FILE FOLDER

DESCRIPTION ON TAB:

11330.2 Chemical Analysi

Outside/inside of actual folder did not contain hand written information

Outside/inside of actual folder did contain hand written information *Scanned as next image

Confidential Records Management, Inc. New Bern, NC 1-888-622-4425 9/08

Π

11330.2 CHEMICAL ANA	LYSIS
----------------------	-------

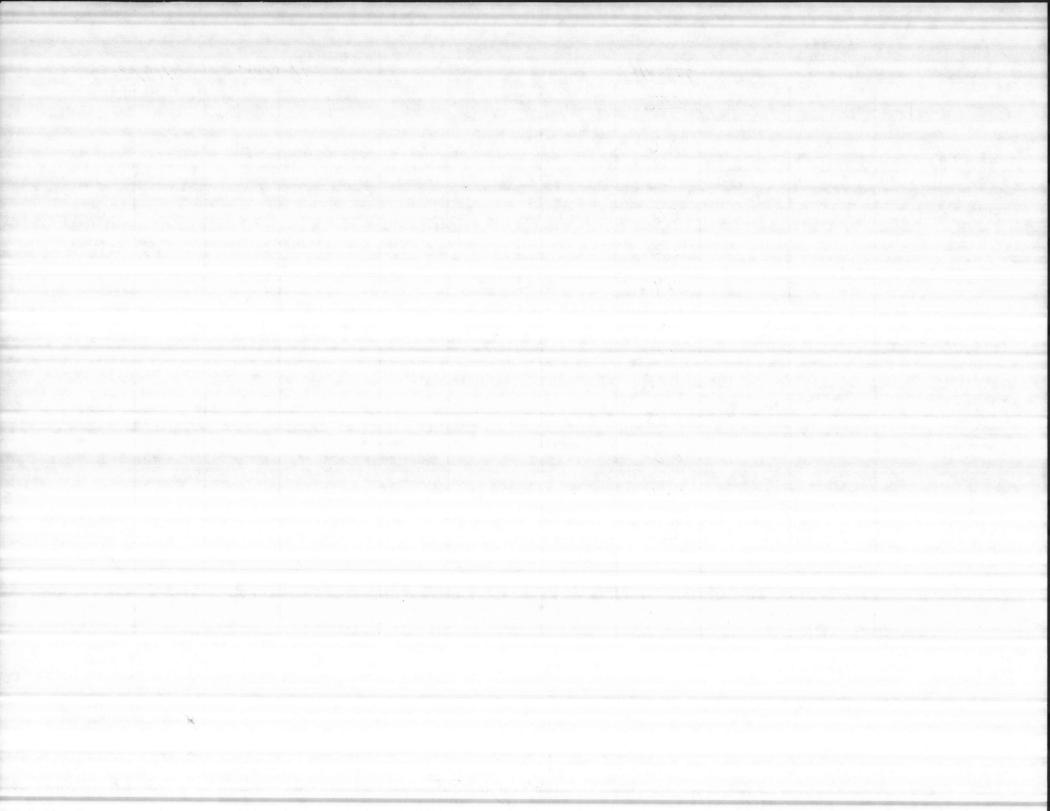
OPEN

Shop 83

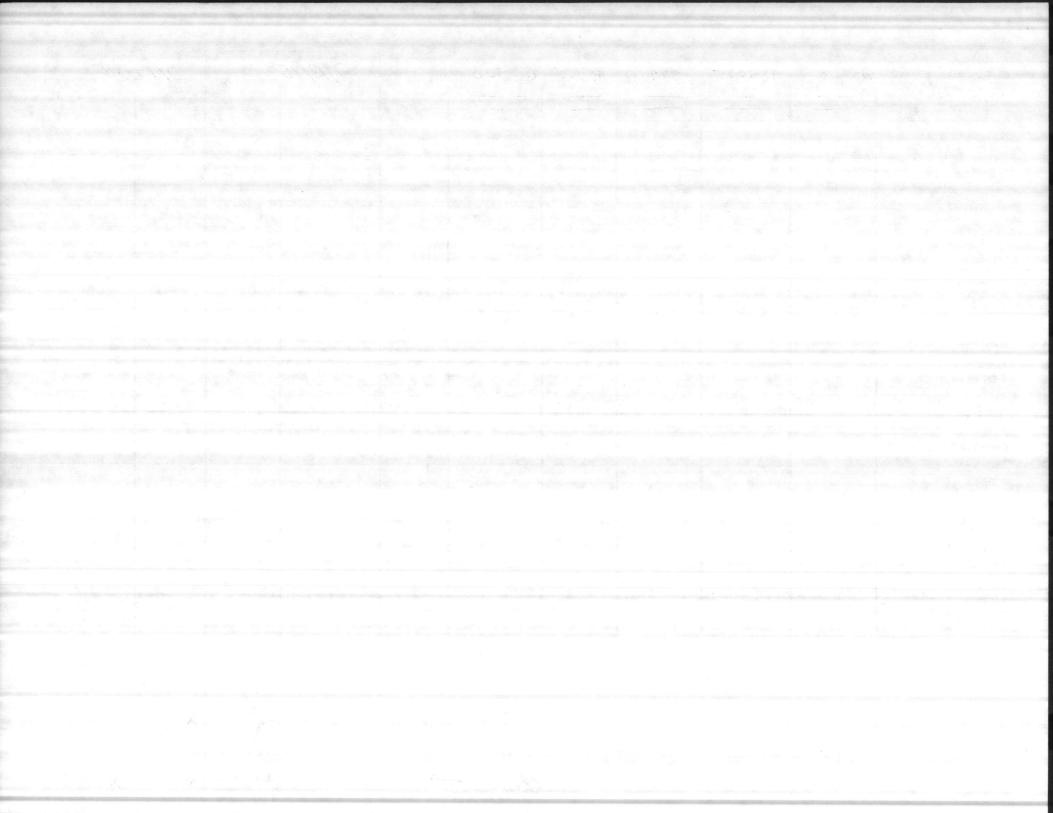
CLOSED

JANUARY 1987 - DESTROY <u>TEMP.</u> SECNAVINST 5212.B, Part II, Chap. 11, par. 11300(2) 2 years

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	5 — WATER T	REAIMENI PL	ANTS		na sana ang kana sa		DATE COLLECTE		DATE OF ANALYSIS	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
ΫΗ	8.7	7.5	8.9	7.4	8.3	8.3	8.8	8.7		1
PHENOLTHALEIN ALKALINITY	2	0	2	0	0	0	2	8		
IETHYL ORANGE LKALINITY	50	190	56	160	150	140	64	196		
ARBONATES AS CaCO ₃	4	0	4	0	0	0	4	16		
BICARBONATES AS CaCO ₃	46	190	52	160	150	140	60	180		
HLORIDES AS C1	10	30	14	20	20	40	10	64		
ARDNESS AS CaCO ₃	72	76	68	60	56	48	70	64		
RON AS Fe	20.03	0.38	0.06	0.06	20.04	40.04	0.05	20.04		
LUORIDE AM PM	0.85	0.15	0.87	0.17	0.10	0.8	0.93 0.80	0.67		
HLORINE RESIDUAL	1.0	1.2	1.0	1.4	1.1	1.1	0.8	0.8		
URBIDITY AM PM	0.2	1.1	0.3	0.2	1.1	0.3	0.2	0.6		
OTAL PHOSPHATE		1.05			0.78		-			
RTHO PHOSPHATE		0.82			0.56					
IETA PHOSPHATE		0.23			0.22			Î		
TABILITY	+0.3	-0.7	+0.2	-0.8	-0.1	-0.2	+0.4	+0.1		
EMARKS		en ann an Aire Marthailte an Aire				an an an Anna a An an Anna an An	an a	in hade not be a	COPY TO:	andi Yanaya kata dag
OB Pone	d = 8.1		ile Atri		and an ann an					•
						alementer eike			WATER T	REATMENT
OTE: All results reported and specific condu					LABORATORY ANA				PMU	MCAS PMU
					T. BARBEE	E & H. B	URNS		NREAD	

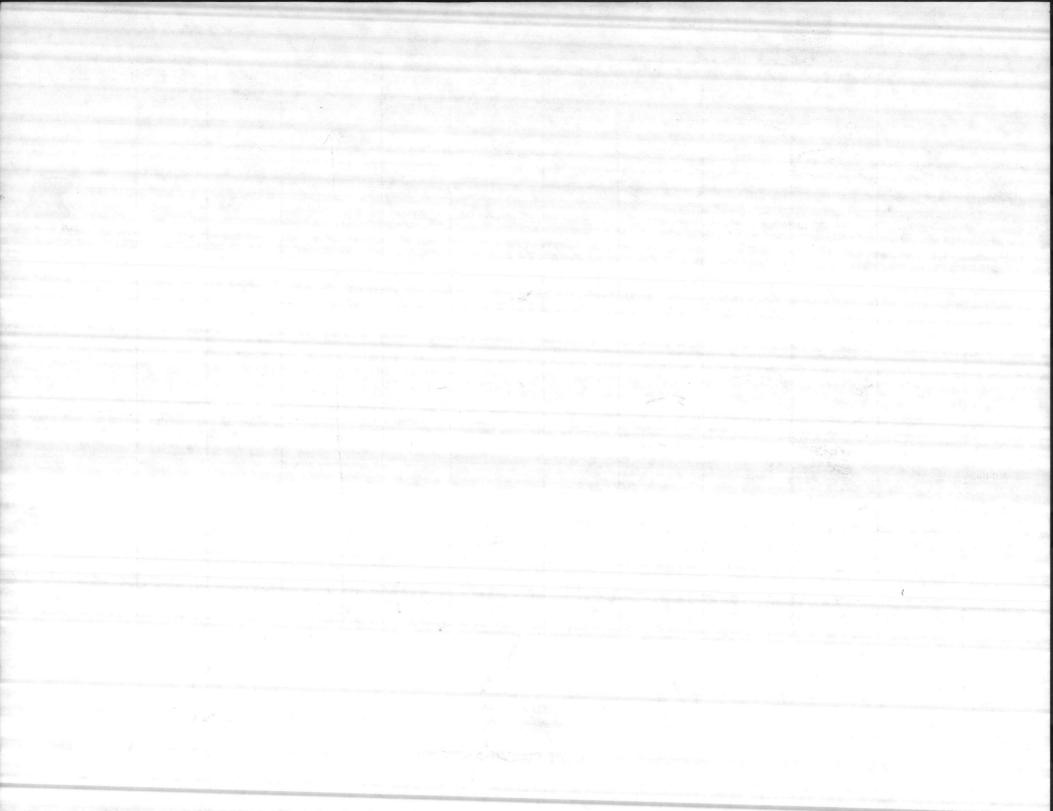

WRA

The second s


A starting and the second starting of the

162 D 012 CT 102 T 11 10

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER TR	REATMENT PL	ANTS TT 1418				DATE COLLECTED	18/85	DATE OF ANA	LYSIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	T ARAW A T ERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	- 10 A. 13		8.6						a san	
PHENOLTHALEIN ALKALINITY			6					1		
METHYL ORANGE ALKALINITY	la de la de la del		56				a Calendaria an Anna a			
CARBONATES AS CaCO ₃			12						. de	
BICARBONATES AS CaCO ₃			44							
CHLORIDES AS C1			16							
HARDNESS AS CaCO3			80			and the second se				an a
IRON AS Fe			and the second							
FLUORIDE			1.48	C. S. S.		an a				
CHLORINE RESIDUAL			0.8	and a second		1		3		
TURBIDITY			0.2			4	1 1 1			
TOTAL PHOSPHATE				1.24		e stras				
ORTHO PHOSPHATE	n na star star Taraga star			narra Rober 19 No No.						
META PHOSPHATE										
STABILITY										
REMARKS						teren er en er en er en er en er en er		and and a second	COPY TO:	
						ata fati da a Sintan		na sente and Transformer		• • • • • • • • • • • • • • • • • • • •
									WATER T	REATMENT
NOTE: All results reported in and specific conducts	parts per million	unless otherwise n	oted except for pl	H, temperature,	LABORATORY ANAL	YSIS BY	and the second second	···· • • • • •	PMU	D MCAS PMU


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	6 - WATER TI As - 110	AS4025		As 710	G-520		DATE COLLECTED	5	DATE OF ANALYSIS	-
PARAMETER	HADNOT POINT	CAMP JOHNSON	-TARAWA TERRAGE	ONSLOW BEACH	O OURTHOUS E	RIFLE RANGE	HOLCOMB	NEW RIVER		
ΡΉ	and and									
PHENOLTHALEIN ALKALINITY				an an an Arr						
METHYL ORANGE ALKALINITY		a an								
CARBONATES AS CaCO ₃			99.4.78V							
BICARBONATES AS CaCO 3										
CHLORIDES AS C1	.56	58	56	58	58					
HARDNESS AS CaCO ₃						- 45 - 45		and see		
IRON AS Fe								and a start of the		
FLUORIDE										
CHLORINE RESIDUAL		Salar P						A. S.		
TURBIDITY										
TOTAL PHOSPHATE		an an an							and the second	
ORTHO PHOSPHATE			anan ing set in s Set an set in s							and the second secon
META PHOSPHATE										angan ang kang kang kang kang kang kang
STABILITY										-
REMARKS				and a state of the	Service Service	tana ang ang ang ang ang ang ang ang ang			COPY TO:	
						anis formany.				ENT
NOTE: All results reported and specific conduc	in parts per millior ctance. One liter o	n unless otherwise r f potable water is	noted except for plassumed to weigh	H, temperature, one kilogram.	LABORATORY ANAL	YSIS BY				CAS PMU
		eta en esta des			Henerget	1	a she was to		NREAD	FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER TR	REATMENT PL	ANTS				DATE COLLECTED	5-	DATE OF ANA	AS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН					57.732.23		8.5			
PHENOLTHALEIN ALKALINITY							4			
METHYL ORANGE ALKALINITY							64			
CARBONATES AS CaCO3							8			
BICARBONATES AS CaCO ₃							56	100		
CHLORIDES AS C1							30			
HARDNESS AS CaCO ₃						lain In deniment	60			berah basi sa
IRON AS Fe							-0.04			
FLUORIDE							1.22			
CHLORINE RESIDUAL		an an an fair an a					0.9			
TURBIDITY										
TOTAL PHOSPHATE		a shara ta								
ORTHO PHOSPHATE	ter de la constante de la cons Constante de la constante de la									
META PHOSPHATE										an a' an canada dan An
STABILITY			a onta de la participa factor de la participa d La participa de la participa de	and the second se			to,2			
REMARKS									COPY TO:	
									UTIL DIR	•
			and the second			and a second				
NOTE: All results reported in and specific conduct	n parts per million	unless otherwise r	noted except for pl	H, temperature,	LABORATORY ANAL	LYSIS BY	- Andrew Street Street	na la seconda da		

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER I	NEATWENT PL	ANTS				DATE COLLECTED		DATE OF ANALYSIS	2
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER		
й	8.8	7.6	(9.1)	7.5	8.4	8.4	\uparrow	8.8		
PHENOLTHALEIN ALKALINITY	4	0	6	0	2	2		10	27	
IETHYL ORANGE ILKALINITY	50	164	58	150	150	140	MMOG	186		
CARBONATES AS CaCO ₃	8	0	12	0	4	4	the second se	20	g an	
BICARBONATES AS CaCO ₃	52	164	46	150	146	136	LAVYIA	166		
CHLORIDES AS C1	6	24	18	26	60	34	INOG	50		
HARDNESS AS CaCO3	70	74	78	74	84	56	D ION	50		6
RON AS Fe	2 0.04	0.52	0.05	0.10	20.04	10.04	N N	0.06		
LUORIDE AM	0.98	0.19	1.66	0.19	0.15	0.12	0.88	0.80		
CHLORINE RESIDUAL	1.0	1.5	1.0	0.5	1.4	1.0		0.8		
	0.2 0.3		0.2	0.2	0.8	0.4	0.2			1.52
OTAL PHOSPHATE		1.26			0.91					
ORTHO PHOSPHATE		0.90			0.19					
META PHOSPHATE		0.36			0.72					
STABILITY	+0.3	-0.7	+0.5	-0.8	+0.1	0.0	\downarrow V	+0.1		
REMARKS									COPY TO:	and second
an a										j
			<u>1</u>							IMENT
IOTE: All results reported	in parts per millio	n unless otherwise r	noted except for pH	, temperature,	LABOR ROBY AV	ALXABIS BY				MCAS PMU
and specific conduc	ctance. One liter of	or potable water is	assumed to weigh	one kilogram.	H. BURNS					FILE

CHEMICAL ANALYSIS - WATER TREATMENT PLANTS MCBCL 11330/3 (REV. 6-84)

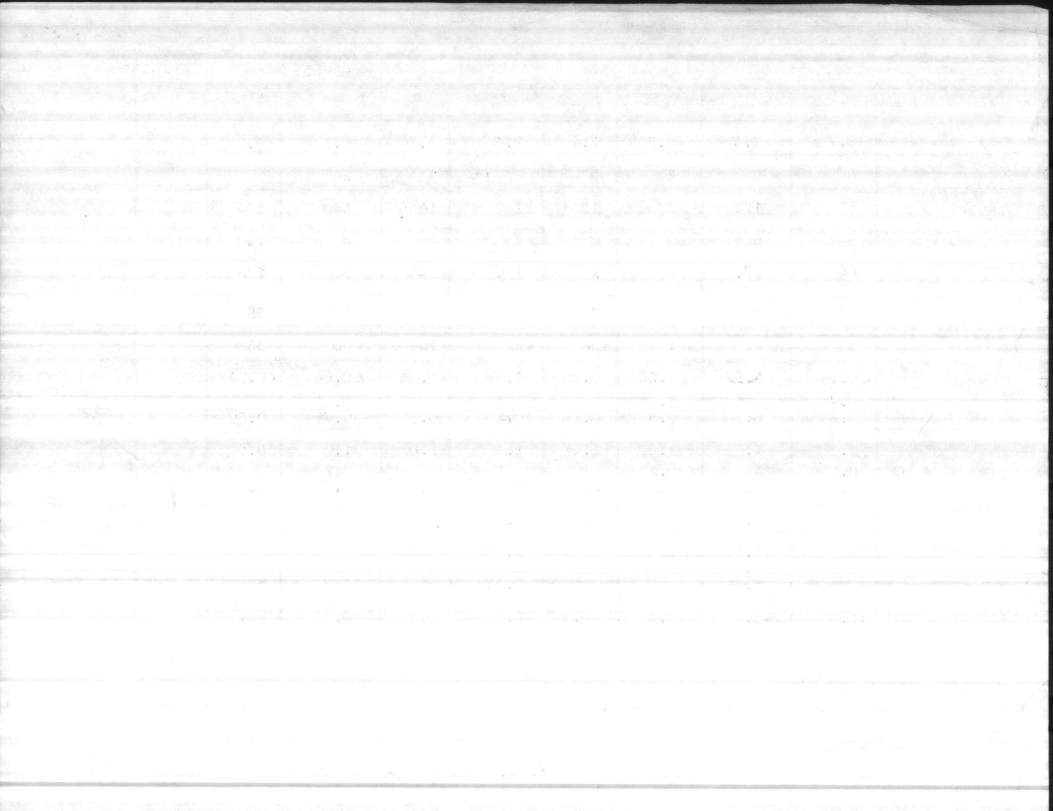
DATE COLLECTED DATE OF ANALYSIS 9-10-85 9-10-85 HADNOT CAMP TARAWA ONSLOW COURTHOUSE RIFLE HOLCOMB NEW PARAMETER POINT JOHNSON TERRACE BEACH BAY RANGE BLVD RIVER PH 8.3 8.5 8.4 7.3 9.0 7.4 7.9 8.6 PHENOLTHALEIN ALKALINITY 2 2 8 4 8 0 0 0 METHYL ORANGE 152 66 180 ALKALINITY 58 170 54 156 1.62 8 4 4 16 CARBONATES AS CaCO3 16 0 0 0 BICARBONATES 164 38 156 152 158 62 170 50 AS CaCO₃ 62 30 18 24 24 30 14 10 CHLORIDES AS C1 HARDNESS AS CaCO3 76 80 74 130 56 80 60 68 <0.04 10.04 **IRON AS Fe** 0.47 20.04 0.10 <0.04 20.04 20.04 0.94 0.73 0.91 AM FLUORIDE 0.95 0.73 0.13 0.99 0.18 0.12 PM 0.99 0.21 CHLORINE RESIDUAL 1.4 1.4 0.9 0.9 0.8 1.0 1.4 1.1 0.5 AM 0.3 0.4 TURBIDITY 0.3 0.7 0.3 0.8 0.3 0.2 0.1 0.8 PM TOTAL PHOSPHATE 1.46 0.59 0.14 **ORTHO PHOSPHATE** 0.95 0.45 0.51 META PHOSPHATE STABILITY -0.2 -0.1 +0.3 -0.4 +0.1 -1.0 -1.0 0 REMARKS COPY TO: pH OB Pond = 8.6 UTIL DIR WATER TREATMENT MCAS PMU A PMU NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, LABORATORY ANALYSIS BY and specific conductance. One liter of potable water is assumed to weigh one kilogram. T. H. BARBEE FILE D NREAD

wer


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		NEATMENT PL	41115		a sanda a sa	de service de	DATE COLLECTED		DATE OF ANALYSIS	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.5	7.3	8.5	7.4	8.2	8.2	8.5	8.5		
PHENOLTHALEIN ALKALINITY	12	0	20	0	4	6	12	20		
METHYL ORANGE ALKALINITY	56	180	66	142	172	148	70	176		ر ارب
CARBONATES AS CaCO ₃	24	0	40	0	8	12	24	40		
BICARBONATES AS CaCO 3	32	180	26	142	164	136	46	1.36		
CHLORIDES AS C1	10	36	16	20	14	24	10	60		
HARDNESS AS CaCO ₃	70	90	80	70	74	56	76	44		
IRON AS Fe	<0.04	0.50	40.04	0.15	0.05	40.04	20.04	40.04	a practice setting	
FLUORIDE AM	0.92	0.15	0.99	0.19	0.10	0.09	1.08	0.75	and the second of the	
CHLORINE RESIDUAL	1.1	1.0	1.3	1.3	1.3	1.0	1.0	0.8		
TURBIDITY AM PM	0.4	0.6	0.3	0.2	0.5	0.2	0.5	0.4		
TOTAL PHOSPHATE		1.32	1998 1997 - 1997 1997 - 1997		1.26			and a start of the second s		
ORTHO PHOSPHATE		0.98			0.26					
META PHOSPHATE		0.34			1.00				1	
STABILITY	+0.2	-0.8	+0.2	-0.7	-0.1	-0.2	+0.2	-0.1		
REMARKS				i i an a si i San a si an		n Magna an Anna an Anna An Anna Anna Anna Ann		andag sebagai s Sebagai sebagai s	COPY TO:	
										pipelone
NOTE: All results reported and specific condu					LABORATORY ANA	LYSIS BY				MU
					T. H. BA	RBEE			D NREAD K FILE	

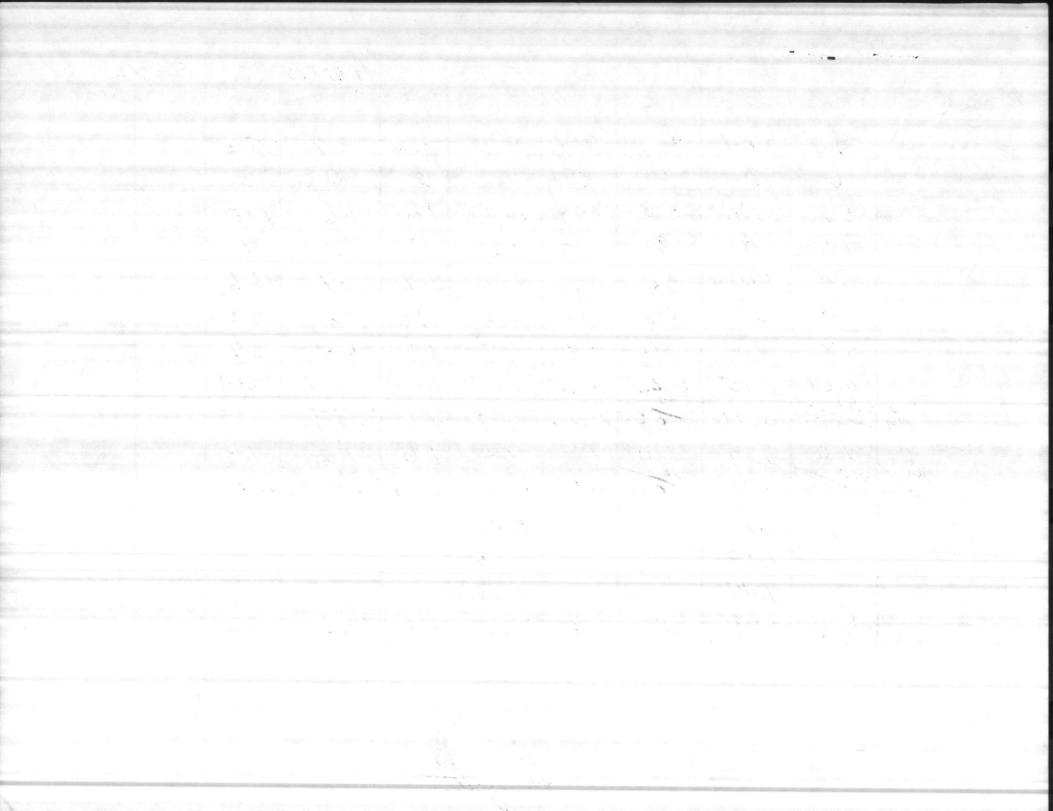
usp

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	5 — WATER T	REATMENT PL	ANTS				DATE COLLECTED)	DATE OF ANAL	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8	7.5	9.0	7.6	8.3	8.4	8.7	8.8		an an an an an a' an an an an Annaichean an Annaichean an an Annaichean
PHENOLTHALEIN ALKALINITY	4	0	6	0	2	4	2	8		
METHYL ORANGE ALKALINITY	46	172	48	150	174	154	64	152		
CARBONATES AS CaCO ₃	8	0	12	0	4	8	4	16		
BICARBONATES AS CaCO 3	38	172	36	150	170	146	60	136		
CHLORIDES AS C1	8	38	18	22	20	30	10	54		
HARDNESS AS CaCO ₃	64	102	66	66	68	60	68	60		
IRON AS Fe	40.04	0.57	20.04	0.15	0.07	<0.04	40.04	0.09	and the second	. Zajera de
fluoride AM PM	0.94 0.95	0.19	1.05 0.92	0.22	0.11	0.10	1.00 0.88	0.60		
CHLORINE RESIDUAL	0.9	1.3	1.0	1.3	1.3	1.0	0.7	0.8		
turbidity AM PM	0.3 0.3	0.6	0.4 0.2	0.3	0.5	0.2	0.6 0.5	0.5		
TOTAL PHOSPHATE		1.10	1 m		1.1			C.		a providence and
ORTHO PHOSPHATE		0.90			0.2					
META PHOSPHATE		0.20			0.90				an a	
STABILITY	+0.3	-0.6	-0.5	-0.8	-0.1	-0.1	+0.3	+0.2		
REMARKS		and a second second			ng da Reference da server da se				COPY TO:	
pH OB Pond	1 = 8.5									
					Kananan di sanan				WATER T	REATMENT
NOTE: All results reported	in parts per millior	unless otherwise	noted except for pl	H, temperature,	LABORATORY ANA	ALYSIS BY			D PMU	
and specific condu	ctance. Une liter o	or potable water is	assumed to weigh	one kilogram.	T. H. BAR	BEE			NREAD	D FILE

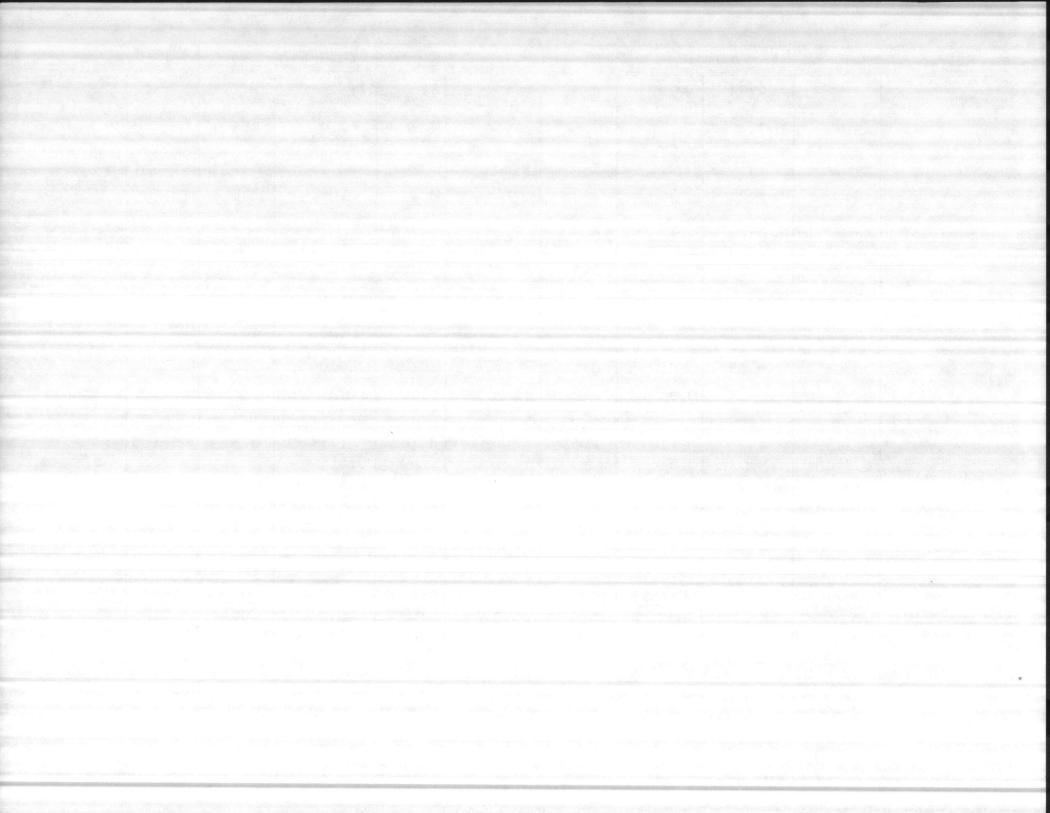

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER TH	REATMENT PLA	NTS			1. A	DATE COLLECTED		DATE OF AN	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.7	7.6	8.7	7.6	8.4	8.5	8.7	8.8		and the second second
PHENOLTHALEIN ALKALINITY	4	0	2	0	4	2	2	8		
METHYL ORANGE ALKALINITY	44	170	70	140	170	140	60	130		
CARBONATES AS CaCO3	8	0	4	0	8	4	4	16		and the second
BICARBONATES AS CaCO ₃	36	170	66	140	162	136	56	114		
CHLORIDES AS C1	6	30	10	24	14	30	10	50		
HARDNESS AS CaCO ₃	60	82	88	64	(138)	50	64	54		Stuge Hac
IRON AS Fe	40.04	0.62	40.04	0.10	0.06	40.04	40.04	20.04		By-PASS Wine OPen
FLUORIDE AM PM	0.95	0.20	1.00	0.22	0.12	0.11	1.12 1.08	0.56		- L
CHLORINE RESIDUAL	1.0	1.5	1.0	1.3	1.4	1.0	0.9	0.8		on soft.
TURBIDITY AM PM	0.3	1.1	0.4 0.4	0.2	0.4	0.2	0.2	0.5		
TOTAL PHOSPHATE		0.99			1.03					
ORTHO PHOSPHATE	an a	0.85			0.17					
META PHOSPHATE		0.14	en di san nega sheke Marin Tan Marin San Marin San Marin San		0.86					
STABILITY	+0.1	-0.6	+0.3	-0.7	+0.2	0.0	+0.2	+0.2		
REMARKS					A second se	a gladhad			COPY TO:	gen and a state of the second
OB = 7	.8	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	annes tiges	- the second	and the second					R 🗆
									WATER	TREATMENT
NOTE: All results reported in	parts per million	unless otherwise or	oted except for ph	temperature		ALYSIS BY		alas da ang		MCAS PMU
and specific conduct	ance. One liter of	f potable water is a	ssumed to weigh	one kilogram.	H. J. BL	TRNS				

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER T	CANP (NTS 1210)				DATE COLLECTED	35	DATE OF ANALYSIS	
PARAMETER	HADNOT POINT	CAMP JOHINGON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER		
РН		7.5		a de la composición de		ante la compositorio				and a second second
PHENOLTHALEIN ALKALINITY		0					1977 - 1979 - 19 1977 - 1979 - 19			
METHYL ORANGE ALKALINITY		190						al and a set of a set		
CARBONATES AS CaCO ₃		0	en system of the second		negel disken	e den ja	an ann an ann an an an an an an an an an			
BICARBONATES AS CaCO ₃		190								
CHLORIDES AS C1		36								
HARDNESS AS CaCO ₃		80		and the second of the second						
RON AS Fe		2,00	ta galanda d							
LUORIDE		0.21								
CHLORINE RESIDUAL		0.4	and the second							
URBIDITY		5.5								
TOTAL PHOSPHATE						ter menter an anti-		a and a second		an a
DRTHO PHOSPHATE										
META PHOSPHATE	87982. 								i sere de	
STABILITY										
REMARKS		alleria, reggi e cante des e processas	landare en						СОРУ ТО:	
										D
								ana ani karataran Ani karatar	U WATER T	REATMENT
NOTE: All results reported ir and specific conduct	n parts per millio ance. One liter d	n unless otherwise no of potable water is as	ted except for pl ssumed to weigh	H, temperature, one kilogram.		YSIS BY		an a		D MCAS PMU
			an ang sain	and the set of the	to a si	ine	-		NREAD	D FILE

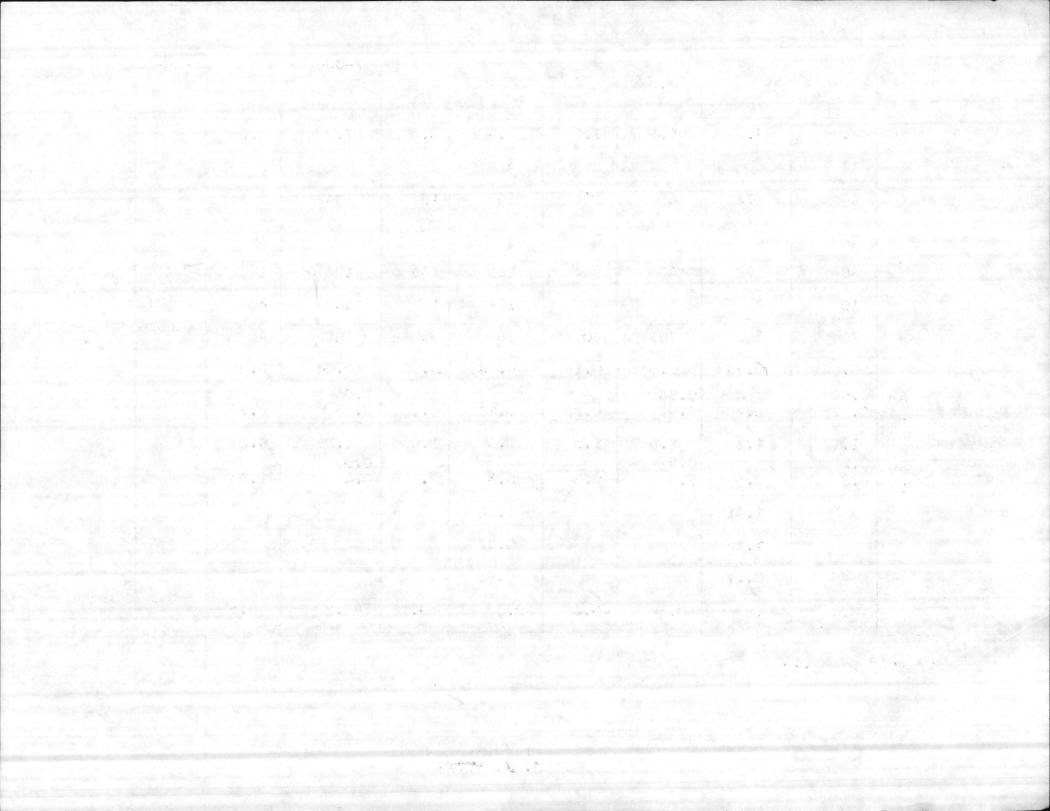
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER T	REATMENT PLA	ANTS				DATE COLLECTER	D	DATE OF ANALY			
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER				
РН	8.7	7.4	8.7	7.4	8.4	8.3	8.5	8.6				
PHENOLTHALEIN ALKALINITY	4	0	2	0	6	2	2	8	1			
METHYL ORANGE ALKALINITY	52	172	52	156	142	148	64	154		a a se la parte de Se a se la parte de la composition de la parte de la		
CARBONATES AS CaCO ₃	8	0	4	0	12	4	4	16				
BICARBONATES AS CaCO ₃	44	172	48	156	130	144	60	138	-			
CHLORIDES AS C1	10	32	10	26	14	20	10	58				
HARDNESS AS CaCO ₃	64	82	70	58	62	50	80	58				
RON AS Fe	20.04	0.97	20.04	0.08	0.06	40.04	10.04	40.04				
FLUORIDE AM	0.82 0.83	0.16	0.91 0.85	0.14	0.11	0.09	0.81 0.79	0.59				
CHLORINE RESIDUAL	1.1	1.5	1.0	1.4	1.5	1.0	1.0	0.9				
TURBIDITY AM PM	0.1 0.3	0.6	0.2 0.5	0.2	1.3	0.3	0.2 0.7	0.6				
TOTAL PHOSPHATE		1.61			0.52							
ORTHO PHOSPHATE		1.20			0.18							
META PHOSPHATE		0.41			0.34			*				
STABILITY	+0.3	-0.6	+0.2	-0.5	+0.2	0.0	+0.3	+0.1				
REMARKS	Salt is subscript			2 - 20 Mary Constant Street Street					COPY TO:			
			da serie	in star più a		- 1997			WATER TR			
NOTE: All results reported and specific condu	in parts per million ctance. One liter of	n unless otherwise not potable water is a	oted except for plassumed to weigh	l, temperature, one kilogram.	LABORATO BY ANA					D MCAS PMU		
			ant deservations of		T. H. BAR	DEE	www.engine.com/cline.com/	ne tratica e partes e c	NREAD	D FILE		


CHEMICAL ANALYSIS - WATER TREATMENT PLANTS MCBCL 11330/3 (REV. 6-84)

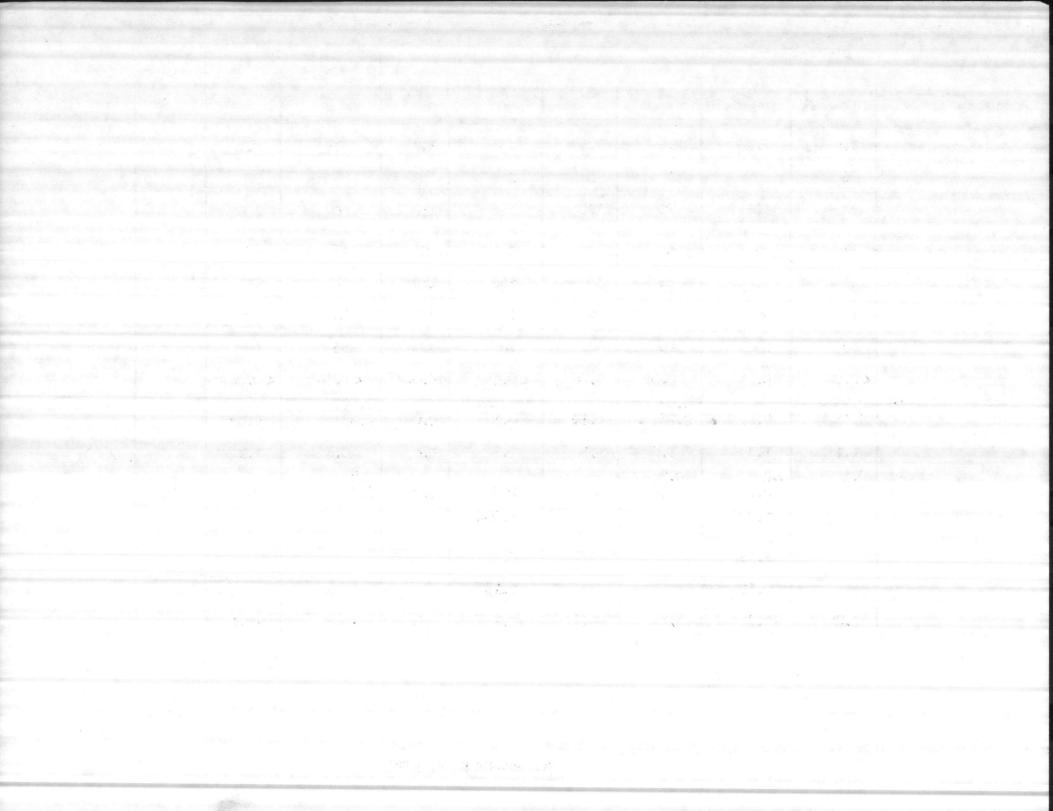
MCBCL 11330/3 (REV. 6-84)		JHPK85								
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	9.0	7.4	8,7	7.4	8.6	8,2	8.7	8,2		
PHENOLTHALEIN ALKALINITY	6	0	4	0	6	2	6	2		
IETHYL ORANGE	52	190	58	158	162	170	66	170		
ARBONATES AS CaCO ₃	12	0	8	0	12	4	12	4		la la presidente de la composición de l
ICARBONATES S CaCO 3	40	190	50	158	150	166	54	166		
HLORIDES AS C1	10	38	16	26	22	36	16	58		and a second
HARDNESS AS CaCO ₃	58	78	76	60	74	68	64	54		
RON AS Fe	20.04	0.75	0.05	0.15	-0.04	6.04	-0.04	6.04		
	0,87	0,20	0,74	00,20	0,12	0,10	1.00	6,68		
HLORINE RESIDUAL	1.0	1,3	1.0	1.8	1.0	1.0	1.2	1.3		
URBIDITY AM	0.34	0.7	0.28	0,19	0,38	0.33	0,27 0.31	0.39		
OTAL PHOSPHATE		2.60			1.09					
ORTHO PHOSPHATE		1,13			0.16					
IETA PHOSPHATE		1.47			0.93					
TABILITY	+0.6	-0.8	+0,3	-0.9	+0.3	-0,1	+0,4	0,2		
EMARKS	e an den ander det					aling and a second s Second second		an a	COPY TO:	
									UTIL DIR	o
					,				WATER TR	EATMENT
NOTE: All results reported and specific conduct	in parts per million ctance. One liter of	unless otherwise no potable water is a	oted except for pH ssumed to weigh	and title and the	LABORATORY ANA			900 - 100 - 1 00 - 100		MCAS PMU
				×	Juneycel	t			NREAD	D FILE

