amps to the bowl. Maintain between ______ amps and _____ amps to the riser on manual systems.

DO NOT ADJUST AUTOMATIC SYSTEMS WITH OUT PROPER INSTRUCTIONS.

S.C.P.

Customer

Austria Ol

Type _

riser at _

For: <u>Camp Le June</u> Jacksonville N.C.

Job # <u>S-BB</u>	- 25-
Tank Size	100m Elev.
Tank Location	Courthouse Bay

Rectifier $\# 4/09$ Year Model	Output 18 Volts 10 Amps Man Type Manufacturer Harco	
Operating at volts.	_ amps to the bowl amps to the riser at	
Tap settings of	CF.	

Anodes	Strings	Type	Sections	<u>Conditions</u>
Ring # 1	_5	CI	6	
Ring # 2	i dan			
Ring # 3	_/	CI	31	
Ring # 4				

SYSTEM CONDITION

All components were inspected and the	following conditions exist: /
Rectifiers: Rectifier Bod - ne	eds to be replaced the
Wiring:	aal
Suspension:	

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
on on	1010		1160	-15-	1140
	1200	_12	1150	_2/_	

After inspection, the system was left operating at 2 amps to the bowl and 1 amps to the riser at 10 volts. Tap settings of C C 2 F 1040 potential.

To insure continous cathodic protection, maintain between _____ amps _____ amps to the bowl. Maintain between ______ amps and ______ and _ amps to the riser on manual systems.

DO NOT ADJUST AUTOMATIC SYSTEMS WITH OUT PROPER INSTRUCTIONS.

RR adam

For: <u>Camp Le Junne</u> Jacksonville N.C.

Job #	-RR-4	4
Tank Size _	100m	Elev.
Tank Locati	on Rifle 1	Pange

Rectifier #Soc 2835	Output 40 Volts	20 Amps Manua Type
Year Model 1980	Manufacturer Hood-all	impsiype
Operating at volts.	amps to the bowl	_ amps to the riser at
Tap settings of $\underline{\beta}$		

Anodes	Strings	Type	Sections	Conditions
Ring # 1		CI	6	-pK
Ring # 2				OK
Ring # 3		CI	31	OK
Ring # 4			1 <u></u>	

SYSTEM CONDITION

All components were inspected and the following conditions exist:

Rectifiers:	openat	ing OK		
Wiring:	all	al		
Suspension:		V. N.		
Other:	- <u>4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>			

POTENTIAL PROFILE

The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
	1450	-6-	1550	15-14	1620
	1500	12	1600	21	1700

After inspection, the system was left operating at $\frac{1.5}{1.5}$ amps to the bowl and $\frac{1.3}{1.5}$ amps to the riser at $\frac{1.3}{1.5}$ volts. Tap settings of $\frac{1.5}{1.5}$ F $\frac{1.0}{1.5}$ potential.

To insure continous cathodic protection, maintain between amps _____ amps to the bowl. Maintain between _____ amps and _____ and amps to the riser on manual systems.

1)	D	An	
A.	Ke	(Ida	ms
	's.c		

For: <u>Camp Le Junne</u> Job # <u>5-29</u>

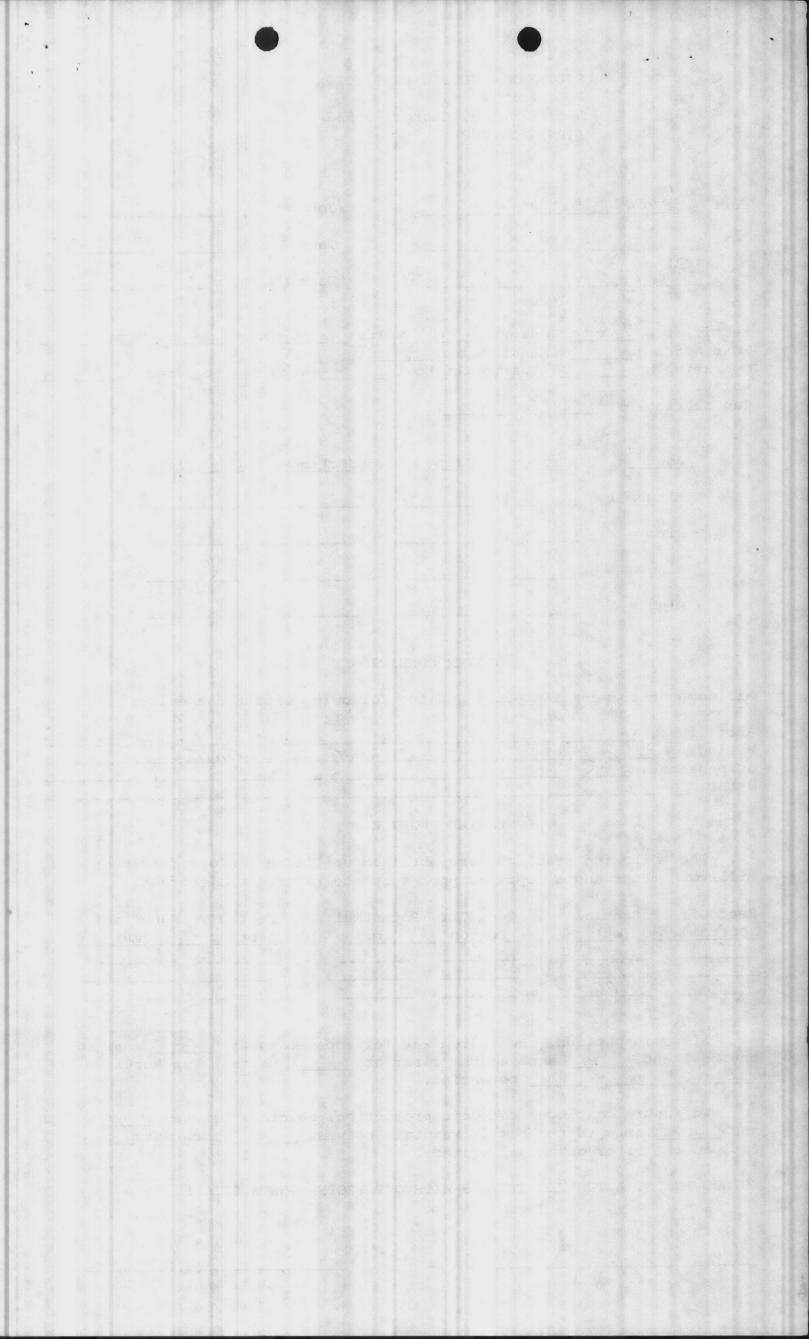
Jacksonville M.C.

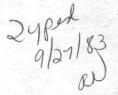
Tank Size 300 m Elev. Tank Location 50 area

Rectifier # 4106 Output 18 Volts 15 Amps Manua Type ____ Year Model _____ Manufacturer Harco Operating at _____ amps to the bowl _____ amps to the riser at _____ volts. Tap settings of _____ C ____ F.

Anodes	<u>Strings</u>	Type	<u>Sections</u>	Conditions
Ring # 1	10	CI	8	
Ring # 2	5-	CI		
Ring # 3		CI	31	B
Ring # 4				

SYSTEM CONDITION

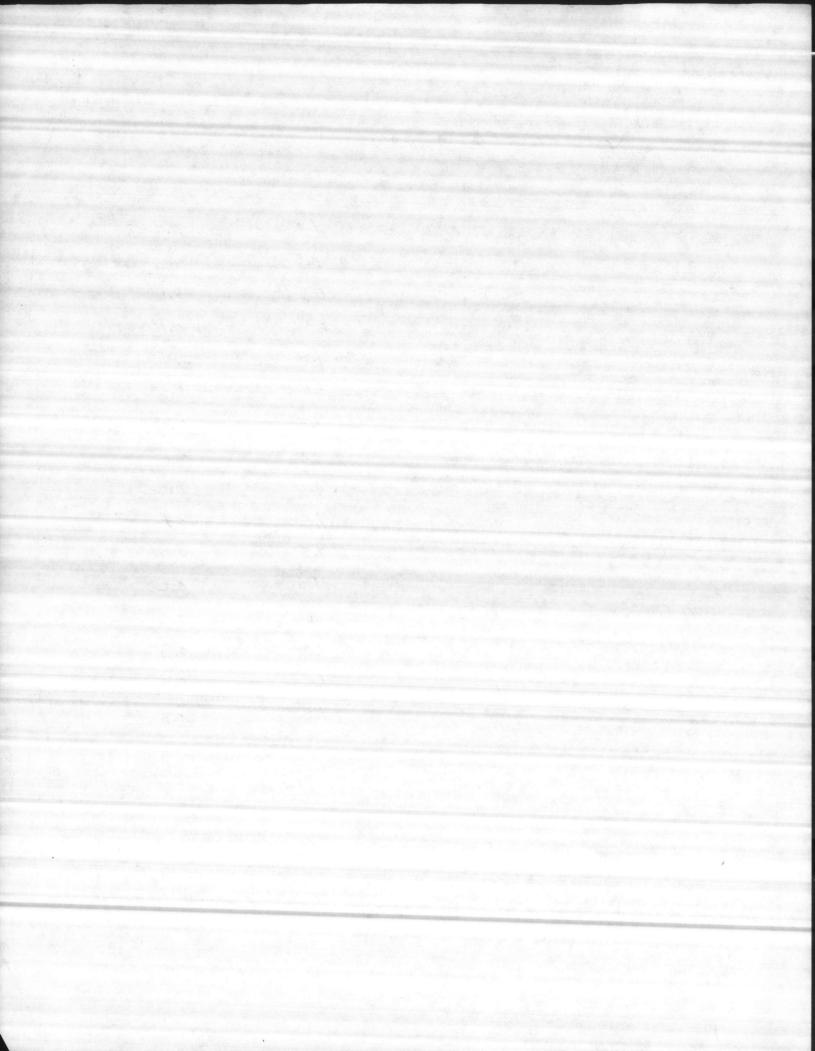

POTENTIAL PROFILE


The following readings were obtained utilizing a high-impedance millivolt meter and a copper-copper sulphate reference electrode.

Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)	Feet Off Bottom	Potential (mv)
0	400	- 4	2000	15	2000
	1700	- 9'	2100	18	1900
	1900	_12_	2000	_2/_	1900

After inspection, the system was left operating at $\frac{1.5}{1.5}$ amps to the bowl and $\frac{1.5}{1.5}$ amps to the riser at $\frac{1.5}{1.5}$ volts. Tap settings of C _____F $\frac{1.5}{1.5}$ potential.

To insure continous cathodic protection, maintain between _____ amps and _____ amps to the bowl. Maintain between _____ amps and _____ amps to the riser on manual systems.