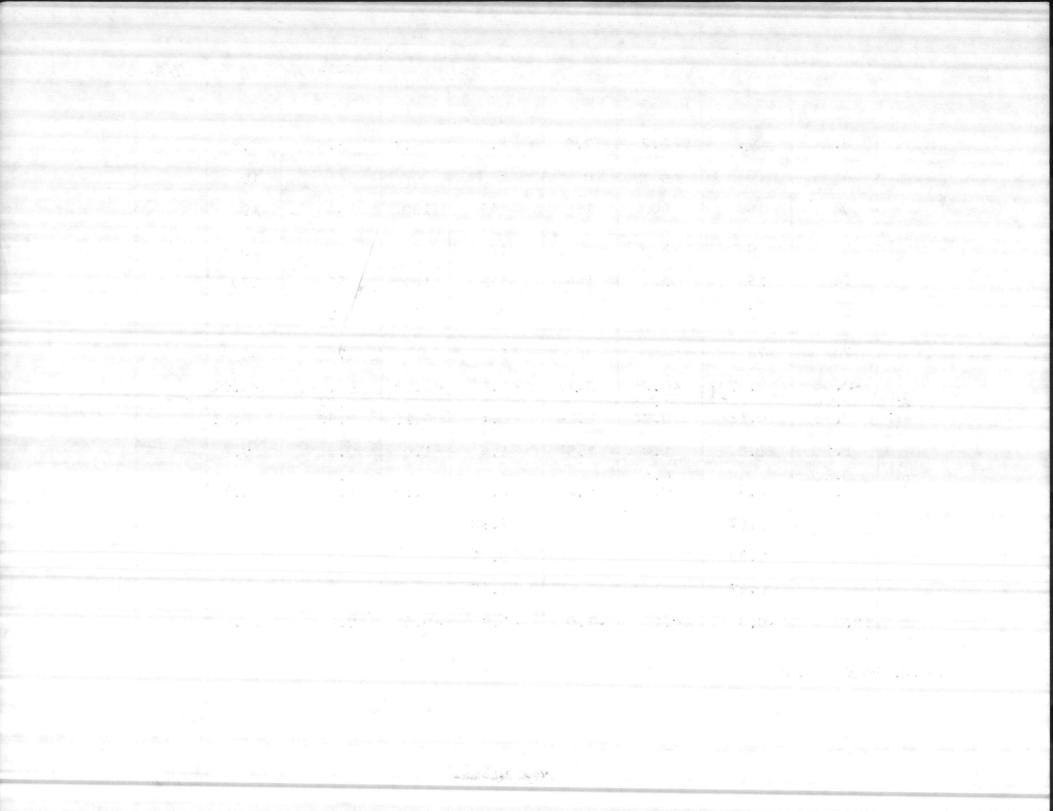

DATE COLLECTED

655

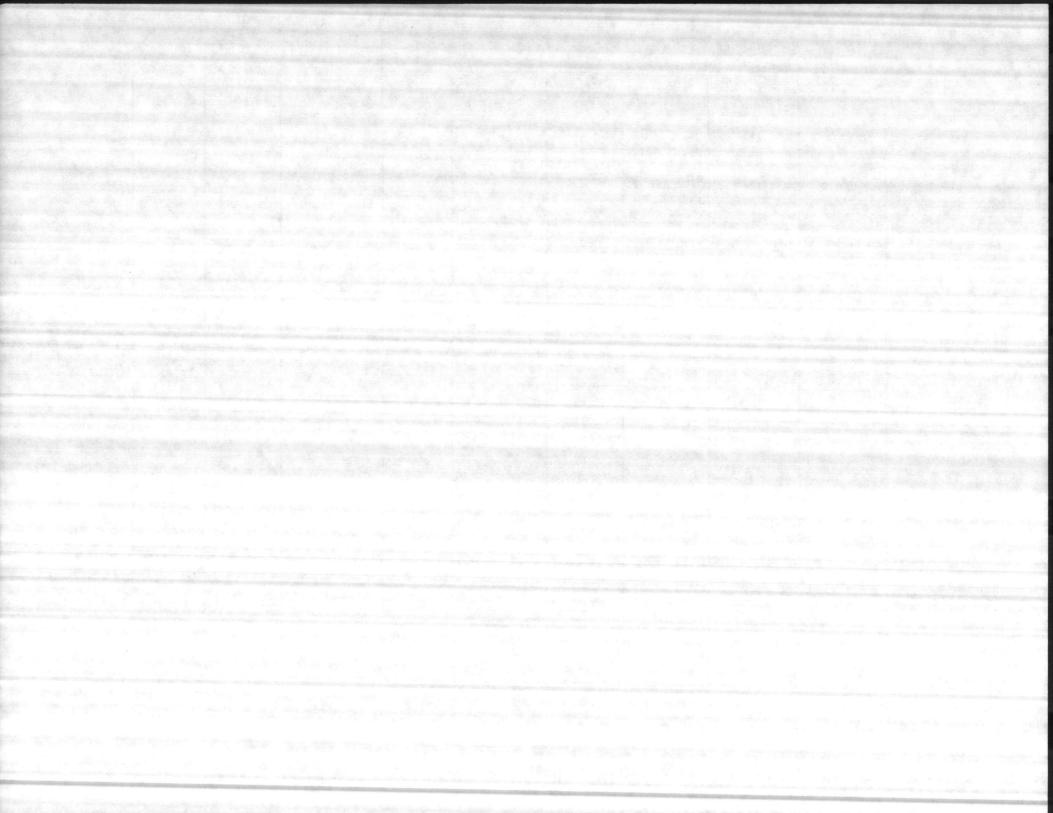

DATE OF ANALYSIS

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S - WATER T	REATMENT PL	ANTS	and a second second			DATE COLLECTED		7-30-85		
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER			
PH	8.7	7.4	(9.1)	7.5	8.6	8.4	7.9	8.8			
PHENOLTHALEIN ÁLKALINITY	12	0	4	0	4	2	0	8			
METHYL ORANGE ALKALINITY	64	172	48	244	144	152	104	158			
CARBONATES AS CaCO ₃	24	0	8	0	8	4	. 0	16			
BICARBONATES AS CaCO ₃	40	172	40	244	136	148	104	142			
CHLORIDES AS C1	10	32	18	40	12	18	10	60		4	
HARDNESS AS CaCO ₃	70	80	70	60	70	60	106	48		ana ang ang ang ang ang ang ang ang ang	
IRON AS Fe	L0.04	0.65	40.04	0.14	20.04	40.04	<0.04	0.09			
FLUORIDE PM	0.94 0.92	0.20	0.98 0.91	0.22	0.12	0.10	1.05 0.93	0.66			
CHLORINE RESIDUAL	1.1	1.2	1.0	1.5	1.5	1.0	1.1	0.8			
TURBIDITY PM	0.2 0.3	0.5	0.6 3.5	0.3	0.5	0.2	0.3	1.5			
TOTAL PHOSPHATE		1.41			1.30	1		r - Constanting Constanting			
ORTHO PHOSPHATE		1.14			0.32						
META PHOSPHATE		0.27		an aire	0.98	a single product					
STABILITY	+0.4	-0.6	+0.5	-0.6	+0.3	+0.1	-0.2	+0.1			
REMARKS									COPY TO:		
OB Pond $pH = 8.6$											
								<u>,</u>	WATER TRE	EATMENT	
NOTE: All results reported	in parts per millio	n unless otherwise n	oted except for ph	I, temperature.	LABORATOR ANA	YSIS BY		a a 47		MCAS PMU	
and specific condu	ctance. One liter of	of potable water is a	assumed to weigh	one kilogram.	H. J. BUR	NS			D NREAD D FILE		


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER	IREATMENT PL	ANTS	DATE COLLECTED		DATE OF ANALYSIS					
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER			
эн	8.7	7.4	9.1	7.5	8.6	8.4	7.9	8.8			
PHENOLTHALEIN	12	0	4	0	4	2	0	8			
METHYL ORANGE ALKALINITY	64	172	48	244	144	152	104	158			
CARBONATES AS CaCO ₃	24	0	8	0	8	4	0	16			
BICARBONATES AS CaCO ₃	40	172	40	244	136	148	104	142	> Way	king on c system	
CHLORIDES AS C1	10	32	18	40	12	18	10	60	lim	c syster	
HARDNESS AS CaCO ₃	70	80	70	60	70	60	166	48	lim	90	
RON AS Fe	۷.04	0.65	40.04	0.14	40.04	40.04	<0.04	0.09			
ELUORIDE PM	0.94 0.92	0.20	0.98 0.91	0.22	0.12	0.10	1.05 0.93	0.66			
CHLORINE RESIDUAL	1.1	1.2	1.0	1.5	1.5	1.0	1.1	0.8			
TURBIDITY PM	0.2	0.5	0.6 3.5	0.3	0.5	0.2	0.3 0.4	1.5			
TOTAL PHOSPHATE		1.41			1.30						
ORTHO PHOSPHATE		1.14			0.32						
META PHOSPHATE		0.27			0.98						
STABILITY	+0.4	-0.6	+0.5	-0.6	+0.3	+0.1	-0.2	+0.1	W September	ta I' i At	
REMARKS	d pU = 0	6			•				COPY TO:		
OB Pond $pH = 8.6$										—	
									WATER T	REATMENT	
NOTE: All results reported and specific condu		on unless otherwise r of potable water is			LABORATOR ANA	HYSIS BY		2			
	ounce. One inter	or polable water is	assumed to weigh	one knograni.	H. J. BUR				NREAD	D FILE	


CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATIVIENT PL	ANT5				DATE COLLECTED 7-23-85	,	DATE OF ANALYSIS 7-23-85		
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER			
νн	8.8	7.4	8.5	7.4	8.4	8.3	8.7	8.6			
PHENOLTHALEIN ALKALINITY	6	0	6	0	6	6	2	6			
METHYL ORANGE ALKALINITY	60	138	86	180	148	170	68	134			
CARBONATES AS CaCO ₃	12	0	12	0	12	12	4	12			
BICARBONATES AS CaCO3	48	138	74	180	136	158	64	122		a nati le	
CHLORIDES AS C1	6	66	10	12	12	16	8	42			
HARDNESS AS CaCO ₃	70	102	84	64	48	44	64	48			
RON AS Fe	20.04	0.81	20.04	0.12	20.04	40.04	20.04	20.04			
FLUORIDE AM	1.04	0.18	0.88	0.20	0.13	0.13	1.07	0.57			
CHLORINE RESIDUAL	1.0	1.2	1.0	1.4	1.1	1.0	0.9	0.7			
TURBIDITY AM PM	0.2	0.6	1.0 1.2	0.2	0.7	0.2	0.3	0.5			
OTAL PHOSPHATE		1.74	a E.n.		1.11			n og for en			
ORTHO PHOSPHATE		1.11			0.22						
META PHOSPHATE		0.63	Section and		0.89		The second second				
STABILITY	+0.4	-0.5	+0.2	-0.8	0.0	-0.1	+0.2	0.0			
REMARKS									COPY TO:		
OB Pond = 7.9											
									WATER TH	REATMENT	
NOTE: All results reported	in parts per millio	n unless otherwise r	noted except for pl	H, temperature,	LABORATORY ANA	ALYSISBY					
and specific condu	ictance. One liter of	of potable water is	assumed to weigh	one kilogram.	H. G. BUF				NREAD		

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)					le dig Caracterian. Santa		DATE COLLECTED		DATE OF ANALY	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.6	7.3	8.4	7.5	8.3	8.2	8.9	8.5		
PHENOLTHALEIN ALKALINITY	5	0	2	0	2	0	8	20		
METHYL ORANGE ALKALINITY	64	186	70	160	164	180	50	200		
CARBONATES AS CaCO ₃	12	0	4	0	4	0	16	40		
BICARBONATES AS CaCO 3	52	186	66	160	160	180	34	160	a she the second	
CHLORIDES AS C1	10	34	14	48	10	50	10	170		
HARDNESS AS CaCO ₃	66	80	80	44	70	60	56	60		
IRON AS Fe	20.04	0.84	0.05	0.06	40.04	<0.04	40.04	40.04		a ta bana ang t
FLUORIDE AM	0.96 0.96	0.16	0.98 0.86	0.19	0.12	0.09	0.91 0.85	0.89	and and a second	
CHLORINE RESIDUAL	1.1	1.3	1.0	1.5	1.5	1.0	0.8	1.2		g flastit. State
TURBIDITY AM	0.1	0.5	0.2	0.3	0.6	0.3	0.2	0.3		
TOTAL PHOSPHATE		1.80		1	1.40					
ORTHO PHOSPHATE		1.29			0.27					
META PHOSPHATE	an an Angaran California	0.51			1.13					
STABILITY	+0.2	-0.7	+0.2	-0.7	+0.1	0.0	+0.3	+0.1		
REMARKS			a sector a sequence		and the second s	Englander och förd	an an an an an an Anna An an Anna an Anna		СОРУ ТО:	
										o
	anna dhatalan a dhata								WATER TR	REATMENT
NOTE: All results reported and specific conduc	in parts per millio uctance. One liter	on unless otherwise r of potable water is	noted except for pi assumed to weigh	ana kilannana	LABORATORY ANA					
					T. BARBEE &	H. BURN	S		D NREAD	D FILE



CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84		REATMENT PL	ANTS		a the second		DATE COLLECTED 7-2-85		DATE OF ANALYSIS 7235						
ARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER							
н	8.8	7.7	8.7	7.5	8.5	8.2	8.8	8.8							
PHENOLTHALEIN ALKALINITY	4	0	4	0	6	0	4	10							
IETHYL ORANGE LKALINITY	62	196	60	166	144	180	64	190							
ARBONATES AS CaCO ₃	8	0	8	0	12	0	8	20	and the second						
NCARBONATES S CaCO 3	54	196	52	166	132	180	56	170							
CHLORIDES AS C1	8	42	18	18	26	48	20	180							
HARDNESS AS CaCO3	70	74	68	56	50	56	70	56							
RON AS Fe	40.04	0.59	40.04	0.12	20.04	40.04	40.04	40.04	No. In						
LUORIDE AM	0.99 0.88	0.18	1.08 0.94	0.19	0.12	0.11	0.97 0.90	0.82	C. Carlos						
CHLORINE RESIDUAL	1.1	1.3	1.0	1.5	1.4	1.0	0.9	0.8							
TURBIDITY AM PM	0.2	0.6	0.4	0.2	0.6	0.3	0.3	0.2							
OTAL PHOSPHATE		1.87	and and a		1.98										
ORTHO PHOSPHATE		1.25			0.31										
META PHOSPHATE		0.62			1.67										
STABILITY	+0.3	-0.8	+0.1	-1.0	-0.2	-0.4	+0.2	+0.1							
REMARKS									COPY TO:						
pH 0.B. Pond 9.0															
									WATER TR	EATMENT					
IOTE: All results reported	in parts per million	n unless otherwise r	noted except for pH	, temperature,	LABORATORY ANA	LYSIS BY				D MCAS PML					
and specific condu	uctance. One liter o	of potable water is	assumed to weigh	one kilogram.	TOM BARBEI	NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, LABORATORY ANALYSIS BY and specific conductance. One liter of potable water is assumed to weigh one kilogram.									

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)				all Tost	Wo11		DATE COLLECTED		DATE OF ANA 7-2-	-85
PARAMETER	#2_HADNOT -POINT-	#3 _{GAMP}	#HARAWA	#ONSLOW	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	7.4	7.8	8.5	8.3						
PHENOLTHALEIN	0	0	4	0					1	1. S.
IETHYL ORANGE LKALINITY	176	192	152	96						
ARBONATES AS CaCO ₃	0	0	8	Ō					an an de contact	and the second
BICARBONATES AS CaCO 3	176	192	144	96						e Silve
CHLORIDES AS C1	12	12	12	8						
ARDNESS AS CaCO3	156	154	72	92						
RON AS Fe	8.00	4.98	3.30	2.16		an a			a laster	North St.
LUORIDE	0.18	0.38	0.41	0.28	i i					
HLORINE RESIDUAL		-			ar ar				20 J.	
URBIDITY	63.0	25.0	50.0	20.0						
OTAL PHOSPHATE		and the second	Server and a server						an ann an	
STATIC XXXXXXXXXXXXXXXXX	7' 6"	12' 6"	20' 0''	19' 0"						al alter
DEPTHONNAK	90' 0"	77' 6"	107' 0"	103' 0"						
STABILITY				1000 N						
EMARKS	· · · · · · · · · · · · · · · · · · ·	and a second	and the second s	- Aller - and - and - and	And a state of the second s			an ann an thach Thair an thach	СОРУ ТО:	ann an Anna An Stàitean
<u></u>						an Antonio antonio Antonio antonio				0
									WATER T	REATMENT
OTE: All results reported	in parts per millio	on unless otherwise	noted except for pl	H, temperature,	LABORATOBY ANAL	YSIS BY				D MCAS PMU
and specific condu	ctance. One liter		assumed to weigh	one kilogram.	TOM BARBER	er	and the second second		NREAD	D FILE

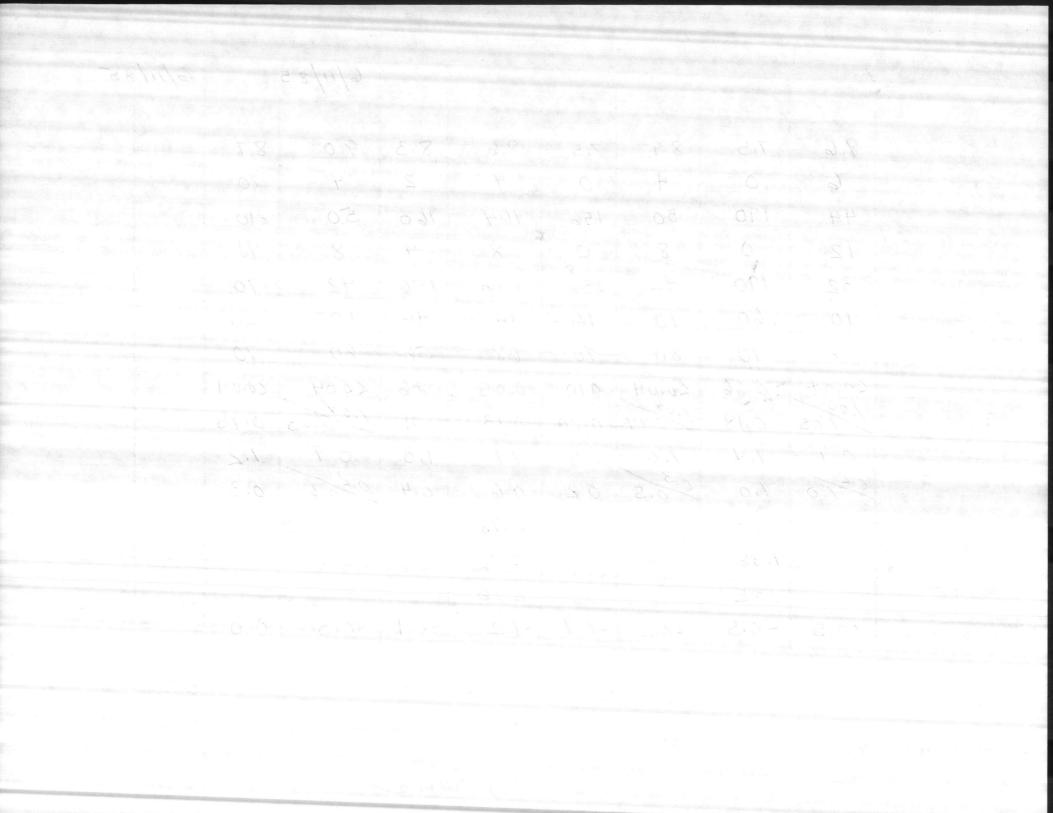
.

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		M-238					DATE COLLECTED 6-21-85		DATE OF ANALYSIS		
PARAMETER	HADNOT POINT	TCAMP	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER			
РН		7.3									
PHENOLTHALEIN ALKALINITY	n de constant Service de constant Service de constant	0									
METHYL ORANGE ALKALINITY		208		and a second	1. 1. SK						
CARBONATES AS CaCO3		0									
BICARBONATES AS CaCO 3	and a start of the second start of the	208				÷					
CHLORIDES AS C1		64									
HARDNESS AS CaCO ₃		96								n propositione a subsection de la constante de La constante de la constante de	
RON AS Fe		6.90		1.1.1							
LUORIDE		0.17	gin arrente								
CHLORINE RESIDUAL		0.5									
TURBIDITY		31.0									
TOTAL PHOSPHATE								an a			
ORTHO PHOSPHATE											
META PHOSPHATE		and the second									
STABILITY		e Marine					and and a second second				
REMARKS								Alagaalaan	COPY TO:	ana ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o a Amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny fa	
		<u>n sananga kana seranggi</u> 19 sang sang sang sejeranggi 19 sang sang sang sang sang sang sang sang								D	
			l de la compañía			1			WATER T	REATMENT	
NOTE: All results reported in and specific conducts	ance. One liter o	n unless otherwise no of potable water is as	ted except for pl ssumed to weigh	H, temperature, one kilogram.	LABORATORY ANAL	ale			D PMU	MCAS PMU	
				and the second	R.J. LACH	APELLE		and and the second	D NREAD	D FILE	

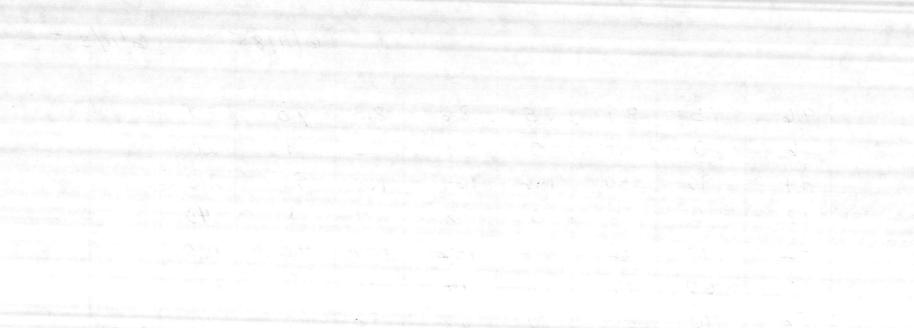
WRP

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PLA		DATE COLLECTED 6-25-8		DATE OF ANAL 6-25-				
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		an target
РН	9.0	7.7	8.6	7.5	8.6	8.2	9.0	8.7		
PHENOLTHALEIN ALKALINITY	6	0	4	0	10	6	6	4		
METHYL ORANGE ALKALINITY	58	196	74	166	164	166	56	176		
CARBONATES AS CaCO ₃	12	0	8	0	20	12	12	8		
BICARBONATES AS CaCO ₃	46	196	66	166	144	154	44	168		
CHLORIDES AS C1	8	30	10	20	14	54	14	94		
HARDNESS AS CaCO3	66	76	86	58	58	54	68	52		
RON AS Fe	20.04	0.65	40.04	0.09	20.04	0.08	∠0.04	20.04		
FLUORIDE AM PM	0.18	0.15	1.00	0.18	0.10	0.09	1.02 0.95	0.79		
CHLORINE RESIDUAL	1.0	1.0	1.0	1.3	1.4	1.0	0.8	1.2		
TURBIDITY AM	0.2	0.6	0.2	0.2	0.3	0.5	0.5	0.4		
TOTAL PHOSPHATE		2.13			1.45					
ORTHO PHOSPHATE		1.16			0.24		and Strand Mage		128.0	
META PHOSPHATE		0.97	all and the second second		1.21		ala sa <mark>angana</mark> ang			
STABILITY	+0.6	-0.7	+0.2	-1.0	+0.1	-0.3	+0.5	0.0		
REMARKS				and				and the second sec	COPY TO:	arti. 1915 - Shitogan Kalendari 1917 - Shitogan Kalendari
				n a shekara na shekara Tana 1979 - Ta						o
									WATER TH	REATMENT
NOTE: All results reported and specific condu	in parts per million ctance. One liter of	unless otherwise no f potable water is a	oted except for pH, ssumed to weigh o	temperature, I	LABORATORY ANA				D PMU	D MCAS PMU
					Fackane R.J. LACH		a fair anna an a		NREAD	D FILE

WRP



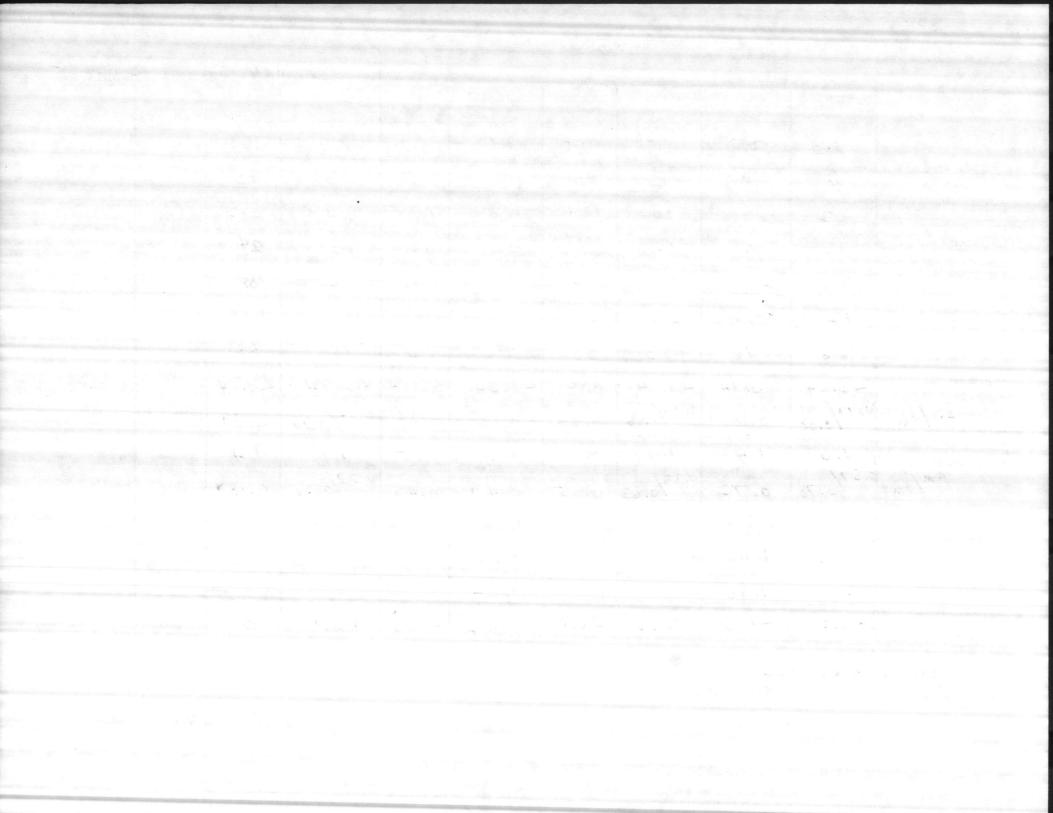
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)												
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER				
РН	8.7	7.7	8.8	7.9	8.5	8.4	8.9	8.4				
PHENOLTHALEIN ALKALINITY	4	0	4	0	8	6	6	6				
METHYL ORANGE ALKALINITY	70	200	62	170	168	178	60	252				
CARBONATES AS CaCO ₃	8	0	8	0	16	12	12	12	Sec. 19			
BICARBONATES AS CaCO3	62	200	54	170	152	166	48	240				
CHLORIDES AS C1	22	62	18	22	16	46	12	112				
HARDNESS AS CaCO3	70	86	66	60	98	54	62	100				
RON AS Fe	10.04	0.86	< 0.04	0.15	<0.04	0.06	<0.04	0.08				
FLUORIDE AM/PM	0.79/0.79	0.15	0.97/0.98	0.17	0.12	0.11	1.03/1.07	0.93				
CHLORINE RESIDUAL	1.0	1.3	1.0	1.6	1.3	1.0	1.3	1.3				
TURBIDITY AM/PM	3.4/0.2	0.6	0.1/0.2	0.1	0.2	0.3	0.1/0.2	0.4				
TOTAL PHOSPHATE		2.34			0.67							
ORTHO PHOSPHATE		1.41			0.19	ange sander si						
META PHOSPHATE		0.93		ter og Sender og som kommer Sender	0.48	an a						
STABILITY	+0.3	-0.8	+0.2	-0.7	٥	-0.2	+0.4	-0.1				
REMARKS									COPY TO:			
ptt	OB PON.	0=010	<u>dan saita</u> San Angliy M									
	Anne State								WATER TREAT	MENT		
NOTE: All results reported and specific condu	in parts per million ctance. One liter of	unless otherwise r potable water is	noted except for pH, assumed to weigh o	temperature,	LABORATORY ANAL	LYSIS BY	an a			MCAS PMU		
				grann	Fachan	lle	Barbee		D NREAD	FILE		


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS	and the second			DATE COLLECTED		DATE OF ANALYSIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	
PH	9.6	7,5	8.9	7,5	8,6	8.3	9.0	8,7	
PHENOLTHALEIN ALKALINITY	6	0	4	0	4	2	4	20	
METHYL ORANGE ALKALINITY	44	190	50	156	164	160	50	210	
CARBONATES AS CaCO ₃	12	0	8	0	8	4	8	40	
BICARBONATES AS CaCO ₃	32	190	42	156	156	156	42	170	
CHLORIDES AS C1	10	.60	10	16	14	46	10	120	
HARDNESS AS CaCO3	56	90	80	70	68	56	60	70	
RON AS Fe	20.04	0.66	20.04	0.10	0.05	0.06	20.04	20.04	
FLUORIDE	1.00	0,18	1.04	0.20	0,13	0.11	1.04 1.03	0.95	
CHLORINE RESIDUAL	0.9	1.4	1.0	1.5	1.1	1.0	0.9	1.2	
TURBIDITY	021.0	1.0	0.3 0.5	0.2	0.6	0.4	0.20.6	0.3	
TOTAL PHOSPHATE		3.23			0.98				
ORTHO PHOSPHATE		1.38			0.22				
META PHOSPHATE		1.85			0.76	a sector and the			
STABILITY	+0.5	-0.5	+0.2	-0.7	+1.2	-0.1	40.3	0.0	
REMARKS								and and the second	COPY TO:
				an ang dagan ar s Cyster ang				an casta C	
									WATER TREATMENT
NOTE: All results reported and specific condu	in parts per million ictance. One liter of	unless otherwise n f potable water is a	oted except for pH, assumed to weigh o	temperature, one kilogram.	LABORATORY ANA	LYSIS BY			
	and the second second				16.J.B	urns	/		D NREAD D FILE

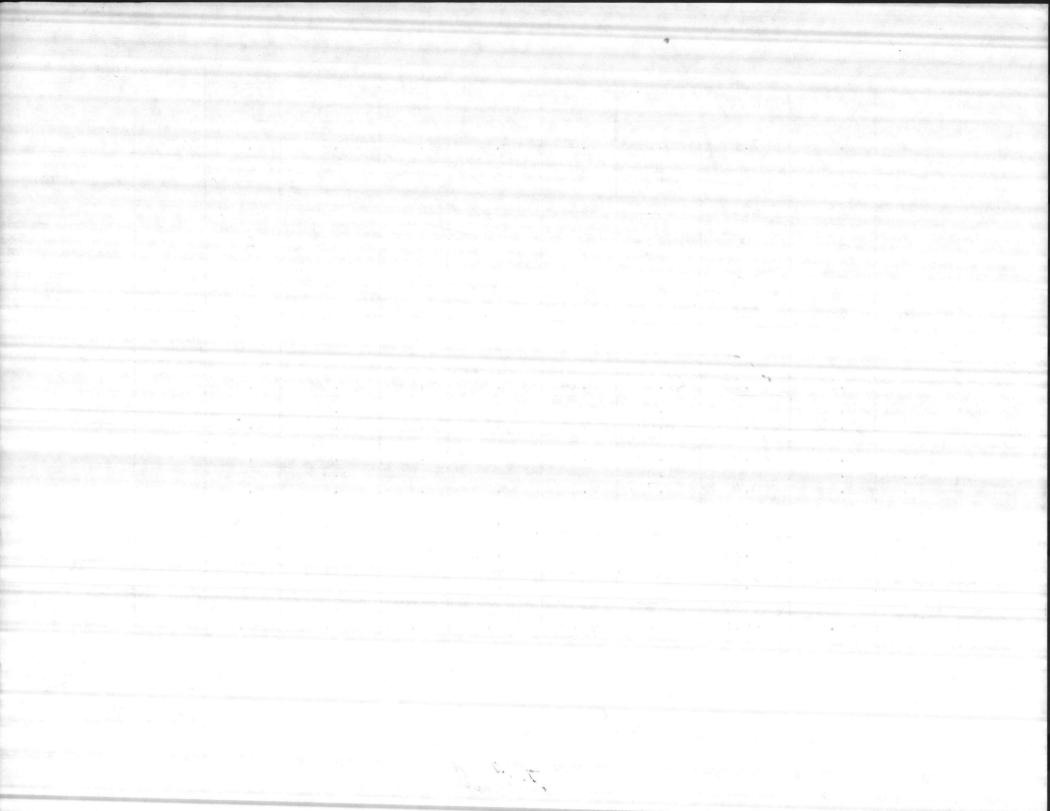
cs.J

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	6 — WATER TR	EATMENT PL	ANTS			1	DATE COLLECTED	-	DATE OF ANALYSIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	
РН	9.6	7.5	8.9	7.5	8.6	8.3	9.0	8,7	
PHENOLTHALEIN ALKALINITY	6	0	4	0	4	2	4	20	
METHYL ORANGE ALKALINITY	44	190	50	156	164	160	50	210	
CARBONATES AS CaCO ₃	12	0	8	0	8	4	8	40	The second
BICARBONATES AS CaCO ₃	32	190	42	156	156	156	42	170	
CHLORIDES AS C1	10	60	10	16	14	46	10	120	
HARDNESS AS CaCO ₃	56	90	80	70	68	56	60	70	
IRON AS Fe	10.04	0.66	20.04	0.10	0.05	0.06	60.04	10.04	
FLUORIDE	1.00	0.18	1.04	0,20	0,13	0.11	1.04	0.95	
CHLORINE RESIDUAL	0.9	1.4	1.0	1.5	1.1	1.0	0.9	1.2	Star and Star Star
TURBIDITY	0.2.0	1.0	0.3	0.2	0.6	0.4	0.20.6	0.3	
TOTAL PHOSPHATE		3.23			0.98				
ORTHO PHOSPHATE		1,38		in star of	0.22			en en digente d	
META PHOSPHATE		1.85			0.76				
STABILITY	+0.5	-0.5	+0.2	-0.7	+1,2	-0.1	+0,3	0.0	
REMARKS								an a	COPY TO:
	an a	<u>aantikonto reportek</u> Ingenisikon ohtois	an a			100			
				1.5					WATER TREATMENT
NOTE: All results reported and specific condu	in parts per million ctance. One liter of	unless otherwise n potable water is a	noted except for pH, assumed to weigh o	temperature, one kilogram.		LYSIS BY		an san la na a Chuirteach	D PMU D MCAS PN
					16.AB	una		the set of the set	NREAD FILE

was



CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)												
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER				
РН	9.0	7.4	8.5	7.7	8.7	8.5	9.0	8.7	1 Q			
PHENOLTHALEIN ALKALINITY	4	0	2	0	8	4	4	20				
METHYL ORANGE ALKALINITY	30	190	56	150	156	150	56	200				
ARBONATES AS CaCO ₃	8	0	4	0	16	8	8	40				
BICARBONATES AS CaCO 3	22	190	52	150	140	142	48	160				
CHLORIDES AS C1	10	60	12	16	12	40	10	120				
HARDNESS AS CaCO ₃	64	120	96	60	76	68	60	56				
RON AS Fe	40.04	6.60	40.04	0,18	0.15	0.08	0.04	10.04		A.		
	1.12	0.13	1.16	0.18	0.10	0.09	0.63	0.80				
CHLORINE RESIDUAL	1.0	1.2	1.0	1.0	1.4	1.0	1.0	1.1				
URBIDITY AM	0.2	0.6	0.4	0.2	1.2	0.5	1,3	0.6				
OTAL PHOSPHATE		2.35	A CONTRACTOR	5	1.21				and the			
ORTHO PHOSPHATE		1.22			0.27			and second				
IETA PHOSPHATE		1.13		San Superior	0.94							
STABILITY	to.3	-0.6	-0,1	-0.6	+0.2	0.0	+ 0,3	0.0				
REMARKS								and a second	COPY TO:	na si		
			ing and a second se							•		
									WATER T	REATMENT		
IOTE: All results reported and specific conduc	in parts per million stance. One liter of	unless otherwise no potable water is a	oted except for pH, ssumed to weigh a	temperature,	LABORATORY ANA	LYSIS BY		an garanta an	PMU			
				5	Spinences	th			NREAD			


her first and the set of the set

en de la desta de la competencia de la

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS		DATE COLLECTED	MAY 85		B MAY 85		
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	9.0	7.5	8,3	7,5	8.6	8.3	8.9	8.8		
PHENOLTHALEIN ALKALINITY	6	٥	6	0	8	6	6	12		
METHYL ORANGE ALKALINITY	62	200	90	164	160	168	64	212		
CARBONATES AS CaCO ₃	12	٥	12	0	16	12	12	24		
BICARBONATES AS CaCO 3	50	200	78	164	144	156	52	188		
CHLORIDES AS C1	12	36	20	20	16	42	18	130		
HARDNESS AS CaCO ₃	66	76	120	58	56	64	70	68		in see a raak in die de de de Gegelingslagt – de de Tier
IRON AS Fe	60.04	0.74	60.04	0.19	60.04	<0.04	60.04	60.04		
FLUORIDE AM/PM	0,99/0.88	0.18	0.76/0.85	0.20	0.12	0110	0.94/0.90	0.89		
CHLORINE RESIDUAL	1.0	1.4	1.0	1.3	1.3	015	1.1	1.4		
TURBIDITY AM/PM	0.57/0.78	0.72	0.33/0.63	0:35	0.49	0.40	0.27/0.30	0.18		
TOTAL PHOSPHATE		3.50			1.56					
ORTHO PHOSPHATE		1.60		er en al ach	0.22					
META PHOSPHATE		1.90			1.34					
STABILITY	+0.2	-1.0	-0.2	- 1.1	-0.2	- 0.3	+0.1	0		
REMARKS	2 0. 11 0. 5	2.0							COPY TO:	
рно	3 POND 8	112								· · · · · · · · · · · · · · · · · · ·
									WATER T	REATMENT
NOTE: All results reported	d in parts per million uctance. One liter of	unless otherwise r	noted except for pH,	temperature,	LABORATORY ANA	LYSIS BY	and provide the second		D PMU	D MCAS PMU
and specific condu	uctance. One inter of	potable water is a	assumed to weigh t	me knogram.	Barbie	+ Bur	~~			D FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER T	REATMENT PL		DATE COLLECTED 21 May 1	985	DATE OF ANAL				
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.9	7.5	9.0	7.4	8.6	8.3	8.9	8.6		
PHENOLTHALEIN ALKALINITY	8	0	6	0	10	8	8	10		
METHYL ORANGE ALKALINITY	66	192	42	164	162	166	64	206		
CARBONATES AS CaCO3	16	0	12	0	20	16	16	20	1.1.1.1.1	
BICARBONATES AS CaCO 3	50	192	30	164	142	150	48	186		
CHLORIDES AS C1	10	36	12	18	16	36	14	74		
HARDNESS AS CaCO ₃	68	78	70	60	56	96	66	68		
IRON AS Fe	0.10	0.53	40.04	0.14	٢٥.04	0.05	۲0.04 <u>کاری</u>	0.05		
FLUORIDE AM PM	0.88	0.17	0.96 0.86	0.16	0.12	0.11	0.94 0.91	0.82	Salar Sa	
CHLORINE RESIDUAL	1.0	1.3	1.0	1.5	1.5	1.4	0.9	1.3		
TURBIDITY AM PM	1.8 1.4	0.4	1.4 3.7	0.2	0.3	0.3	0.3 0.5	0.5		
TOTAL PHOSPHATE		2.87			1.15	a dinangan di				
ORTHO PHOSPHATE		1.25	and the second second		0.24		an a		a a constante	
META PHOSPHATE		1.62	and the second		0.91	J. Same of an				
STABILITY	+0.3	-0.8	+0.2	-1.0	+0.1	-0.1	+0.4	+0.1		
REMARKS									СОРУ ТО:	
			na na sana sa	en en presión Secondo de la composition						D
									WATER TI	REATMENT
NOTE: All results reported in and specific conduct						LYSIS BY	0 1			
	and, one net u	Polabie water 15 (accumed to weight	one knogram.	Jackonelle	2	Barbu		NREAD	D FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	HADNOT CAMP TARAWA ONSLOW COURTHOUSE RIFLE HOLCOMB NEW												
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER					
РН	8.6	7.5	8,5	7.7	8.6	8.5	8,9	8.7					
PHENOLTHALEIN ALKALINITY	4	0	4	0	4	4	6	16					
METHYL ORANGE ALKALINITY	60	190	60	150	160	156	58	210					
CARBONATES AS CaCO ₃	8	0	8	0	8	8	12	32					
BICARBONATES AS CaCO ₃	52	190	52	150	152	148	46	178					
CHLORIDES AS C1	10	30	10	24	12	26	10	90					
HARDNESS AS CaCO ₃	68	74	80	74	80	50	64	50					
IRON AS Fe	6,04	0.50	40.04	0.22	0.12	6.04	6.04	0.07					
FLUORIDE AM	1.10	0,19	1.28	0.20	0.14	0,12	1.05	1.05					
CHLORINE RESIDUAL	1.0	1.4	1.0	1.2	1,2	1.0	1.0	1.5		and the second sec			
TURBIDITY AM	0.2	0.7	0.2	0.2	0.9	0.3	0.1	0.6	in the second				
TOTAL PHOSPHATE		2.71			1.51			1.5					
ORTHO PHOSPHATE		1.26			0.26								
META PHOSPHATE		1.45			1.25								
STABILITY	0.0	-0.5	+0.1	0.5	+0.2	0.0	+ 6.1	0.0					
REMARKS									COPY TO:				
			and and a second se							D			
	31.213								WATER T	REATMENT			
NOTE: All results reported and specific conduct	in parts per million stance. One liter o	unless otherwise n f potable water is a	oted except for pH, issumed to weigh o	temperature, one kilogram.	LABORATORY ANA	LYSIS BY	-		D PMU	MCAS PMU			
Andrea Alban Arts					Henero	uit	<u> </u>			D FILE			