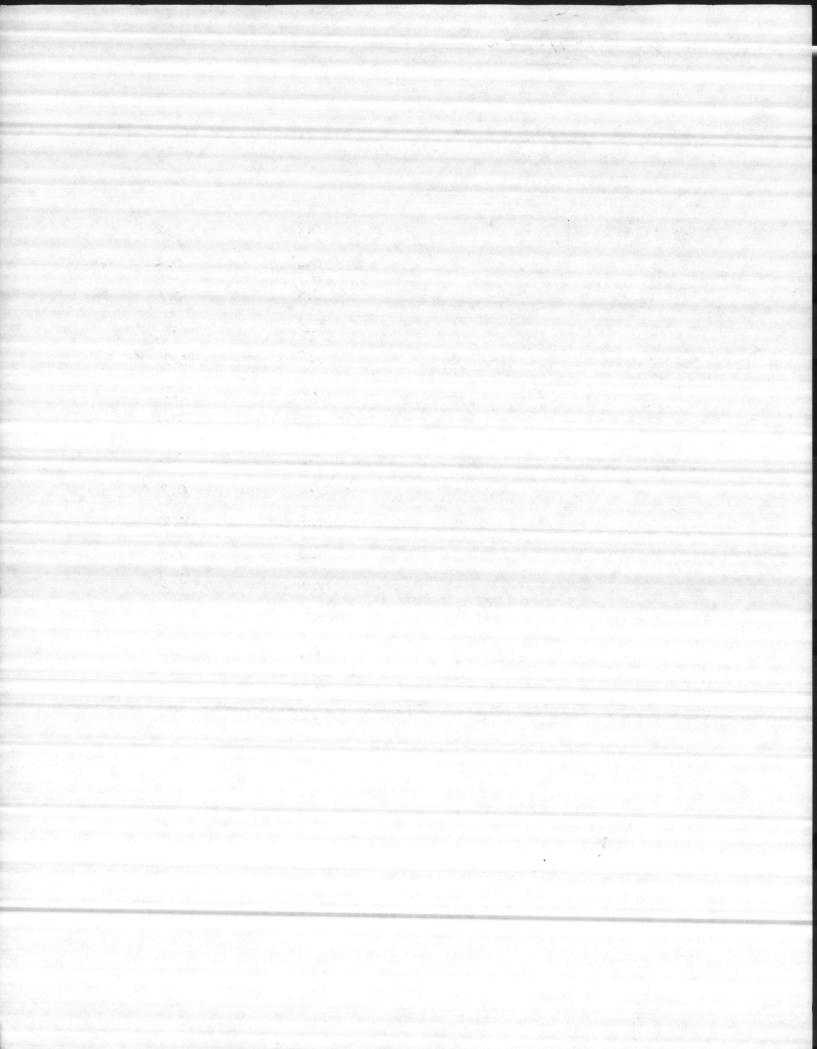


CATHODIC PROTECTION WATER TANK REPORT

Sept. 83'

LOCATION BLDG NO. CKT.1 CKT.2 CAPEHART S-830 1.0 0.2 TARAWA TERRACE STT-40 0.5 0.1 CAMP GEIGER STC-1070 0.5 0.1 CAMP GEIGER 0.5 STC-606 0.1 COURTHOUSE BAY 1.5 0.4 SBB-25 RIFLE RANGE SRR-44 1.0 0.3 ONSLOW BEACH 0.4 SBA-108 1.2 MONTFORD POINT SM-624 0.4 0.1 INDUSTRIAL AREA S-1000 1.0 0.2 AREA NO. 5 S-29 1.5 0.# AREA NO. 2 5-5 0.3 1.5 PARADISE POINT S-2323 1.0 0.2 MIDWAY PARK S-4004 1.0 0.2 FORCE TROOPS SFC-314 1.0 0.3 MCAS S-4130 1.5 0.3 MCAS S-310 1.2 0.3

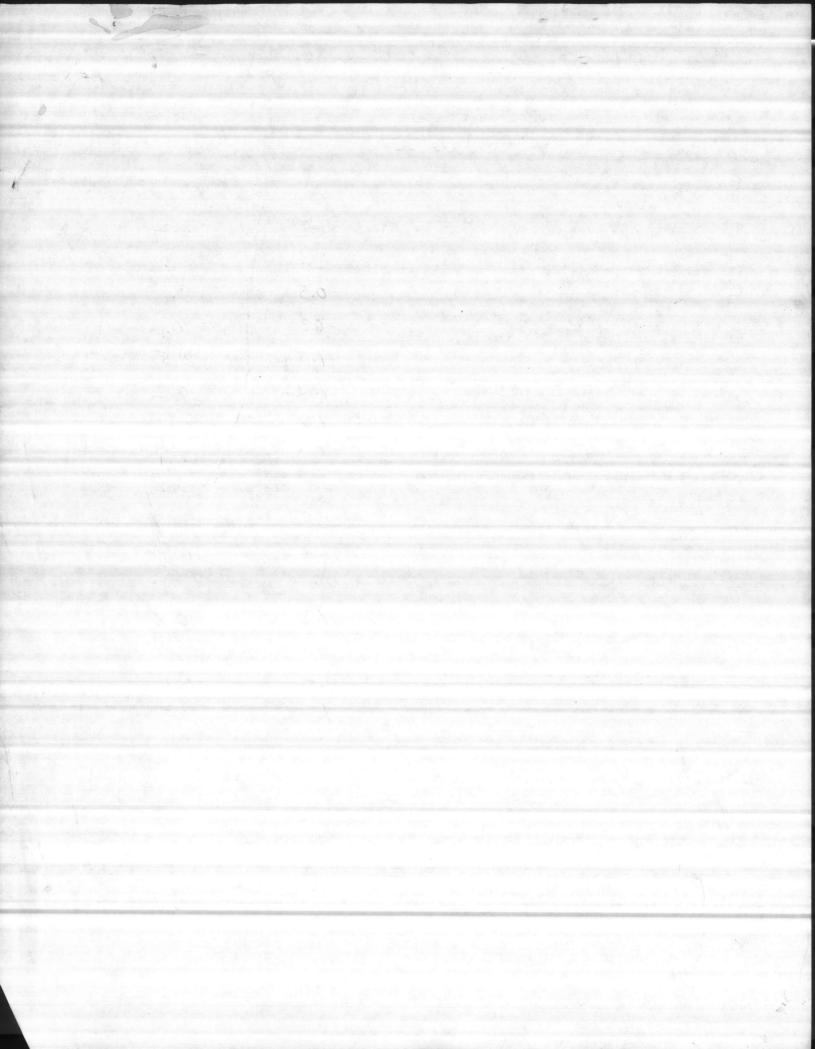
a start of

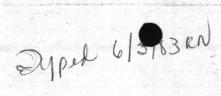


Dypt 8/29/83 RN

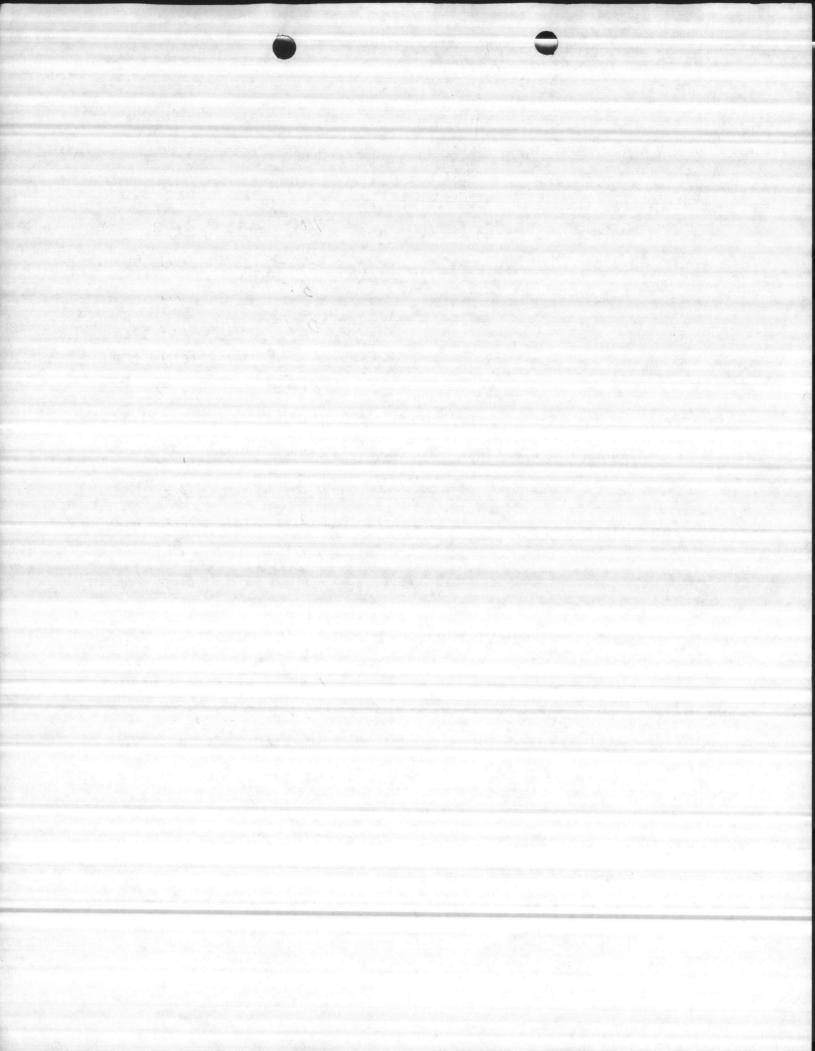
CATHODIC PROTECTION WATER TANK REPORT

	august	83	
	0		가 있는 것이 있는 것이 있다. 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 있는 것이 같이 있다.
LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	S-830	0.8	0.2
TARAWA TERRACE	STT-40	0.5	0.2
CAMP GEIGER	STC-1070	0.4	0.1
CAMP GEIGER	STC-606	0.3	
COURTHOUSE BAY	SBB-25	1.5	0.3
RIFLE RANGE	SRR-44	1.0	0.3
ONSLOW BEACH	SBA-108	1.3	0.5
MONTFORD POINT	SM-624	0.6	0.2
INDUSTRIAL AREA	S-1000	1.0	0.2
AREA NO. 5	S-29	1.5	0.2
AREA NO. 2	S-5	1.3	0.3
PARADISE POINT	S-2323	1.0	0.3
MIDWAY PARK	s-4004	1.0	0.2
FORCE TROOPS	SFC-314	0.6	0.2
MCAS	S-4130	1.3	0.3
MCAS	S-310	1.2	0.3