4.5

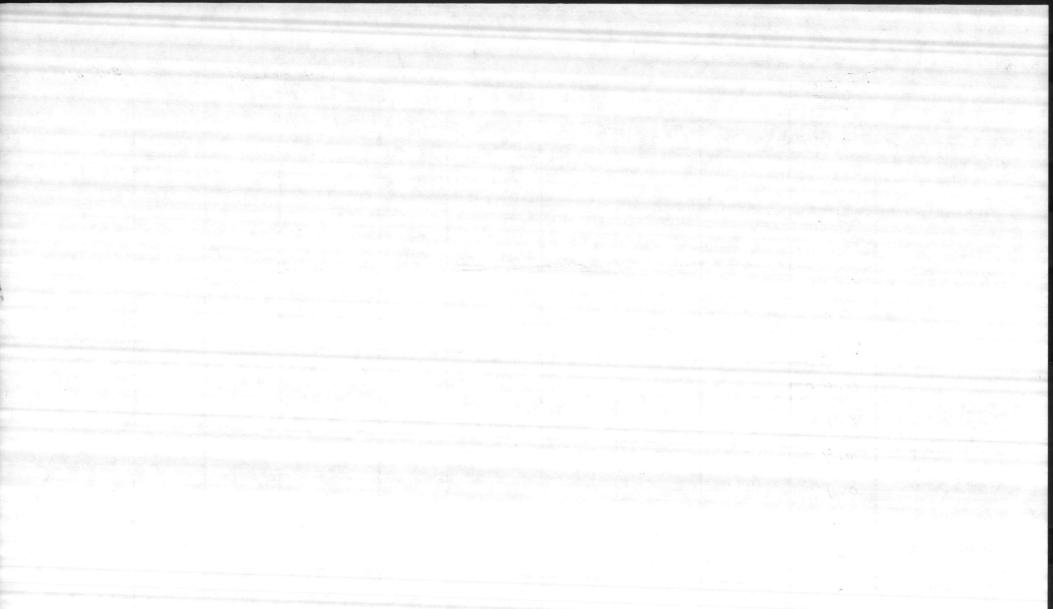
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	HADNOT CAMP TARAWA ONSLOW COURTHOUSE RIFLE HOLCOMB NE												
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER					
PH	8.9	7.7	8.8	1.5	8,7	8.4	8.9	8.8					
PHENOLTHALEIN ALKALINITY	8	0	12	0	12	4	10	28					
IETHYL ORANGE LKALINITY	18	240	54	166	176	180	74	190		an Maria			
ARBONATES AS CaCO ₃	16	0	24	0	24	8	20	56					
ICARBONATES S CaCO 3	2	240	30	166	152	172	54	134					
CHLORIDES AS C1	8	82	10	12	16	24	16	56		he.			
ARDNESS AS CaCO3	20	164	84	50	68	68	64	50		an a			
RON AS Fe	40.05	(15)	40.04	0.35	40.04	-0.04	20.04	20.04					
LUORIDE AM	0.79	0,20	0,13	0,15	0.07	0.06	0.95	6,71					
HLORINE RESIDUAL	1.0	1.0	1.0	1.0	1.0	1.0	6.9	1.2					
	0.3	1.0	0.4	0.3	0.4	0.3	0.4	0.2					
OTAL PHOSPHATE		1.68			1.08					la sera i Seguna i			
RTHO PHOSPHATE		1.09			0.28								
IETA PHOSPHATE		0.59	the second	di secondo esta esta esta esta esta esta esta esta	0.80				a a practica de la companya de la co Nome de la companya de				
TABILITY	+0.3	0.2	+0.1	-0.7	+0.3	6.0	10,2	6.0					
EMARKS					alle Second Science			a de la composición d Composición de la composición de la comp	COPY TO:				
an a			<mark>e ander son der sonsen en sonsen s Sonsen sonsen sonsen</mark>										
					14					т			
OTE: All results reported and specific condu-	in parts per million ctance. One liter of	unless otherwise n potable water is a	oted except for pH assumed to weigh	, temperature, one kilogram.	LABORATORY ANA	LYSIS BY	and the second			FPMU			
					fingal	t				E			

wer

CHEMICAL ANALYSI: MCBCL 11330/3 (REV. 6-84)		EATMENT PL	ANTS				DATE COLLECTED	MA485	DATE OF ANAL	TMAY
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8	7.8	8.8	7.8	8.9	8.6	8.9	8.8		
PHENOLTHALEIN ALKALINITY	6	0	4	0	12	4	2	8		
METHYL ORANGE ALKALINITY	60	196	52	178	162	158	68	174		1
CARBONATES AS CaCO ₃	12	0	8	0	24	8	4	16		
BICARBONATES AS CaCO 3	48	196	44	178	138	150	64	158		
CHLORIDES AS C1	10	38	10	18	16	20	12	66		
HARDNESS AS CaCO ₃	76	98	80	64	70	52	72	68		24.2.20
IRON AS Fe	20.04	0.65	40.04	0:18	0.09	0.05	20.04	0.08		
FLUORIDE AM/PM	0.96/0.90	0.16	1.15/0.99	0.16	Bill	0.09	0.97/0.90	0.71	C.	
CHLORINE RESIDUAL	1.0	1.4	1.0	1.3	1.4	1.0	1.0	1.3		
TURBIDITY AM/PM	0.10/0.16	1.57	0.20/0.36	0.17	0.72	0.32	0.40/0.20	0.21		
TOTAL PHOSPHATE		3.16			1.47					
ORTHO PHOSPHATE		1.44			0.44				1.100.000	
META PHOSPHATE		1.72		Sec. March	0.98		aller i Standard († 1995) 1996 - Standard († 1995) 1996 - Standard († 1995) 1996 - Standard († 1995)		di Republic politice of Statuting Character Statuting Character	
STABILITY	+0.3	-0.6	+0.2	-0.7	+0.3	-0.1	+0.3	0		
PREMARKS	DB POND	8,3								

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED	285	DATE OF ANAL	APR85
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8	7.5	8.5	7.7	8:7	8:5	910	8.9		
PHENOLTHALEIN ALKALINITY	4	0	2	0	6	2	6	16		
IETHYL ORANGE	40	250	68	164	168	162	58	214		
CARBONATES AS CaCO3	8	٥	4	0	12	4	12	20	a series	
BICARBONATES AS CaCO ₃	32	250	64	164	156	158	46	194		
CHLORIDES AS C1	12	78	10	20	16	20	12	114		
IARDNESS AS CaCO ₃	64	98	92	62	80	54	62	54	State of the	
RON AS Fe	0.06	0.78	0.05	0.10	< 0.04	0.04	0.05	0.05		
LUORIDE A-M/PM	1.02/0.94	0:35	1.03/1.06	0118	01/3	0111	1.15/ 1.07	0.96		
HLORINE RESIDUAL	1.1	0.7	1.0	1.3	1.3	1.0	0.9	0.9		
URBIDITY AM/PM	0.14/0.17	0:67	0.35/0.58	0.16	0.60	0.26	0:13/0.25	0.33		
OTAL PHOSPHATE		2.70			1.13				and the second second	
RTHO PHOSPHATE		1.28		. All .	0.27		a dinana si di di			
IETA PHOSPHATE		1.42		en de la composition de la composition Indexe de la composition de la compositio	0.86			anna a shagean anna an Angean Anna an Angean		
TABILITY	6	-1.0	0	-0.8	+0.2	-0.2	+0.3	0		
PH OB 1	POND 81.	2	1. A						COPY TO:	
per ov 1										D
	and the second se		%		,				WATER T	REATMENT
IOTE: All results reported and specific condu	I in parts per million uctance. One liter of	unless otherwise potable water is	noted except for pH assumed to weigh	, temperature, one kilogram.	LABORATORY ANA		01	.1	PMU	MCAS PMU
				1. <u>19</u> 23. 20	TheBarbee	~	Fachande	k	D NREAD	D FILE

wap



CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		EATMENT PL	ANTS				DATE COLLECTED	2.85	DATE OF ANA	0 APR85
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	- 8.8	7.5	8.5	7.7	8:7	8:5	910	8.9		
PHENOLTHALEIN ALKALINITY	4	0	2	0	6	2	6	10		
METHYL ORANGE ALKALINITY	40	250	68	164	168	162	58	214		
CARBONATES AS CaCO3	8	б	4	0	12	4	12	20		
BICARBONATES AS CaCO ₃	32	250	64	164	156	158	46	194	40	
CHLORIDES AS C1	12	78	10	20	16	20	12	114		
HARDNESS AS CaCO ₃	64	98	92	62	80	54	62	54		
IRON AS Fe	0.06	(0.78)	0.05	0.10	< 0,04	0.04	0.05	0.05		
FLUORIDE AMPM	1.02/0.94	0.35	1.03/1.06	0,18	01/3	0111	1.15/ 1.07	0.96		and the second second
CHLORINE RESIDUAL	1.1	0.7	1.0	1.3	1.3	1.0	0.9	0.7		
TURBIDITY AM/FM	0.14/0.17	0:67	0.35/0,58	0.16	0,60	0.26	0.13/0.25	0.33		2
TOTAL PHOSPHATE		2.70			1.13					
ORTHO PHOSPHATE		1.28			0.27					
META PHOSPHATE		1.42			0.86					
STABILITY	0	-1.0	0	-0.8	+0.2	-0.2	+0.3	0		
	la seconda esta de la composición de la Composición de la composición de la comp	COPY TO:								
pH OB 1	-0ND 81.	3								
									WATER .	TREATMENT
NOTE: All results reported					LABORATORY ANA	LYSIS BY	Λ.	, .	D PMU	
and specific condu-	uctance. One liter of	potable water is	assumed to weigh t	one knogram.	TheBarbes	-	Fachande	k		D FILE

And a subsection

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	5 - WATER TR	EATMENT PL	ANTS			ing in disp	DATE COLLECTED	APR 85	DATE OF ANALYSIS 248PR 85			
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER				
РН	7.5		14		S. Arra			100.00				
PHENOLTHALEIN ALKALINITY	0				1.							
METHYL ORANGE ALKALINITY	220						a se parte a cara					
CARBONATES AS CaCO3	6											
BICARBONATES AS CaCO ₃	220				and a second second		angeneer (Franker virg					
CHLORIDES AS C1	80											
HARDNESS AS CaCO ₃	206							di si Aliyesi ya si si				
IRON AS Fe	0.40		123			Ker and						
FLUORIDE	0.20				Barliner where					1997 - 1997 1997 - 1997 - 1997		
CHLORINE RESIDUAL	0.9									ann ann I a Mh		
TURBIDITY	0.49			an an air air ann								
TOTAL PHOSPHATE	-											
ORTHO PHOSPHATE	-	la de la companya de La companya de la comp										
META PHOSPHATE	-		and the second									
STABILITY												
REMARKS									COPY TO:			
			and a second			and the second s						
									WATER T	REATMENT		
NOTE: All results reported and specific conduct	in parts per million ctance. One liter of	unless otherwise r potable water is	noted except for pl assumed to weigh	H, temperature, one kilogram.					PMU	MCAS PMU		
				COLOR DE S	Th Barbe	e_			D NREAD	D FILE		

UNITED STATES MARINE CORPS Natural Resources and Environmental Affairs Division Marine Corps Base Camp Lejeune, North Carolina 28542

IN REPLY REFER TO: 11330/1 NREAD 10 Apr 1985

Mr. John McFadyen Water Supply Branch Division of Health Services North Carolina Department of Human Resources Post Office Box 2091 Raleigh, North Carolina 27602

Dear Mr. McFadyen:

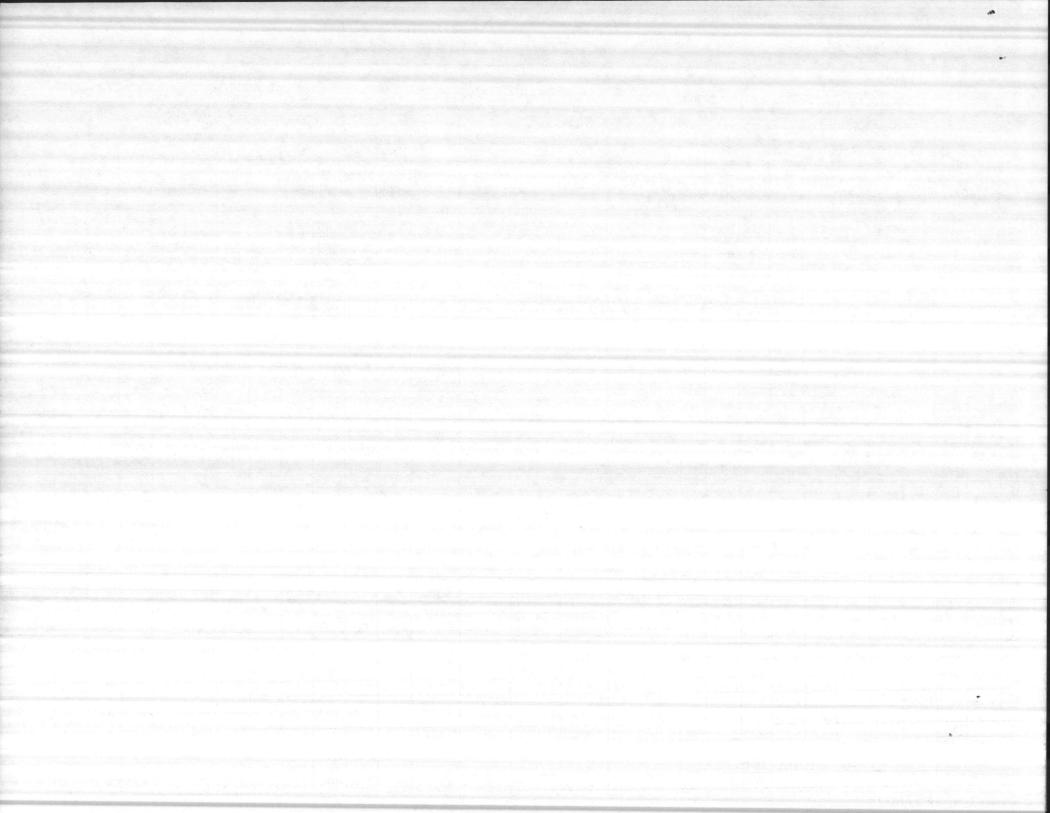
Enclosed are the completed Department of Health Forms (DHS 1942 2/74) for all water treatment plants aboard Marine Corps Base, Camp Lejeune for the period 1-31 March 1985. Also enclosed are the weekly Chemical Analysis Forms (MCBCL 11330/3 Rev 3-82) for the same period, as requested in the 25 October 1982 letter from Mr. Charles Rundgren of your office.

The analysis is run by the Quality Control Laboratory located in the Natural Resources and Environmental Affairs Division, Assistant Chief of Staff, Facilities. Ms. Elizabeth Betz, Supervisory Chemist, Quality Control Laboratory, telephone (919) 451-5977 is the point of contact in this matter.

Sincerely,

J. I. WOOTEN Director

Encl: (1) Dept of Health Forms (2) Chemical Analysis Forms


Copy to: LANTDIV (Code 114)

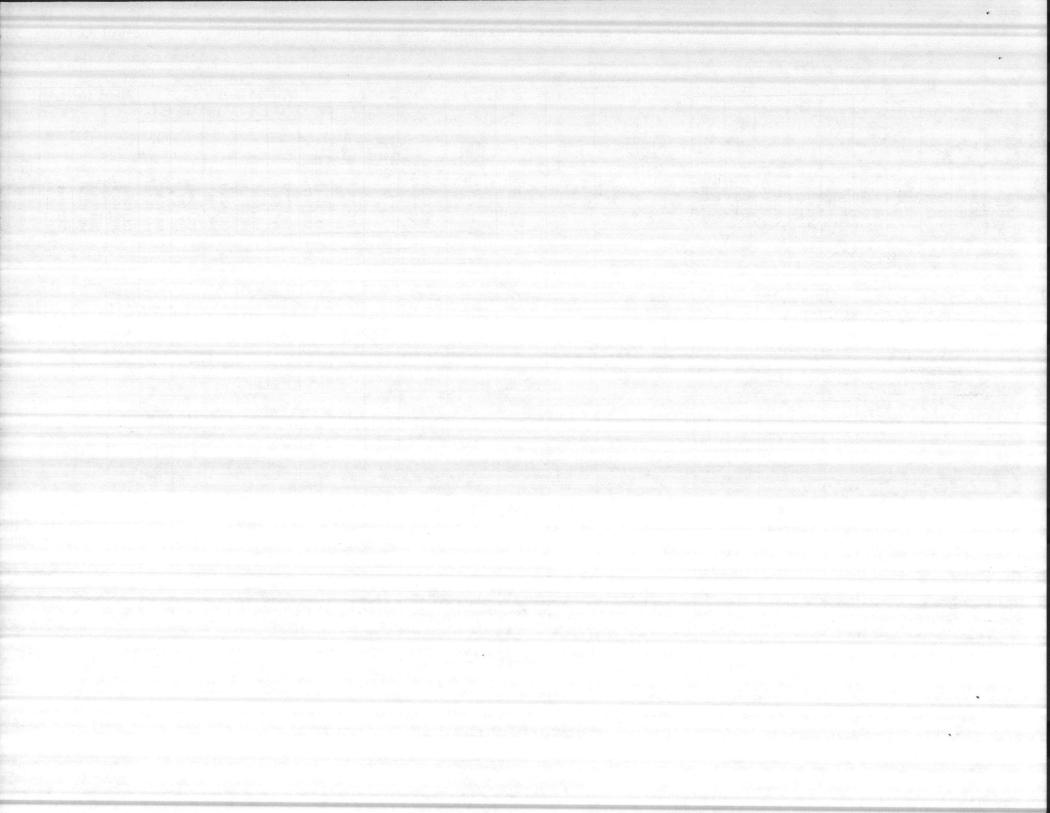
Blind copy to: > BMO (Attn: UtilDir)

-				R/		ER COL	FORMS				FILT	EREC	FINIS	HED		-	1	DIS	STRIEU	TION SY	STEM			L'ELLEAN		1
+		A			8			C										COLIFO	RMS ()	(FP)			REPE	AT SAMP	LES	
VOLUME FILTERED ml.			Ê.												Sec.			1	2	3	4	5				1
	F VOLUHE FILTERED ml.	TOTAL COLONIES	COLORIES	FILTERED ml.	TOTAL COLONIES	COLIFORM COLONIES	VOLUME	TOTAL COLONIES	COLONIES COLONIES	KO. OF COLIFORMS PER :00.ml.	TOTAL PLATE COUNT	CHELTEURMS	TOTAL PLATE COUNT	HFP COLIFORMS	TO TAL PLATE COUNT	AVE. COLIFORMS	NO. OF SAMPLES EXAMINED	COLIFORMS per 100 ml.	INCIDATOR TOUR							
F	<u> </u>				-		÷į.										2.0							1.1.1		-
			•		7.		•												1. SA - 3							
k	6								-							0	8	00	00	00	00			· · · ·		35,
t					Sec. 19	n - Series	1.464			· · · · · · · · · · · · · · · · · · ·						and the			<u>.</u>		s and	1. S. 15				1000
	-																			1.000						T
-1	1			1000 C										127 18 AND	the stand	·****										
					•													Care Mar							•	-
S	12	· .						1		· · · · · · · · · · · · · · · · · · ·						0	8	00	00	0	0	00				35.
																				•						-
					····									:					-					•		
													and the second											:		
K	19	inge star			te porte	2.2.0					-	<u></u>		Surger !		σ	8	00				-	inter de si	and a second		
P	17		·		•						5					-		00	0	<u>9</u>						35,
-						10120				No Country Constants	a seren de la															Ē
-														-										•		-
-						-																			· · ·	
ş	26										a second s	aless (Sector)	energi energi Marine englisere			0	8	00	00	0	0	0	•			35
د											-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							0		-					2
		1			:																				. •	
-																										
	MEDIA		BRI	mF	ndo	BACTE	RIAL	ARITH	. HEAN									TOTU					-			-
C	HEDIA	IA BBI. mEndo BACTERIAL ARITH. HEAN DENSITY GEO. MEAN				· ·						0 DIST. TOTAL NO. SAMPLES 1.0 SYSTEM SAMPLES EXCEEDING 3/50. (4/100, 7/200, 13/500m1)								3						

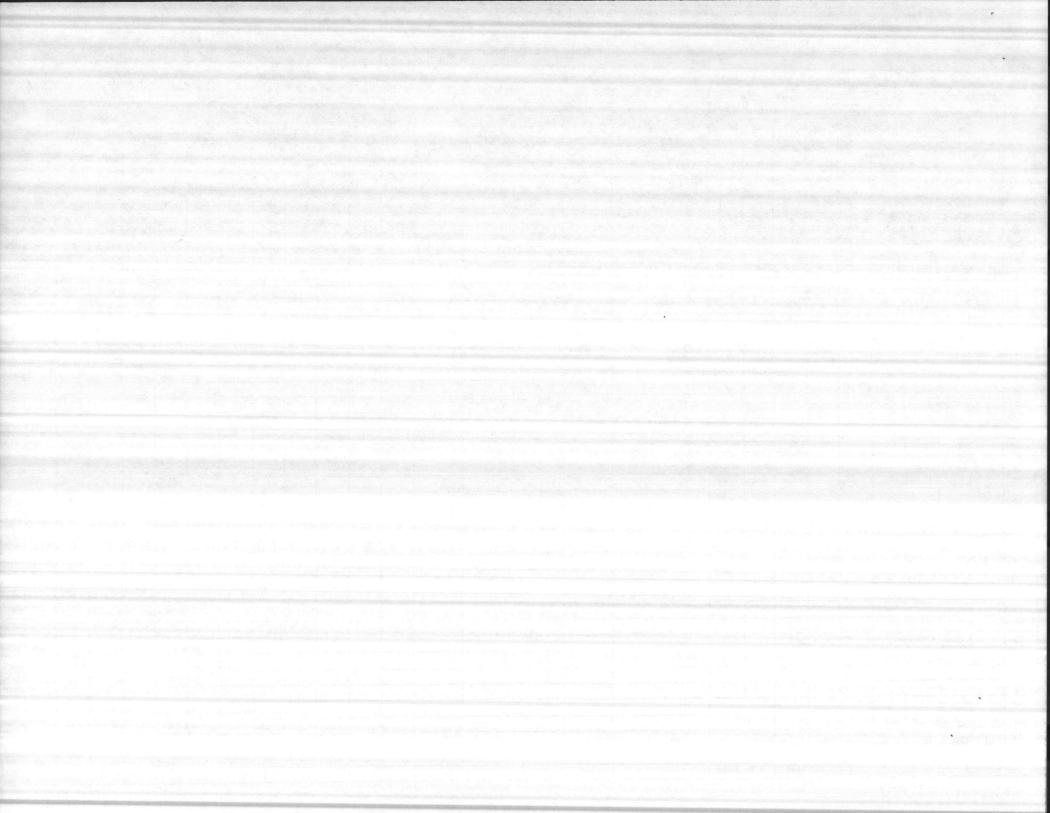
Month: March 1985 Hadnot Point Water Treatment System at Camp Lejeune Metohd Code: 303

.

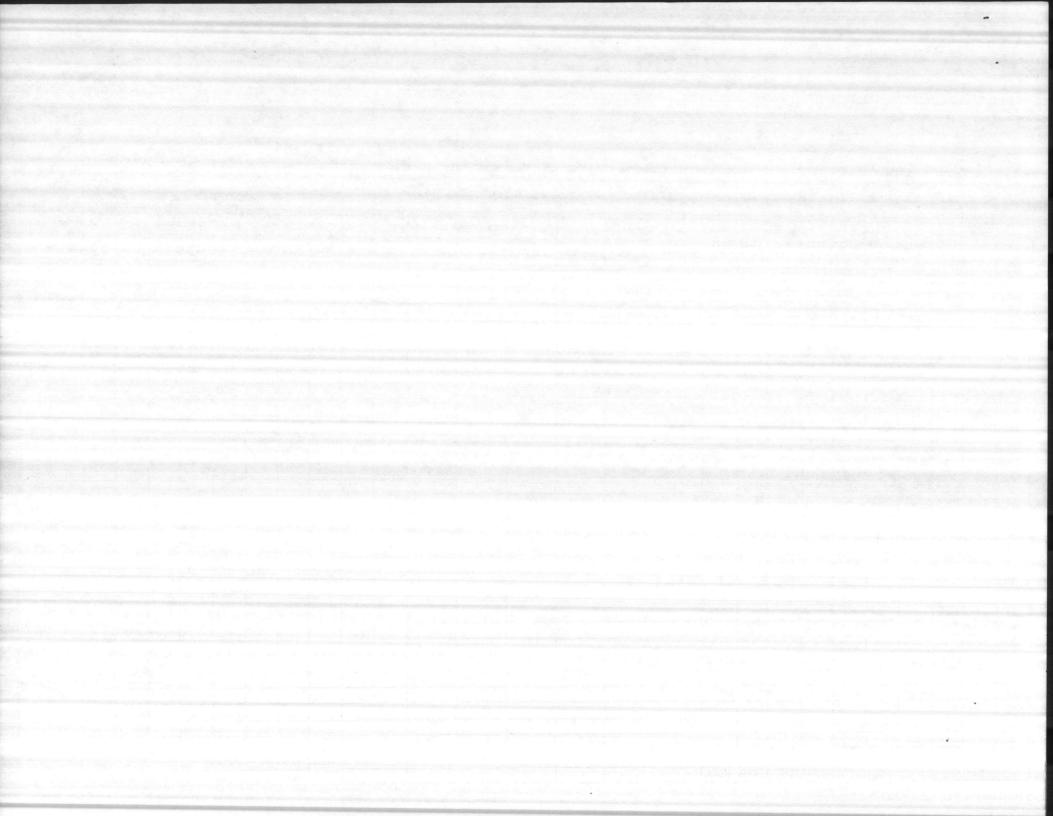
Month: March 1985 MCAS New River Water Treatment System at Camp Lejeune Method Code: 303


Serial # 04-67-042

N. C. DEPARTMENT OF RUMAN RESCURCES

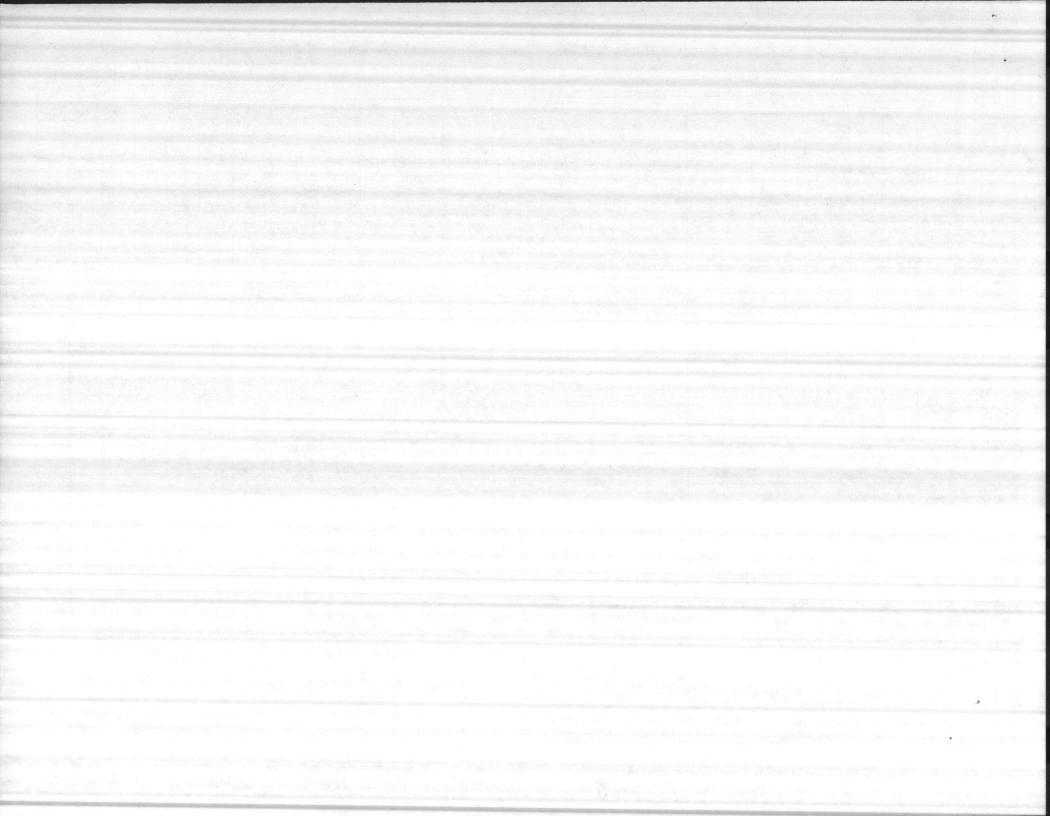

Contaminant Code: 3000

6		RAW WATER COLIFORMS (MFP)								I	FILTEREL			SHED	DISTRIBUTION SYSTEM											100	
Sales (A	141 14	a land	8			C		an an ann an tar an				1	T		COLIFORMS (MFP) . REPEAT SAMPLES										
	1.1		1	1.1				T								1.		1	LULIF		1	1	<u></u>	REPE	AT SAME	PLES	
					-				80. OF		•							<u> </u>	2	3	4	5					
- F DATE	VOLUME FILTERED ml. TOTAL COLONIES DEL COLONIES COLONIES FILTERED ml. FILTERED ml. FILTERED ml. FILTERED ml. FILTERED ml. FILTERED ml.		TOTAL PLATE COUNT	HEF CULIFURMS	TOTAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS per 100 ml.	NO. OF SAMPLES EXAMINED	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS Per 100 ml.	COLIFORMS	COLIFORMS Per 100 ml.	INCUBATOR TEMP.									
2	Nº.						. 1				1.	•															
3		1.1	in the	a special	1.1.1.1.1.1.1	Sec.		and a		ang karang sa	1	100									10000		10000	and a strend			-
4			•	1.1.1.1.1	1.										1		-										-
5							199										0	7	00	00	00	or	1				35,
7		1.1		10.00			<u>.</u>				1	-				1.00		<u> </u>		-1-	1010			1			33.
								· · ·		· · · · ·						1.10	(1, 7)		1.1	•		1.1	1.1.1.1				-
		1.1.1.1												1								1211-57	्यम् ह				
-	1										-					1.									•		
1	1													<u> </u>	· · ·								1	1997 - A. 1997 -		and the	
1										<u></u>				and the	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	100000					1.1						1.14
				1									_				0	7	00	00	00	0		11.15			35
					1.1																		1. 15		1		
	-										·											1	1.1				_
-						1.1.1.1.1.1	e print d																		•		-
4																											-
+											1			1.													-
+							-								an tang	1.000	0	7	00	00	00	01	T-				36
\dagger																de Sa	Consideration of the second	part an	1000		at reals	al contra		Separated.			
\dagger												,							1							A. S. S.	
1										<u></u>								_					in the second			para di	
1	-									· · · · · · · · · · · · · · · · · · ·				-	onge og					an ch							
						-	1.1						<u> </u>							-							
T																	0	7_	00	00	00		0				35
1										ale and a second state					parente en											Sec. and	
1					:					en aleman aleman			1.0	1	1000										10.00		
4															100 - 10 - 10 - 10 - 10 - 10 - 10 - 10												
			-unit.	A.F.A.T.MAL																							-
_	MEDIA C MEDIA	A	BBL	mF.	ndo	BACTE		ARITH.		abun Supelic & parti riskan n	risting Pois				ATTINCAS		0	CIST.	TOTAL	NO.	SAMPLES			-			-
	, MEUTA	· _				DENS	111	GEO.	MEAN				14.11		in the			SYSTEM					11/100	7100	0. 13/		28


2

							7-OZ		* 275 ¥.46 ¥#** .483		C. DE FILT		FINI					DIS	TPIPUT	ION SY				Code		300	
		Å			В			C										COLIFO			5124		REPEA	T SAMP	IES		
																		1	2	3	4	5	NET ER	1 3201			
- DATE	FILTERED ml.	TOTAL COLONIES	COLONIES	É VOLUME FILTERED ml.	TOTAL COLONIES	COLIFORM	VOLUME FILTERED m1.	TOTAL COLONIES	COLLIFORM COLLIFORM	NO. OF COLIFORMS PER 100 ml.	TOTAL PLATE COUNT	MALY CULIFURMS	TOTAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS	HO. OF SAMPLES EXAMINED	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS	INCUBATOR TEMP.	PLANKTON					
2	Ň		. Chatraint				. 1							· .			i.				1		1.00				1.1
3			•		7		<u> </u>										•							19 m			
5	6_				<u> </u>								.7.7			0											
+	35										···	 			+	0	7	00	0 0	00	0					35.5	-
7						1.2.2.				• • • • •					- Contraction					1.1				-			
8					97.409 6										-												
9					1		1	-												(1) (1)							
- 10	1						•		1.	<u> 1997 - 1997 - 1997</u>	1.000		an singular	and the second	a ang ang ang ang ang ang ang ang ang an	1.1.1.1											
11										<u></u>															•	1.2	
12	372						-									0	7	00	00	0	0	0	1.1	1000		35,0	-
14		1. I.						-																			-
15		• •						1																· · ·			-
16														1											102		-
17														- Karley										:	1.5		
18							·	-		•	and the second													Class			
19	319										and a second second		ale principal da	ten interne	in the Said	0	7	90	00	0	0	Ø				35.0	
21											77						1				_						
22			a start					0.00									Carlo parte			0	rest of the		Sector 1				
23				-				0.0													-						-
24																·											-
25							par 1					1															
26	Zzb									and the second second	e e se					0	7	96	00	0	0		Section Section		and the second	35.0	
++	<u> </u>	100.000			de la de	Cherry Col		Part States		and the second states and								0					0.1154		Cart C		
29			-			-			· ·																		
29 30																		1				1. 11	÷. •	12.20	•		
31											e											1000					
	F MEDI		RRI	mE	nda	RECT	FRIAL	ARITH	MEAN									TATI					لسخوه				
	C HEDI		- 1101	- <u> </u>	hund	DEN	ERIAL	GEO.	MEAN	Manufactor and a second second						0	SYSTEM			AMPLES		4/100		1.1.1	a later in	28	1

-					W WAT		7-04	(HEP)		NETROSLET BAT BURNEY CON	FILT	EREC	FIRIS	SHED					TRIBUT	TION SY	STEM	ant	Cod			50	T
F		A	,		В	1		C										COLIFO	RMS (H			<u>.</u>	REPEA	T SAMP	LES	1	
	r VOLUHE FILTERED ml.	COLONIES	COLONIES	É VOLUME FILTERED ml.	COLONIES	COL I FORM COLONI ES	VOLUME FILTERED ml.	TOTAL	COL 1 FORM COL ON 1 ES	NO. OF COLIFORMS PER 100 ml.	TOTAL PLATE Count	Per 100 ml.	TOTAL PLATE Count	HFP COLIFORMS Per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS per 100 ml.	MO. OF SAMPLES EXAMINED	COLIFORMS Per 100 ml.	COLIFORMS	coll Forms	COLIFORMS per 100 ml.	coti FORMS per 100 ml.	COLIFORMS Per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	INCUBATOR TEMP.	
+		÷			in the second		<u> </u>							in the second			in a start	and the			and and	Con const					I
t			1				1-1-								+										···		+
1			•		1.						1			1								1				17	t
+			a ga an													0	3	0	0	0						35.5	1
+			-						-+			<u> </u>															1
t	• 3				-							<u> </u>					10.000	-						<u></u>			+
t	1.1										1000	11.1															t
1	1	•	est partiel	2 A					1.		n ne shak b					1000										1	t
+										•	1	_															t
ł										· · · · · · · · · · · · · · · · · · ·	16,000					0	3	0	0		0					35.0	Ι
┝											a ana ana							1				1				1	1
ŀ			0.00		The second						-						+							·			╇
T													t i													-	t
I																								•		1.1	t
₽										an a	1.000			;										1			T
ł	-	T.C.M.C.			-									den series	10.200.00	0	3	0	0	-	a de la compañía	0				35.0	Ŧ
t							1809) 1972 - 19				Ŷ.						1										+
T	Constant of		1.1.1.1.1		de la gr	1.1.1.1.1	1.00						Descent of the							1.01							t
Ι		100.00													1.575								1.1.1			-	t
+						1								an an der								1.1.1				1	t
+																							in the		and a	1.1.1	T
+																0	3	0	0		1	0	in sectors	and the second		38,0	1
$^{+}$					-																		and the second			· .	+
t	•									1	1			1000 March													+
I						1		1				1	and the second							-				a recently	in the second	-	t
				ALATIN	-							-	-													1.	t
(F	HEDIA		BBI	. mF	ndo	BACT	ERIAL	ARITI	I. HEAN		a an an an		Signed 2	1	1.000	0	DIST.	TOTAL	NO.	SAMPLES	s .	a la statistica				12	1


.

Camp Johnson Water Treatment System at Camp Lejeune Method Code: 303 N. C. DIP STREAT OF SCHAR RESOURCES Contaminant Code: 3000

Serial # 04-67-045

Contaminant Code: 3000

				P		TER COL	LIFORMS	S (MEP	}		FILT	TEREC	FINIS	SHED	1			DI	STRIEUT	TION S	YSTEM			000	-	1 1
	L	A		1	B			-C		· · · · · · · · · · · · · · · · · · ·				and the standing	1.0.84		- Aller and	COLIF	ORMS (M	KEP)				AT SAME	PLES	-
	1	12			1.1		1000	T		1		1		1999			T		2	3	14	5	ALL LA	T	1	1
•	-			al.						KO. OF COLIFORMS PER. 100 ml.	TOTAL PLATE COUNT	20 E.	TOTAL PLATE COUNT	SH	TOTAL PLATE COUNT	SHS	LES									же.
- DATE	FILTERED ml.	TOTAL COLONIES	COLONIES	E VOLUME	TOTAL COLONIES	COLORIES	VOLUME FILTERED m1.	TOTAL	COLONIES			HEF CULIFURMS		MFP COLIFORMS per 100 ml.		AVE. COLIFORMS	HO. OF SAHPLES EXAMINED	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS	INCUBATOR TEMP.					
2	1	-					+	+	+	·	'	<u> </u>							\Box						1	
3		F		-			+++	1-	1									'	<u>+</u> _'							
4			· ·		17-			. 			1		'					'	<u>+'</u>			<u> </u>				
5		\square		1	1	1		-	1-1	· · · · · · · · · · · · · · · · · · ·	1			+ ···	+	0		0	00	+	+'	'	['			
6									1		<u>†</u>					0	3	0	00	<u> </u> '	+'	'	'			35.5
7											1								1	-	+'					
8		1'	1'	1.1.1.1	1.200			1000				·								-	1-				+	+'
9		f	f'								a service and				1					-					. 	
- 10	i d	i l	<u> </u>			\square																	<u> </u>		-	-
11		-	<u> </u>			\square													-							
12			<u> </u>				<u> </u> '	\vdash						1.2		0	,3	0	\Box	00						35.0
13 14		$ \longrightarrow $			'						1		<u> </u>		1		1. 1.			· · · · · ·						
15			$ \longrightarrow $								+	[↓ ′													
16			$ \longrightarrow $									<u>⊢</u> ––′						· '	f'	I'	!		L			
17				—	<u> </u>							·		·				<u> </u>]	1	·'	·'	<u> </u> '	<u> </u>	<u> </u>		
18										· ·	1	'	<u> </u>	·	+		'	<u> </u>	1	<u> </u> '	· '	\vdash	<u> </u>	<u> '</u>		
19											1					0	3	0		<u> </u>	00		<u> </u>	'		35,0
20	in the second									and a second							-			['						55,01
21		$ \rightarrow $		1							·					distant.								-		-
22		$ \rightarrow$	\square	1	<u> </u>		<u> </u>			and a superior and product	anter en la parte						and the second									
23		\rightarrow		<u> </u>								<u> </u>												10000	and the second	-
24							<u> </u>	\square				[]														
25							l					'														
20												!	[]			0	3	0	11			00				35.0
29	(Standard				l					<u>terren er sterre i de terre</u> Ter			[]				<u> </u>									
29	. 1										++		[]				'		1	<u> </u>						
30											++		[]				1'	1	1-	<u> </u>						
31											+]]		+		<u> </u>		1				!			
MF	F HEDIA	A	RRI	I mF	Endo	BACT	TERIAL	ARITH	H. MEAN					-			CIST.		L HO. S	ine mar		Lama		Lun		

.

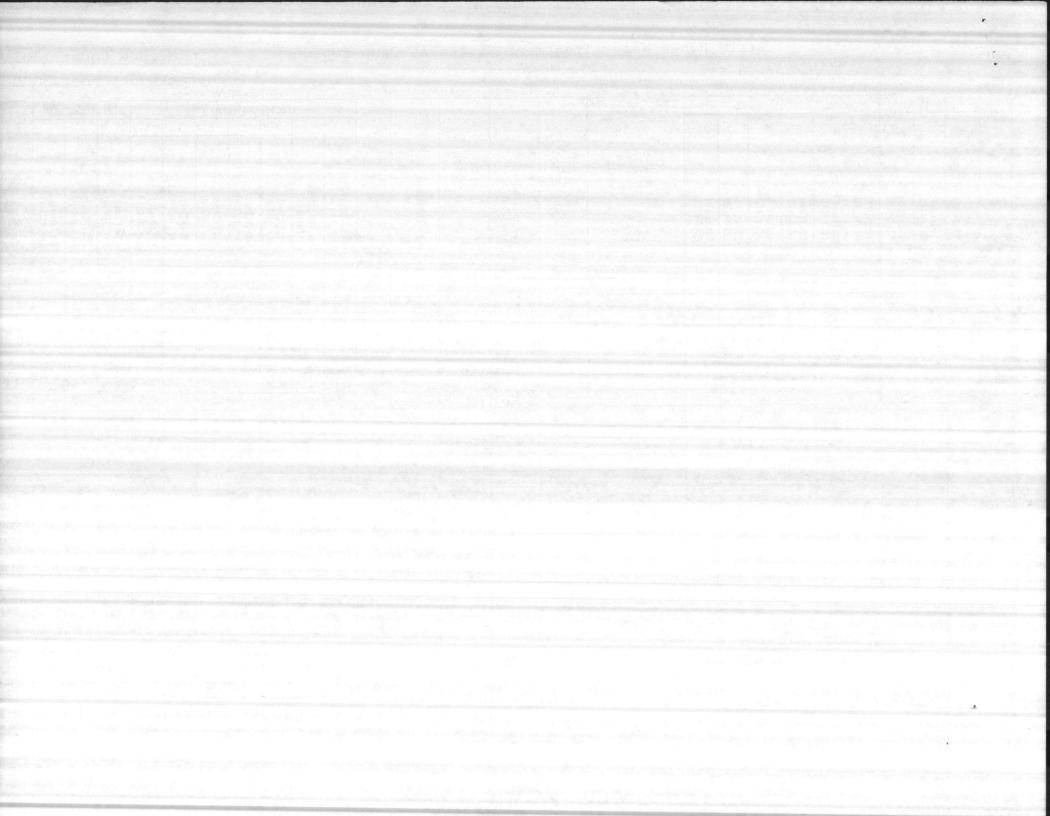
.....

RAW WATER COLIFORMS (MFP)

C.

Rifle Range Water Treatment System at Camp-Lejeune -046 8. C. DEPARTMENT OF REMAR RESOURCES

Method Code: 303


Serial # 04-67-046

B

FILTEREC

MAR RESCORCE	Contaminant Code: 3000
FINISHED	DISTRIBUTION SYSTEM
and an and a second second	COLIFORMS (MFP) . REPEAT SAMPLES
A set of the set of the set of the	

					1	1		1			Sales and the Kind	and the days	and the second second of	States in	1.2.2.1	12.20	1. 1. 1. 1.	COLIFC	JRMS ()	(17)			REPE	AT SAM	PLES	
																		1	2	3	4	5			1.1.0	1
- F DATE	FILTERED mI.	TOTAL COLONIES	COLONIES	É VOLUME FILTERED ml.	TOTAL COLONIES	COLORIES	VOLUME FILTERED m1.	TOTAL COLONIES	COLI FORM	NO. OF COLIFORMS PER 100 ml.	TOTAL PLATE COUNT	MHF CULIFURMS Per 100 ml.	TOTAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TO TAL PLATE COUNT	AVE. COLIFORMS	NO. OF SAMPLES EXAMINED	COLIFORMS Per 100 ml.	COLIFORMS Per 100 ml.	COLIFORMS Per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	INCIDENTAL TOUR
2	1				-		.]			in an she beer	•	1920 - N. S. A. B. M.	alar a cara	1												+
3						A. 19											1.4									-
4			·		V.						1			1		1.000	1.54		11.200							1
5				-			1.					<u> </u>				0	3	0	0	0					1000	35
6																										
7								· · ·											•			Sec. 1	1.1.2000		1.54	
8		1		Nogonal S.			1. 1. 1. 16 16 18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						And and the			- Sector			Section 1			-	1.1			
10	N I										-			A set of the	1.	51.575		1.1								
10	1,							-	÷.,		-							1.1		Sec. 1		200				
12								Contraction of			-							1.1.1					6- A.			1.2
13.	i i	1.1						1. 1919 1. 1917 - 1917				-	10			0	3	0	0		0			1		35
14		3									-								1.1.1	·		-			100	
15									al an													-	1.	•	• •	·
16													· · ·											•		
17							-			· · · · · · · · · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••	1												1000	-
18								and and a		•				·												-
19		1997 E.M.		e 19 3												0	3.	0	0	0						35
20			2 card		•	1.1.1.1.1		and the second		tan tanan sa		11.								<u> </u>		1998-1998-189 1997-1997				120
21								No.					•								-				10.00	1
22												(neren eta) let	and the second s													1
23		1.19 - 19		199	100 100			Contra Car									10.0								Sec. 1	1
24										and the second second		1												and the second		1
25																					1.1				1999 - A. 19	1
26																0	3	0	0	200	0				1997	35
27											in a sur particular		alle brandaria	Sector States		a de la composition	Case of the second		-	2000 - 20						T
29									·	in the second			and the second			1960 - 1963 - 1965 - 19									1.1	
29																										
30																										-
31			-	harman			-		-		A 100 A 100 A 10 1000			-												1
MF	MEDIA		BRI	mE	ndo	DENS	ERIAL	ARITH	MEAN						,	0	CIST.	TOTAL	NO. S	AMPLES			a manana d			12

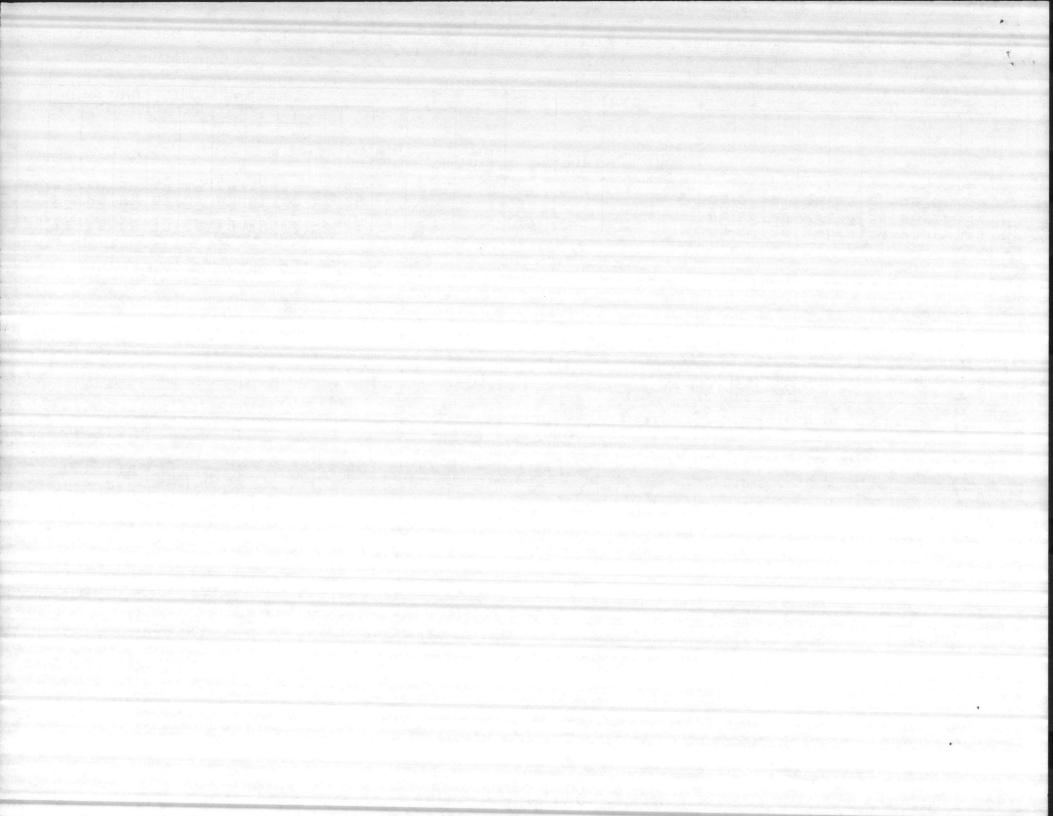
March 1985 Courthouse Bay Water Treatment System at Camp Lejeune Serial # 04-67-047 N. C. DEPARTMENT OF RUMAN RESOURCES

Method Code: -303 Contaminant Code: 3000

				R	AW WAT	ER COL	I FORMS	(MFP)			FILT	EREC	FINIS	SHED	1			DIS	TRIEUT	TION SI	STEM						-
		Å			B			C					·				1	COLIFO				Sugar Printer	REPE	T SAMP	TES	Cogrado -	-
er pekana	a series and			1.129	1.1	an a		T					•						2	3	4	5				-	
					•					80. OF									-								
DATE	FILTERED ml.	TOTAL COLONIES	COLORIES	FILTERED ml.	TOTAL	COL I FORM	VOLUME FILTERED ml.	TOTAL COLONIES	COLONIES COLONIES	KO. OF COLIFORMS PER JOO m1.	TOTAL PLATE COUNT	MPP CULIFURMS	TOTAL PLATE COUNT	MFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS per 100 ml.	NO. OF SAMPLES EXAMINED	COLIFORMS Per 100 ml.	COLIFORMS	COLIFORMS Per 100 ml.	INCUBATOR TEMP.	PLANKTON					
2	1				1		<u>}</u>			· · · · · · · · · · · · · · · · · · ·						•••											
3							+-+-							-												•	
4		1			1/		+			i																·	
5	174,813				1						<u> </u>			<u>}</u>		-								-		1.1	
6	62.200					····					11					0	4	0	00	0			1.2.2			35.5	-
7		1						1.																		<u> </u>	+·
8		l'anna anna	-					-		Sale and the second														· · ·			
9	and the						1		1			1							1								-
- 10-	1	•													-	Carlo 11								1.	10000	-	-
. 11					a series		Carl good		n filippine						1											-	57
12					-					Same and some					-	0	4	0	0	10	0					35.0	
13.								1000									Sec.							1.1.1.1	1.		
14	dige in	a anti-								an a								-									
15									and the															•			
16														<u> </u>													
17	Sec.								-				1														
19		1.1						7						1		-							10.00 m		(The second		
20			•								-				-	0	4.	0	0		0	0				35,0	
21					den ber						1 3						·									•	+-
22					19.00																·						
23							·		and a start										-								-
24		1.4								la de la constante												·					-
25									Sec. all																		\vdash
26	1.19															0	4	0	0		0	10				35,0	1
27											· · · · · ·				miftered	And a second of						-10					
29	and the state	-			-georeense				•			Sector Sector	Second ANSI		and generation of				100	1. 2	1000						-
29					:						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1											-					
30												1					1						19.3			1	
. 31				-					-					ATTIM						DEMO							
H	F MEDI	A	BBI	L mF	Indo	BACT	ISITY	ARITH	. MEAN							0	CIST.	TOTAL	. NO.	SAMPLE	ŝ .					16	1

3

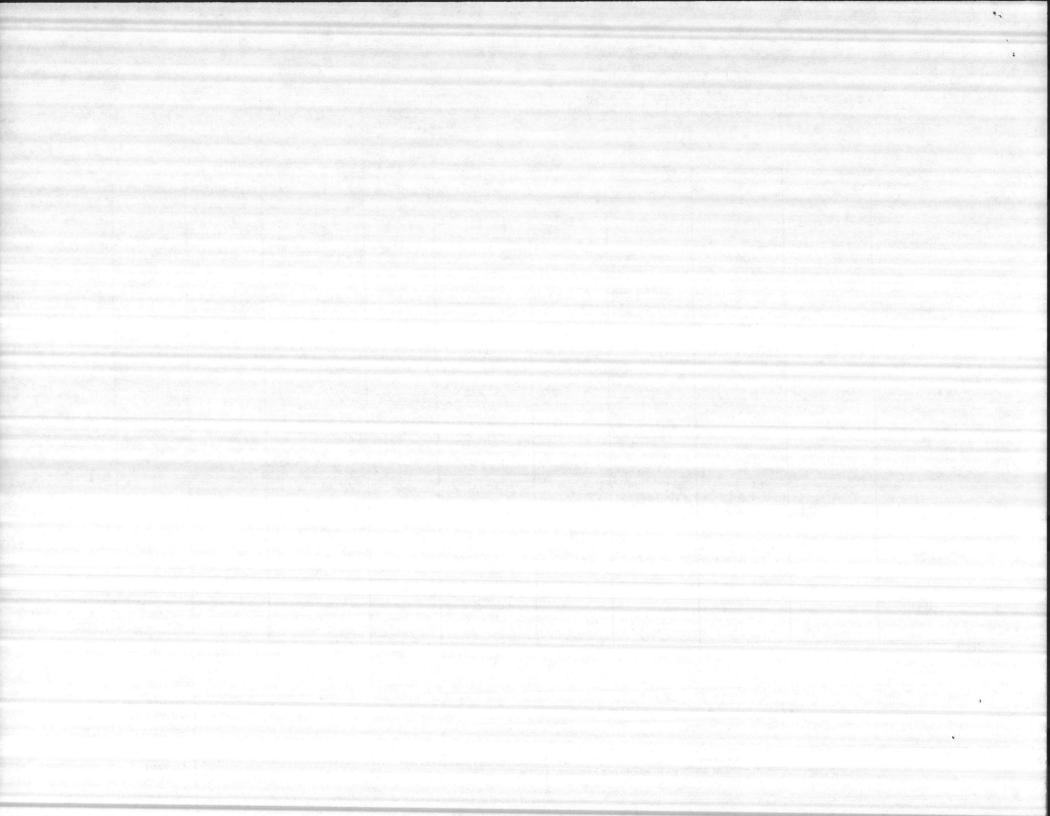
Onslow Beach Water Treatment System at Camp Le jeune

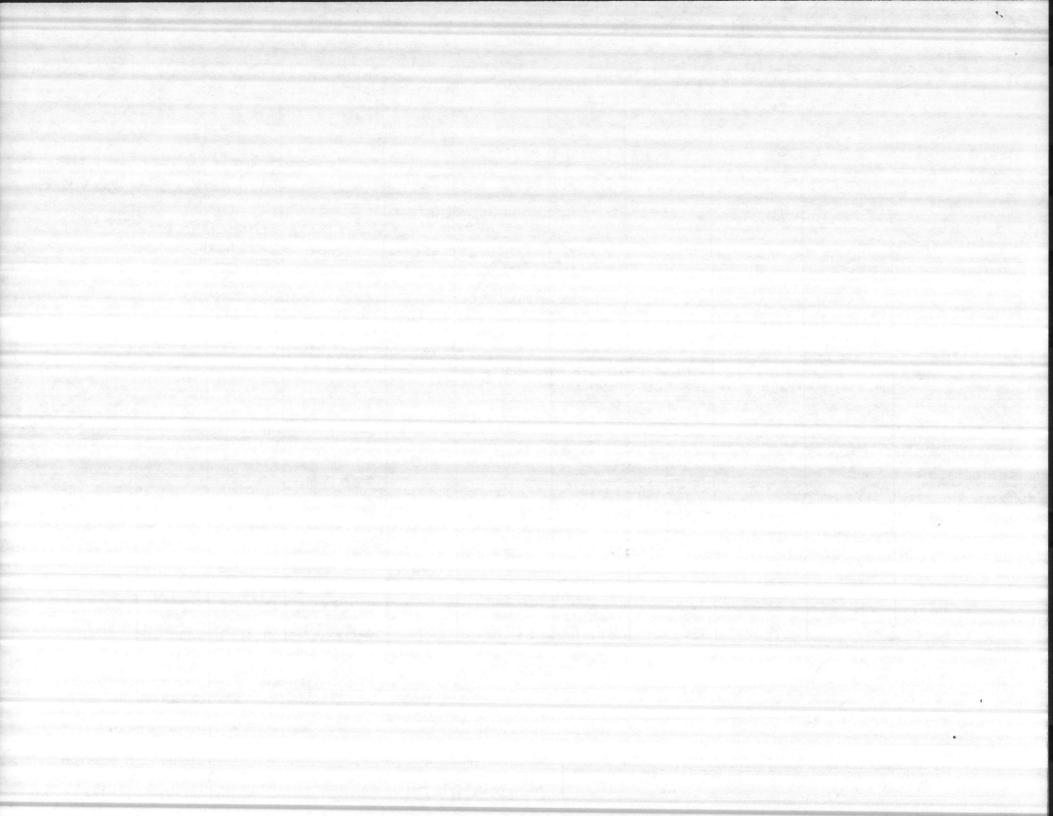

Method Code: 303

Somial # 04-67-049

N. C. DEPARTMENT OF RUMAN RESOURCES

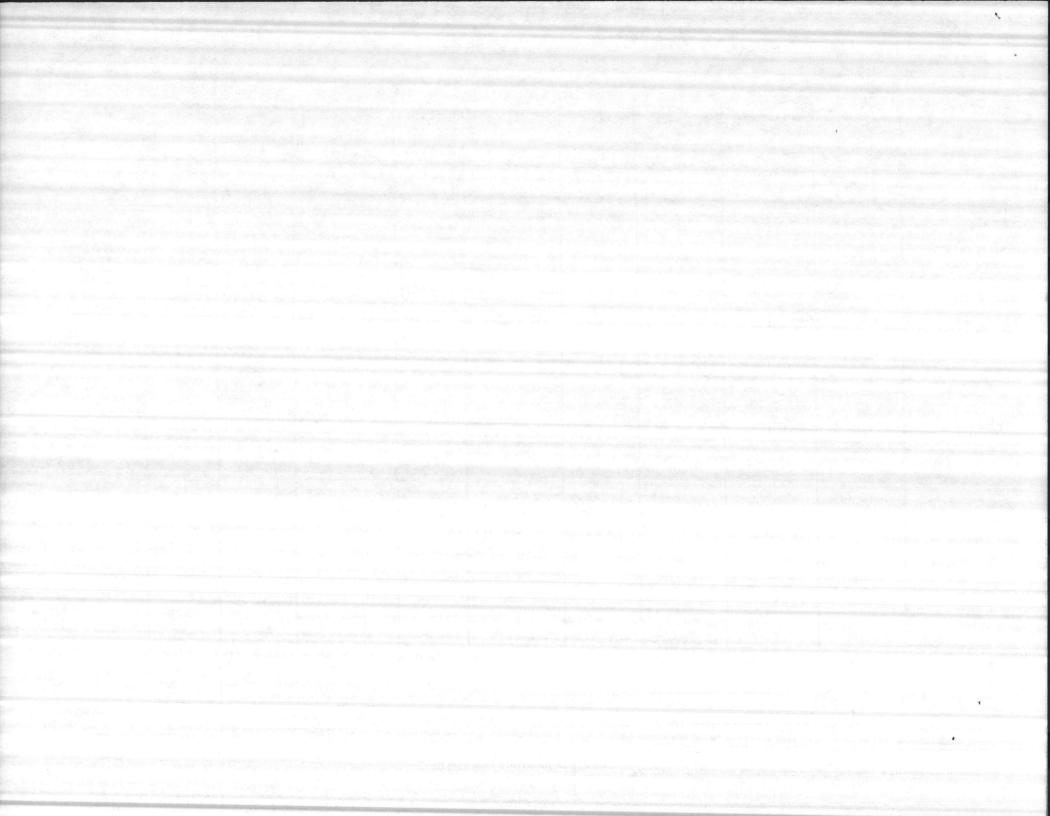
Contaminant Code: 3000


1.			1.	R	AW WAT	ER COL	7-048	(MFP)				TEREC	FINIS	HED					STRIBUT		STEM			<u></u>		-
-		A			B			C					[·]		1.00			COLIFOR	RMS (V	(FP)	1.1.1.1	·'	REPEI	AT SAMP	LES	4
t		Î	1		Ē,			Ċ,										1	2	3	4	5				
- DATE	VOLUME FILTERED ml.	TOTAL COLONIES		FILTERED ml.	TOTAL COLONIES	COLORIES	VOLUME FILTERED m1.	TOTAL COLONIES	COLONIES	NO. OF COLIFORMS PER :00 ml.	TOTAL PLATE Count	MHP CULLFURMS	TOTAL PLATE COUNT	HFP COLIFORMS Per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS per 100 ml.	NO. OF SAMPLES	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS per 100 ml.	INCURATOR TEMP.					
2	$\overline{\mathbf{x}}$	$ \longrightarrow $			-	-	1.				-							· · ·	-	1						+
3											Τ	<u> </u>		1.1.1.1.	1.	<u> </u> '	1	 '								+
			· · ·		V						1			1		<u> </u> '		<u> </u> _'								+
5											· · · ·	1-1-		ļ		0	Z	0	0				+	+		35
5							['									<u> </u>			+		+	+	+	+	+	+
								• •												-		+			12.383	+
			\Box							Mary Sec.		Server Lee	• • • • • • • • •					1-			-			+	+	+
	\Box										<u> </u>	$ \rightarrow $					+	-		+	+		+	+	+	+
0	1	· /				1.10																	+		+	+
1				S. Salar	1.19		'		Sec. 20		an an an Anna a Anna an Anna an					0	2	+-	0	1-		+	+		+	3
2					1.1	1.1	'			· · · · ·			-			10	1=	0		1.	+	+	+		-	T
3.		· · · ·					'											-			1	+	+	1.	1	+
14			"		1200	Constant of the											+					+	+	1.	1	+
15		<u> </u>	<u> </u>																				+	1	1	+
6		<u></u> '	 '	- 										-			+		+			+			1	T
17		<u> </u> '								<u> </u>									1	+			1	1		T
18				<u> </u>					+		-					0	2	0	1	0	1	1	1		1_	i i
19			12.00		+				+	· · · ·			1	+	-	and the second	1	1	a engl	And Property	() A HOL	and the first	1	Teste	1	T
20		1.1.1				+			+				-	+	-	1	+	100	100	1		12	1	T	1	I
21								+	++		-		-	-	-			1	1			1_	1		T	I
22					+	+		+	+	<u> </u>	-		C. Constant	1.4.1	-		-	1	1		1	T		T	T	
23	-										-		-			-		-	-				T		T	1
24									+							-	-	-		1_	1	T			T	
				+	+		+	+	+'		-	-			-	0	2	0	0	T	T	T	T		T	
26	+	+		+	+	+		+				-				1	1		1_	T		T	1.	T		
27		a sugar	-	+	+	Contraction of		+					-			1	1				T					
	+		+	+	1.	+	+	+-	+				-			1			T	T	T	T				
29 30		+	+	+	+	+	+	+	+		-	-	1			1										
		+	+	+	+	+	+	+														_	-	-		
31	ME HEDI		And the second states of the	BL. m			CTERIAL		TH. MEAN	And the second	ATCT ALCE AND IN			ATT ATT ATT		O	CIST	TOT	TAL NO	. SAMPL	LES					

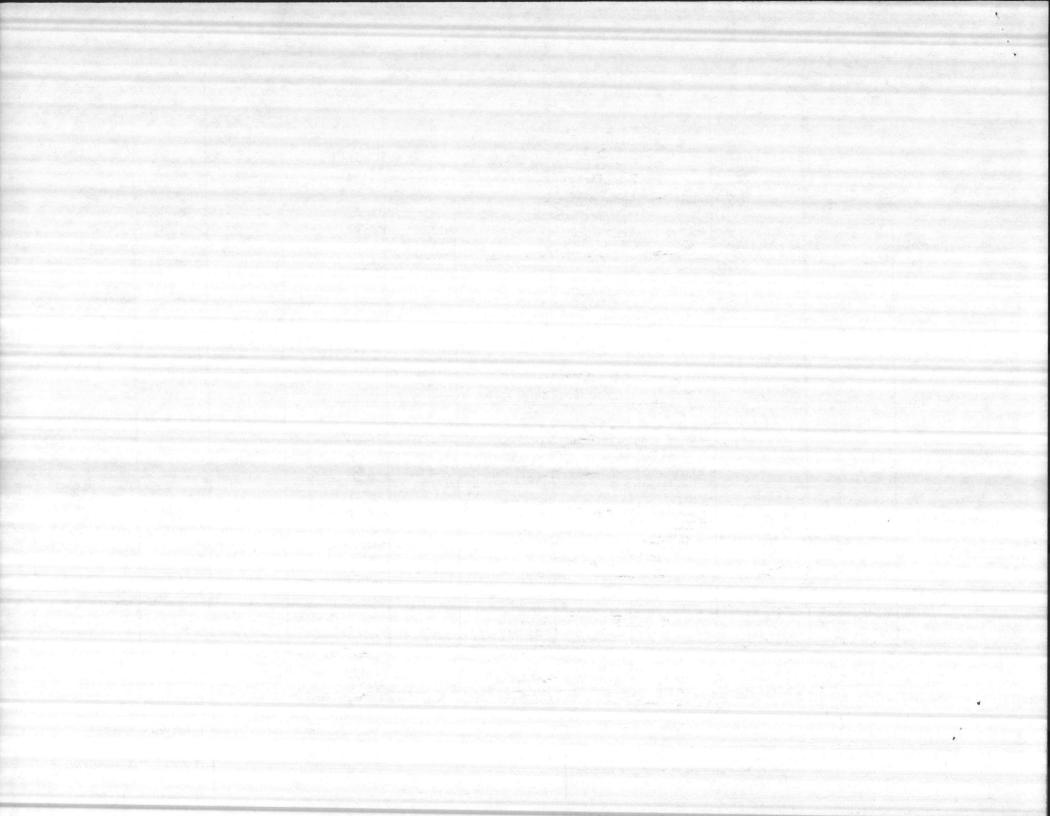

CHEMICAL ANALYSIS -- WATER TREATMENT PLANTS MCBCL 11330/3 (REV 6-84)

CHEMICAL ANALYSIS MCBCL 11330/3 (REV 6-84)	<u> </u>		1				DATE COLLECTER	D 5	DATE OF ANA	
PARAMETER	HADNOT POINT -041	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD -043			
PH (IN LAB NOT PLANT)	9.1	7.5	8,6	7.5	8.4	8.3	8.5	8,5		
PHENOLTHALEIN ALKALINITY	8	0	4	0	4	2	4			
METHYL ORANGE ALKALINITY	60	190	52	170	160	162	60	10		
CARBONATES AS CaCO3	16	0	8	0	8	4	and the second second			1
BICARBONATES AS CaCO 3	44	190	44	170	152	158	8	20		
CHLORIDES AS C1	10	40	10	.24	12	30	<u>52</u> 14	150		
HARDNESS AS CaCO3	56	80	76	64	54	100	60	62		
RON AS Fe	0.05	0.57	20.04	0.17	0.07	0.08	0.06	0.09		
Eluoride FLUORIDE	1.04	0.18	0.97	0.18	0.13	0.12	1.00	0.79		
	1.0	1.2	1.0	1.2	1,1	1.0	1.3	1.5	-	
	0.40	1.5	0.20	0.70	0.40:	0.60	1.00	0,6		
		3,65			1.13			010		ter and the second s Second second
ORTHO PHOSPHATE		1.13			0.25					
		2.52			0.88	entanong generativa Magazin				
TABILITY	+0.5	- 0.5	+0.1	-0.5	-+0.1	+0.3	+0.3	0.0		
EMARKS				and the second	and a second				COPY TO:	
										•
				ana						EATMENT
OTE: All results reported in and specific conducta	parts per million unce. One liter of	unless otherwise no potable water is as	ted except for pH, sumed to weigh o	temperature, Lone kilogram.	ABORATORY ANALY	ISIS BY				MCASS PINE
			ENCLOSUR	E (2) ′	16.1. Bu	me & h	achapelle	2		D FILE

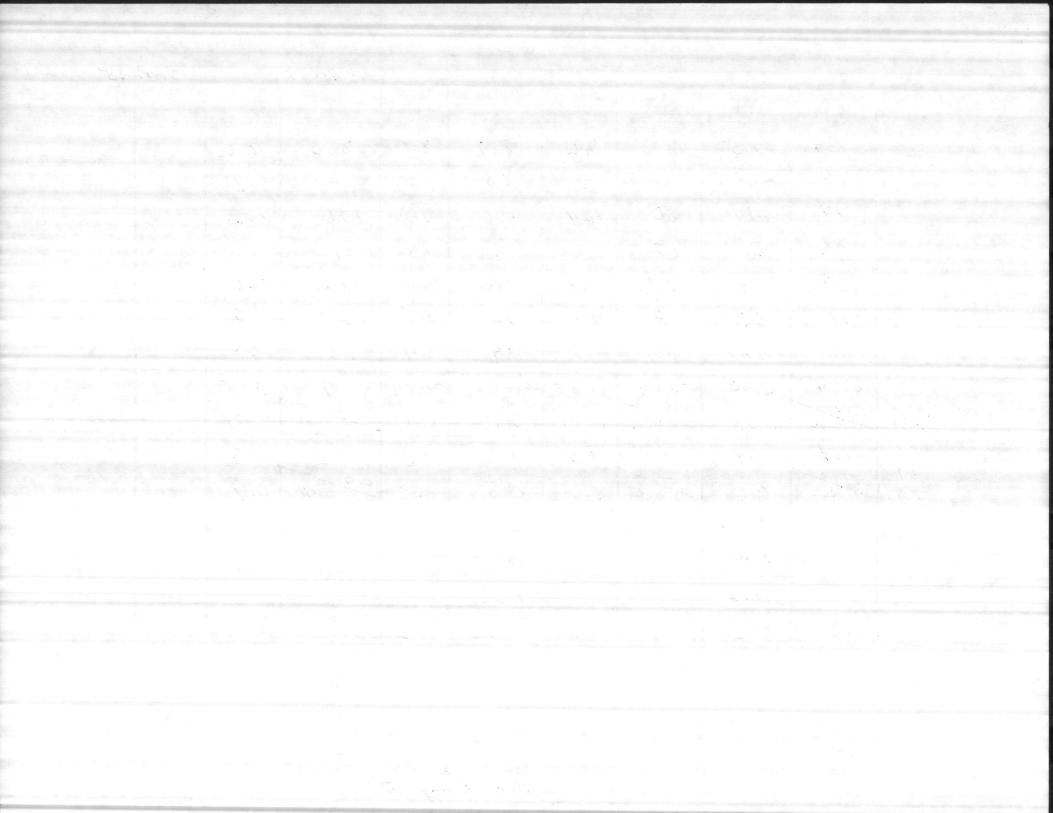
A .



CHEMICAL ANALYSIS MCBCL 11330/3 (REV 6-84)	6 – WATER	TREATMENT P	LANTS				DATE COLLECTED		DATE OF ANA	AR 85
PARAMETER	HADNOT POINT -041	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD -043		Ī	
PH (IN LAB NOT PLANT)	8.5	7.3	8.8	7.4	8.4	8.2	8.5	8.7		
PHENOLTHALEIN ALKALINITY	10	0	10	0	12	2	8	62		a second and the second
METHYL ORANGE ALKALINITY	60	196	46	164	176	170	- 88	220		
CARBONATES AS CaCO3	20	0	20	0	24	4	16	124		
BICARBONATES AS CaCO3	40	196	26	164	152	166	72	96		
CHLORIDES AS C1	30	36	10	18	14 :	14	10 .	110		
HARDNESS AS CaCO3	60	86	68	68	84	74	80	54		
RON AS Fe	50.04	0.63	20.04	0.14	20.04	40.04	A strain and strain and	50.04		e destadores en Secondario de Secondario de
FLUORIDE PM	1.01	0.15	0.76	0.17	0.12	0.09	<0.04 0.93 0.99	0.74		
	1.0	1,4		1.0	1.5	1.0		1.4		
TURBIDITY PM	0,2	0.7	1.0 0.2 0.4	0.3	0.3	0.4	1.0 0.2 0.2	0,3	1	
OTAL PHOSPHATE		1,10			0.59	antes (and the second	
ORTHO PHOSPHATE	an ang san ang San ang san ang	1,04			0.25	in an				
		0.06		nd i ag Rice agentin and Rice agentin and	0.34	e de la companya de La companya de la comp				
TABILITY	+0.1	-0.6	+0.2	-0.7	+0.2	0.0	+0.2	0.0		
EMARKS				terrent de la composition de					COPY TO:	le Legene dans series
								in dag karanan Tanan dagi sarang Tanan dagi sarang		•
		<:						a ha an		REATMENT
NOTE: All results reported in and specific conduct	n parts per million ance. One liter o	n unless otherwise r of potable water is	noted except for pH, assumed to weigh c	temperature, I	LABORATORY ANAL	YSIS BY		• • • •		
				2	HUNRYC	UTT				D FILE


	Carl Street Market Notice 1979 Aug
CHEMICAL ANALYSIS - WATER	TREATMENT PLANTS
MCBCL 11330 3 (REV 6-84)	

CHEMICAL ANALYSIS MCBCL 11330 3 (REV. 6-84)	D - WATER I	REATMENT PL	ANTS				DATE COLLECTER	R 1985	DATE OF AN	NR 1985
PARAMETER	HADNOT POINT -041	CAMP JOHNSON -045	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD -043			
PH (IN LAS NOT PLANT)	8,6	7.3	8.6	7,5	8,4	8.3	8.7	8.8	-	
PHENOLTHALEIN	6	0	4	0	8	4	4	12		
METHYL ORANGE	80	192	58	164	166	150	- 62	172		
ARBONATES AS CaCO3	12	0	8	0	16	8	8	24		The second
ICARBONATES S CaCO 3	68	192	50	164	150	142	54	148		
CHLORIDES AS C1	10	36	16	20	20 1	26	8.	170		
ARDNESS AS CaCO3	86	84	78	66	68	70	62	56	a far an	
RON AS Fe	<0.04	0.50	<0.04	0.12	<0.04	50.04	20.04	<0.04		
LUORIDE PM	1.05	0.16	1.13	0.16	0.12	0.10	0.93	0.75		
	1.0	1.2	the second surgery	1,2	1,2	0.7	0,9	1.3		
URBIDITY PM	0.2	0.9	1,0 0,3 0,2	0,2	0,2	:0.3	0.1 0.2	0.6		
OTAL PHOSPHATE		1,84			1,26			0,0		
		0.92			0.28					
	an a	0.92			0.98					
TABILITY	+0.4	-0.8	+0.4	-0.7	40,1	0.0	+0,4	+0.2		
EMARKS				<u> </u>	<u> </u>			1 / 0/12	COPY TO:	
					and the second second			diagenese in straight		
•	· ·	Antonio de la composición de la composi La composición de la c								REATMENT
OTE: All results reported in and specific conducts	parts per million ance. One liter of	unless otherwise no potable water is a	oted except for pH ssumed to weigh	temperature, one kilogram.	LABORATORY ANAL	YSIS BY			D PMU	
				3	LACHAPELL.	EV 13A	RBRE			D FILE


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S WATER I	REATMENT P	LANTS				DATE COLLECTED		DATE OF ANA	AR 85
PARAMETER	HADNOT POINT -041	CAMP JOHNSON	TARAWA TERRACE - 044	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD -043			
PH (IN LAS NOT PLANT)	8.9	7.6	9.0	7,8	8.6	8.4	8.8	8.9		
PHENOLTHALEIN ALKALINITY	6	0	6	0	2	6	2	12		
METHYL ORANGE ALKALINITY	58	190	46	170	156	162	- 68	160		an a
CARBONATES AS CaCO3	12	0	12	0	4	12	4	24		
BICARBONATES AS CaCO3	46	190	34	170	152	150	64	134	and the second	
CHLORIDES AS C1	12	34	14	20	16 :	20	14	166		
HARDNESS AS CaCO3	68	86	70	62	74	54	68	54	a de la compañía de l	
RON AS Fe	<0.04	0.48	60.04	<0.04	60.04	20.04		60.04		
FLUORIDE PM	0.96	0.17	<u>20.04</u> 0.92 0.93	0,15	0,10	0.08	6.93 0.92	0.71		
	1.0	1.3	1.0	1.5	1.5		6.9	State State	-	
URBIDITY TURBIDITY	0,1	0.9	0.2	0.2	0.3	0.1	0.2	6.2		
OTAL PHOSPHATE		2.70			0.45	011	0.2	0.2	a de la composición de la comp	
ORTHO PHOSPHATE		1.04			0.16	the Constants The Source of the	nen de secondar d'an de la			
		1.66	And K. S.		0.29	para di mana di Mana di Mana da Ma	ng a star ng shall darin Ng santa sa shall darin Ng santa sa sa sa			an a
TABILITY	+0.3	-0.8	+0.5	-0.7	0,0	-0.2	+0.3	0.0		
EMARKS									COPY TO:	a Maria managera
				COMP.						o`
										EATMENT
OTE: All results reported in and specific conducts	ance. One liter of	unless otherwise n potable water is a	oted except for pH ssumed to weigh	, temperature, I one kilogram.	ABORATORY ANAL	YSIS BY			D PMU	
		•	er proseden staars	н	T.H. BA	RBER				D FILE

,

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TI	REATMENT PL	ANTS				DATE COLLECTED	•	DATE OF ANALYSIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	
РΗ	8.9	7.5	8.8	7.6	8,7	8,8	8,3	8,6	
PHENOLTHALEIN ALKALINITY	18	0	6	0	18	12	2	18	
IETHYL ORANGE LKALINITY	74	194	50	164	176	76	196	202	
ARBONATES AS CaCO ₃	36	0	12	0	36	24	4	36	
ICARBONATES S CaCO 3	38	194	38	164	140	52	192	166	
CHLORIDES AS C1	10	30	12	12	12	14	32	62	
ARDNESS AS CaCO ₃	70	92	86	62	84	64	98	48	
RON AS Fe	20.04	6,50	40.04	0,13	40.08	-6,04	0.07	0.05	
LUORIDE AM	0.97	0,15	0.80	0,19	0.11	0.12	0.83	0.71	
HLORINE RESIDUAL	1.1	1.4	1.0	1.5	1.2	1.2	1.2	1.4	
URBIDITY AM	0.7 0.2	0,6	0.2	0.2	0,8	0.3	0.3 0.4	0.4	
OTAL PHOSPHATE		2.60			1.84				
ORTHO PHOSPHATE	late.	1.04	and the second		0,25				
META PHOSPHATE		1.56			1.59	S			
STABILITY	+ 0,3	-0.5	+0.1	-0.7	+0.3	+ 0.2	0,6	0.1	
EMARKS		<u>, </u>				1010			COPY TO:
	an an an ann an an an an an an an an an	an a				an de seu consta activitation a	and de la composition de la compositio La composition de la c		
	an a								
OTE: All results reported and specific condu	in parts per million	unless otherwise n	noted except for pH,	temperature,	LABORATORY ANA	LYSIS BY	and the second second	1. C. S. C.	
and specific condu	ctance. One litter o	potable water is a	assumed to weigh t	one kilogram.	This M	user, st	4		D NREAD D FILE

wer

CHEMICAL ANALYSIS - WATER TREATMENT PLANTS

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TH	REATMENT PLA	ANTS				DATE COLLECTED	r	DATE OF ANALYS	15 35
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	9.0	7.4	8.7	7.4	8.6	8,2	8.7	8.2	e i dan e	
PHENOLTHALEIN ALKALINITY	6	0	4	0	6	2	6	2		
METHYL ORANGE ALKALINITY	52	190	58	158	162	120	66	170		
CARBONATES AS CaCO3	12	0	8	0	12	4	12	4		
BICARBONATES AS CaCO ₃	40	190	50	158	150	166	54	166		
CHLORIDES AS C1	10	38	16	26	22	36	16	58		
HARDNESS AS CaCO ₃	58	78	76	60	24	68	64	54		
IRON AS Fe	40.04	0,75	205	0.15	10.04	40.04	10.04	10.04		
FLUORIDE AM	0.97	0.20	0.74	0.20	0,12	0,10	1.00	0.68		
CHLORINE RESIDUAL	1.0	1.3	1.0	1.8	1.0	1.0	1.2	1.3	Seguri .	
TURBIDITY AM	0.34	0.70	0.28	0.19	6,38	0.33	0.27 0,31	0.39		
TOTAL PHOSPHATE		2.60			1.09					
ORTHO PHOSPHATE		1.13		an an an ta' a	0.16	artis Maria antis antis				
META PHOSPHATE	an farmer an an	1.47	and the second		6.93			an an an Anna An Anna Anna An Anna Anna		
STABILITY	+0.6	-0.8	+0,3	-0.9	40,3	0,1	+0,4	6.2		
REMARKS							1	4	COPY TO:	
		nin andre	and the second secon	n an an an Arrange. An Arrange an Arrange a	lege over deltare en enderte Antipe og en en eg er personal					0
										TMENT
NOTE: All results reported and specific condu	in parts per million ictance. One liter o	unless otherwise n f potable water is a	oted except for pH,	temperature,	LABORATORY ANA	LYSIS BY		an an ar an		MCAS PMU
				A State of the state of the	Heneycutt	+			NREAD	D FILE

11330/1 NREAD 5 Mar 1985

Mr. John McFadyen Water Supply Branch Division of Health Services North Carolina Department of Human Resources Post Office Box 2091 Raleigh, North Carolina 27602

Dear Mr. McFadyen:

Enclosed are the completed Department of Health Forms (DHS 1942 2/74) for all water treatment plants aboard Marine Corps Base, Camp Lejeune for the period 1-28 February 1985. Also enclosed are the weekly Chemical Analysis Forms (MCBCL 11330/3 Rev 3-82) for the same period, as requested in the 25 October 1982 letter from Mr. Charles Rundgren of your office.

The analysis is run by the Quality Control Laboratory located in the Natural Resources and Environmental Affairs Division, Assistant Chief of Staff, Facilities. Ms. Elizabeth Betz, Supervisory Chemist, Quality Control Laboratory, telephone (919) 451-5977 is the point of contact in this matter.

Sincerely,

J. I. WOOTEN Director

Encl: (1) Dept of Health Forms (2) Chemical Analysis Forms

Copy to: LANTDIV (Code 114)

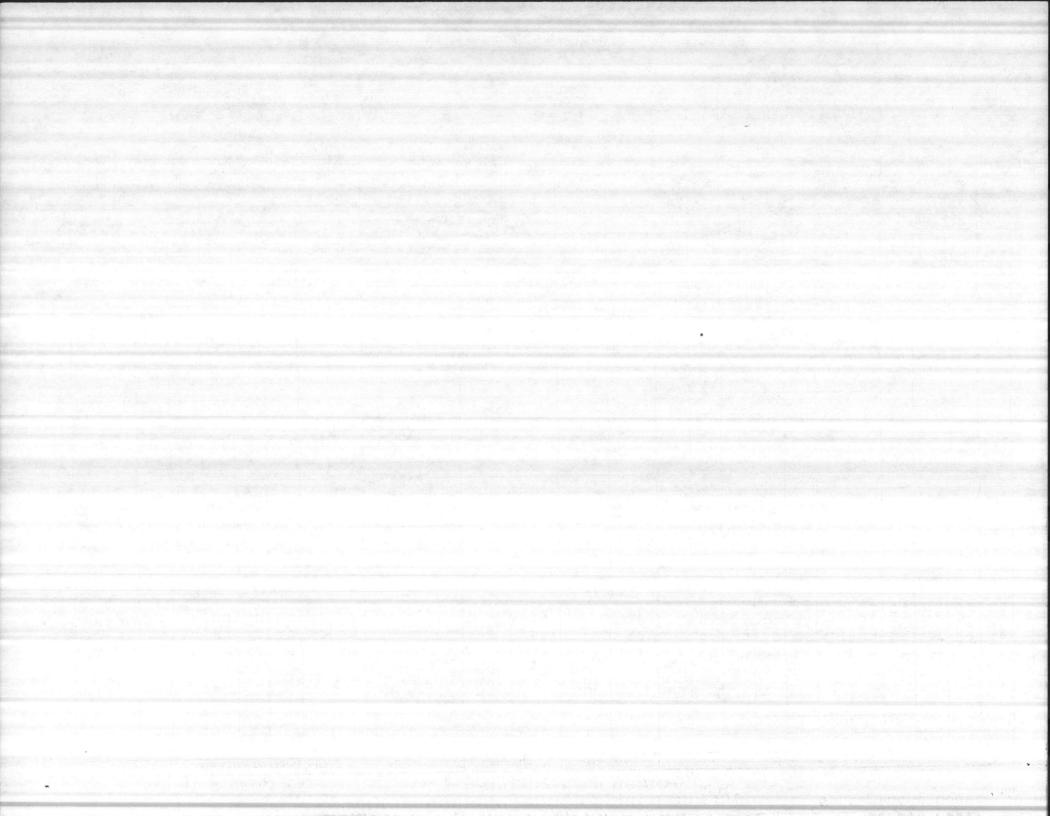
Blind copy to: BMO (Attn: UtilDir)

SupvChem

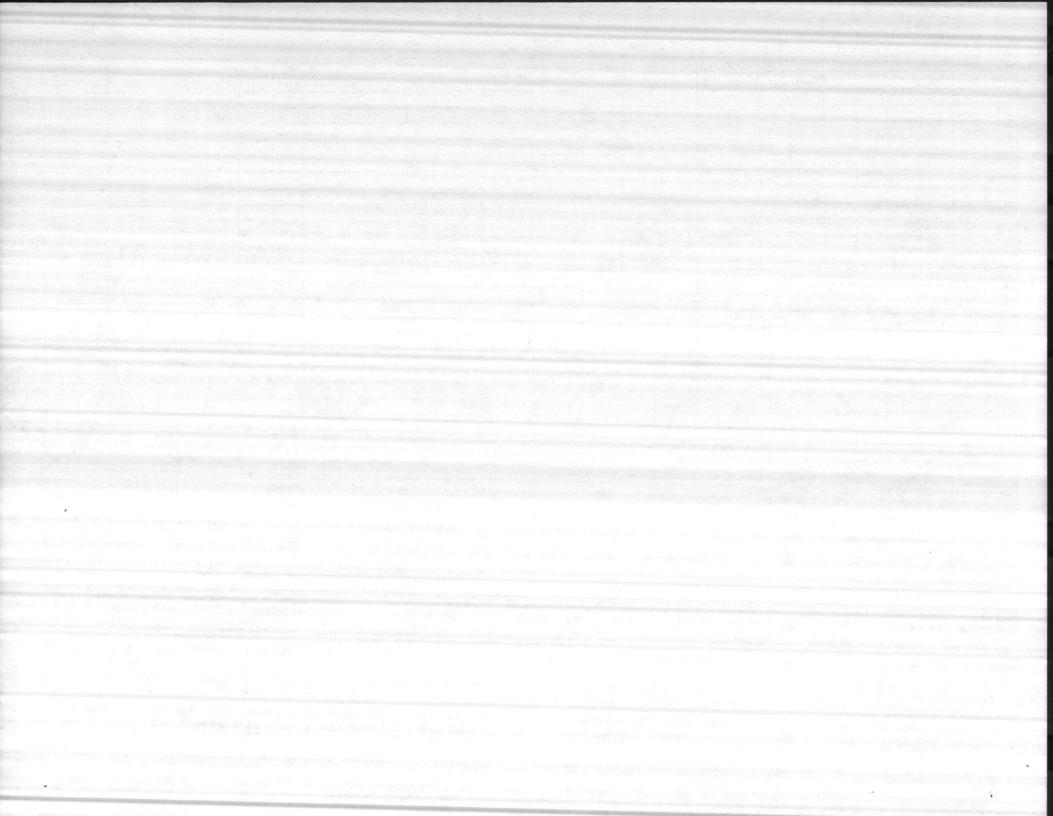
Writer: E. Betz, NREAD 5977 Typist: J. Cross, 5Mar85

Shorts the State of the State of the Shorts the State of the State of the Short of the State o U (.+131 1913). STI 1.60.2 20. 公司 和日本地址 is an a set of the set of the set WE HAT A STATUS TO BE STATUS 1. HI AND THE BUILD BUILD The state of the second second and the set of the set Carlo Bart Mark 10月1日,1月17日,2月1日 Low and the state of the state of the Minimum de la serie des la serie de la ser the state of the second

Year 1985 .