and and a second se

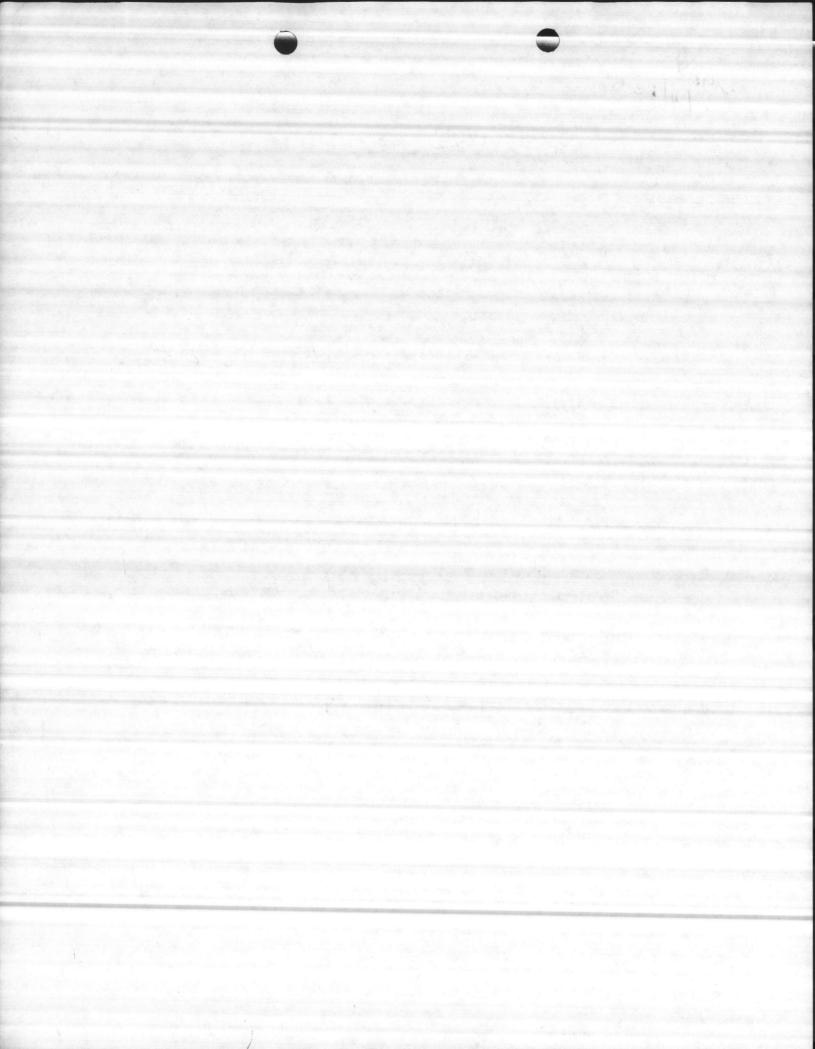


£.,


	July 82		
	08		
LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	S-830	1.0	0.2
TARAWA TERRACE	STT-40	0.5	0.2
CAMP GEIGER	STC-1070	0.5	0.1
CAMP GEIGER	STC-606	0.3	
COURTHOUSE BAY	SBB-25	1.5	0.5
RIFLE RANGE	SRR-44	1.2	0.2
ONSLOW BEACH	SBA-108	1.2	0.5
MONTFORD POINT	SM-624	0.5	0.1
INDUSTRIAL AREA	S-1000	1.0	0.2
AREA NO. 5	S-29	1.0	0.3
AREA NO. 2	S-5	_1.2	0.4
PARADISE POINT	S-2323	1.0	0.2
MIDWAY PARK	S-4 004	1.2	0.2
FORCE TROOPS	SFC-314	0.6	0.2
MCAS	S-4130	_1.4	0.3
MCAS	S-310	1.3	0.3

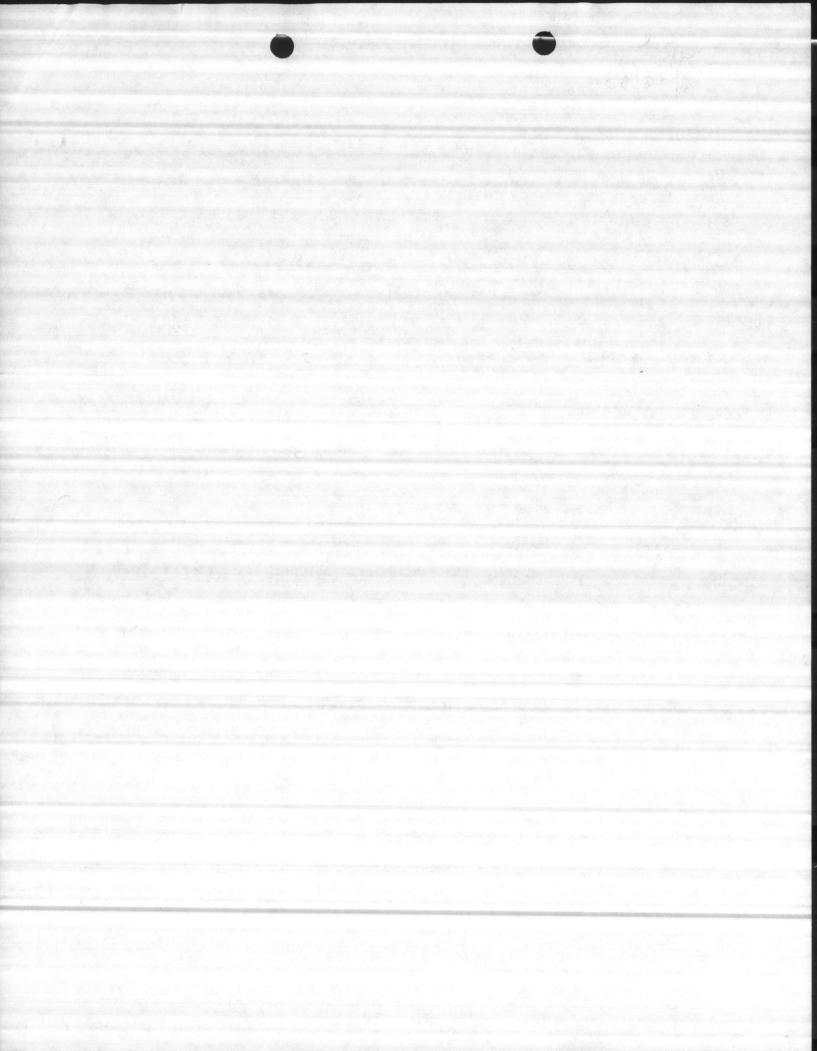
Jupper 8/1/83RN

	MAY 8	3	
LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	S-830	1.0	0.2
TARAWA TERRACE	STT-40	0.5	0.1
CAMP GEIGER	STC-1070 N	0.5	0.1
CAMP GEIGER	STC-606 ≤	0.7	0.2
COURTHOUSE BAY	SBB-25	1.5	0.4
RIFLE RANGE	SRR-44	1.0	0.2
ONSLOW BEACH	SBA-108	2.5	_1.0
MONTFORD POINT	SM-624	0.5	0.1
INDUSTRIAL AREA	S-1000	1.0	0.3
AREA NO. 5	S-29	0.8	0.2
AREA NO. 2	s5	1.0	0.5
PARADISE POINT	S-2323	1.0	0.2
MIDWAY PARK	S-4004	1.0	0.2
FORCE TROOPS	SFC-314	0.5	0-2
MCAS	s-4130 C	1,3	0.3
MCAS	S-310 W	1.2	0.2