The Incenter I Can't AI ____

REPORT OF BACTERIOLOGICAL RESULTS TO DIVISION OF HEALTH SERVICES


Contaminant Code: 3000

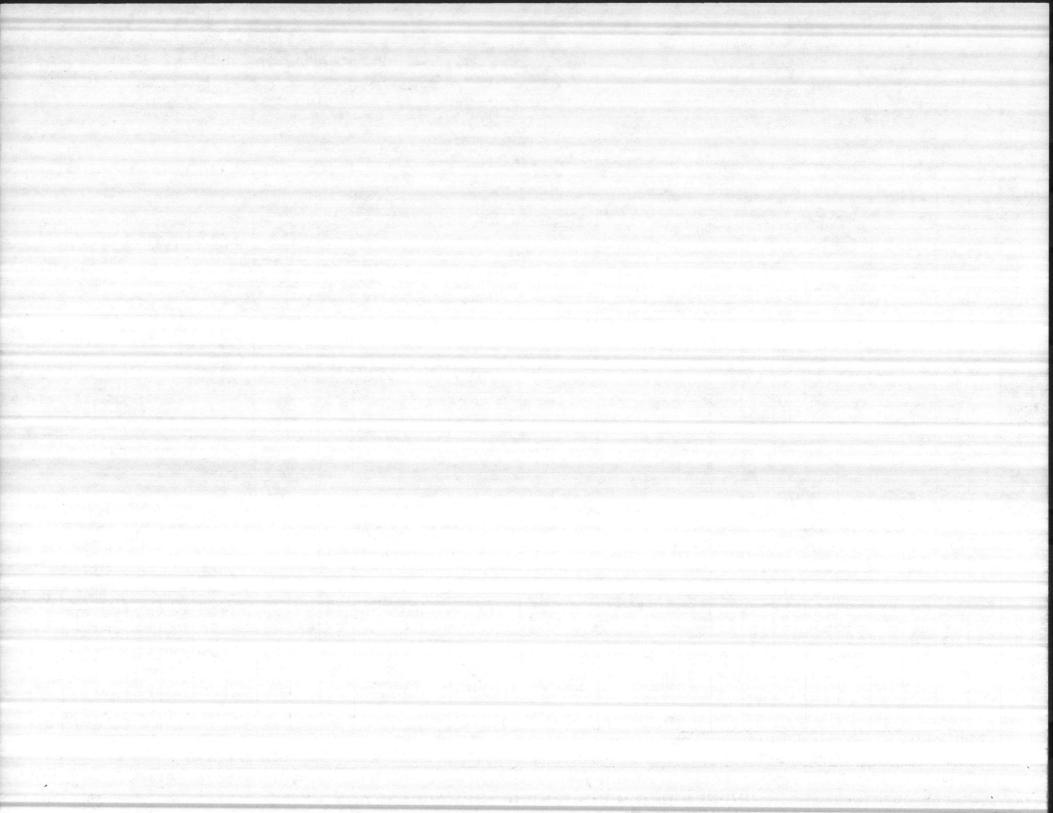
Setial # 04-67-04| N. C. DEPARTMENT OF HUNAN RESOURCES

	1	1.2.2	R	En VOL	T	S (HFP		1	FILT	EREC	FINI	SHED						TION S	STEM	Sec. 1		Section Pr	1.1	
and the second se				T		<u> </u>	1	-								COLIF	DRMS (HFP)			REPE	AT SAMP	LES	
	0		1.	1					1		1.		1	1		1	2	3	4	5				1
- FDATE VOLUHE FILTERED ml. TOTAL	COLONIES	FILTERED ml.	TOTAL	COLIFORM COLONIES	VOLUME FILTERED MI.	TOTAL COLONIES	COLIFORM	NO. OF COLIFORMS PER IOO m1.	TOTAL PLATE COUNT	MAPT CULLIPUKMS	TOTAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS	NO. OF SCHPLES. EXAMINED	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS Per 100 ml	COLIFORMS Per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS Per 100 ml.	COLIFORMS	COLIFORMS	
2						1.																		_
3						1	1																	+
4	<u> </u>		V			·					e d'anniego de			e graffe										+
5 55						-				· · ·				0	9	00	00	00	00	0				3
7																								
8									· · · · ·						3. 1. 1									L
9																								-
10			-																					+
																								+
3 512														0	8	00	0	0		0				3
4																00		. 0						ľ
15																								
16					S																	·		-
17																								-
8 9 2 4								·								S. Jager 1			1					
· 511														0	9	00	00	0	0	0				33
1																0	0							
2							-						·											L
3								and the second																-
4	<u> </u>																							-
																							-	35
326														0	9	00	00	00	6	T				35
3																00	0	0						
			:																					
																								-
																								-
MF MEDIA TPC MEDIA	BRL	mEr	obc	BACTES		ARITH.						TTTTL .	- BURALNI I	0	CIST.	TOTAL	HO. S	AMPLES	menal		- and a			7
IPC MENTA	1	and the states		DENSI	111	GEO.	MEAN				and the second second		1	0 5					3/50.					3

			11	R	AW WAT	ER COL	IFORMS	(MFP)		FILT	EREC	FINI	SHED			A BE A DE ADE ADE A	DIS	STRIBUT	TION SY	STEM				HEFMAR		T
		Å			B	And a start of the st	de la cont	C	iger en soldet s	gayanay ketinahiring di	al second and a second					-	1	COLIFO					REPE	T SAMP	LES		-
		1152																1	2	3	4	5				1	
- DATE	YOLUME FILTERED ml.	TOTAL COLONIES	COLOFIES COLOFIES	VOLUME FILTERED ml.	TOTAL COLONIES	COLOFORM COLONIES	VOLUME FILTERED m1.	TOTAL COLONIES	COLIFORM	KO. OF COLIFORMS PER 100 ml.	TOTAL PLATE COUNT	CHEF CULIFURMS	TOTAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS	NO. OF SAMPLES EXAMINED	COLIFORMS per 100 ml.	COLIFORMS	INCUBATOR TEMP.	PLANKTON						
2			-				i	1.						1													1-
3																		1.00									1
4			•		1.																_		-				
6												<u> </u>				0	7	00	00	00	0					35.0	+
7		1								······································					-							_					+-
8							1																				-
9												4												-			1
10			_															•		÷							-
11	1																								100		1.41
12																0	7	00	00	00	0					35.0	
13.																						-					-
15					-					in the second														·			-
16																											-
17											-		1											•			-
18										•														·			
19																0	7	00	00	00		0			2. E.	35.0	
20																				and the second	a designed						
21																											<u> </u>
2.2																											-
23																·	·										
25										• • • • • •																	-
26																0	7	00	10	00		O				35,0	1
27																-0		1010		-1-		-1-				20	-
29									•								1										1
29					:																				1.44		
30																			•								
31	·		mand	mannel												araraa											
	HEDIA		BBI	mE	ndo	DENS	ERIAL.		MEAN						· .	0	DIST. SYSTEM	TOTAL				-	<u></u>	Net .		28	1_
		irt						420.	MEAN		1		Signed _		1	10	- TOTCH	SAMPL	ES EXC	EEDING	3/50.	4/100	,)7/20	0. 13/	500m1	0	1

Year	1985

.


AATER TREATMENT PLANT AT CAMP LE JEUTE REPORT OF BACTERIOLOGICAL RESULTS TO DIVISION OF HEALTH SERVICES

Contaminant Code: 3000

Serial # 04-67-043

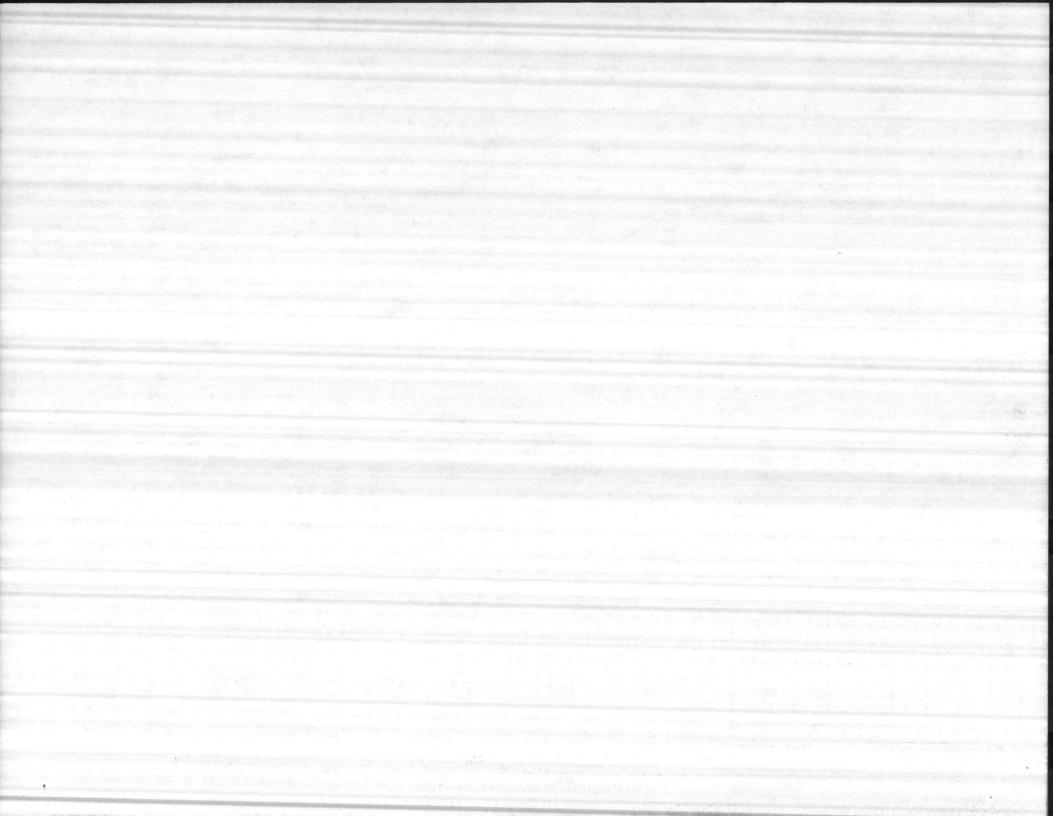
N. C. DEPARTMENT OF HUMAN RESOURCES

		11.	. · · · · · · · · · · · · · · · · · · ·	AW WAT	TER COLT	TFORMS	S (HFP	1		FILT	TEREC	FINIS	SHED				DI	STRIBU	TION SY	YSTEM	A.S. S.					T
				8			C											ORMS (M			. /	REPE	AT SAMP	PLES		T
	1	11						1.7	1		1			1		F	1	2	3	4	5				1	I
VOLUME FILTERED ml.	TOTAL COLONIES	COLONIES -	VOLUME FILTERED ml.	TOTAL COLONIES	COLIFORM COLOVIES	VOLUME FILTERED mJ.	TOTAL COLONIES	COLOHIES	NO. OF COLIFORMS PER 100 ml.	TOTAL PLATE COUNT	CHFF CULIFURMS	TOTAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS Per 100 ml.	KOL SAMPLES	Collforms per 100 ml.		·			COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS per 100 ml.	INCUBATOR TEMP.	INCUBATOR TEMP.
1		'	-	-	1-		1.			1'		 '			'		<u> </u>	-	-	1'	<u> </u> '	1'	1'	1'		4
								1-1		1	[-		-	-						-	A
		\square	<u> </u>	V					· ·		\square															Å
\$5	'	1		1-	1				·	4	<u></u>				0	7	00	00	00	0	Π'	\square			35.	
		'		<u> </u>					<u> </u>	4'				4'			1'	4'	1'	4'	4'	1'	1'	1'	1	4
		<u> </u>	-	'		-			('	'	['					-		-	-		f'	'	f'	1'	-	4
				\square							1 1					-	-		-			-	-		-	Á
		\square'		\square'		\square				'								\square	\square							ĺ
	1	4'			-	-	1'		f	1'	f	<u> </u>	· · · ·	<u> </u>				\Box	\Box	\Box	\square	\square	\square			4
312				-		-		F 1	f'		('	<u> </u> '		'	0	7	00	00	f.L'	0	00			'	35	ł
		$ \longrightarrow $	\rightarrow	$ \longrightarrow $		-	-				'	f'						-	-			-	-		1-	ł
						\Box						·'							(· · ·		-	1
					\square	\square																			-	ĺ
			-	-						'	t'	[·······						-		'	\square'	\square'	· _ '	\square	1	Į
			$ \longrightarrow $				'			1'	('	<u> </u> '		'	10	1-	1-1-	1	1	1-10	1	4'	4'	f'	4-	ł
\$19			\rightarrow		-	$ \rightarrow$			· · · · · · · · · · · · · · · · · · ·						0	7	00	00	P-	-10	0	-		-	35.	ſ
											()	· · · · ·				-	F	$ \rightarrow $	$ \longrightarrow $	-	'		-		-	ľ
									('										\square							ſ
	1			-			<u> </u>		(/		('	<u> </u>							\square				\Box			ſ
									('	1	t'	·'	[· []	1			1_'	1'	1'	f'	-	Į
-		\rightarrow			$ \rightarrow $						'	[]		- !	!		100	1-10	110	1-	1-	'	t'	1'	1-	ľ
326		\frown	\rightarrow	-	-	\rightarrow									0	7	00	00	0	F-	1-1-1	-			35	٢
								· ·	()										-						1.	7
	1																				\square					ſ
'									t'	<u> </u>	('	()	[· .	<u> </u>		1		-	\square'	\square		\square	1	7
E NEDI		1	Innarraul								fumeron !				Iraraau	-		lan	Incurar	1	1	1	1			ľ
PC MEDI		BRI	L. mE.	ndo	DEN	ISITY	GEO.	H. MEAN			·	[]		·					SAMPLES			5-14	'	1'	28	ł
nt er t		#378			+	l	1,			4		··· · · ?		1-1-1-1	Le	5	SAMIL				Well	0 7/20		1087		

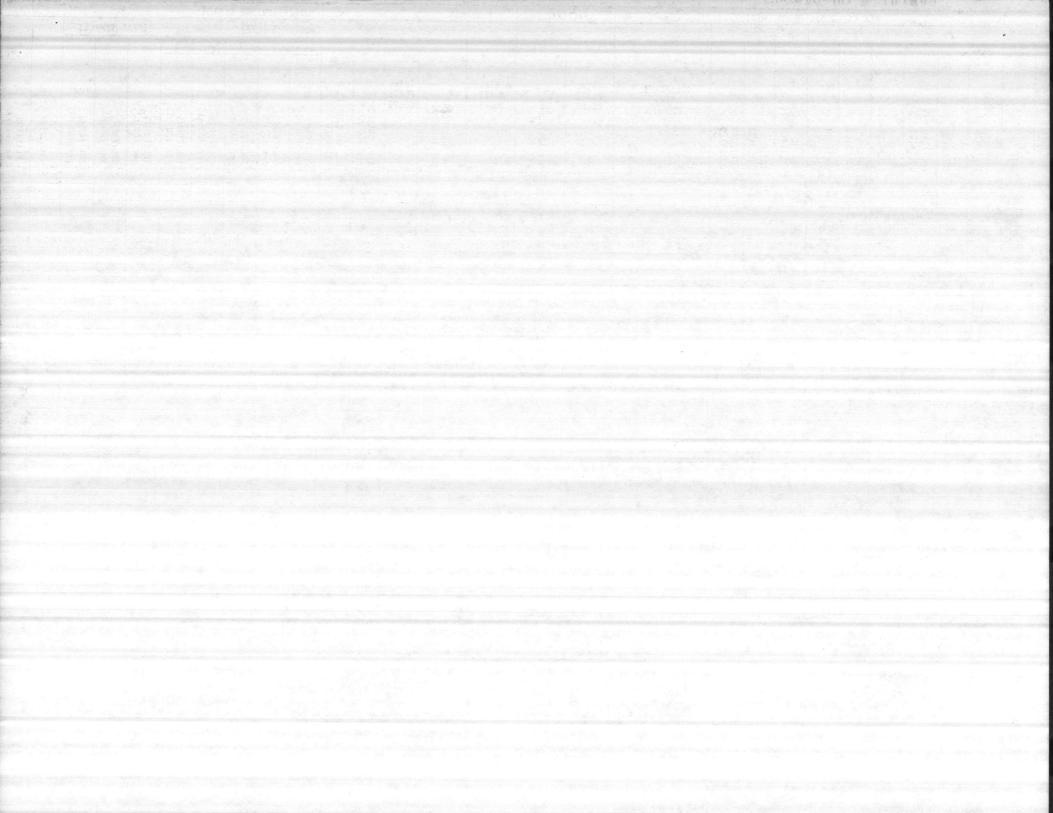
HOULU	LEDRUGE
	1001
Vate	1985

REPORT OF BACTERIOLOGICAL RESULTS TO DIVISION OF HEALTH SERVICES Contaminant Code: 3000

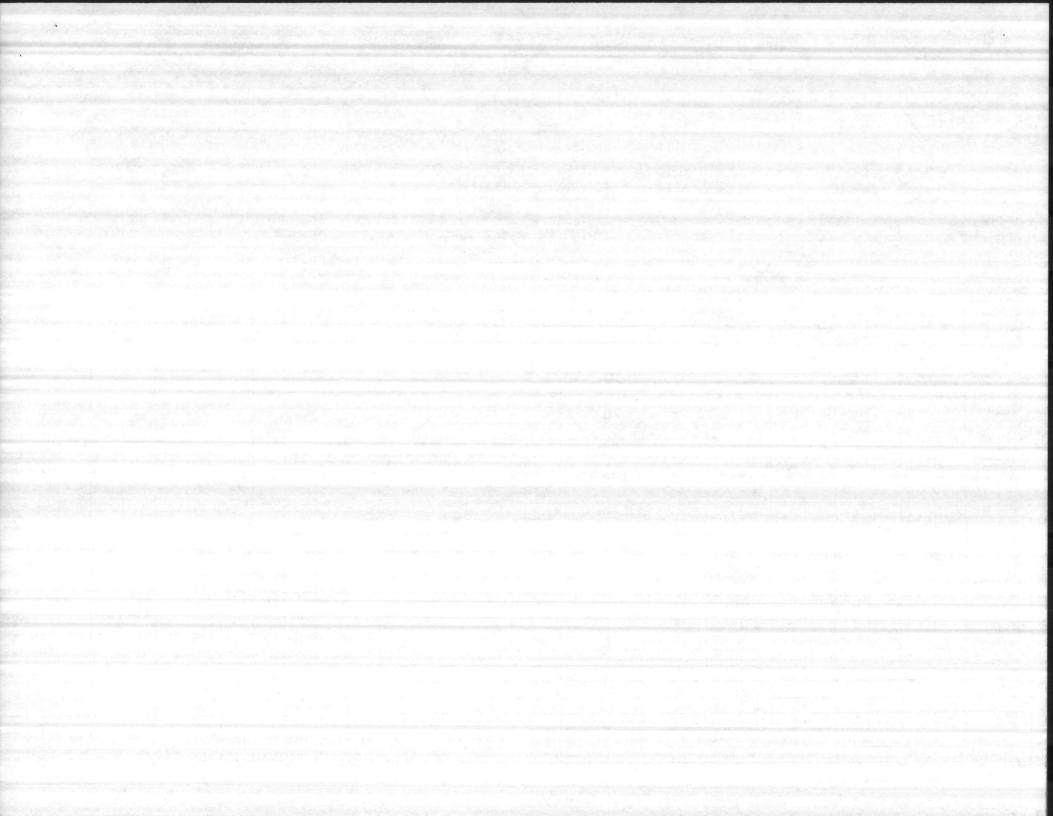
. .

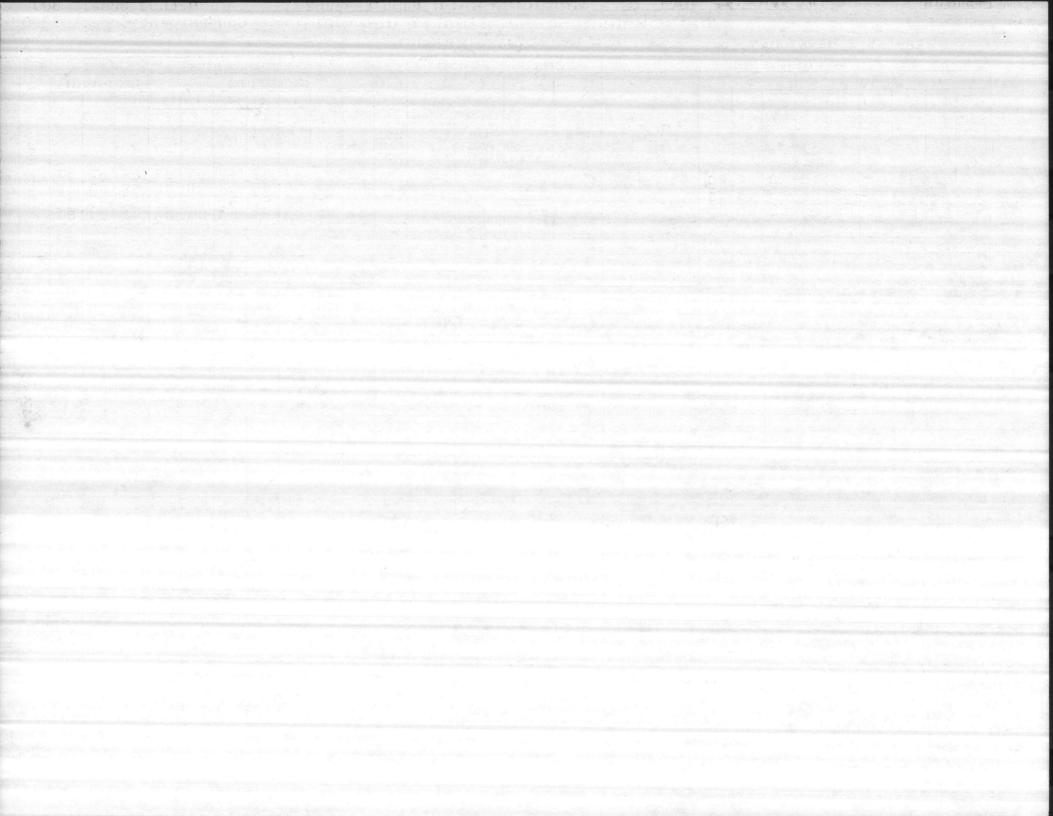

-1170-

Serial # 04-67-044 N. C. DEPARTMENT OF HUMAN RESOURCES


		LLIAPES	1'.	RA	W WATE	R COL	FORMS	(HFP)		and the second	FILT	ERED	FINIS	HED						ION SY	STEM		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				<u>.</u>
	-	. 1			8	.1		C			1.1.1							COLIFO	RMS (M	IFP)			REPEA	T SAMP	LES	(18) (18)	10-36.7
	a contraction		1	no sites		a station	No.	North State	and the second									1.	2	3	4	5					;
- DATE	YOLUME FILTERED ml.	TOTAL COLONIES	COLUTES -	VOLUME FILTERED ml.	TOTAL COLONIES	COLIFORH COLDHIES	FILTERED MI.	TOTAL COLCNIES	COLIFORM	XO. OF COLIFORMS PER 100 ml.	TOTAL PLATE COUNT	CHEF CULIFURMS	TOTAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS per 100 ml.	HO. OF SAMPLES EXAMINED	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS	INCUBATOR TEMP.	PLAKTON PLAKTON
2	1				and the	all and																				-	_
3											and the second				1. 1.												-
4			•		V .		·						2.24.54.65.75	Barry Provide												350	-
5			1991							·	· · · · ·					0	3	0	0	0						350	-
6		. *																									
7										<u></u>																	
8			<u> </u>							and the second		1.	1.11	ed.													
10												i se															-
11				1.								<u> </u>															1
12										5,6 						0	3	0	0		0					35.0	;
. 13																								-			
14						-						+			-		+							1.			
15 16					·						. Section of the section of		-		-				1								
16						-			·														· ·	· .			-
18				Sec. Sur						and the second second				<u> </u>												24	
19	and the second											<u> </u>			-	0	3	0	0			0				35.0	+
20			•																						1		+-
21	<u> </u>												+	+										1			1
2.2												· · · ·							1	1	-	1		1			T
23				-								1	1 1 1 1 1														
25								-														1					-
25						1										0	3	0	0							350	
2.7											-				·									+	+		-
29		ļ				-								+			· · ·					-			1		+-
29				-																		1-				1	+
30														-			1		1		1				1		1
	HF HEDI	1		-		-	TERILI	ARIT	H. MEAN		1			-		0	CIST			SAMPLE						IZ	
	PC HED		BB	L. ml	Endo	DE	TERIAL		. MEAN							1.0	SYSTE							200. 1	3/500ml	0	L
I			#27	207		4							Signal 2	Elina.	1.1		3-							102	4087	-W	

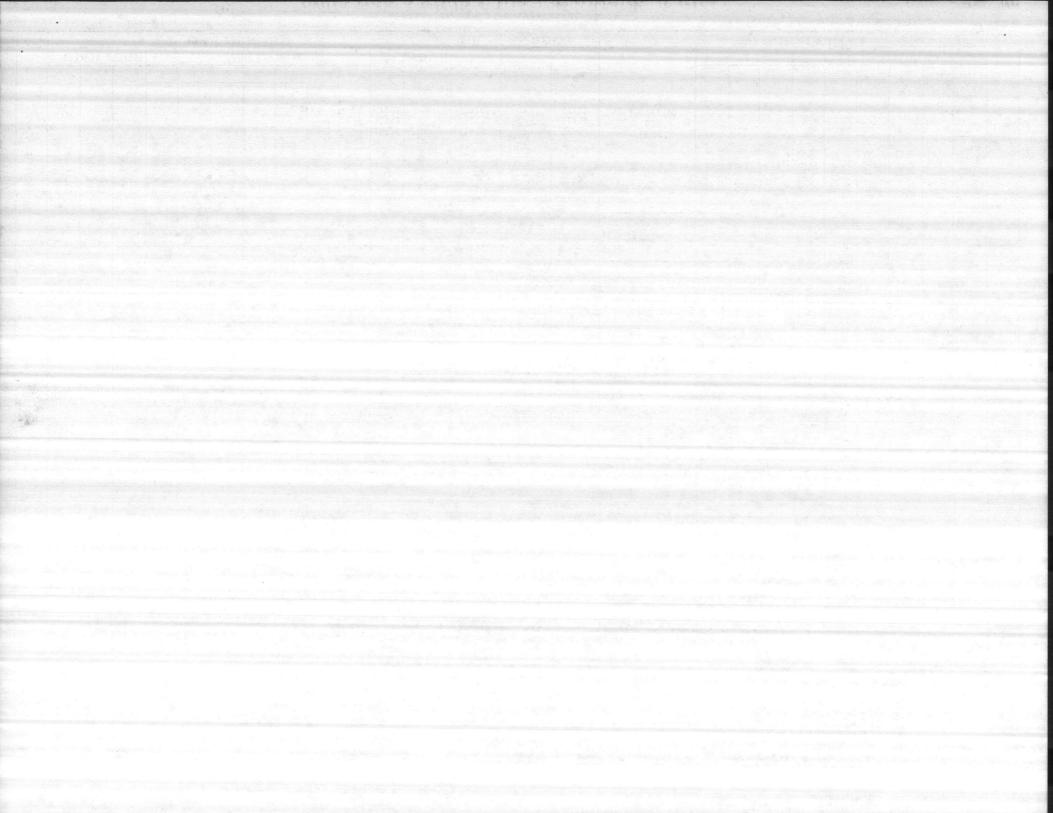
4


#37807 Same ter cart


	A PARTIE				STEM	ION SYS			1. ·	fallen an		HED	FIRIS	EREC	FILT			(MEP)	I FORMS	P COL	W WATE	al pi	Jer I			~
	ES	T SAMPL	REPEA			FP)	RMS (H	OLIFOI	. (·				T	C	TURIS	LA COL	B	. RA	<u> </u>			
				5	4	3	2	1		in march				er eta la goberna Guno des terroria	tan na ang sang sang sang sang sang sang									<u>î</u>		
PLANKTON	COLIFORMS per 100 ml. Incubator Teme.	COLIFORMS	COLIFORMS per 100 ml.	NO. OF SAMPLES EXAMINED	AVE. COLIFORMS per 100 ml.	TO TAL PLATE COUNT	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	CHEF CULIFURMS	TOTAL PLATE COUNT	NO. OF COLIFORMS PER 100 ml.	COLONIES COLONIES	TOTAL COLCHIES	VOLUME FILTERED m1.	COL I FORM	TOTAL COLONIES	FILTERED al.	COLIFORH	COLONIES	Y VOLUME FILTERED ml.	TE					
ratoral			In street and	u.u.kra		OA	U L	U G	Y. W	4 a		IA		Z Q			88	20	> LL	88	20	21	33	23	21	DATE
																			<u> </u>							1
																						1.2.25	-		<u>F</u>	2
			Sec. 14									an Cesting								1.12	7				1	4
0	35,0						00	0	3	0				·												5
		1.1.1							Service Service						1				1							6
																<u></u>				1.3.4						7
						1.11.54								1 1												8
				1. Second																						10
										a da ar					1											11
.0	35.					00		0	3	0																12
1.																				1.52	Constant And And And And And And And And And And	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and seed			13
																									1	14
·		-		4.5.2						Sec. with						parties and the		1000								15
		·						1.1				- in-	· · ·							·						17
	35.		1.	+	00	T		0	3	0						:			-							18
					PP				3	0																19
																							1.1.1.1.1			20
				194																						21
				<u> </u>												en an			19							23
												·														24
5.0	35		,	00	1	T		0							-	ghogh installed - each		100.00	1		1.100.00					25
				1-1-				10	3	0												<u>.</u>				26
					1. 1. 1.					-			-		-			-		-		-				27
			1			1000						1.00	1					1	1	-						29
		· · · ·																							1	30
12		J		.L		C.LVDI F						-							ARCING FOR			-			1	31
0	1	200 13	20 71	W/10		SAMPLE			I PUPTTU	0				1			H. MEAN		TERIAL	DAC	Endo	L. mF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 A	MF MED	
1	087-W	. /	1	Wol	R 3130	CELUIN	LES E)	T SVIII.	L	1.0	11		1	1	- Alexandre	and the second	. MEAN	GEO	NSITY	DE			1.	AIA	TPC MED	

		1.00	1.		AW WAT	ER COL	FORMS	(MFP)			FILT	EREC	FINI	SHED						TION SY	STEM						
		A			В		Later	C			1.4		a service and	1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	1		an an an	COLIFC	RMS ()	(FP)	1		REPE	T SAMP	LES	1.1.1.1.1	
		Sector	- ' <u>1</u> -				2			and a star			nore dine i				Sex	1	2	3	4	5					
DATE	VOLUME FILTERED ml.	TOTAL	COLORIES	E VOLUME FILTERED ml.	TOTAL COLONIES	COLORIES	VOLUME FILTERED ml.	TOTAL COLONIES	COLONIES COLONIES	NO. OF COLIFORMS PER 100 ml.	TOTAL PLATE COUNT	HTT CULLTURMS	TOTAL PLATE COUNT	HFP COLIFORMS	TOTAL PLATE COUNT	AVE. COLIFORMS	HO. OF SAMPLES EXAMINED	COLIFORMS	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS per 100 ml.	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS per 100 ml.	INCUBATOR TEMP.	PLANXTON
2	1							<u> </u>																			-
3	i i i i i i i i i i i i i i i i i i i					199		1	1		-								·								-
4			•		7.		•			Mar 1. million cardina to an			and the second	a na ana ana	and the second	Eng-Malle	C. Starting	e fondad				12.00	1997 (1997) 1997 (1997)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	a la Paris	Sec. 1	
5												· · ·	200			0	3	0	0	0						35.0	
6									Sec. 1																		
7								· · ·	1000			<u> </u>				ļ							107				
8																											-
9 10	1000 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 1											<u> </u>											1.1				-
11											+	1								1.000							
12	1														1	0	3	0	0	0						35.0	:
13	275 (A.S.)						nggula di		NCY CLOCE											•				Sec. 1	1	2010	
14									and the second					Sec. Sec.													
15																								•			;
16		100 S (10)								<u></u>											1.1.1.1		1	-			
18							<u> </u>			· · ·			· · ·											·			
19			1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					Call Street Street						0	3		0		0					350	
20									1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•	and the second							9)					-		55.0	-
21															1.				Sec. 1	7							
2.2				1000	Sec. Control	Carlon and	1.11	1.00	S. and the					en e									1.1.1				
23	-			ener i		100				42 A																	
24												Salation .	Burg Barran	operation objects													
25																				· ·				an le	1		-
26										· · · · · · · · · · · · · · · · · · ·		1000				0	3	0	0			0				35.0	
27 29										<u> </u>				÷													
29																in a second										•	-
30															i			Conception of						<u>.</u>			-
11										and the second second																K.	-
	F MEDI	4	BBI	mE	ndo	BACTE	RIAL	ARITH	. MEAN		A 1000-A 14 1400-4	-		ATTIMAL		0	DIST.	TOTAL	NO. S	AMPLES			Los arganing 1			18	

A B C I <th></th> <th>RAW WATER COLIFORMS (MFP)</th> <th>FILTERED</th> <th>FINIS</th> <th>SHED</th> <th>1.1.1.1.1.1</th> <th>S. Marting</th> <th>•</th> <th>DIS</th> <th>TRIBUT</th> <th>ION SY</th> <th>STEM</th> <th></th> <th></th> <th></th> <th></th> <th>and a</th>		RAW WATER COLIFORMS (MFP)	FILTERED	FINIS	SHED	1.1.1.1.1.1	S. Marting	•	DIS	TRIBUT	ION SY	STEM					and a
		B C						1						REPEA	T SAMPL	ES	
		NO. OF COLIFORMS TOT	<u>ب</u>	TOTAL		TOTAL			<u> </u>	2	3	*	5				
	FILTERED ml.	VOLUME FILTERED al. TOTAL TOTAL FILTERED al. FILTERED al. FILTERED al. COLONIES COLONIES COLONIES COLONIES COLONIES	100 ml.	COUNT	HFP COLIFORMS		AVE. COLIFORMS	NO. OF SAMPLES	COLIFORMS	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS	COLIFORMS	COLIFORMS	COLIFORMS	COLIFORMS	INCUBATOR TEMP.
				5											1		
	-							-	1					-			274
							0	4	0	0		00		in the second			35.0
					-												
																_	
				Sec. 2													1997-1
													1000 C		1000		Gird (
							0	4	0	0	0	0					35.
					and and a second second						•						
															·		
							1.50						and the second				
	-														·		
						1000	0	4	0	0	0	T	0				35
	-+				<u></u>							-					
						ing and		Acres 1			Sec. and		in the second	Carter Cart		1. autor	int?
	_														Na sana a		
	+										- Aller				Sec. No		5408. 17.17
							0	4	0	0	0		0		1		35
	+																<u>.</u>
	_		append to be a second														
HEDIA BRI. mEndo BACTERIAL ARITH. MEAN					-						~			_			7



tin ti

Serial # 04-67-048 N. C. DEPARTMENT OF HUMAN RESOURCES


nate of the second of the seco

			1	R	AW WAT	ER COL	FORMS			1	FILT	EREC	FINIS	SHED			<u></u>			ION SY	STEM	11.	Rep. (galin)	1		1923	-
an Alia Manna	1.1.1				8			C			a second				en regenera			COLIFO	RMS (H	IFP)			REPEA	T SAMP	LES		
			Ĵ.	1.	Server Server	1					C. Maria							·1	2	3	4	5					
DATE	VOLUME FILTERED ml.	TOTAL COLONIES		FILTERED ml.	TOTAL COLONIES	COLORIES	VOLUME FILTERED m1.	TOTAL	COLI FORM COLONI ES	XO. OF COL!FORMS PER 100 ml.	TOTAL PLATE Count	Per CULIFUKMS Per 100 ml.	TOTAL PLATE Count	HFP COLIFORMS per 100 ml.	TOTAL PLATE COUNT	AVE. COLIFORMS per 100 ml.	NO. OF SAMPLES EXAMINED	COLIFORMS per 100 ml.	COLIFORMS	COLIFORMS per 100 ml.	INCUBATOR TEMP.	F PLAKKTOM					
1	the second						1													1	No.				1.00		-
2	1				-		<u> </u>	·													_						-
3	1.00	Second 1	1000									<u> </u>											-				-
4					V							<u>.</u>										1				25 .	-
5												<u></u>				0	Z	0	0							35,0	-
7		andra i te													-	and a street											-
8																											-
9	10000-75			1								·····															-
10		-													1						1						
11	1.00									and the second		1			1					1.00					•		1.1
12						in the second			and the second	en stationer station	- Contraction	Part and the	an a		1.5	0	2	0		0						35.0	
13																			C Landers		12000						
14																											
15		100000			CARACT.																			•		199063	
16																								-			-
17													<u></u>	<u> </u>										·			-
18 19																											-
20										<u></u>						0	Z	0	0							35.0	-
21															+		1.00										-
22										<u></u>					-					1298							-
23										Care and the second																	-
24						Constant of	The second	a constant		a sector and		Carlo and	144 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18														-
25		Sec. Sec.			1.000																						-
26										San I and the State			and the second second			0	Z	0	0	a inserio	1	a set a set	(and the second	for the second		35,0	
27							1. 1. M.														en de la		1.1.1.1				
29										ale a state		1000	1.000														
29					•											1.		1			1.0		2		Sec. 1		
30					1. S. S.		10-53								1000												
31				-		-			-										*r 48	2000			and the second	e. prodes			
М	F MEDI			. mF	Color Color Color	BACT	ERIAL		. MEAN			10.14				0	DIST.	TOTAL	. HO. 3	SAMPLE		Q. Star		1.1.1	1000	8	
TP	C MEDI	A	1.2.2.2		-	DEN	SITY	GEO.	MEAN		Sec. Sec.		Signed E			110	SYSTEM	SAMPL	ES EX	CELDING	3/50.	4/100	7/20	0. 13	500ml .	0	

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER T	REATMENT PLA	ANTS				DATE COLLECTED	35	DATE OF ANA	LYSIS 8.85
PARAMETER	HADNOT POINT -04(CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH		RIFLE RANGE	HOLCOMB BLVD -043			denato e apportante e e
PH (IN LASS NOT PLANT)	8.9	7.7	8,9	7.6	8,4	8.3	8,4	8.6		
PHENOLTHALEIN ALKALINITY	6	0	6	0	8	6	6	14		
METHYL ORANGE ALKALINITY	64	198	46	168	192	166	. 98	192		
CARBONATES AS CaCO3	12	0	12	0	16	12	12	28		
BICARBONATES AS CaCO ₃	52	198	34	168	176	154	86	164		
CHLORIDES AS C1	10	38	10	22	20	16	10	162		
HARDNESS AS CaCO3	62	200	60	56	66	48	90	64		
IRON AS Fe		MACHINE	Lowal	FOR	CONSTRU	CTION				
FLUORIDE PM	1.15	0.17	1.02.99	0.18	0.11	0.10	0.85	0.77		
	1.1	1.3	1.0	1.6	1,4	1.0	1.0	1.6		
TURBIDITY TURBIDITY	0.3	1.0	0,30.9	0.3	0.3	0.3	1.10.6	0.2		
		1.00			0.92					n an
ORTHO PHOSPHATE		0.66		lant dina di	0.16	an ang san ag				
META PHOSPHATE	the second	0.34			0.76	a stiller		an a		and the second second second
STABILITY	+0.6	-0.3	+0.6	-0.6	+0.1	0.0	+0.2	+0,2		
REMARKS									COPY TO:	
						nan da she b She she	an a	an and the second		0
				<u>.</u>		e 2 apr-				REATMENT
NOTE: All results reported in and specific conduct	n parts per million	unless otherwise no	ted except for pH,	temperature,	LABORATORY ANAL	YSIS BY				

.