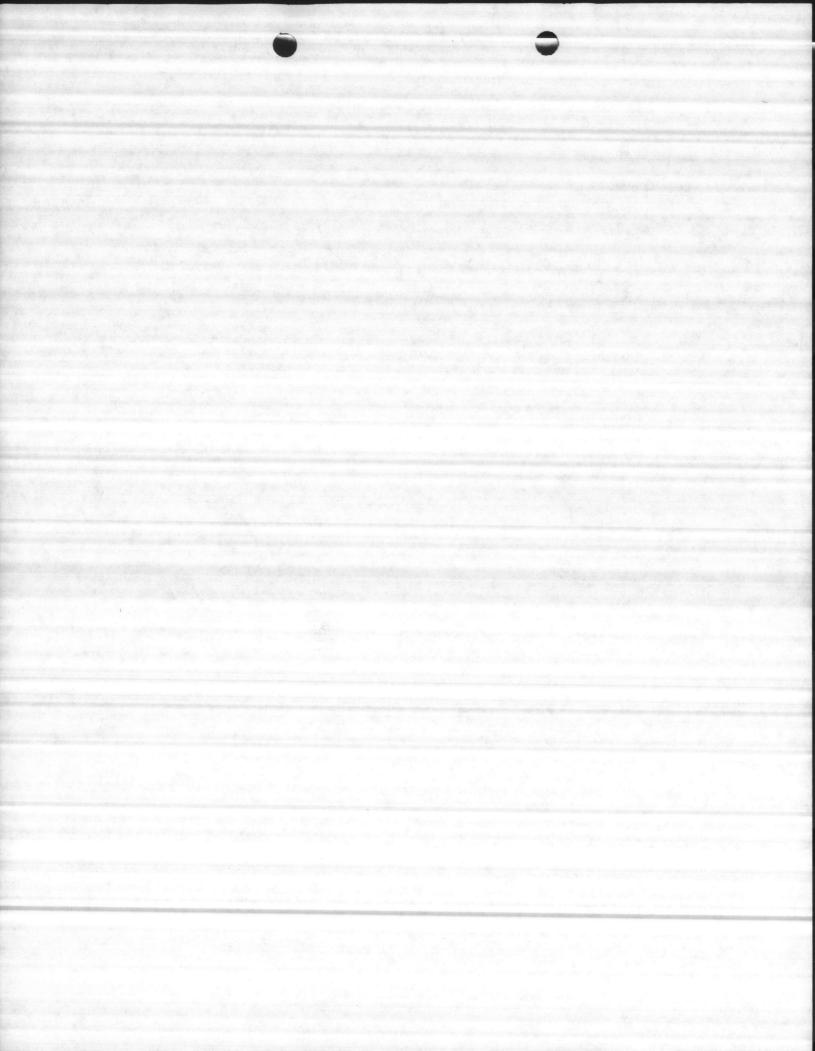

Jupit 183 RN

DO.

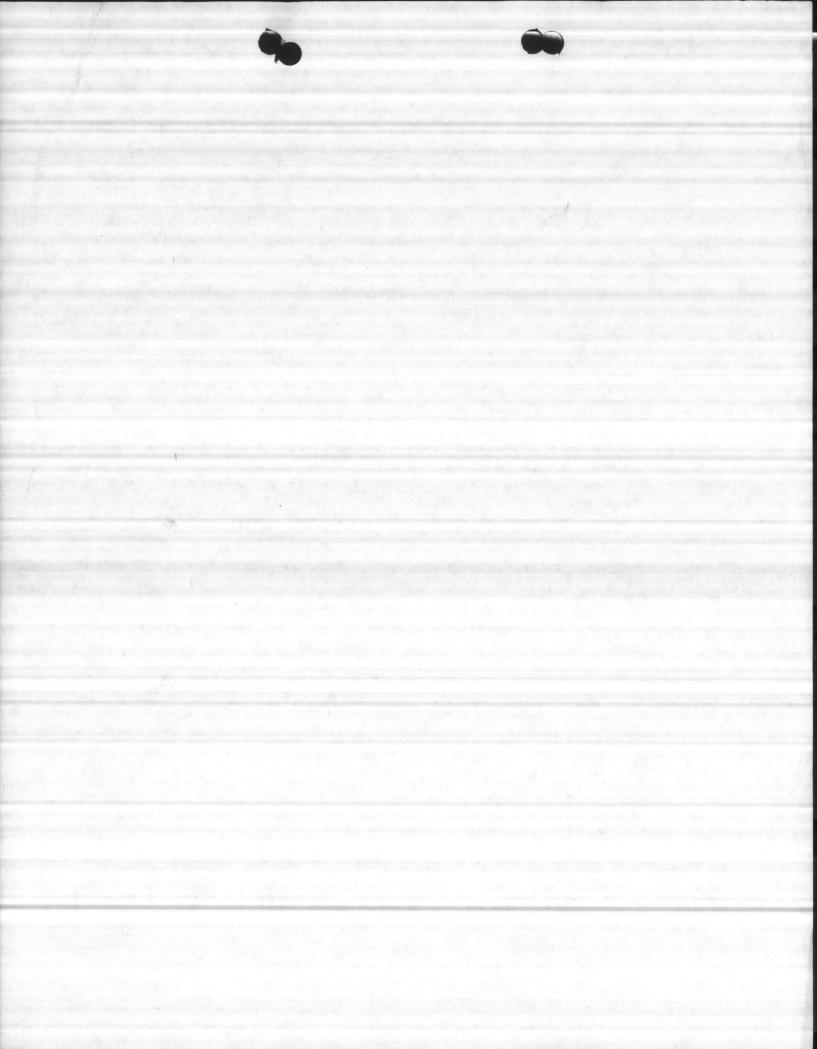
...