MCBCL 11330/3 (REV. 6-84)	· · · · · ·		-AN15				DATE COLLECTED	<u>25</u>	2/12	
PARAMETER	HADNOT POINT -041	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD -043			
PH (IN LAS NOT PLANT)	9.0	7,3	8.8	7.4	8.3	8.3	8.6	8.2		
PHENOLTHALEIN ALKALINITY	8	0	4	0	2	2	4	0		an San ang san Pagaran Sang san san San San
METHYL ORANGE ALKALINITY	50	196	.52	160	150	150	. 70	200		
CARBONATES AS CaCO3	16	0	8	0	4	4	8	0		
BICARBONATES AS CaCO ₃	34	196	44	160	146	146	62	200		and the Signation
CHLORIDES AS C1	10	50	10	20	16	18	14	160		
HARDNESS AS CaCO3	60	68	82	62	56	56	74	84		
IRON AS Fe	60.04	0.51	0.06	0.20	0.09	0.06	20.04	0.09		
FLUORIDE Pm	0.96	0.17	0.16.83	0.17	0.12	0.09	0.73	0.70		
CHLORINE RESIDUAL	1.2	1.2	1.0	1.2	1.5	1.0	1.0	1.1		
TURBIDITY TORBIDITY TPM	0.20	0.50	6.6.40	0.30	0.70	0.30	0.40	0.40		e service dels
	$1_{-1} = \sup_{i=1}^{n-1} \frac{1_{i-1}}{i_i}$	1,30			1.26					
		1.00			0.25		en 1 1 1 - Angelen Strangeren (* 1997) 1 - Angelen Strangeren (* 1997)			
		0.30			1.01	all La chamhr de sa				
STABILITY	+0.4	-0.8	+0.6	-0.9	0.0	+0.1	+0.3	0.0		
REMARKS		an ann an Anna an Anna Anna an Anna an							COPY TO:	
ang kanala kanang sa kanang sa sa sa sa sa	an a					en e		<mark>e destante destantes</mark> Secondo en secondo		0
				5.00 5.00 7.00 7.00 7.00 7.00 7.00 7.00						EATMENT
NOTE: All results reported in	parts per million	unless otherwise n	oted except for pH.	temperature.	ABORATORY ANAL	YSIS BY				

.

All results reported in parts per million unless otherwise noted except for pH, temperature, and specific conductance. One liter of potable water is assumed to weigh one kilogram.

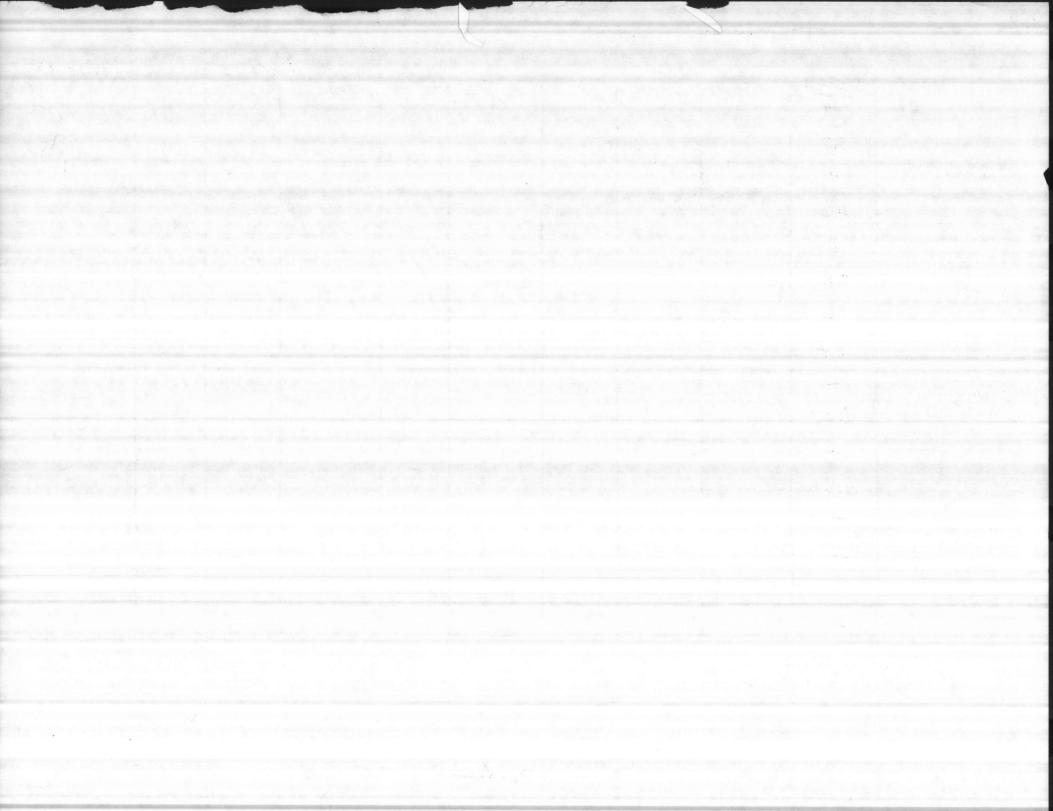
.

					•
and the second					CHARACTERING THE
					and a state of the second second second second
and the second					
					Less south surveyers of the second
					24+3 743
and the second					
the second s					and the second
					Condition of the second
				the state of the second second	
Contract Contraction and South States					
and the second					
and the local of the second of the second					
and the second					
and the second					
and the second state of the second					
and the second second second second	and the second				
the second second second second second second second					
and the second second second second second second					
and the second se					
and the second second second second second second					
and the first subscription of the later of the second states					
					A series of the second s
a state of the second second second second second					
and the second					
and the second					
The second second second second second					
and the second					
					State and a state of the state
and the second					
and the second se					말 그 여러는 것도 있는 것 않는 모두 모님 말 물질했다.
and the second second second second second					
and the second					the second se
					and the second
					a the state of the second s
a second second second second second					and the second
the second s					
The second s					
				1.142	
the second state of the se				An	
and the second second second second					
					사람이 다니 아이는 것이 가지 말했다. 이 집을

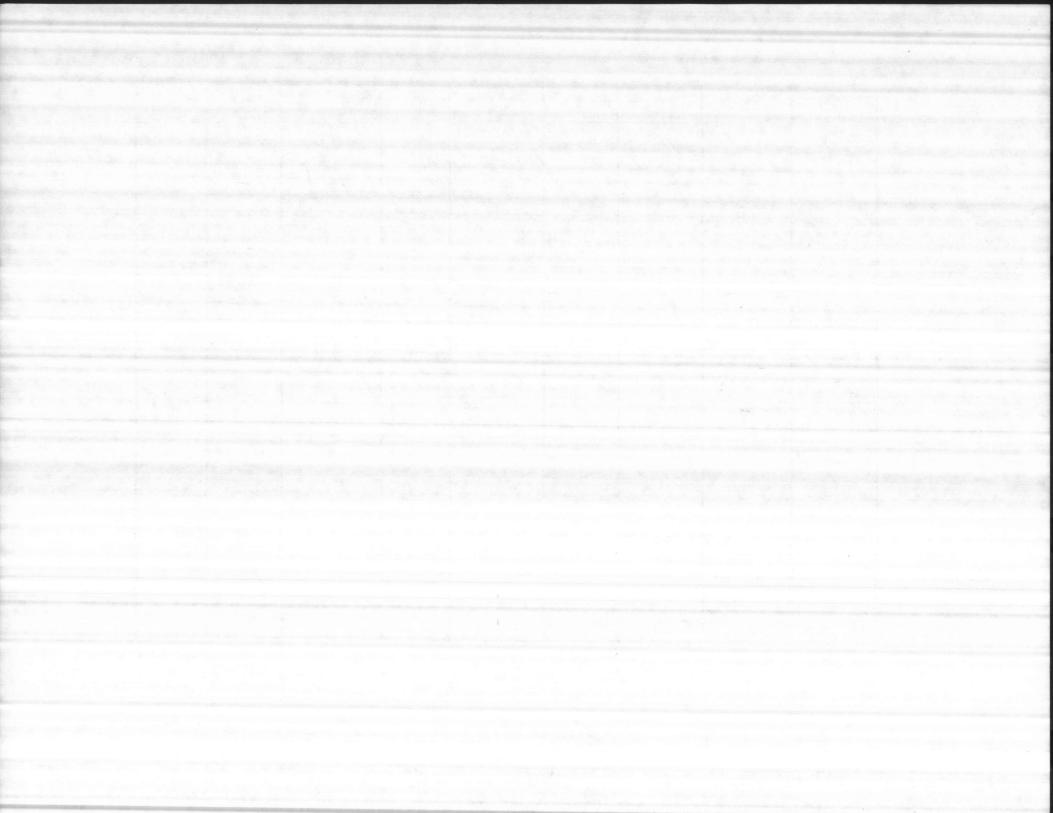
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	6 - WATER T	REATMENT PL	ANTS				DATE COLLECTED	85	DATE OF ANAL	LYSIS E13 85
PARAMETER	HADNOT POINT -04(CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH		RIFLE RANGE	HOLCOMB BLVD -0+3			
PH (IN LAS NOT PLANT)	8.7	7,6	8.8	7,6	8.6	8,4	8.9	9.1		
PHENOLTHALEIN	10	0	6	0	10	8	10	26		
METHYL ORANGE ALKALINITY	20	190	56	164	172	164	- 56	170		
CARBONATES AS CaCO3	20	0	12	0	20	16	20	52		
BICARBONATES AS CaCO ₃	0	190	44	164	152	148	36	118		an a share a share a
CHLORIDES AS C1	12	42	12	22	22	22	16 .	160		
HARDNESS AS CaCO3	76	86	80	70	70	60	68	60		
IRON AS Fe	20.04	0.57	60.04	0.14	0.09	0.07	0.06	20.04		
FLUORIDE Pm	0.91	0.16	1.09.04	0.16	0.11	0.09	01	0.70	han aparta Maria	
	61	1.2	1.0	1.3	1.3	1.0	0.9	1.3	1	
TURBIDITY 7m	0.3	0.4	0.30.2	0.3	0.3	. 0.2	0.3.5	2.3		e san senten senten Senten senten
		2.05			1.68					
ORTHO PHOSPHATE		1.13		an An suis an suis	0.25					
		0.92		s. Na serendra di	1.43	Section 1		en er var stangen		
STABILITY	+0.2	-0.4	+0,3	-0.6	+ 0.3	+0.1	+0.3			
REMARKS									COPY TO:	
			and a second				<u>a an an</u>			D
						and a second				EATMENT
NOTE: All results reported in	n parts per million	unless otherwise n	oted except for pH,	temperature,	LABORATORY ANA	LYSIS BY			D PMU	

.

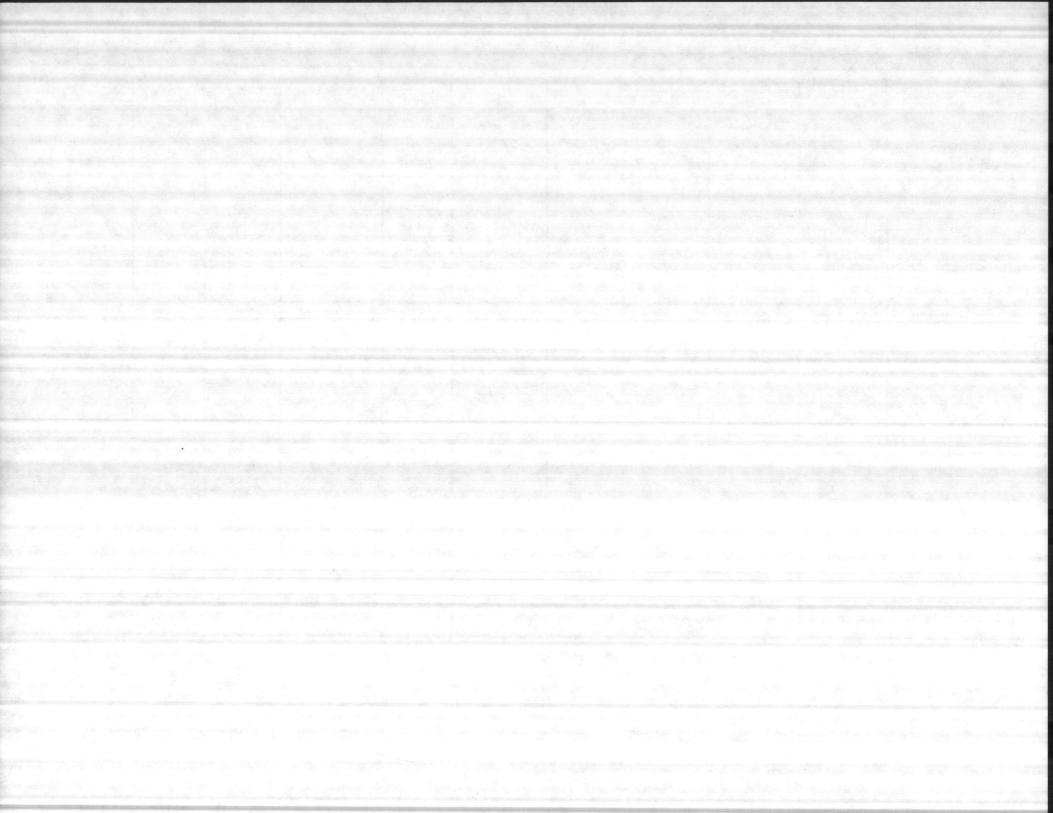
.


The second se

MCBCL 11330/3 (REV. 6-84)							DATE COLLECTED	85	DATE OF AN	EB 85
ARAMETER	HADNOT POINT -041	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD -043			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
H (IN LAS NOT PLANT)	8.8	7.4	8.8	7,5	8,4	8.3	8.8	8,5		
HENOLTHALEIN LKALINITY	4	0	4	0	6	2	6	4		
ETHYL ORANGE LKALINITY	44	190	54	160	148	158	. 60	180		
ARBONATES AS CaCO3	8	0	8	0	12	4	12	8		
CARBONATES S CaCO ₃	36	190	46	160	136	154	48	172		
HLORIDES AS C1	10	36	8	14	18	12	16	186		
ARDNESS AS CaCO3	56	80	74	60	60	60	60	64	en en de de	· · · · · · · · · · · · · · · · · · ·
ON AS Fe	60.04	0.74	<0.04	0.10	20.04	60.04	20.04	20.04		
UORIDE PM	1.07.01	-0.17	1.10	0.17	0.12	0.10	1.11/1.02	0.82		
	.1.0	1.3	1.0	1.5	1.4	1.0	1.0	1.3	•	
JRBIDITY Pm	0.4.5	1.2	0.20.3	0.2	0.2	0.2	0.3	0.4		
DTAL PHOSPHATE		1,54			1.84					1.1
		0.90			0.19		Are			
ETA PHOSPHATE		0.64			1.65	antina ang ang ang ang ang ang ang ang ang a				
ABILITY	+0.2	-0.8	+0.2	-0.8	0	-0.2	40.1	-0:1		
MARKS	and and				· · · · · · · · · · · · · · · · · · ·				COPY TO:	· · · ·
							•			o
										REATMENT
OTE: All results reported in and specific conducts	parts per million ance. One liter of	unless otherwise no potable water is a	oted except for pH, ssumed to weigh o	temperature, I ne kilogram.	ABORATORY ANAL	YSIS BY			D PMU	
	en a printi de la com				T.N. BA	RBEE		Alexan a teacharachar Saint a teacharachar		D FILE

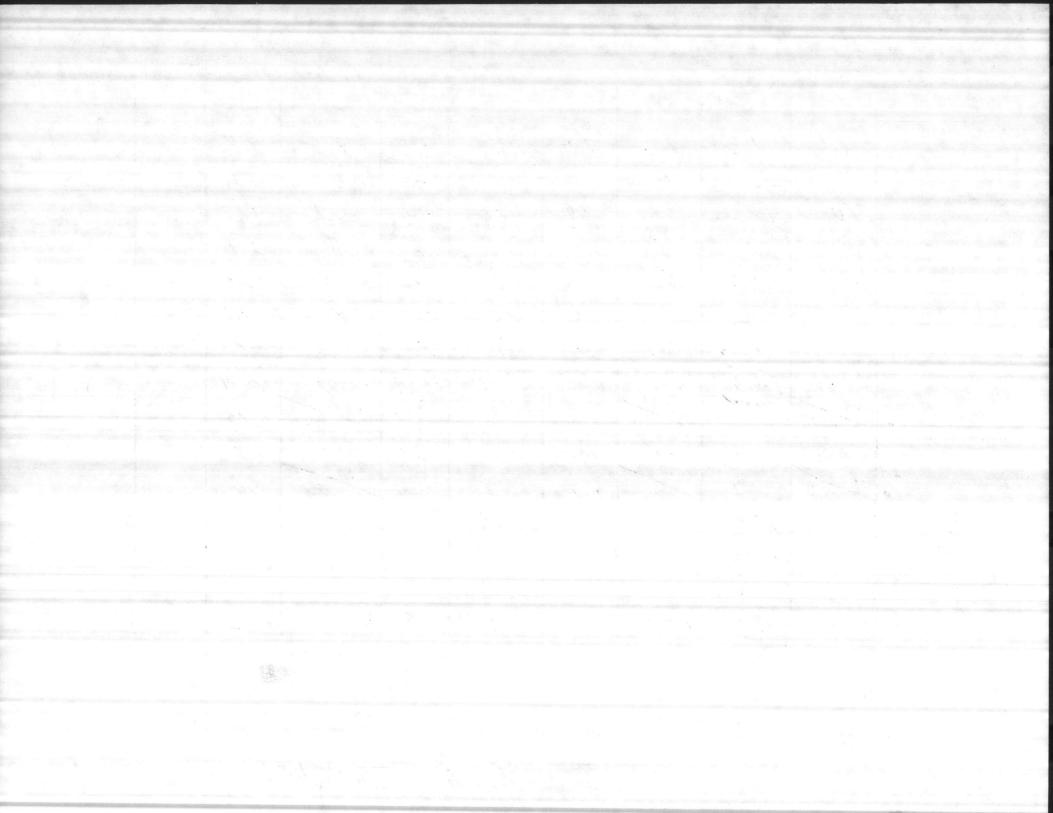


TT COMPLAINT 2521


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS			and the second	DATE COLLECTED	APR85	DATE OF ANA	LYSIS I APR 8
PARAMETER	2521 HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
рн	8.7									
PHENOLTHALEIN ALKALINITY	4								al an ann ann ann an an an an an an an an	<i>p</i> }
METHYL ORANGE ALKALINITY	40									
CARBONATES AS CaCO3	8									
BICARBONATES AS CaCO ₃	32							an a	nan bernagterik Ke	
CHLORIDES AS C1	12	1								
HARDNESS AS CaCO ₃	64									
IRON AS Fe							the second second			
FLUORIDE	1.07									
CHLORINE RESIDUAL										
TURBIDITY	0.60					ana an				
TOTAL PHOSPHATE	-									
ORTHO PHOSPHATE	-	an Anglas An Anglas An Anglas Anglas								
META PHOSPHATE	_	an and a stage of								
STABILITY	-		A Contraction	arth a						
REMARKS									COPY TO:	and a second second
										· · · · · · · · · · · · · · · · · · ·
									WATER T	REATMENT
NOTE: All results reported in and specific conduct	n parts per million	unless otherwise r	noted except for plassumed to weigh	H, temperature,	LABORATORY ANAL				D PMU	
			accurred to weight	one knogram.	Barbee	. Sherina a				

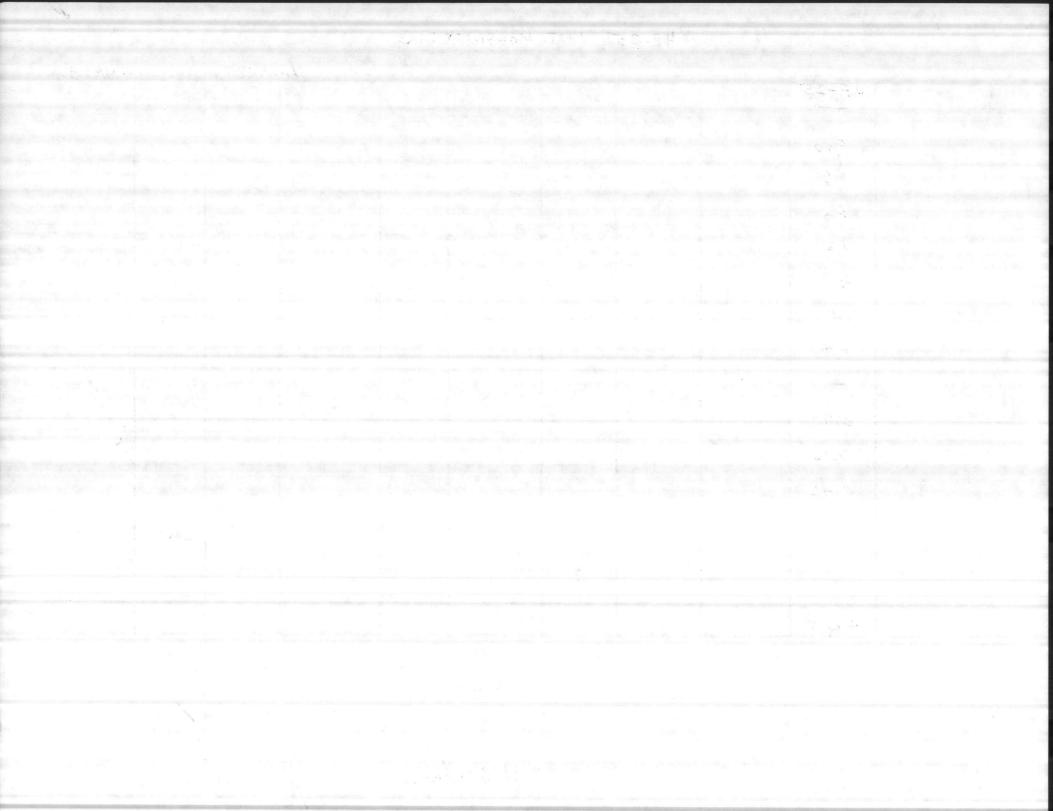
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)					la contenen	In the second second	DATE COLLECTED	- 85	DATE OF ANA	AR85
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.9	7.6	9.0	7.8	816	8.4	8.8	8.9		
PHENOLTHALEIN ALKALINITY	6	0	6	0	2	6	2	12		
METHYL ORANGE ALKALINITY	58	190	46	170	156	162	68	160		
CARBONATES AS CaCO ₃	12	0	12	0	4	12	4	24		
BICARBONATES AS CaCO ₃	46	190	34	170	152	150	64	134	a daga sa	
CHLORIDES AS C1	12	34	14	20	16	20	14	166		
HARDNESS AS CaCO3	68	86	70	62	74	54	68	54		
RON AS Fe	< 0.04	0.48	20.04	20.04	20.04	20.04	60.04	<0.04		
FLUORIDE AM/PM	0.96/0.96	0.17	0.92/0.93	0.15	0.10	0.08	0.93/0.92	0.71		
CHLORINE RESIDUAL	1.0	1.3	1.0	1.5	1.5	1.0	0.9	1.4		- 0.4) (
TURBIDITY AM/PM	0.1/0.2	0.9	0.2/0.3	0.2	0.3	0.1	0.2/0.2	0,2		
TOTAL PHOSPHATE		2.70		n North of	0.45					
ORTHO PHOSPHATE		1.04		in a substance	0.16					
META PHOSPHATE		1.66		and the second second	0.29					
STABILITY	+0.3	-0.3	+0.5	-0.7	٥	-0.2	+0.3	D		
PH O.B. P	ALDE Y								COPY TO:	
pr 0,9, p	000-0	1 32								
									WATER T	REATMENT
NOTE: All results reported and specific condu-			noted except for pH, assumed to weigh o			LYSIS BY			PMU	D MCAS PM
		en aparesta		and a state of the second	ThBarbe	4			D NREAD	D FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TF	REATMENT PL	ANTS				DATE COLLECTED	75-	DATE OF ANAL	AR 85
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8,5	7.3	8.8	7.4	8.4	8.2	8.5	8.7		
PHENOLTHALEIN ALKALINITY	10	0	10	0	12	2	8	62		ander Stadiere I. Stadiere Stadiere
METHYL ORANGE ALKALINITY	60	196	46	164	176	170	88	220		
CARBONATES AS CaCO ₃	20	0	20	0	24	4	16	124		
BICARBONATES AS CaCO ₃	40	196	26	164	152	16.6	72	96		
CHLORIDES AS C1	30	36	10	18	14	14	10	110		Serie - Paris
HARDNESS AS CaCO ₃	60	86	68	68	84	74	80	54		
IRON AS Fe	40.04	0,63	40,04	0,14	-0.04	40.04	40.04	6.04		
FLUORIDE AM	1.01	0,15	0.76	0.17	0.12	0.09	0.93	0.74		
CHLORINE RESIDUAL	1.0	1.4	1.0	1.0	1.5	1.0	1.0	1.4		
TURBIDITY AM	0.2	0.7	0.2	0,3	0,3	0.4	0.2	0,3		
TOTAL PHOSPHATE		1.10			0.59	and the second second		2		
ORTHO PHOSPHATE		1.04			0.25					a diparte di Santa di parte di Santa di parte
META PHOSPHATE		0.06			0.34					
STABILITY	+0.1	0,6	10,2	-0.7	+0.2	0.0	+0.2	6.0		
REMARKS		ni San san san san san san san san san san s	2. • •	and the second s			a An an	د. مربع وقد محمد ا	COPY TO:	
										0
			and a second						WATER T	REATMENT
NOTE: All results reported and specific condu-	in parts per million	unless otherwise r	noted except for pH,	temperature,	LABORATORY ANA	LYSIS BY			D PMU	D MCAS PMU
and specific condu-	ctance. One inter of	Polable Water IS			Leenergie	1 12	mness		D NREAD	D FILE

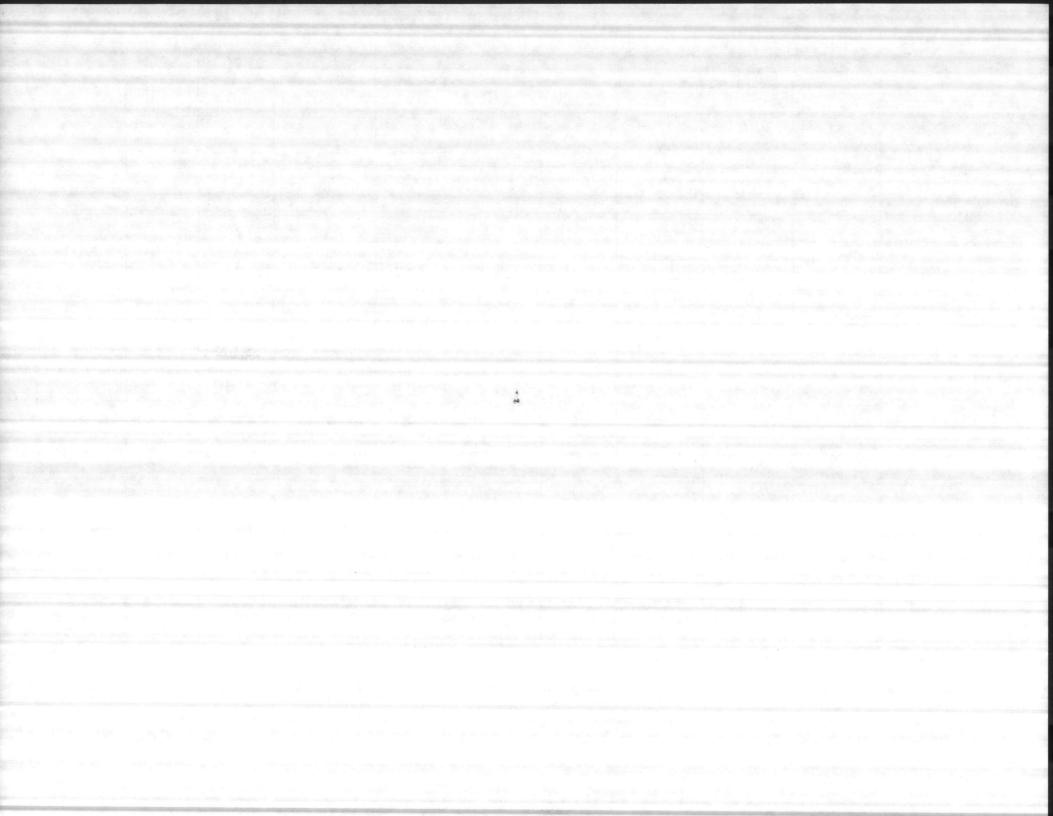


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL					DATE COLLECTED	AR85	DATE OF ANA	ALYSIS AR 85
PARAMETER		CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.5	State of the second							1	
PHENOLTHALEIN ALKALINITY	4							den en de la deserverte d La deserverte de la deserve		
METHYL ORANGE ALKALINITY	54									
CARBONATES AS CaCO3	8					1				
BICARBONATES AS CaCO ₃	46		-			e si aiti		e g ^{anne} erente		
CHLORIDES AS C1	14									
HARDNESS AS CaCO ₃	70									
IRON AS Fe	_								and the	
FLUORIDE	0.81									e e e e e e e e e e e e e e e e e e e
CHLORINE RESIDUAL	0.9									
	5.51	$\left[\right]$								
	-									
ORTHO PHOSPHATE	-	er					and marked	er an de line		
META PHOSPHATE	-				and the	Mar Strate				
STABILITY	-				A Section M			1. 19-19-19-19-19-19-19-19-19-19-19-19-19-1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
REMARKS			à.					ta anti-	COPY TO:	
			<u>na ana dia amin'ny saratra</u> Ny saratra ana amin'ny saratra amin'ny saratra amin'ny saratra amin'ny saratra amin'ny saratra amin'ny saratra a	destander op soller op soller Soller	<u>alla alla martellari k</u> E-	i kanala na shekara C	<u>agan na ana na</u>			3 🗆 🔜
									WATER	TREATMENT
NOTE: All results reported and specific conduct	in parts per million ctance. One liter o	n unless otherwise r f potable water is	noted except for pl assumed to weigh	H, temperature, one kilogram.		YSIS BY	and an and a second second Second second		D PMU	D MCAS PMU
					Thesal	e			NREAD	D FILE

Contra an Teoretain a


and the second se

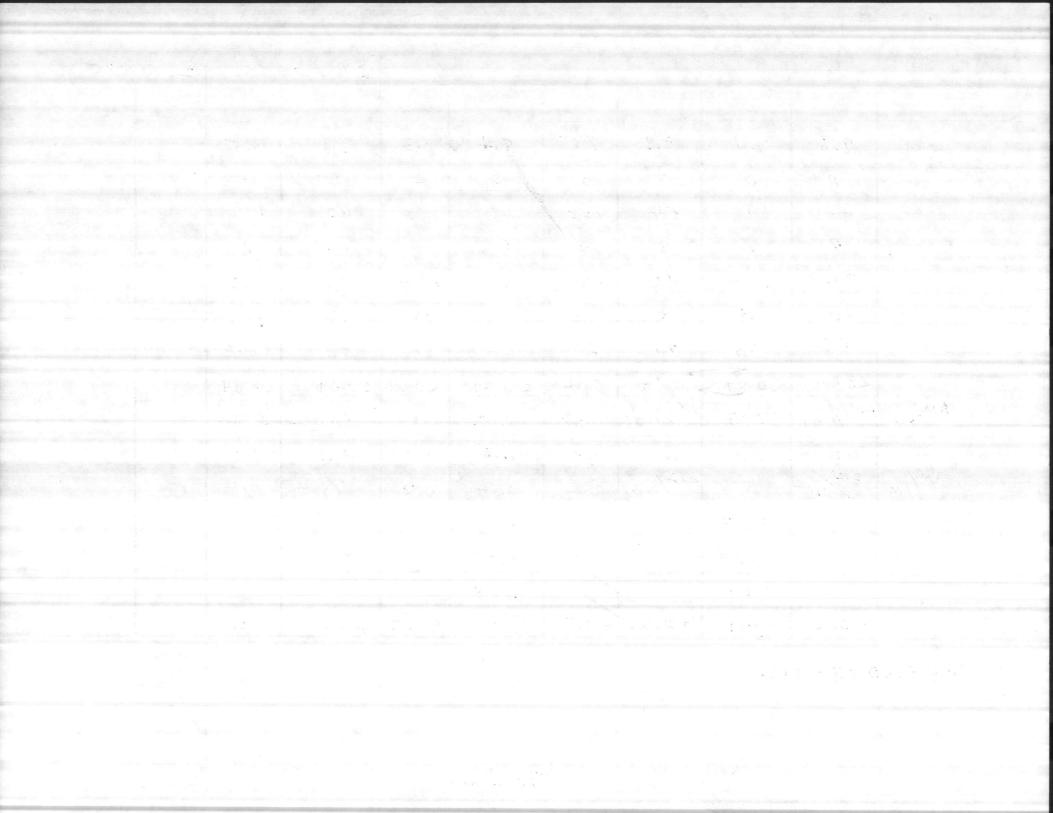
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER T	REATMENT PL	ANTS		anti- anti-anti-anti-anti-anti-anti-anti-anti-		DATE COLLECTED	1985	DATE OF ANA	LYSIS P 1985
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.6	7,3	8.6	7.5	8.4	8.3	8.7	8.8		
PHENOLTHALEIN ALKALINITY	6	0	4	0	8	4	4	12		
METHYL ORANGE ALKALINITY	80	192	58	164	166	150	62	172		e per de s
CARBONATES AS CaCO ₃	12	0	8	0	16	8	8	24	and the second	
BICARBONATES AS CaCO ₃	68	192	50	164	150	142	54	148		
CHLORIDES AS C1	10	36	16	20	20	26	8	170		
HARDNESS AS CaCO3	86	84	78	66	68	70	62	56		an a
IRON AS Fe	10.04	0.50	10.04	0.12	10.04	20.04	10.04	10.04		
FLUORIDE AM	1.05 0.98	0.16	1.13 0.96	0.16	0,12	0.10	0.93 0.83	0,75		
CHLORINE RESIDUAL	1.0	1.2	1.0	1.2	1.2	0.7	0.9	1.3		
TURBIDITY AM	0.2	0.9	0.3 0.2	0.2	0.2	0.3	0.1 0.2	0.6		
TOTAL PHOSPHATE		1.84			1.26					
ORTHO PHOSPHATE		0.92	a a la caracteria		0,28		and an and a second and a second and a second a			
META PHOSPHATE		0.92	alating in main		0.98		an - Sameran			and a second sec
STABILITY	+0.4	-0.8	+0,4	-0.7	+0.1	0.0	+0.4	+0.2		
REMARKS	COPY TO:									
antenna saintenna saint Ann an 2006 -										•
			1987 (Mark)						WATER T	REATMENT
NOTE: All results reported and specific condu	NOTE: All results reported in parts per million unless otherwise noted except for pH, temperature, LABOBATORY ANALYSIS BY									
	and specific conductance. One liter of potable water is assumed to weigh one kilogram.									

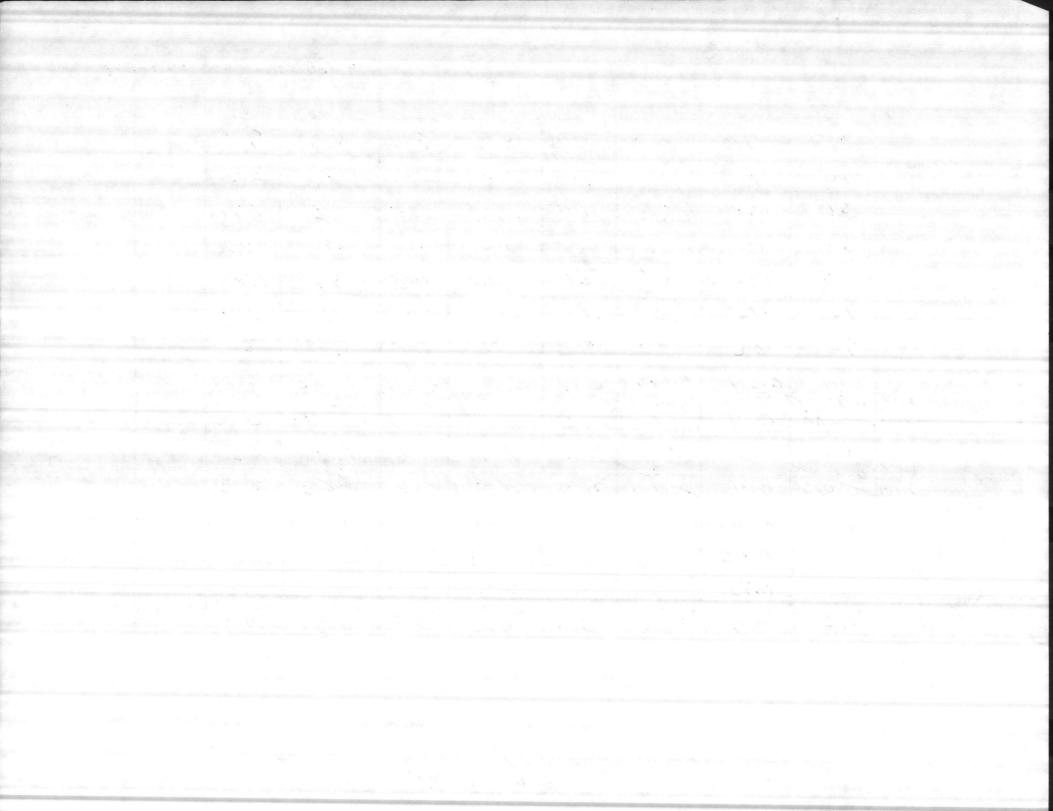

HP-25 CAPT. MARRIETT'S QTRS

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TR	EATMENT PL	ANTS				DATE COLLECTED	MAR85	DATE OF ANA	11 MAR 85
PARAMETER	HADNOT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER	A. A.	
РН	9.0	net sa	1.18						and a	
PHENOLTHALEIN ALKALINITY	6				and the second					
METHYL ORANGE ALKALINITY	60									
CARBONATES AS CaCO ₃	12								1993 - 1994 1995 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -	
BICARBONATES AS CaCO ₃	48									
CHLORIDES AS C1	14									
HARDNESS AS CaCO ₃	64			-						
IRON AS Fe	1									
FLUORIDE	0.90									an Berne Marian
CHLORINE RESIDUAL	0.2				e-cips					
TURBIDITY	0.42			al Sector						
TOTAL PHOSPHATE										
ORTHO PHOSPHATE	ged a state of the state	angleina sarahi Tarihi						ar dina. J		
META PHOSPHATE										
STABILITY	+0.5		Brog Spi							
REMARKS						at in the			COPY TO:	
										a
									WATER	TREATMENT
NOTE: All results reported and specific conduc	in parts per million ctance. One liter of	unless otherwise r potable water is	noted except for pl assumed to weigh	H, temperature, one kilogram.			te de la companya	in an ar an	PMU	MCAS PMU
					thesar	bee			D NREAD	D FILE

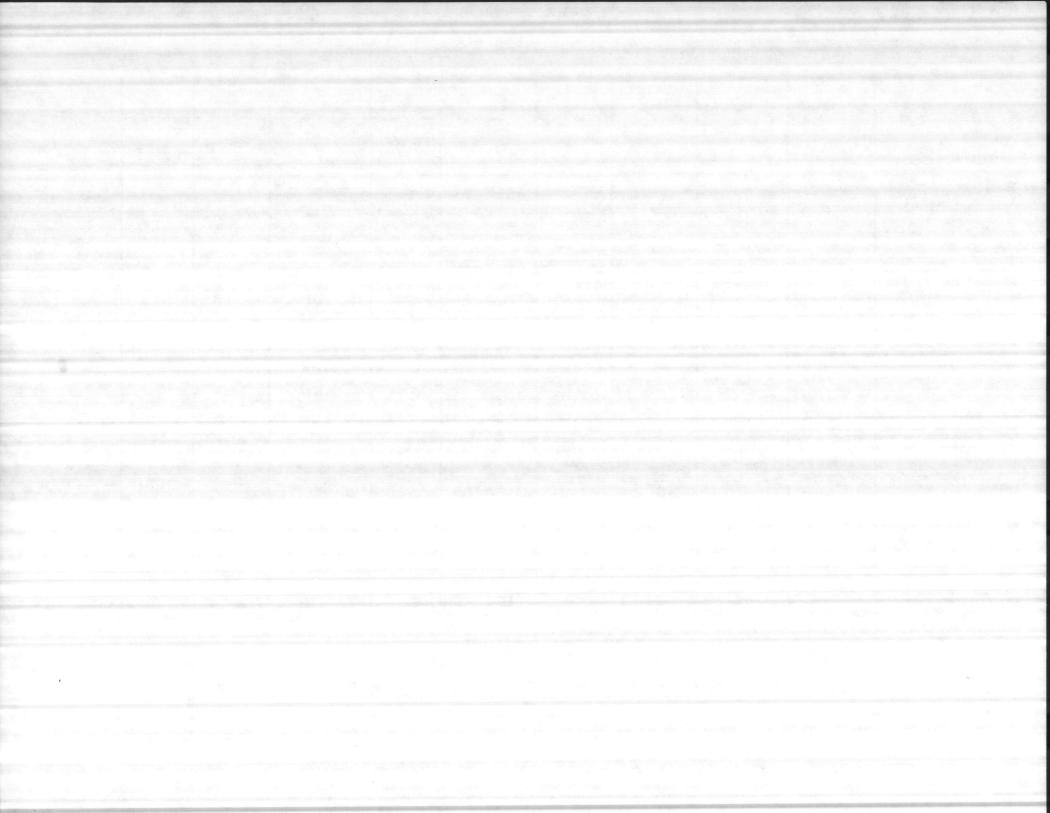
WATER TREATMENT DI ANITO

CHEMICAL ANALYSIS MCBCL 11330/3 (REV 6-84)	5 - WATER IF		ANTS				DATE COLLECTED	and the second	DATE OF ANALY	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	9.1	7.5	8.6	7.5	8.4	8.3	8.5	8.5		
PHENOLTHALEIN ALKALINITY	8	0	4	0	4	2	4	10		40.5 (1977) - 2017 (1977) - 21 - 21
METHYL ORANGE ALKALINITY	60	190	52	170	160	162	60	071		
CARBONATES AS CaCO ₃	16	0	8	0	8	4	8	20		
BICARBONATES AS CaCO 3	44	190	44	170	152	158	52	150		laters for
CHLORIDES AS C1	10	40	10	24	12	30	14	170		
HARDNESS AS CaCO ₃	56	80	76	64	54	100	60	62		
IRON AS Fe	0.05	0.57	20.04	0.17	0.07	0.08	0.06	0.09		
	1.04	0.18	0.97	0.18	0.13	0.12	1.00	0.79		
CHLORINE RESIDUAL	1.0	1.2	1.0	1.2	1.1	1.0	1.3	1.5		
TURBIDITY	0.40	1.5	0.20	0.70	0.40	0.60	1.00.60	0.6		
TOTAL PHOSPHATE		3.65			1.13					
ORTHO PHOSPHATE		1.13			0.25					in gide day
META PHOSPHATE		2.52		and a second second Second second second Second second	0.88					
STABILITY	+0.5	-0.5	+0.1	-0.5	+0.1	+0.3	+0.3	0.0		
REMARKS									СОРҮ ТО:	in a single an ang santa an
										•
						uko ang ana gag			WATER TRE	ATMENT
NOTE: All results reported and specific conduc	in parts per million	unless otherwise r	noted except for pH assumed to weigh		LABORATORY ANA	LYSIS BY				MCAS PMU
		Polacio materila		uno unogram.	16.0 Q.	ums 4	Lachapelle.		NREAD	D FILE