0

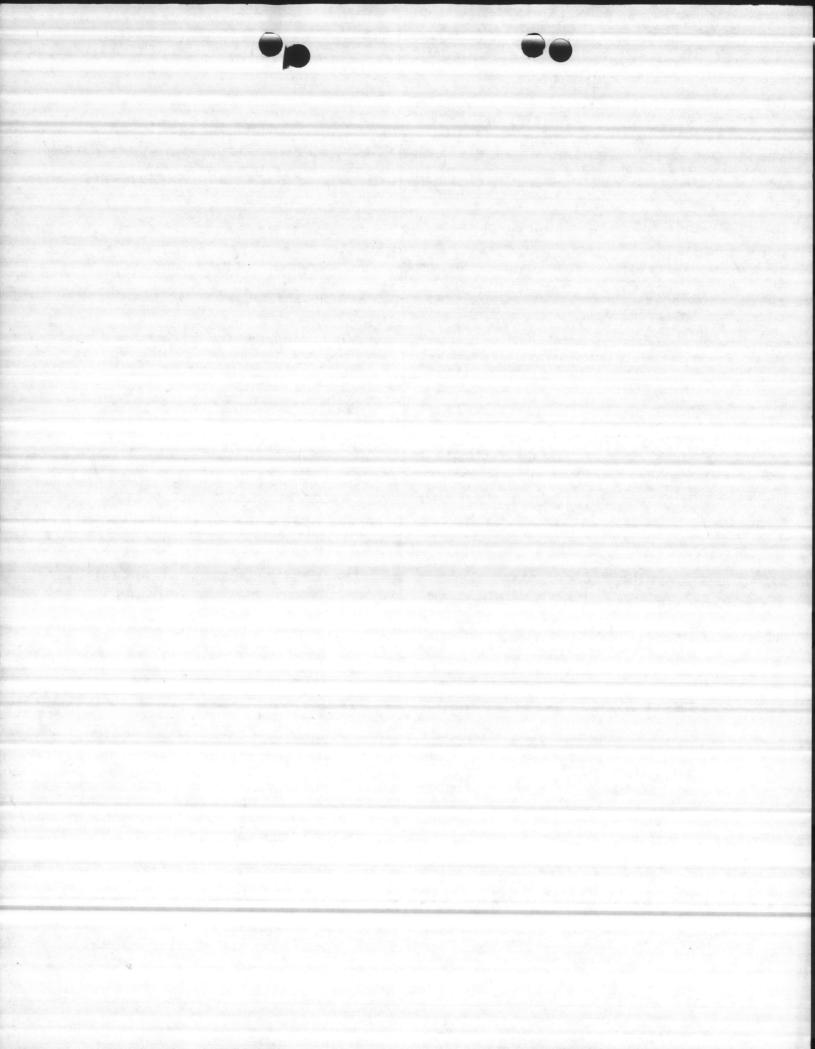
	Upril 88			
LOCATION	BLDG NO.	CKT.1	CKT.2	
CAPEHART	S-830	0.6	0.2	
TARAWA TERRACE	STT-40	0.5	0.1	
CAMP GEIGER	STC-1070	0,5	0.1	
CAMP GEIGER	STC-606	0.4	_01	
COURTHOUSE BAY	SBB-25	1.3	0.5	
RIFLE RANGE	SRR-44	1.0	0.3	
ONSLOW BEACH	SBA-108	2.0	0.8	
MONTFORD POINT	SM-624	0.4	0.1	
INDUSTRIAL AREA	S-1000	1-0	0.2	
AREA NO. 5	S-29	1.0	0.3	
AREA NO. 2	s-5	1.0	0.3	
PARADISE POINT	S-2323	1.0	0.2	
MIDWAY PARK	S- 4004	0.6	0.2	
FORCE TROOPS	SFC-314	0.3	0.1	
MCAS	S-4130	1.2	0.2	
MCAS	S-310	1.2	0.3	


24pel 3/23/83

	MARCH	1983	
LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	S-830	0.8	0.2
TARAWA TERRACE	STT-40	0.8	0.2
CAMP GEIGER	STC-1070	0.4	0.1
CAMP GEIGER	STC-606	0.4	0.1
COURTHOUSE BAY	SBB-25	1.2	0.5
RIFLE RANGE	SRR-44	1.0	0.3
ONSLOW BEACH	SBA-108	2.0	1.0
MONTFORD POINT	SM-624	0.5	0.1
INDUSTRIAL AREA	S-1000	1.0	0.2
AREA NO. 5	S-29	1.0	0.3
AREA NO. 2	S-5	1.0	0.2
PARADISE POINT	S-2323	1.0	0.2
MIDWAY PARK	S-4004	1.0	0.2
FORCE TROOPS	SFC-314	0.3	
MCAS	S-4130	1.0	0.3
MCAS	s-310	1.0	0.3