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER TR	REATMENT PL	ANTS 2120	Hypeon	Т	SAMPLE 2120	DATE COLLECTED 3/4/8 HOLCOMB BLVD	SHB	DATE OF ANAL	NSIS 5
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA	ONSLOW BEACH	COURTHOUSE BAY	RIFLE	HOLCOMB BLVD	NEW		
РН			8.7	9.0		10.5	an a		21.23	
PHENOLTHALEIN ALKALINITY -			18	18	ana al'an arranda Arranda	84		10	an a	
METHYL ORANGE ALKALINITY			50	50		102		56		
CARBONATES AS CaCO ₃			36	36		168		20		
BICARBONATES AS CaCO ₃			14	14	and the second second	(-66	>	36		
CHLORIDES AS C1		and the second	10	10		8				
HARDNESS AS CaCO ₃			50	50		100	-			
IRON AS Fe										
FLUORIDE						1.00				
CHLORINE RESIDUAL			Territoria			0.5				
TURBIDITY	ener Shirin waa g					0.6				
TOTAL PHOSPHATE										
						lines quites St		er de personales de la composición de Esta composición de la		
META PHOSPHATE										
STABILITY									And the optimized	
REMARKS									COPY TO:	
										•
		un l	1						D WATER T	REATMENT
NOTE: All results reported in and specific conducts	parts per million	unless otherwise r	noted except for pH	temperature.	LABORATORY ANA	LYSIS BY	and a start of the start	to an and the free		


HEMICAL ANALYSIS — WATER TREATMENT PLANTS CBCL 11330/3 (REV. 6-84) 77 2410 3/					DATE COLLECTED		DATE OF ANALYSIS			
PARAMETER	HADNOT POINT	CAMP JOHNSON	T ARAWA T ERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER		
рн			9.1	1 6 2					and and	
PHENOLTHALEIN ALKALINITY			12							
METHYL ORANGE ALKALINITY			36							
CARBONATES AS CaCO ₃			24							
BICARBONATES AS CaCO ₃			12		and an an array of the second s					
CHLORIDES AS C1			10							
HARDNESS AS CaCO ₃			76							and the second
IRON AS Fe										
FLUORIDE			0.89							
CHLORINE RESIDUAL			0,9							Constant of the
TURBIDITY			0.4							
TOTAL PHOSPHATE							8			
ORTHO PHOSPHATE					Sandalar and Sandal Sandalar and Sandalar			tanatal sector al		er oanen inter Arten
META PHOSPHATE					an analisan ann a'		and a second s			
STABILITY										
	11	0	11.00 1	_/	3 /	1	A 124.		COPY TO:	
Reported result to Danny Hill by phone on 3/1/85 at 1320.										·
		Col	LIFORM	1					X WATER T	REATMENT
NOTE: All results reported ir and specific conduct	n parts per million ance. One liter o	unless otherwise r f potable water is	noted except for pH assumed to weigh	l, temperature, one kilogram.	LABORATORY ANAL	YSIS BY			D PMU	MCAS PMU
				n and an and a second secon	Staines A	kinesce	ett		NREAD	D FILE

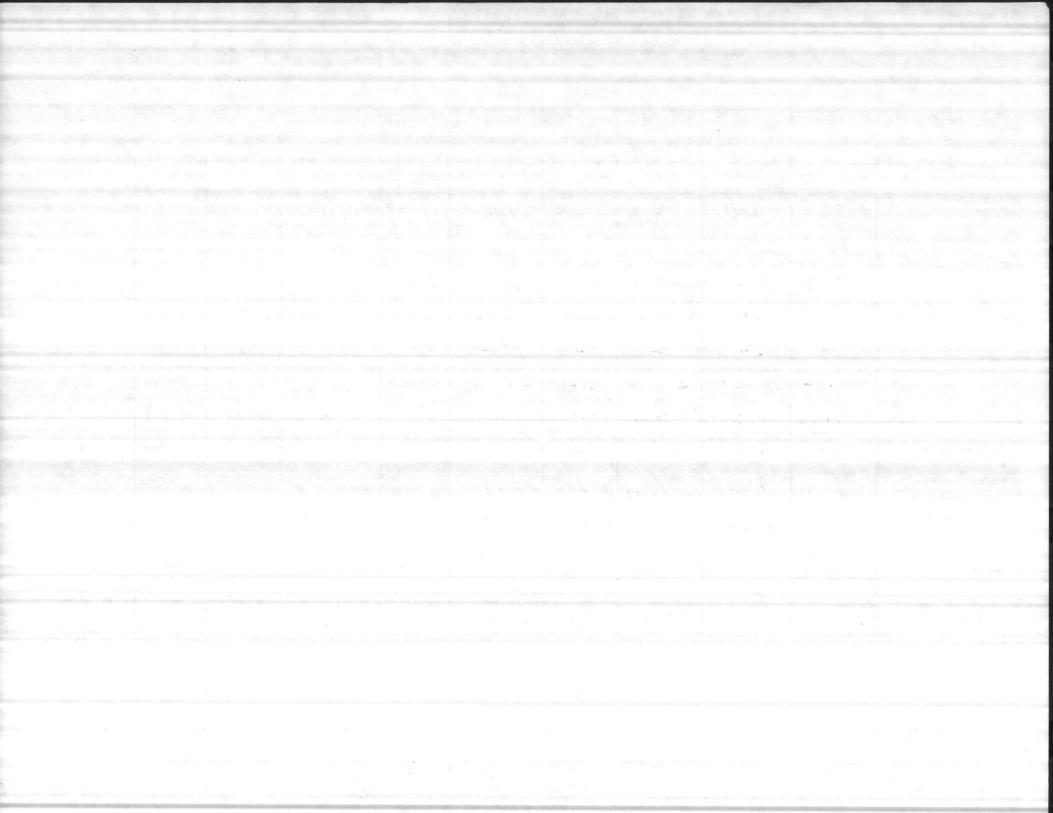
Col. 1 - 1 The second dealer and a second


CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED	3 85	DATE OF ANAL	TS 85
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8	7.4	8.8	7.5	8.4	8.3	8.8	815		
PHENOLTHALEIN ALKALINITY	4	0	4	0	6	2	6	4		
METHYL ORANGE ALKALINITY	44	190	54	160	148	158	60	180		
CARBONATES AS CaCO ₃	8	0	8	0	12	4	12	8		
BICARBONATES AS CaCO ₃	36	190	46	160	136	154	48	172		
CHLORIDES AS C1	10	36	8	14	18	12	16	186		
HARDNESS AS CaCO ₃	56	80	74	60	60	60	60	64		
IRON AS Fe	20.04	20.04	0.74	0.10	< 0.04	60.04	20.04	60.04		
FLUORIDE AM/PM	1.07/1.01	0,17	1.10/1.08	0.17	0.12	0.10	1.11/1.02	0.82		
CHLORINE RESIDUAL	1.0	1.3	1.0	1.5	1.4	1.0	1.0	1.3		
TURBIDITY AM/PM	0.4/0.5	1.2	0.2/0.3	0.2	0.2	0.2	013/0.4	0.4		
TOTAL PHOSPHATE		1.54			1.84				1	
ORTHO PHOSPHATE		0.20			0,19	alas karak				
META PHOSPHATE		0.64			1.65		and a state of the second			
STABILITY	+0.2	-0.8	+0.2	-0.8	0	-0.2	+0.1	-0.1		
REMARKS									COPY TO:	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
OBPON	D pH = 8	1.2				27.4.27.2792				
						No <u>co</u> In			WATER T	REATMENT
NOTE: All results reported and specific condu			noted except for pH, assumed to weigh of		LABORATORY ANA	LYSIS BY				MCAS PMU
and specific collud	oranice. One mer o	Polabie Waler 15	assumed to weigh (ne kilografii.	Barbee	-			NREAD	D FILE

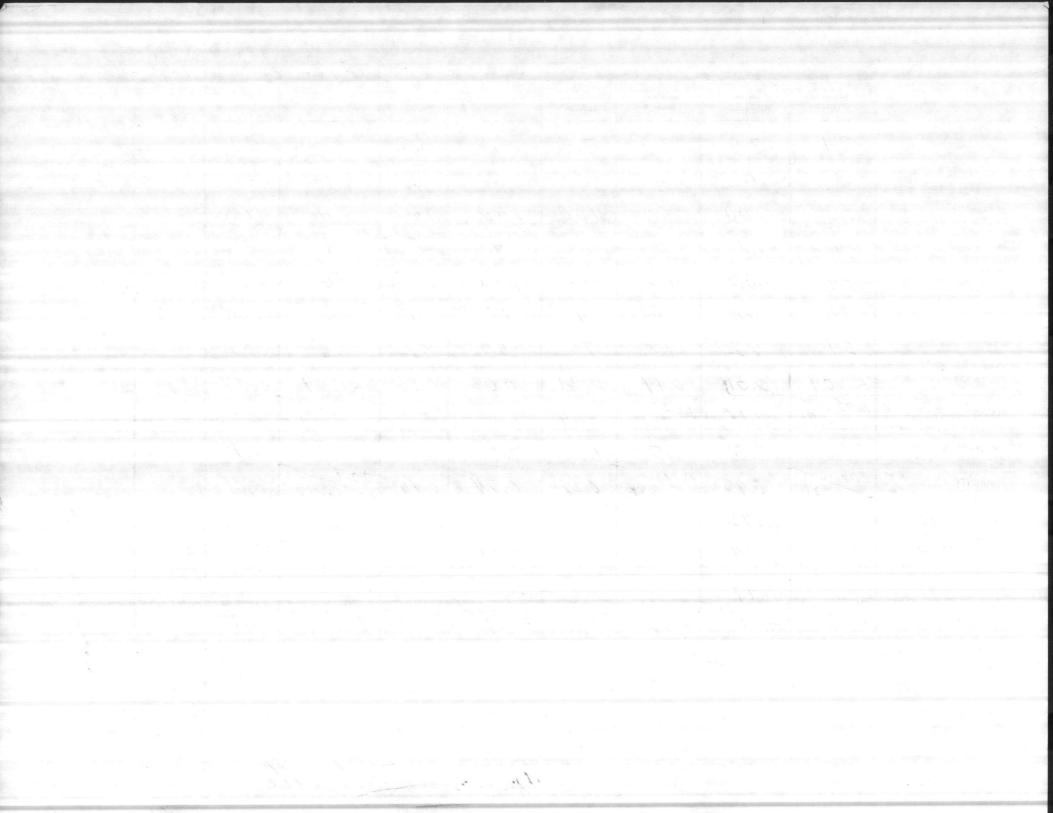
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S - WATER TH	REATMENT PLA	ANTS				DATE COLLECTED	r	DATE OF ANAL	ysis 685
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.7	7.6	8.8	7.6	8,6	8.4	8.9	(9.1)		
PHENOLTHALEIN ALKALINITY	10	0	6	0	10	8	10	26		
METHYL ORANGE ALKALINITY	20	190	56	164	172	164	5-6	170		ll i fra bet selen se Sec - 19.
CARBONATES AS CaCO ₃	20	0	12	0	20	16	20	52		
BICARBONATES AS CaCO ₃	0	190	44	164	152	148	36	118		
CHLORIDES AS C1	12	42	12	22	22	22	16	160		
HARDNESS AS CaCO ₃	76	86	80	70	70	60	68	60		
IRON AS Fe	40.04 (0.57	20.04	0.14	0.09	0.07	0.06	40.04		
FLUORIDE M	0.91	0.16	1.00	0.16	0.11	0.09	0.86	0.70		
CHLORINE RESIDUAL	1.1	1.2	1.0	1.3	1.3	1.0	0,9	1.3	6-9 	
TURBIDITY AM	0.3	0.4	0.2	0.3	0,3	0-2	0.3	2.3		
TOTAL PHOSPHATE		2.05			1.68					
ORTHO PHOSPHATE		1.13			0.25			and the second sec		
META PHOSPHATE		0.92		an a	1.43				an in the second se	
STABILITY	to, 2	and the second of the second	+0,3	0.6	+0,3	+0.1	+0.3	70,3	NE A MA	
REMARKS					8°.				COPY TO:	
					1977.7					0
										REATMENT
NOTE: All results reported and specific conduc	in parts per million ctance. One liter o	unless otherwise no f potable water is a	oted except for pH, ssumed to weigh of	temperature, one kilogram.	LABOBATORY ANAL					MCAS PMU
				k	Janezce	A			NREAD	D FILE
					1					All a farmer

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TR	REATMENT PL	ANTS				DATE COLLECTED	5	DATE OF ANA	-185
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE	RIFLE	HOLCOMB	NEW RIVER		
РН	9.0	7.3	8.8	7,4	8,3	8.3	8.6	8.2		
PHENOLTHALEIN ALKALINITY	8	0	4	0	2	2	4	0		
METHYL ORANGE ALKALINITY	50	196	52	160	150	150	70	200	n an	
CARBONATES AS CaCO ₃	16	0	8	0	4	4	8	0		
BICARBONATES AS CaCO ₃	34	196	44	160	146	146	62	200	-	
CHLORIDES AS C1	10	50	10	20	16	18	14	160		100 A
HARDNESS AS CaCO ₃	60	68	82	62	56	56	74	84		
IRON AS Fe	20.04	0.51	0.06	0.20	0.09	0.06	60.04	0.09		
FLUORIDE	0.96	0.17	0.16	0.17	0.12	0.09	0.73	6.70		
CHLORINE RESIDUAL	1.2	1.2	1.0	1.2	1.5	-1.0	1.0	1.1	2	
TURBIDITY	0.10.20	0.50	6.6.40	0.30	0.70	0.30	0.40	0.40	· ·	
TOTAL PHOSPHATE	·	1.30			1.26			1		
URTHO PHOSPHATE		1.00			0.25					
META PHOSPHATE		0.30			1.01					
STABILITY	+0.4	-0.8	+0.6	-0.9	0.0	+0.1	+0.3	0.0		
REMARKS	an deala	a de la composición d Composición de la composición de la comp	and the second	er e					COPY TO:	
						59. 59.				·
						s Angeologie contra			WATER T	REATMENT
NOTE: All results reported			noted except for pH, assumed to weigh of		LABORATORY ANA	LYSIS BY	and an and the second		о рми	
	clance. One mer o	4.		one knogram.	LABORATORY ANA	und				O FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	TT 7365	TT-3/29	ANTS				DATE COLLECTED	35	DATE OF ANA	ersis 85
PARAMETER	HADNOT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER		208 C
РН	8.8	8.6						N. Harris	A. Ca	
PHENOLTHALEIN ALKALINITY	6	4								
METHYL ORANGE ALKALINITY	40	54						in andre state		1 A. 199
CARBONATES AS CaCO ₃	12	8							eta da ante	4. N. J. F.
BICARBONATES AS CaCO ₃	28	46								
CHLORIDES AS C1	14	10								
HARDNESS AS CaCO ₃	56	70								
IRON AS Fe								1		
FLUORIDE	0.90	1.03	r s charra	en de la companya de La companya de la comp						
CHLORINE RESIDUAL	1.0	1.03								
TURBIDITY	0.50	0.29								
TOTAL PHOSPHATE								e 113 Pete		
ORTHO PHOSPHATE			legit		and and the st			and the second		
META PHOSPHATE				and a second						
STABILITY										
	CONPLAN	wT5)	nan 1997 - Santa Santa 1997 - Santa Sa						COPY TO:	
C	oLI-FORM	WTS) 1: TT23	65 = Ø							
NOTE: All results reported i		77-3	129=0		LABORATORY ANAL					

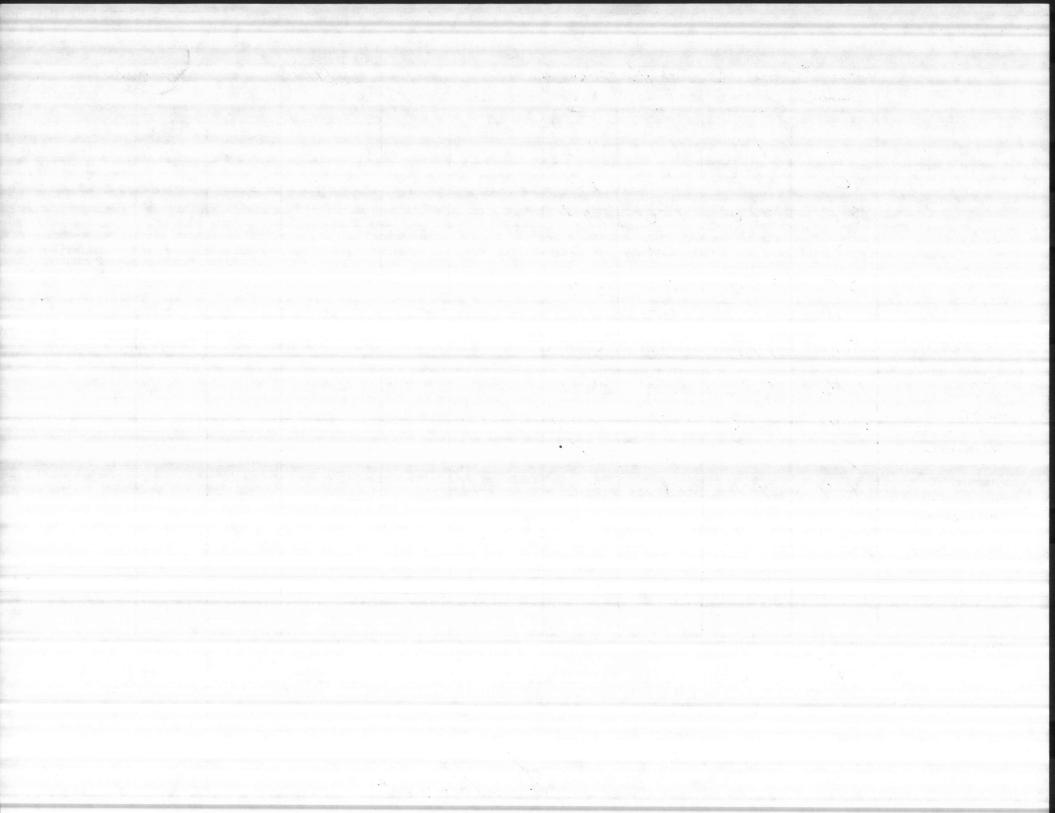

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTER	29JAN85	DATE OF ANA	29JAN85
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		PP#3111 1-30 (COMPLAINT)
РН	8.7	7.4	8.4	7.8	8.3	8.3	—	9.0	1. Section	8.7
PHENOLTHALEIN ALKALINITY	2	D	0	0	0	0		8		4
METHYL ORANGE ALKALINITY	58	184	64	156	160	160		160		56
CARBONATES AS CaCO3	4	0	0	0	б	0		16		8
BICARBONATES AS CaCO ₃	54	184	64	156	160	160	-	144		48
CHLORIDES AS C1	10	30	10	20	12	14	-	150		10
HARDNESS AS CaCO ₃	60	80	90	60	70	50		58		60
IRON AS Fe	<0.04	0.63	<0.04	<0.04	< 0.04	<0.04	_	0.09	. 11. 11. 11. 11. 11. 11. 11. 11. 11. 11	
FLUORIDE AM/PM	1.09/1.05	0.17	1.22/1.18	0:15	0.09	0.08	1 - 1 i	0.69		1,00
CHLORINE RESIDUAL	1.0	1.2	1.0	1.4	1.1	1.0		1.2		0.8
TURBIDITY A M/PM	0.30/0.20	0.70	0:20/0:20	0.20	0:40	0:20	-	0.60		5.0
TOTAL PHOSPHATE		1.62			0.73					
ORTHO PHOSPHATE	and the second	1.04			0.22	en starfer i 189				and the same should be
META PHOSPHATE	alayah kara malaka Kara kara kara	0.58			0.51					
STABILITY	+0.4	- 0.7	+0.3	-015	0	0		+0.3		
REMARKS			the second	and and a second	and and a second				COPY TO:	
OBP	OND pH=	8.1	tiger - aginte ar anticipation - anticipation - anticipation - a		an a	ligan galan sa para na sa kata sa	entra e desperante procesa A desperante procesa			
						an a			WATER 1	and the second
					dan e sel job e se stande.					
NOTE: All results reported and specific condu	in parts per million ictance. One liter of				Barbee	^			PMU	
	the second freed	and the second second			Darlee	, & on	and the second		NREAD	D FILE

and the second of the second of the second second

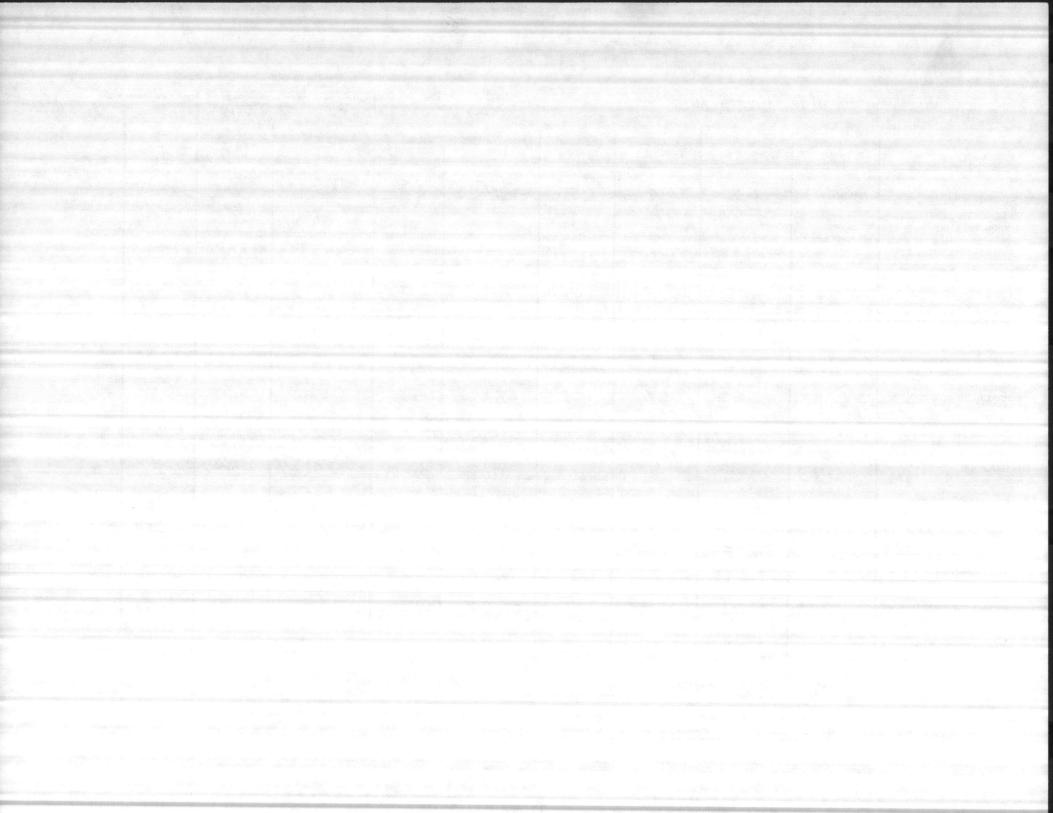

approximate and the second of the second

전에는 것 또 하면 아이들은 것 같아요.

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)	S WATER TR	EATMENT PL	ANTS				DATE COLLECTED	2 JAN 85	DATE OF ANA	LYSIS 22JAN85
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.8	7.4	8.6	7.5	8.4	8.0	817	813		
PHENOLTHALEIN ALKALINITY	8	D	4	٥	4	0	6	2		
METHYL ORANGE ALKALINITY	56	186	62	170	164	168	64	188		
CARBONATES AS CaCO3	16	D	8	0	8	0	12	4		
BICARBONATES AS CaCO ₃	40	186	54	170	156	168	52	184		
CHLORIDES AS C1	16	24	10	18	18	36	10	142		
HARDNESS AS CaCO ₃	54	64	82	64	72	50	72	68		
IRON AS Fe	< 0.04	6.61	60.04	0.14	<0.04	< 0.04	20.04	0.04	Xarenza	
FLUORIDE	1102/1.00	0.20	1.13/1.01	0.18	0.12	0.11	1.03/0.86	0.77		
CHLORINE RESIDUAL	1.1	1.3	1.3	1.4	1.4	1.1	1.0	1.5	1.	
TURBIDITY	0.16/0.30	1.50	0.21/0.39	0.21	0.77	0.41	1.54/1.18	0.33		1.
TOTAL PHOSPHATE		2.34			2.18					a series as a
ORTHO PHOSPHATE		1.21			0:28	alan toolaa	e de cardenaria Secondaria	e contrata Secondaria		
META PHOSPHATE		113			1.90					
STABILITY	+0.4	-0.9	+0.3	-0,8	+0.1	-0.4	+0,4	-0,1		
REMARKS				2					COPY TO:	
				-						•
*									WATER T	REATMENT
NOTE: All results reported and specific condu	in parts per million actance. One liter of	unless otherwise n potable water is a	oted except for pH, assumed to weigh o	temperature, one kilogram.					D PMU	D MCAS PMU
				entre generation en Alter de Marine	Sai	bee +B	mms		D NREAD	D FILE

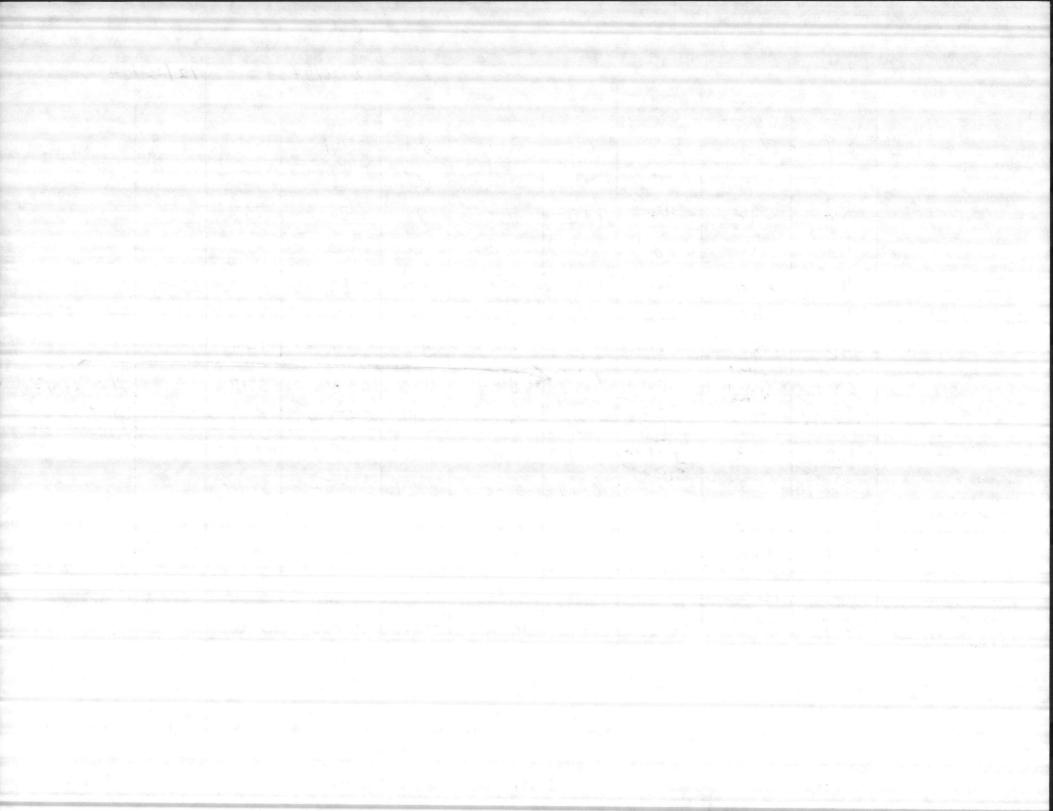


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TF	REATMENT PL	ANTS				DATE COLLECTED	5	DATE OF ANALYSIS	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
ЭН	9.1	7.9	8,8	7.4	\$.4	8.2	8.7	8.1		
PHENOLTHALEIN ALKALINITY	8	0	4	0	2	0	4	0		
METHYL ORANGE ALKALINITY	50	200	50	160	150	156	64	210		
CARBONATES AS CaCO ₃	16	0	8	0	4	0	8	0		
BICARBONATES AS CaCO 3	34	200	42	160	146	156	56	210		
CHLORIDES AS C1	10	40	10	14	14	30	8	120		
HARDNESS AS CaCO ₃	54	62	68	70	50	52	66	82		
RON AS Fe	20,04	(0.5)	0,14	0.21	0.08	0.06	20.04	0.07		
	0.95 0.98	0.18	1.02	0,19	0.12	0,11	1.12	0.76		
CHLORINE RESIDUAL	1.0	1.3	1.3	1,5	1.6	1.0	0.8	1.1		
URBIDITY AM	0,13 0,23	0,93	0,73	0.27	0,74	0.44	0,27 0,42	0.61		
OTAL PHOSPHATE		2.95			1.13					A series
ORTHO PHOSPHATE		1.04			0.25		and in Sec. 198		and in the	9
META PHOSPHATE		1.91			0.88					
STABILITY	+0.8	-0,1	+0.5	-0.8	+0.1	-0,1	+0,5	-0,1		
REMARKS									COPY TO:	-
										I 🗆 🔜
									WATER T	REATMENT
IOTE: All results reported and specific condu	in parts per million	unless otherwise	noted except for pH,	temperature,		LYSIS BY	DI	1	D PMU	
	change. Che mer of	polubic water 15	accument to weight	no knogram.	Burs	J	Tochozell	le	NREAD	D FILE

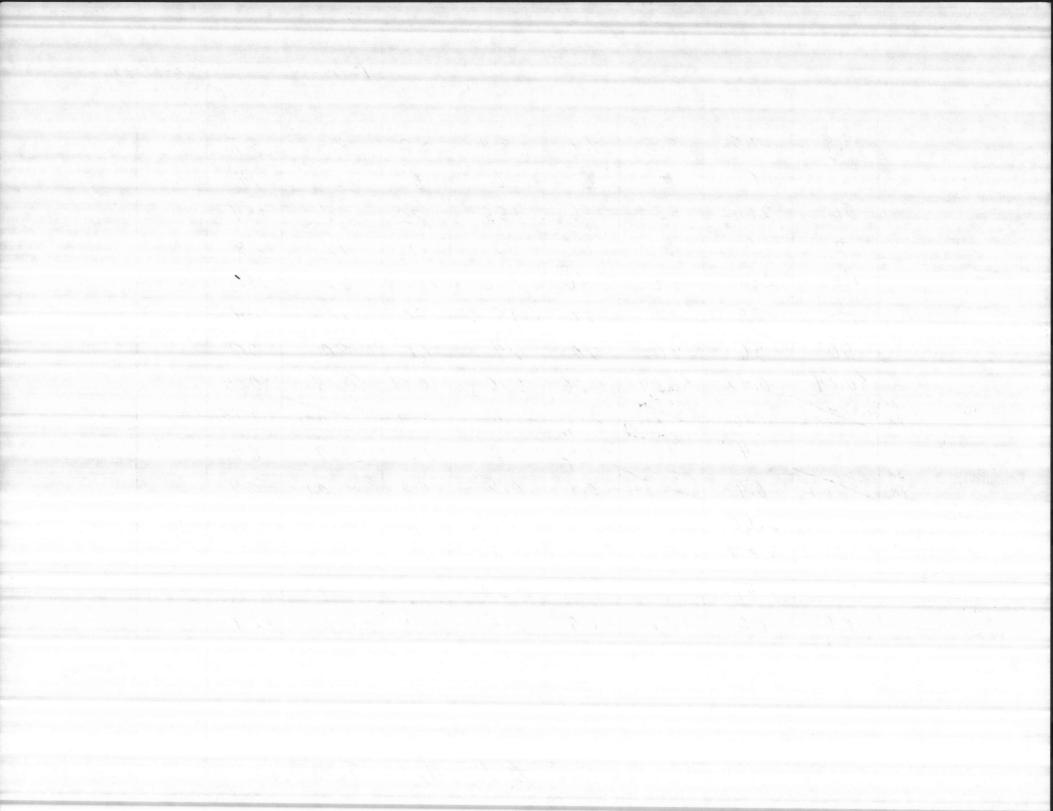


CHEMICAL ANALYSIS	- WATER TREATMENT PLANTS	
MCBCL 11330/3 (REV. 6-84)	Testwell #5 Testwell #3 Testa	Jell 2.

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	E - WATER T	FEATMENT PL	ANTS Testwell 2	- Testwell	4	Alexandria	DATE COLLECTED	5	DATE OF ANALYSIS
PARAMETER	HADNOT POINT	GAMP- JOHNSON	T ARAWA T ERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER	
ΫΗ	8,1	7.8	7.9	8.6					
PHENOLTHALEIN ALKALINITY	0	0	0	10					
IETHYL ORANGE LKALINITY	80	200	156	144		rak Lashert ^{an} keser di kasa Lashert ^{an} keser di kasa			
ARBONATES AS CaCO ₃	0	0	0	20				and the second se	
ICARBONATES S CaCO 3	80	200	156	124					
CHLORIDES AS C1	14	16	46	8					
IARDNESS AS CaCO ₃	96	170	176	50					
RON AS Fe	1.76	4.06	3.31	0.31					
LUORIDE	0,40	0.16	0.42	0.32					
HLORINE RESIDUAL			/	/					
URBIDITY	16.7	34.7	48.0	7.6					
OTAL PHOSPHATE				James -					
RTHO PHOSPHATE									
IETA PHOSPHATE						an a			
TABILITY									
EMARKS	IIB 1	,,,// 11	1.1	·Zo'		•	•	and and an and a second se	СОРУ ТО:
Danu	103'	711	90'	107'					
VATL	149	16	10	107					
OTE: All results reported and specific conduc	in parts per millio stance. One liter o	n unless otherwise of potable water is	noted except for ph assumed to weigh	I, temperature, one kiloaram.	LABOR TORY ANAL	YSIS BY			
					Thines Spe	negut	4		I NREAD FILE



- WATER TRE	EATMENT PLA	NTS				DATE COLLECTED	TAN85	DATE OF ANALYS	18 8 JAN
HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	2086	
8.7	7.4	8.9	7.5	8.5	7.9	7.9	8.7	8.9	n in generation in the second s
4	0	6	Ø	6	0	0	8	14	
32	220	54	168	158	178	92	184	198	
8	0	12	0	12	0	٥	16	28	
24	220	42	168	146	178	92	168	170	
		8	20	20	34	18	116	108	
60	56	66	58	60	56	86	66	54	
< 0.04	(0.59)	20.04	0123	< 0.04	20.04		0.05	<0.04	
1.01/1.03	0.19	1.30/0.97	0.17	0.12	0.10	1.08 0.84	0.88	0.87	
		1.0	1.0	1.5	0.5	0.9	1.3	-	
0.12/	0.73	0.37/0.67	0:32	0130	0.35	0.13/0.27	0.47		
	2.05			1.28					
	1.04			0.32				3.05	
	1.01			0.96					
+0.3	-0.9	+0.4	-0.9	0	- 0.6	- 0.5	0	+0.1	
	2 11				epart de la State 19 - Maria State 19 - Maria State			COPY TO:	
D PT = 2	8.4								D
	$\frac{\text{HADNOT}}{\text{POINT}}$ $\frac{8.7}{4}$ $\frac{32}{8}$ $\frac{24}{14}$ $\frac{60}{60}$ < 0.04 $\frac{1.01}{1.03}$ $\frac{1.1}{0.12} = 0.28$ $\frac{1.1}{0.12} = 0.28$	$\begin{array}{c c} \begin{array}{c} \text{HADNOT} & \text{CAMP} \\ \text{POINT} & \text{JOHNSON} \\ \hline 8.7 & 7.4 \\ \hline 4 & 0 \\ \hline 32 & 220 \\ \hline 8 & 0 \\ \hline 24 & 220 \\ \hline 14 & 22 \\ \hline 60 & 56 \\ \hline <0.04 & 0.59 \\ \hline 1.01 / 1.03 & 0.19 \\ \hline 1.01 / 1.03 & 0.19 \\ \hline 1.1 & 1.4 \\ \hline 0.12 / 0.28 & 0.73 \\ \hline 2.05 \\ \hline 1.04 \\ \hline 1.01 \\ \hline 1.01 \\ \hline \end{array}$	POINT JOHNSON TERRACE 8.7 7.4 8.9 4 0 6 32 220 54 8 0 12 24 220 42 14 22 8 60 56 66 <0.04 0.579 <0.044 $101/1.03$ 0.19 $1.30/0.97$ 1.1 1.4 1.0 $0.12/0.28$ 0.73 $0.37/0.67$ 2.055 1.04 1.01 $1.01/1$ $1.01/1$ $1.01/1$ $1.01/1$ $1.01/1$ $1.01/1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HADNOT POINT CAMP JOHNSON TARAWA TERRACE ONSLOW BEACH COURTHOUSE BAY RIFLE RANGE 8.7 7.4 8.9 7.5 9.5 7.9 4 0 6 0 6 0 32 220 54 168 158 178 8 0 12 0 12 0 24 220 42 168 146 178 14 22 8 20 20 34 60 56 66 58 60 56 <0.04 0.57 <0.04 0.23 <0.04 <0.04 $101/1.03$ 0.19 $1.30/0.97$ 0.17 0.12 0.10 $1.01/1.03$ 0.73 $0.37/0.67$ 0.32 0.30 0.35^{-5} 2.05^{-5} 1.28 1.28 1.04 0.322 1.04 1.01 0.96 -0.6 -0.6 -0.6 -0.6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $



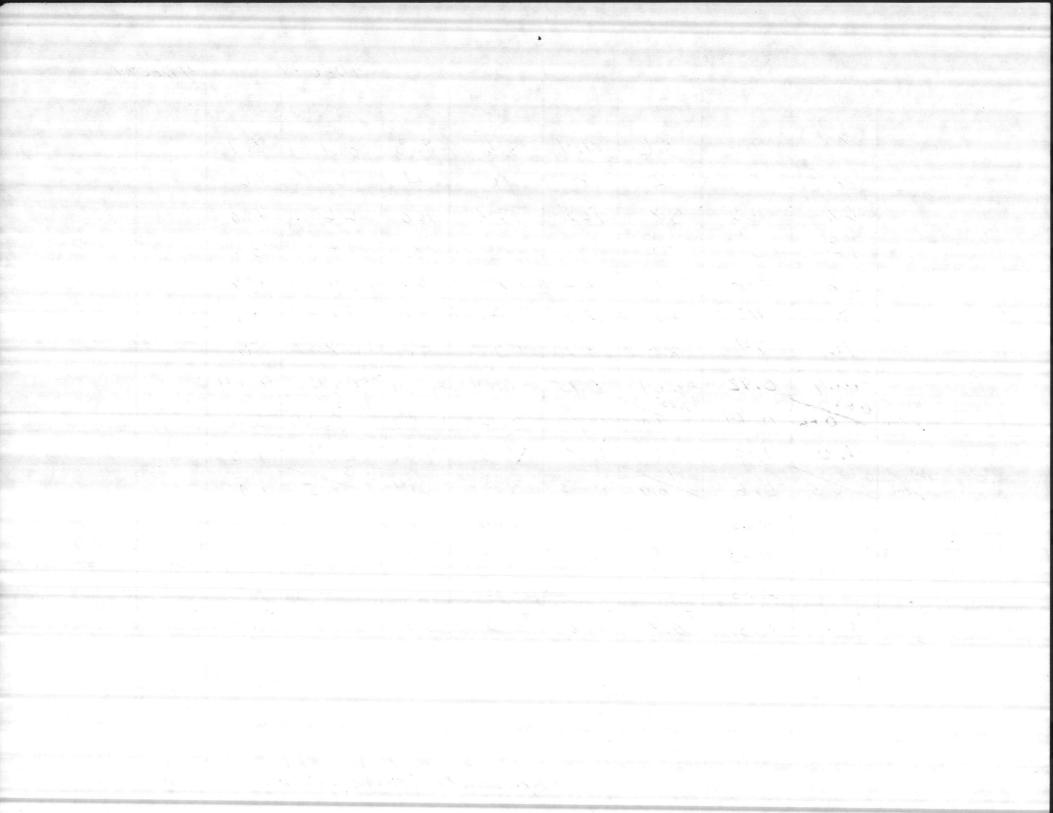
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TR	EATMENT PL	ANTS				DATE COLLECTED	dik den	DATE OF AN	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.9	7.3	8,8	7,4	8.4	8.1	8.7	7.8		
PHENOLTHALEIN ALKALINITY	8	0	4	0	2	0	6	0		
METHYL ORANGE ALKALINITY	56	216	44	170	160	186	56	268		2
CARBONATES AS CaCO ₃	16	0	8	0	4	0	12	0		
BICARBONATES AS CaCO ₃	40	216	36	170	156	186	44	268		
CHLORIDES AS C1	6	40	10	12	12	30	10	124		
HARDNESS AS CaCO ₃	58	82	60	62	54	54	64	144		
IRON AS Fe	< 0.04	6.60	0.06	0.34	X0.04	0.10	<0.04	0.12	-	Air Compress
FLUORIDE	0.93	0.18	0.52	0.20	0.12	0.11	0.85	0.86		quit
CHLORINE RESIDUAL	1,0	1.3	1,4	1.4	1.4	1.0	09	1.4		
TURBIDITY	020.70	0.70	0.30	0.29	0.30	0.27	0.30	0.60		
TOTAL PHOSPHATE		2.18			1.04					
ORTHO PHOSPHATE		1.00		e di karati Karati	0.22					
META PHOSPHATE		1.18			0.82			and a start of a		
STABILITY	+0.7	-0.7	+0.7	-0.9	+0,2	-0.1	+0.5	0.0		
REMARKS									COPY TO:	
										R 🗆
	1								WATER	TREATMENT
NOTE: All results reported and specific condu	in parts per million octance. One liter of	unless otherwise n potable water is a	oted except for pH, assumed to weigh o	temperature, one kilogram.	LABORATORY ANA	LYSIS BY			- PMU	MCAS PMU
					Ho. J. Bu	me 41	Barbee	anta canadata	NREAD	D FILE

wipp

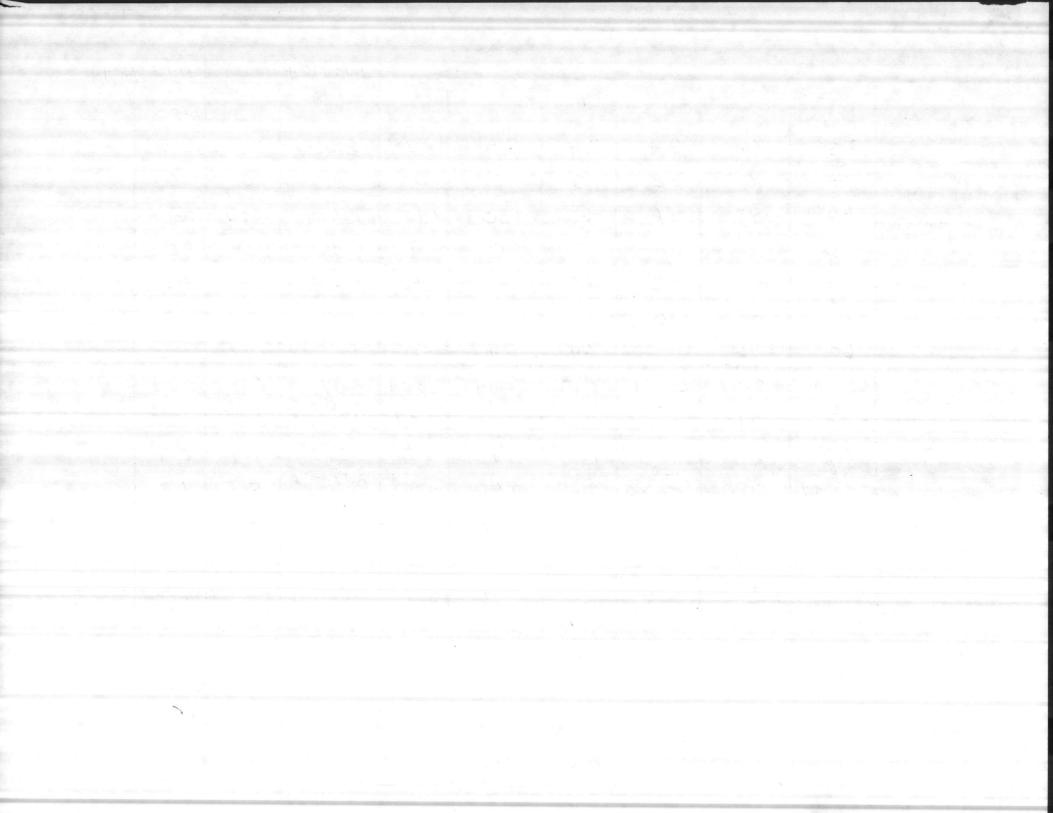
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	9 — WATER TF	REATMENT PLA	ANTS				DATE COLLECTED 12-18-84		DATE OF ANALYS	SIS 74
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		an an an an Arrange Arrange an Arrange Arrange an Arrange an Arrange
PH	8.9	7.5	8.5	7.4	8.4	8.2	8.5	8.7		
PHENOLTHALEIN ALKALINITY	6	0	4	0	6	6	6	14		
METHYL ORANGE ALKALINITY	56	206	58	156	188	172	74	184		
CARBONATES AS CaCO ₃	12	0	8	0	12	12	12	28		
BICARBONATES AS CaCO ₃	44	206	50	156	176	160	62	156		
CHLORIDES AS C1	10	38	12	20	18	30	10	114		
HARDNESS AS CaCO ₃	60	86	80	70	74	60	80	50		
IRON AS Fe	10.04	(0.42)	10.04	0.26	0.10	10.04	10.04	10.04		
FLUORIDE AM	0.96 0.93	0.16	0.63	6,19	0.10	0.09	1.01 0.95	0.75		
CHLORINE RESIDUAL	1.0	1.4	1.0	1.5	1.2	1.0	0.9	1.4		
TURBIDITY AM	0.2 0.2	0.9	0.5 0.4	0.4	0.5	0.3	0.1 0.1	0,4		
TOTAL PHOSPHATE		2.60			1.04					
ORTHO PHOSPHATE		1.09	1		0.22					
META PHOSPHATE		1.51		n Cardan Ar Cardan Ar	0.82					
STABILITY	+0.5	-0.6	+0.2	-0,9	0.0	-0,1	+0,2	+0,1		
REMARKS								a dagaa ayaa daga	COPY TO:	
						and and a second se		n de l'angle de la La degle de la de		<u> </u>
									WATER TRE	ATMENT

7:

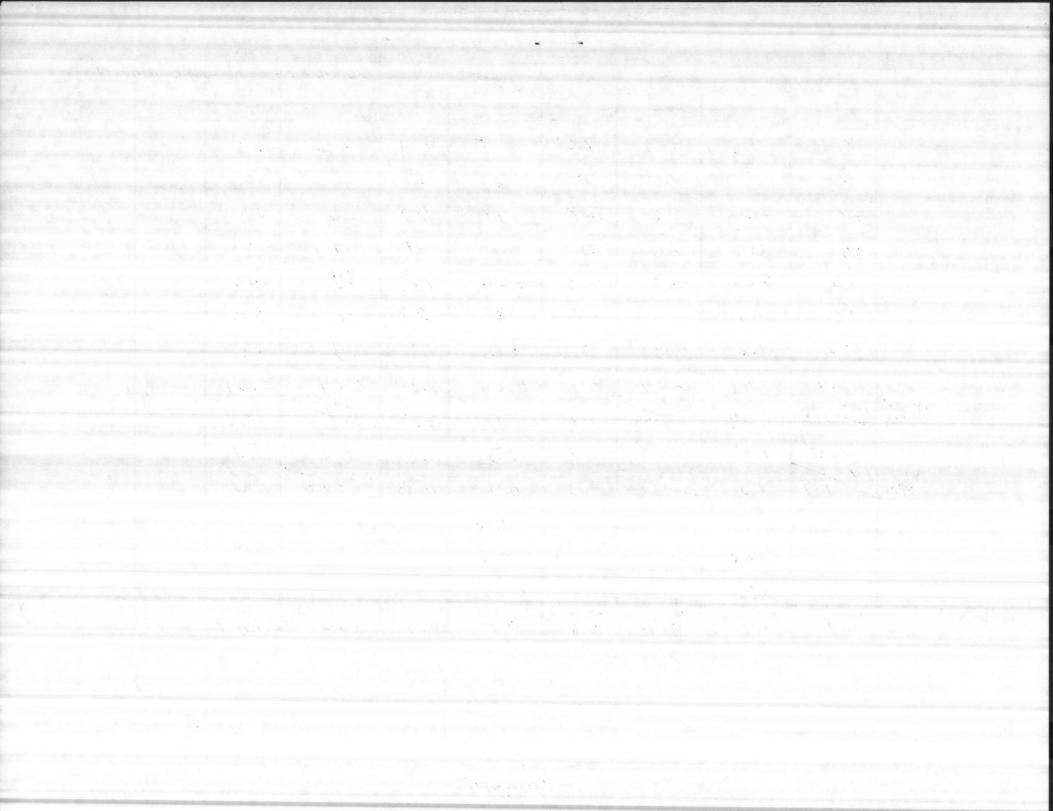
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TR	EATMENT PL	ANTS		a an Feigh		DATE COLLECTED		DATE OF ANALYSIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	
РН	9.0	7.4	8.7	7.5	8.4	8.3	8.9	9.0	
PHENOLTHALEIN ALKALINITY	6	0	4	0	2	0	6	20	
METHYL ORANGE ALKALINITY	50	190	40	150	180	160	50	160	
CARBONATES AS CaCO ₃	12	0	8	0	4	0	12	40	
BICARBONATES AS CaCO ₃	38	190	32	150	176	160	38	120	
CHLORIDES AS C1	10	36	10	16	10	30	6	110	
HARDNESS AS CaCO ₃	60	74	80	60	60	54	62	56	
RON AS Fe	10.04	0.33	20.04	0.06	<0.04	20.04	0.08	0.13	
LUORIDE	1.01	0.15	1.06	0.15	0.09	0.09	1.00.93	0.63	
CHLORINE RESIDUAL	1.0	1.4	1.0	1.0	1,4	1.0	0.8	1.3	
TURBIDITY	0.34	0.67	0,30	and the second	0.50	0.37	0.60	1.08	
TOTAL PHOSPHATE		2.05			0.96				The states
ORTHO PHOSPHATE		1.00			0.16		an a		
META PHOSPHATE		1.05		ing and the second	0.80				
STABILITY	+0.7	-0.7	+0.5	-0.7	+0.1	0.0	+0.6	+0.2	
REMARKS									COPY TO:
			t start a suite The						WATER TREATMENT
NOTE: All results reported and specific condu	in parts per million ctance. One liter of	unless otherwise n	oted except for pH	, temperature;	LABORATORY ANA	LYSIS BY			PMU DMCAS-PMU
				gram	16.2.Bu	me + Ba	OB LACNAPE	LLP	D NREAD D FILE


 \sim

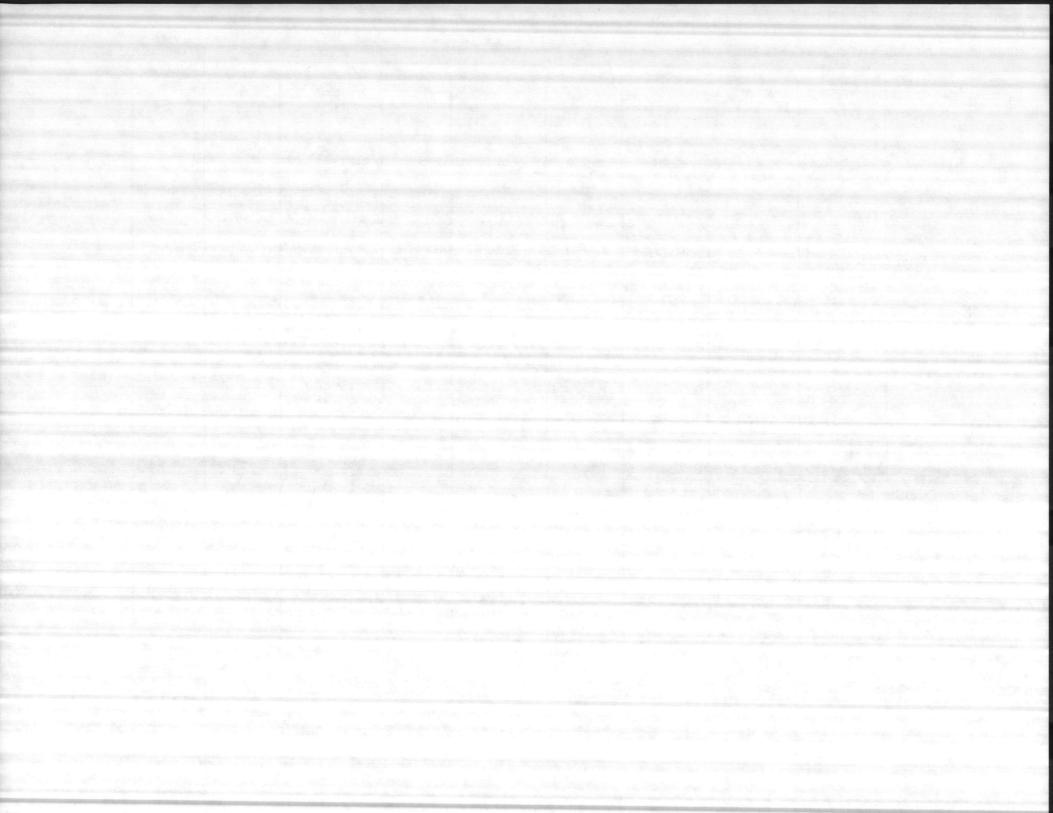
Charles 6 State 1 State


Letters of the summer as a contract of the contract of the

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TF	REATMENT PL	ANTS				HDEC 89	/	DATE OF ANALY	SIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8	7,3	8.6	7.4	8.6	8.3	8,7	8.7	and the second	
PHENOLTHALEIN ALKALINITY	6	0	2	0	10	4	6	16		an ann an Anna an Mar an Anna Anna Anna Mar an Anna Anna Anna Anna Anna Anna Anna
METHYL ORANGE ALKALINITY	68	202	58	162	194	160	66	218		
CARBONATES AS CaCO ₃	12	0	4	0	20	8	12	32		
BICARBONATES AS CaCO ₃	56	202	54	162	174	15-2	54	186		
CHLORIDES AS C1	8	42	12	22	18	30	18	82		
HARDNESS AS CaCO ₃	70	74	80	82	52	50	68	50		
IRON AS Fe	40.04	6.42	20.04	0.15	<0.04	40.04	40.04	40.04		
FLUORIDE AM	0.69	0.14	1.00	0,13	0.12	0.09	1.03	0.90		
CHLORINE RESIDUAL	1.0	1,3	1.0	1,3	1.3	1.2	0,9	1.3		
	0.6	0.6	1.0	0,3	0,3	0.4	0.3	1.9		
TOTAL PHOSPHATE		4.05			1.04	i sainte a				
ORTHO PHOSPHATE	Marriel S. S.	1.32		te societitati e	0.19			pr. 19 komenen T		
META PHOSPHATE		2.73			0.85					
STABILITY	to. 6	-0.8	+0.4	0.8	10.2	-0.1	to.4	+0.1		e di ⁴⁴²⁴
REMARKS									COPY TO:	an san ta
				1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 						•
		the second s							WATER TRI	EATMENT
NOTE: All results reported					LABORATORY ANA	LYSIS BY	2 1	0		MCAS PMU
and specific conduc	ctance. One litter of	potable water is a	assumed to weigh	one kilogram.	Amercia	of fa	chapell	e		


wipp

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TR	REATMENT PL	ANTS		a contra a series de la contra d Regiones de la contra de la contra Regiones de la contra		DATE COLLECTED		DATE OF ANALYSIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	/20.3
РН	8.8	7.6	8,4	7.4	8.3	8.2	8,6	7,8	8.0
PHENOLTHALEIN ALKALINITY	4	0	2	0	0	0	2	0	0
METHYL ORANGE ALKALINITY	40	180	56	160	150	140	60	240	60
CARBONATES AS CaCO ₃	8	0	4	0	0	0	4	0	0
BICARBONATES AS CaCO3	32	180	52	160	150	140	56	240	60
CHLORIDES AS C1	10	50	10	14	10	26	10	88	10
HARDNESS AS CaCO ₃	60	76	80	64	64	50	62	142	62
IRON AS Fe	20.04	0.57	20.04	0.15	20.04	20.04	0.07	0.18	0.04
FLUORIDE	0.76	0.13	0.76	0.13	0.08	0.07	1.00.93	0.80	0.93
	1.0	1.4	11	1.5	1.4	1.0	0,9	1.4	0.4
TURBIDITY	0.30	0.80	030		0.50	0.30	0170.58	5.8	1,0
TOTAL PHOSPHATE		2.70			0.96				
ORTHO PHOSPHATE		1,17			0.22			a anterior de la construcción Esta construcción de la construcción	
META PHOSPHATE		1.53			0.74				
STABILITY	40.4	-0.6	+0.2	-0.9	0.0	-0.1	+0.4	-0.3	
REMARKS									COPY TO:
		and the second							
									WATER TREATMENT
NOTE: All results reported and specific condu	in parts per million	unless otherwise n f potable water is a	oted except for pH			LYSIS BY		л	
		,	ie no.gi	gium	6-A3	um			NREAD FILE



CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TF	REATMENT PL	ANTS			andra P Andra ang ang ang	DATE COLLECTED	4	DATE OF ANAL	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH	8.7	7.5	9.3)	7,5	8,5	8.4	8.6	8.5		
PHENOLTHALEIN	8	0	10	0	6	2	6	2		
IETHYL ORANGE LKALINITY	68	202	40	168	178	182	66	244		
ARBONATES AS CaCO3	16	0	20	0	12	4	12	4		
ICARBONATES S CaCO 3	52	202	20	168	166	178	54	240		
HLORIDES AS C1	10	44	12	18	18	28	10	80		
ARDNESS AS CaCO ₃	72	68	58	50	60	58	74	60		
RON AS Fe	0.04	(0.91)	0.04	0.15	6.04	0.04	0.04	0.04		
LUORIDE AM	1.04 1.03	0.14	1.07	0,15	6,10	6,08	1.00	0.92		
HLORINE RESIDUAL	1.0	1.4	0.9	1.6	1.3	1.0	1.0	1.2		and the second
URBIDITY AM	1.4 1.7	1.5	6.3	0,3	0.4	0,3	0.3 1.0	0.4		
OTAL PHOSPHATE		5.00			0.88					
ORTHO PHOSPHATE		1.68		2	0,19				an talan antara an Antara antara da antar	
IETA PHOSPHATE		3.32			0.69			an an tractairean anns an tractairean		
TABILITY	+0.4	-0.7	+ 0.7	-0,8	+ 0.1	0.0	+0.3	0.0		
EMARKS			a talk cale in a						COPY TO:	
na sina na mana na sana Na sina sina sina sina sina sina sina sin						11.11.1				D
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					WATER T	REATMENT
OTE: All results reported and specific conduc	in parts per million ctance. One liter of	unless otherwise n f potable water is a	oted except for pH, assumed to weigh of	temperature, one kilogram.	LABORATORY ANA	LYSIS BY				D MCAS-PMU
					LABORATORY ANA	130	bee		NREAD	O FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED	4	DATE OF ANA	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.7	7.5	(9.3)	7.5	8,5	8.4	8.6	8.5		
PHENOLTHALEIN ALKALINITY	8	0	10	0	6	2	6	2		
METHYL ORANGE ALKALINITY	68	202	40	168	178	182	66	244		
CARBONATES AS CaCO ₃	16	0	20	0	12	4	12	4		
BICARBONATES AS CaCO ₃	52	202	20	168	166	178	54	240	- 1968 -	
CHLORIDES AS C1	10	44	12	18	18	28	10	80		
HARDNESS AS CaCO ₃	72	68	58	50	60	58	74	60	2	
IRON AS Fe	0.04	(0.91)	0.04	0.15	6.04	0.04	0.04	0.04		
FLUORIDE AM	1.04 1.03	0.14	1.07	0,15	6,10	6,08	1.00	0.92		
CHLORINE RESIDUAL	1.0	1.4	0.9	1.6	1.3	1.0	1.0	1.2		
TURBIDITY AM	1.4 1.7	1.5	6.3	0,3	0.4	0.3	0.3 1.0	0.4		
TOTAL PHOSPHATE		5.00			0.88				N. S.	
ORTHO PHOSPHATE		1.68			0,19					
META PHOSPHATE		3.32			0.69				na <mark>televis - angendatio</mark> n en et en en en esta esta esta esta esta esta esta esta	
STABILITY	+0.4	-0.7	+ 0.7	0,8	+ 0.1	0.0	+0.3	0.0		
REMARKS		a construction of the construction	and the second s	an a	har and a second			di sen nan sangaratis	COPY TO:	an si s Mana serie serie serie Mana serie serie serie
										0
								(_{Sec} rit) detecto de sector de	y water t	REATMENT
NOTE: All results reported and specific conduct	in parts per million ctance. One liter of	unless otherwise n potable water is a	oted except for pH, ssumed to weigh c	temperature, me kilogram.	LABORATORY ANA	LYSIS BY	angi manini in			D MCAS PMU
		er synthesis		K	fines cut	VSa	bee		D NREAD	D FILE

•

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER II		AINTO				DATE COLLECTED	/	DATE OF ANALYSIS
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	TT 2038
рн							S. S. March	S	9.0
PHENOLTHALEIN ALKALINITY					ta data tanàn ing mangana amin'ny fisiana Ny INSEE dia mampina manjara manjara amin'ny fisiana amin'ny fisiana Ny INSEE dia mampina manjara manjara manjara amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana ami				6
METHYL ORANGE ALKALINITY									46
CARBONATES AS CaCO3			ter fine de					a contra Andre Contra	12
BICARBONATES AS CaCO ₃									34
CHLORIDES AS C1									12
HARDNESS AS CaCO ₃					a dha an			n ar an	64
IRON AS Fe					- jaingter				
FLUORIDE									0.97
CHLORINE RESIDUAL									0.6
TURBIDITY									2.5
TOTAL PHOSPHATE									
ORTHO PHOSPHATE							aa oolii ooroa T		
META PHOSPHATE									
STABILITY			and the states						
REMARKS		•			•	•			COPY TO:
		1-10 m 10							
NOTE: All results reported ir and specific conduct	n parts per million ance. One liter o	unless otherwise r	noted except for plassumed to weigh	H, temperature;		YSING PY	and a start of the		
				and mogram.	a tachane	110			NREAD FILE

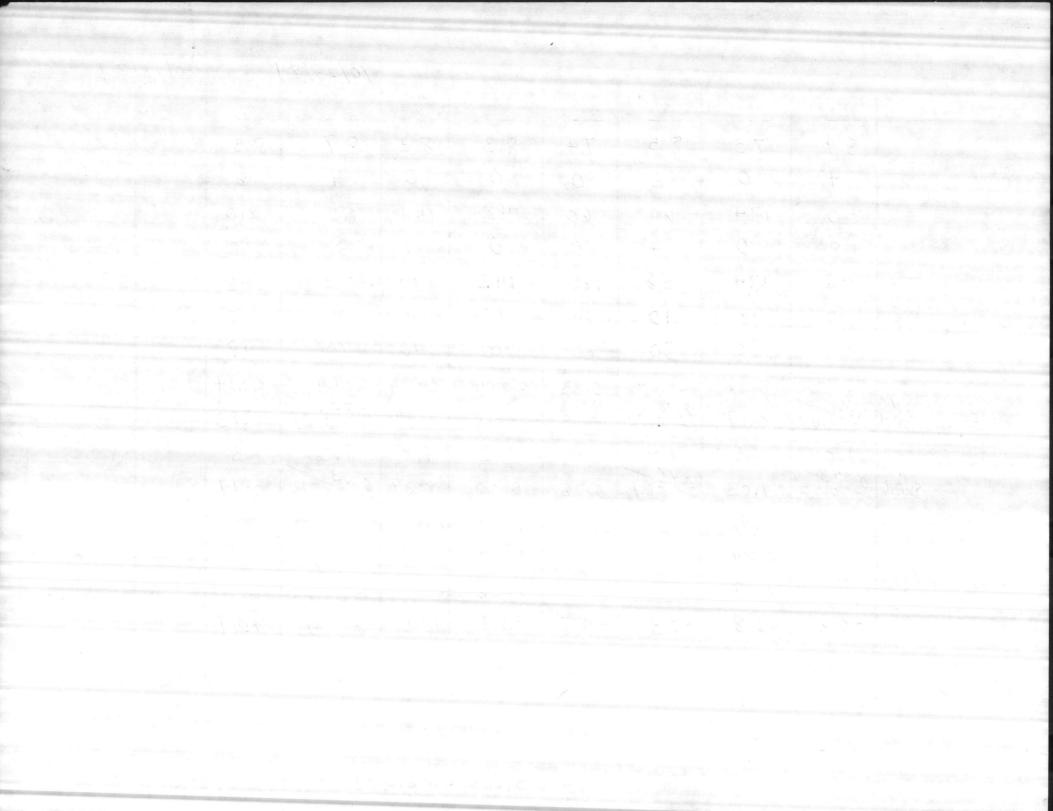

1.1.1.1.1.1.1

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED	84	DATE OF ANA	V 84
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.7	7.2	9.1	7.5	8.5	8.2	8.5	8.8		
PHENOLTHALEIN ALKALINITY	6	0	10	0	4	0	4	20		
IETHYL ORANGE	60	190	40	150	160	170	60	230		
ARBONATES AS CaCO ₃	12	0	20	0	8	0	8	40		
IICARBONATES IS CaCO ₃	48	190	20	150	152	170	52	190		
CHLORIDES AS C1	10	54	10	16	12	20	10	94		
IARDNESS AS CaCO ₃	60	86	66	56	58	62	68	44		
RON AS Fe	10.04	0.61	10.04	0.15	20.04	20.04	20.04	20.04		
LUORIDE	0.94	0.12	0.91	0.12	0.08	0.07	1.00.87	0.92		
HLORINE RESIDUAL	1.0	1.4	1.0	1.1	1.4	0.8	1.1	1.6	1	
URBIDITY	0.34	1.00	0.25	0.45	0.31	0.27	0.20	6.33		
OTAL PHOSPHATE		2.05			1.04					
RTHO PHOSPHATE	far se esta	0.84			0.22					
IETA PHOSPHATE		1.21			0.82		kasti.			
TABILITY	+0.4	-0.8	+0.8	-0.7	+0.2	0.0	+0.2	+0,2		
EMARKS									COPY TO:	
	and the second									•
									WATER T	REATMENT
OTE: All results reported and specific condu	in parts per million ctance. One liter of	unless otherwise n potable water is a	oted except for pH, assumed to weigh o	temperature, one kilogram.	LABORATORY ANA	LYSIS BY		an an an an an	D PMU	D MCAS PMU
					BURNS	+ LACHA	PEALC		D NREAD	D FILE

and the second se

× .

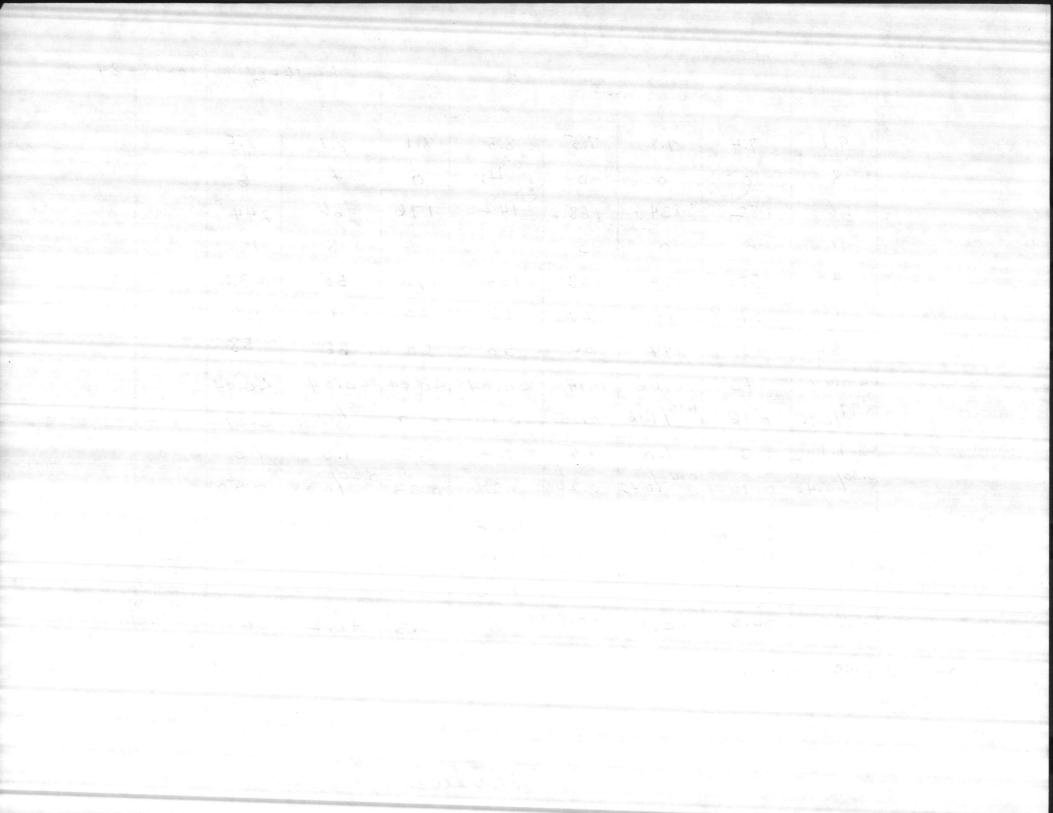
CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				30 Oct	84	30 Oct 34
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	
РН	9.0	7.5	9.0	7.5	8.5	8.5	(9.5)	8.8	
PHENOLTHALEIN	4	0	6	0	4	2	8	10	
METHYL ORANGE ALKALINITY	48	184	46	160	160	152	48	238	
CARBONATES AS CaCO ₃	8	0	12	0	8	4	16	20	
BICARBONATES AS CaCO ₃	40	184	34	160	152	148	32	218	
CHLORIDES AS C1	10	12	12	18	18	16	12	88	
HARDNESS AS CaCO ₃	64	66	66	72	68	52	50	46	
IRON AS Fe	40.04	(0.4D	10.04	0.13	10.04	10.04	0.04	0.06	
FLUORIDE AM	1.03	0.16	0.91 0.89	0.15	0,11	0.10	0.91 0.93	0.98	
CHLORINE RESIDUAL	1.0	1.3	1.0	1.5	1.3	1.0	1.0	1.3	
		1.5	0.7 1.2	0.3	0.2	0.2	0,2- 03	0.3	
TOTAL PHOSPHATE	190	2.08			1.00				
ORTHO PHOSPHATE		1.00			0.25	kangkalan. Katik			
META PHOSPHATE	and global and the	1.08	and the second		0,75				
STABILITY	+0.6	-0.8	+0,4	-0.8	+0.1	0.0	+0.6	+0.2	
REMARKS		-							COPY TO:
Resample H	1B/pH=	9.4 Hig	pt due	to Mete	n malture	TION AT	WATER FIAN	<i>T</i> :	
								n an	WATER TREATMENT
NOTE: All results reported	in parts per millior	n unless otherwise	noted except for pH	, temperature,	LABORATORY ANA	LYSIS BY			
and specific conduc	ctance. One liter or	f potable water is	assumed to weigh o	one kilogram.	041	. 11.			D NREAD D FILE


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TF	REATMENT PL	ANTS	$\dot{q} = 4.5$			DATE COLLECTED	ł	DATE OF ANAL	1884
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB	NEW RIVER		
РН	8.8	7,3	8.6	7.4	8.4	8,3	8.6	8.7		
PHENOLTHALEIN ALKALINITY	4	0	4	0	2	2	4	12	1	
METHYL ORANGE ALKALINITY	54	200	56	150	150	140	60	210		
CARBONATES AS CaCO ₃	8	0	8	0	4	4	8	24		
BICARBONATES AS CaCO ₃	46	200	48	150	146	136	52	186		
CHLORIDES AS C1	10	40	10	18	14	14	10	84		
HARDNESS AS CaCO3	64	80	84	52	58	56	64	46		
IRON AS Fe	10.04	0.75	0.07	1.0	20.04	<0.04	60.04	20.04		
FLUORIDE A.P.M	1.07	0.17	1.05	0.17	0.12	0.10	1.23	0.97	1.5.00	
CHLORINE RESIDUAL	0.9	1,2	1.0	1.5	1.4	1.0	0.9	1.3	a instant	
TURBIDITY APAN	1 20	1.43	2.6	0.24	0.27	0.30	0.20	6.74		
TOTAL PHOSPHATE		3.45			1.00				ale tou	
ORTHO PHOSPHATE		1,24		en de de	0.25	er sold y			an an ann an	
META PHOSPHATE		2,21			0.75					kalandar († 1946) Geografiae († 1946) Antoine en services
STABILITY	+0,4	-0.8	+0.3	-0.7	+0.2	0.0	+6.3	+0.1		
REMARKS									COPY TO:	den al construction de la construcción de la construcción de la construcción de la construcción de la construcc
	<mark>na na serie de la composition de la comp Esta de la composition de la composition</mark>		X I					ter de la companya d La companya de la comp		D
			the second s						WATER TR	EATMENT
NOTE: All results reported and specific condu-					LABORATORY ANA	LYSIS BY	and an and a second second	1975 - Marine Carlos (1975 - 1976) 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -	D PMU	
and specific condu	orance. One inter of	Polable water is a	assumed to weigh (one knogram.	BUENS &	LACHAE	ELLB	and the second	NREAD	D FILE

12/2/01

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	S — WATER TH	REATMENT PL	ANTS				DATE COLLECTED	84	DATE OF ANA	et 84
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	9.0	7.5	9.0	7.5	8.5	8.5	(9.5)	8.8		
PHENOLTHALEIN ALKALINITY	4	0	6	0	4	2	8	10		
METHYL ORANGE ALKALINITY	48	184	46	160	160	152	48	238		
CARBONATES AS CaCO ₃	8	0	12	0	8	4	16	20		
BICARBONATES AS CaCO ₃	40	184	34	160	152	148	32	218		
CHLORIDES AS C1	10	12	12	18	18	16	12	88		
HARDNESS AS CaCO3	64	66	66	72	68	52	50	46		
RON AS Fe	10.04	0.4D	10.04	0.13	10.04	10.04	0.04	0.06		
FLUORIDE AM	1.03 6.99	0.16	0.91 0.89	0.15	0,11	0.10	0.91	0,98		
CHLORINE RESIDUAL	1.0	1.3	1.0	1.5	1.3	1.0	1.0	1.3		
TURBIDITY AM	0.3	1.5	0.7 1.2	0.3	0.2	0.2	0,2 03	0,3		
TOTAL PHOSPHATE	1	2.08			1.00	and served				
ORTHO PHOSPHATE		1.00		and the second	0.25	. Scatter :				
META PHOSPHATE	1. Laker	1.08			0,75				n ann an Anna Anna Anna Anna Anna Anna A	
STABILITY	+0.6	-0.8	+0,4	-0.8	+0.1	0.0	+0.6	+0.2		
REMARKS	COPY TO:									
Resample H	B/ PH =	7, 4 High	ptt due	ta Mete	r maltune	TION AT	WAter MAN	1.		, D
and the second									WATER T	REATMENT
NOTE: All results reported and specific condu-			noted except for pH, assumed to weigh of		LABORATORY ANA	LYSIS BY	and and a second se	1. N. N. C. 1	D PMU	D MCAS-PMU
					Rtacked	No				D FILE

and the second sec and the second of the second o and the second second


CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	6 — WATER TF	REATMENT PL	ANTS	the sea			DATE COLLECTED	t	DATE OF ANAL	YSIS 84
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
PH v	8.9	7.3	8,5	7.4	8,3	8,3	8,7	8.5		
PHENOLTHALEIN ALKALINITY	4	0	2	0	0	0	4	6		
METHYL ORANGE ALKALINITY	50	174	60	160	142	144	60	210		
CARBONATES AS CaCO ₃	8	0	4	0	0	0	8	12		
BICARBONATES AS CaCO ₃	42	174	56	160	142	144	52	198		
CHLORIDES AS C1	10	10	10	14	12	14	10	90		
HARDNESS AS CaCO ₃	54	80	80	60	70	46	70	48		an an tarihi an
IRON AS Fe	20.04	8.36	20.04	0.13	10.04	10.04	20.04	20.04		
FLUORIDE A. M.	1.00	0.17	0.78	0.15	0.11	0.09	0.83	0.93		
CHLORINE RESIDUAL	1.0	1.5	1.0	1.3	1.3	1,0	1.0	1.3	and the second	
TURBIDITY A. M.	0.34	1.03	0.47	0.26	0.30	0.29	0,23 0.26	0.47		
TOTAL PHOSPHATE		1.92			1.54	1				
ORTHO PHOSPHATE		0.84			0.28		a seconda and a			
META PHOSPHATE	and the second se	1.08		alaya Sari sa shekar Sari	1.26	entra esta esta esta esta esta esta esta est				
STABILITY	+0.6	-0.8	+0,3	-0.7	+0.1	0.0	+0.4	+0.1		
REMARKS			Print and			and the second	and a second second	1 Sanaga sanasa	COPY TO:	
	an a	an an an Ard Search an Ard								· · · · · · · · · · · · · · · · · · ·
									WATER T	REATMENT
NOTE: All results reported and specific conduc	in parts per million	unless otherwise r	noted except for pH,	, temperature;	LABORATORY ANA	LYSIS BY		10	D PMU	MCAS PMU
				grunn	BURNS	+ BARB	NB B		NREAD	D FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	- WATER TR	REATMENT PL	ANTS				DATE COLLECTED	190cT 8	DATE OF ANA	19Oct 8	
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER	2210 MOQ		
р Ч									8.7	and the second second	
PHENOLTHALEIN ALKALINITY	/							ali-	4		
IETHYL ORANGE									58		
CARBONATES AS CaCO ₃									8		
BICARBONATES AS CaCO 3				an an Aran Saman an An Anna Anna Anna Anna Anna Anna A					50	5	
CHLORIDES AS C1									6		
IARDNESS AS CaCO3			Straight -				l fat and kard	Style in	60		
RON AS Fe									0.05		
LUORIDE				b epo. «"P					0.71		
HLORINE RESIDUAL			teriori de la competencia de			/			0.4		
URBIDITY									1.81		
OTAL PHOSPHATE											
ORTHO PHOSPHATE		Sector and the sector of				lan a in Salah					
IETA PHOSPHATE		a	farm a grow		a signal server					an a	
STABILITY			a page at a						0		
EMARKS									COPY TO:		
		an a star galari Angeler an a		n an an Anna Anna Anna An Anna Anna Anna							
									D WATER T	REATMENT	
NOTE: All results reported in and specific conduct	n parts per million tance. One liter of	unless otherwise r f potable water is	oted except for pH	temperature, one kilogram.	LABORATORY ANAL			an en a e	PMU D MCAS-PMU		
	anak in an	salt test phi			ThBark	ee_			D NREAD	D FILE	

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		EATMENT PL	ANTS		an a		DATE COLLECTED	-84	DATE OF ANAL	- 84
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
й	(9.1)	7.4	7.8	7.5	8.5	8.1	8.8	8.5		
PHENOLTHALEIN ALKALINITY	8	0	0	0	4	0	4	6		an the second second Second second second Second second
METHYL ORANGE ALKALINITY	56	182	134	168	142	176	66	244		
CARBONATES AS CaCO ₃	16	0	0	0	8	0	8	12		
BICARBONATES AS CaCO ₃	40	182	134	168	134	176	58	232		
CHLORIDES AS C1	10	24	18	22	16	20	8	116		
HARDNESS AS CaCO ₃	64	68	144	56	50	60	66	58		
RON AS Fe	20.04	6.43	0.06	0.14	20,04	40.04	60.04	20:04		
FLUORIDE	0.97/0.95	0.16	1.10/1.16	0.15	0,10	0.09	1.05/0.84	0.89		61
CHLORINE RESIDUAL	1.1	1.3	1.0	1.5	1.4	1.0	1.0	1.3		
TURBIDITY	0.30/0.40	0.96	0.40/0.42	0.20	0.29	0.33	0:20/0:28	0.50		
TOTAL PHOSPHATE		3.30			1.32					part to p
ORTHO PHOSPHATE		1.17		de agains	0.16	a da Astronya Marina		and and a second se		
META PHOSPHATE		2.13	n din series din serie		1.16					
STABILITY	+0.5	-0.6	-0.1	-0.8	0	-0.3	+0.2	0		
REMARKS OH OBFOND - 8,3										
PII OD	100-0	10			and the second s					<u> </u>
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Section by	Alexandre de							REATMENT
NOTE: All results reported and specific condu	I in parts per million uctance. One liter of				LABORATORY ANA	LYSIS BY	1	and the second s	D PMU	□ MCAS-PMU
					th Bark	ee a	Junegent		D NREAD	D FILE

CHEMICAL ANALYSIS MCBCL 11330/3 (REV. 6-84)	5 — WATER TH	EATMENT PL	AIN I S	an she in the second			DATE COLLECTED	0-9-84	DATE OF ANA	10-9-84
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		
РН	8.8	7.8	8.9	7.6	8.3	8.3	8.9	8.7		
PHENOLTHALEIN ALKALINITY	6	0	6	0	4	2	6	12	1	
METHYL ORANGE ALKALINITY	82	196	52	166	172	196	60	220		
CARBONATES AS CaCO ₃	12	0	12	0	8	4	12	24		
BICARBONATES AS CaCO ₃	70	196	40	166	164	192	48	196		
CHLORIDES AS C1	10	20	18	18	20	52	20	94		
HARDNESS AS CaCO ₃	74	66	76	56	50	52	66	48		
IRON AS Fe	10.04	(0.34)	0.04	0.15	0.04	0.09	0.04	0.04		
FLUORIDE	0.93/0.95	0.16	1.24/1.19	0.16	0.11	0.10	0.98/0.84	0.87		
CHLORINE RESIDUAL	0.9	1.4	1.0	1.5	1.1	110	0.9	1.3		
TURBIDITY	0.33/0.31	0.94	0.46/075	0.25	0.21	0.46	0.40/0.35			
TOTAL PHOSPHATE		2.75			0.81					and the second second
ORTHO PHOSPHATE		1.04			0.22					
META PHOSPHATE		1.71			0.59					
STABILITY	+ 0.3	-0.3	+0.5	-0.8	-0.2	-0.2	+0.2	+0.1		
REMARKS			1999 - 1999 -						COPY TO:	
PH OB	. POND =	8.2	<u>a la su a sita a si</u>		e an anna fha anna an 1997 - 1997 - 1984 (* 198	na Nana nelation Mana nelationes Mana nelationes				
									D WATER T	REATMENT
NOTE: All results reported	in parts per million	unless otherwise n	oted except for pH,	temperature;	LABORATORY ANAL	YSIS BY	- 1		D PMU	D MCAS PMU
and specific condu	ctance. One liter of	potable water is a	ssumed to weigh c	one kilogram.	ThBar	bee	Spinence	at	NREAD	

CHEMICAL ANALYSI MCBCL 11330/3 (REV. 6-84)		REATMENT PL	ANTS				DATE COLLECTED	er 84	DATE OF ANAL		84
PARAMETER	HADNOT POINT	CAMP JOHNSON	TARAWA TERRACE	ONSLOW BEACH	COURTHOUSE BAY	RIFLE RANGE	HOLCOMB BLVD	NEW RIVER		1 15	
PH	8.9	7.3	8.7	7.4	8.5	8.3	9.0	8:6			
PHENOLTHALEIN ALKALINITY	6	0	2	0	4	0	8	8		1.1.4	
METHYL ORANGE ALKALINITY	52	174	40	160	150	152	56	164		an a	
CARBONATES AS CaCO ₃	12	0	4	0	8	0	16	16			
BICARBONATES AS CaCO ₃	40	174	36	160	142	152	40	148			
CHLORIDES AS C1	10	20	10	20	10,	16	10	90	and the second		
HARDNESS AS CaCO ₃	60	.50	62	56	60	42	60	0.58	ally is a	and a second	
IRON AS Fe	20.04	0.41	20.04	0.17	20.04	20,04	0.15	0.12			
FLUORIDE A. H.	0.94	0.14	0.97	0.13	0.09	0.07	0.76	0.81			
CHLORINE RESIDUAL	1.0	1.2	1.0	1.3	1.3	1.0	0.9	1.3			
TURBIDITY A. A.	0.20	1.00	038.00	0.40	0.40	0.30	0.38,10	3.90	in the second		
TOTAL PHOSPHATE		3.85			0.69		n an			an la said	
ORTHO PHOSPHATE		1.32		and and a start of	0.19						and the second
META PHOSPHATE	and the second	2.53			0.50				111-1		
STABILITY	+0.7	-0.9	+0.3	-0.7	40.4	0.0	+0.7	+0.1			
REMARKS				A TANK	an a		an a	ann an	COPY TO:		
and the second second second		999 - 1999 1499 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		<u>ing sing</u> Second							
		•							WATER T	REATMENT	
NOTE: All results reported and specific condu	in parts per million ictance. One liter of				LABORATORY ANA	LYSIS BY		1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	D PMU	D MCAS P	MU
				State States	BURNS	+BAR	ARA		D NREAD	D FILE	