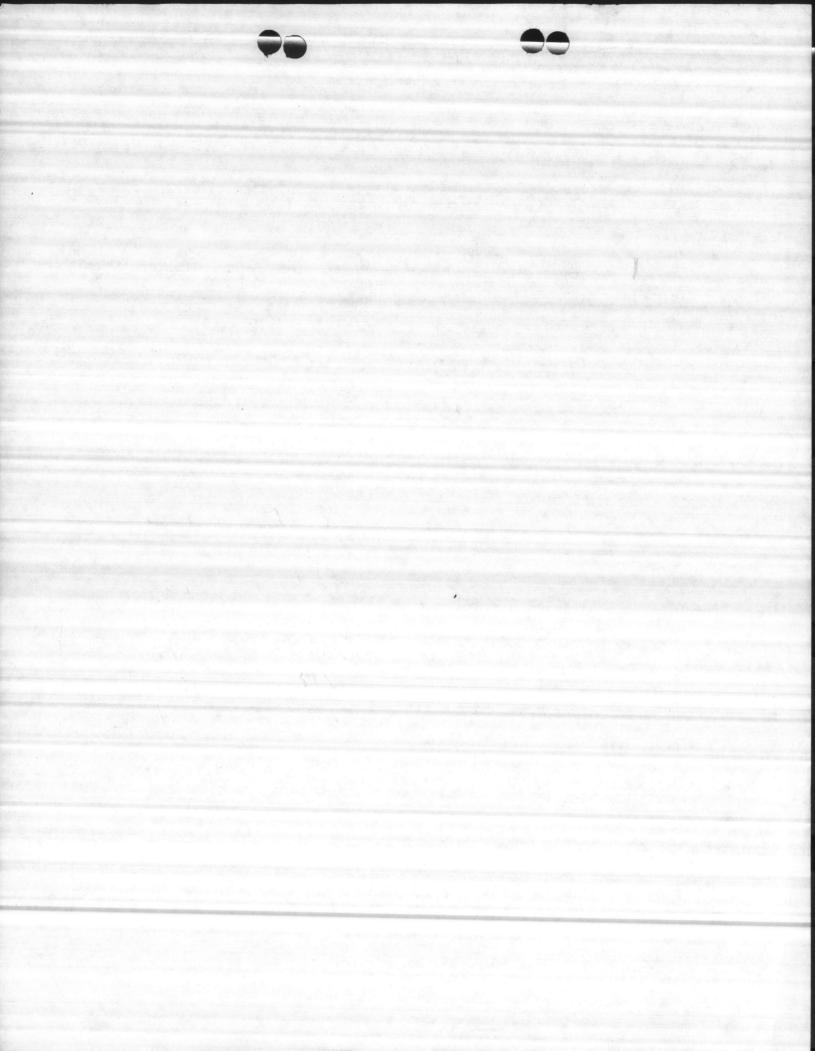

Jyped 2/33/83RN

	Feb 83	3	
LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	S-830	1.0	0.2
TARAWA TERRACE	STT-40	0.5	_0.1
CAMP GEIGER	STC-1070	0.5	0.1
CAMP GEIGER	STC-606	0.5	0.1
COURTHOUSE BAY	SBB-25	1.5	0.5
RIFLE RANGE	SRR-44	1.0	0.3
ONSLOW BEACH	SBA-108	2.0	1.0
MONTFORD POINT	SM-624	0.4	0.1
INDUSTRIAL AREA	S-1000	1.0	0.2
AREA NO. 5	S-29	0.7	0.2
AREA NO. 2	S5	0.6	0.2
PARADISE POINT	S-2323	1.0	0.2
MIDWAY PARK	S-4004	0.8	0.2
FORCE TROOPS	SFC-314	0.2	0.1
MCAS	s-4130	1.0	0.2
MCAS	S-310	1.0	0.3


Syped 115

	Dec 82		
LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	s-830	1.0	0.3
TARAWA TERRACE	STT-40	0.5	0.1
CAMP GEIGER	STC-1070	0.5	01
CAMP GEIGER	STC-606	0.5	0.1
COURTHOUSE BAY	SBB-25	1.2	0.4
RIFLE RANGE	SRR-44	1.0	0.3
ONSLOW BEACH	SBA-108	2.0	0.8
MONTFORD POINT	SM-624	0.3	0.1
INDUSTRIAL AREA	s-1000	1.0	0.2
AREA NO. 5	S-29	1.0	0.2
AREA NO. 2	s-5	0.6	0.2
PARADISE POINT	S-2323	1.0	0.2
MIDWAY PARK	s-4004	0.7	ö.]
FORCE TROOPS	SFC-314	0.2	0.1
MCAS	s-4130	1.0	0.2
MCAS	S-310 _	1.2	0.3

Nov 82


LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	S-830	1.2	0.2
TARAWA TERRACE	STT-40	0.5	0.1
CAMP GEIGER	STC-1070	0.5	ort
CAMP GEIGER	STC-606	0.5	(0.1
COURTHOUSE BAY	SBB-25	1.5	0.5
RIFLE RANGE	SRR-44	1.3	0.4
ONSLOW BEACH	SBA-108	1.8	0.7
MONTFORD POINT	SM-624	0.1	0.05
INDUSTRIAL AREA	S-1000	1.0	0.3
AREA NO. 5	S-29	1.0	0.3
AREA NO. 2	S-5	0.6	0.2
PARADISE POINT	S-2323	1.0	0.2
MIDWAY PARK	S-4004	1.0	0.2
FORCE TROOPS	SFC-314	0.2	0.1
MCAS	s=4130	1.2	0.2
MCAS	S-310	1.2	0.3
	그는 것 같은 것 같	a second s	Description of the second second second second second

O Dypek 10/21/8 20

OCT 82

			and the second second second
LOCATION	BLDG NO.	CKT.1	CKT.2
CAPEHART	S-830	1.5	0.1
TARAWA TERRACE	STT-40	0.5	0.1
CAMP GEIGER	STC-1070	0.5	0.1
CAMP GEIGER	STC-606	0.3	0.1
COURTHOUSE BAY	SBB-25	1.5	0.5
RIFLE RANGE	SRR-44	1.0	0.3
ONSLOW BEACH	SBA-108	2.5	1.0
MONTFORD POINT	SM-624	0.5	0.1
INDUSTRIAL AREA	S-1000	1.2	0.3
AREA NO. 5	S-29	1:2	0.3
AREA NO. 2	S5	0.5	0.1
PARADISE POINT	S-2323	0.8	0.2
MIDWAY PARK	S-4004	0.6	Ò.2
FORCE TROOPS	SFC-314	125	-13
MCAS	S-4130	1.2	0.2
MCAS	S-310	1.3	0.4

