WESTMINSTER COMPANY EXTERIOR SEWER

UNACCOMPANIED ENLISTED PERSONNEL HOUSING MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROL INA N62470-82-C-2244

CATALOG DATA

"It is hereby certified that the (material) (equipment) shown and
 epproved/proposed to be iso.ipoiated into Contrast
Number $\sqrt{62470-82-c-2244, ~ i s ~ i n ~ c o m p l i a n c e ~ w i t h ~ t h o ~ o u n t r a c t ~}$ drawings and spocifteations, and can be installed in tor bleated space, and is approved for use \qquad submitted fur Uuvumment approval.
authorized Reviewer

Date $H(26 / 8+$ Signature CQC ReopiC.Incomber Date 4/27/84

Ring-Tite ${ }^{\circledR}$ PVC Gravity Sewer Pipe and Fittings

FERGUSON ENTERPRISES, INC. 136 Center St. (24 Road)
Jacksonville, N. C. 28540
Phone (919) 353-9088

Ring-Tite joint meets
exacting tightness
requirements, simplifies
assembly

Meets ASTM

D3034-SDR 35

Introduction

The growing demand for an effective all-out attack on water pollution highlights the need for improved sanitary sewage collection systems. A modern system needs pipe with improved design for reserve strength and stiffness to increase load-bearing capacity - all within the framework of maximizing sewer system capacity at reasonable cost. Ring-Tite PVC sewer pipe is designed to meet this need.

Applications

J-M PVC sewer pipe is suitable for conveying domestic sanitary sewage as well as certain industrial wastes. For further information regarding the suitability of PVC for conveying various chemicals, contact your J-M pipe representative.

Advantages

1. Chemical Resistant: J-M Ring-Tite PVC sewer pipe is unaffected by the fluids found in ordinary domestic sewage. It is immune to sewer gases and the sulfuric acid generated by the completion of the hydrogen sulfide cycle. It is immune to corrosive soils both alkaline or acidic.
2. Abrasion Resistant: J-M Ring-Tite PVC sewer pipe has excellent resistance to abrasion, gouging and scoring superior to that of most common piping materials.
3. Flow Characteristics: J-M Ring-Tite PVC sewer pipe with long lengths, smooth interior, and factory-made close tolerance joints provides a Manning " n " coefficient of .009. High-carrying capacity makes possible the use of flatter grades or smaller diameter pipe. Ask your J-M sales representative for a flow nomograph and the report "Hydraulic Characteristics of PVC Sewer Pipe in Sanitary Sewers," a joint study by Johns-Manville and Utah State University.
"locked-in" rubber ring PVC sewer pipe. This factory-made joint eliminates the need to insert rings in the field. Joint design and close manufacturing tolerances allow this joint to pass a 25 psi hydrostatic test in the laboratory and provides the basis for exacting infiltration/exfiltration specifications. Be secure in the future by designing with J-M Ring-Tite PVC sewer pipe with low infiltration specify infiltration not to exceed 50 gallons/inch diameter/mile/day.

Call for ASTM D-3034

 SDR35 with 20\% More Wall Thickness in 8, 10, 12 and 15 -inch sizes - Provides Greater External Load-Carrying Capacity. This allows for the design and construction of PVC gravity sewer systems ($4^{\prime \prime}-15^{\prime \prime}$) consistent with best engineering practices. A uniform minimum "pipe stiffness," (F/ $/ \mathrm{y}=46 \mathrm{psi})$ means no weak links. It also means that J-M PVC sewer pipe in $8,10,12$ \& $15^{\prime \prime}$ diameters has 60 to 75 percent greater pipe stiffness than SDR 42 and SDR 41 PVC sewer pipe. This increased "pipe stiffness" provides the extra needed at that critical time when the pipe is first being installed in the trench and undergoing bedding and backfill.
J-M PIPE

Ring-Tite ${ }^{\star}$ PVC Gravity Sewer Pipe and Fittings

FERGUSON ENTERPRISES, INC 136 Center St. (24 Road)
Jacksonville, N. C. 28540
Phone (919) 353-9088

Applications

J-M PVC sewer pipe is suitable for conveying domestic sanitary sewage as well as certain industrial wastes. For further information regarding the suitability of PVC for conveying various chemicals, contact your J-M pipe representative.

Advantages

1. Chemical Resistant:

J-M Ring-Tite PVC sewer pipe is unaffected by the fluids found in ordinary domestic sewage. It is immune to sewer gases and the sulfuric acid generated by the completion of the hydrogen sulfide cycle. It is immune to corrosive soils both alkaline or acidic.
2. Abrasion Resistant: J-M Ring-Tite PVC sewer pipe has excellent resistance to abrasion, gouging and scoring superior to that of most common piping materials.
3. Flow Characteristics: J-M Ring-Tite PVC sewer pipe with long lengths, smooth interior, and factory-made close tolerance joints provides a Manning " n " coefficient of .009. High-carrying capacity makes possible the use of flatter grades or smaller diameter pipe. Ask your J-M sales representative for a flow nomograph and the report "Hydraulic Characteristics of PVC Sewer Pipe in Sanitary Sewers," a joint study by Johns-Manville and Utah State University.

Through research and technology we proudly offer
"locked-in" rubber ring PVC sewer pipe. This factory-made joint eliminates the need to insert rings in the field. Joint design and close manufacturing tolerances allow this joint to pass a 25 psi hydrostatic test in the laboratory and provides the basis for exacting infiltration/exfiltration specifications. Be secure in the future by designing with J-M Ring-Tite PVC sewer pipe with low infiltration specify infiltration not to exceed 50 gallons/inch diameter/mile/day.

Call for ASTM D-3034

 SDR35 with 20\% More Wall Thickness in 8, 10, 12 and 15 -inch sizes - Provides Greater External Load-Carrying Capacity. This allows for the design and construction of PVC gravity sewer systems ($4^{\prime \prime}-15^{\prime \prime}$) consistent with best engineering practices. A uniform minimum "pipe stiffness," ($F / \Delta y=46 \mathrm{psi}$) means no weak links. It also means that J-M PVC sewer pipe in $8,10,12 \& 15^{\prime \prime}$ diameters has 60 to 75 percent greater pipe stiffness than SDR 42 and SDR 41 PVC sewer pipe. This increased "pipe stiffness" provides the extra needed at that critical time when the pipe is first being installed in the trench and undergoing bedding and backfill.
External
 Loads

Background

Loads imposed on buried conduits have, in past practice, been calculated by using the Marston load formula. For trench loads Marston has a formula for rigid pipe and another formula for flexible pipe. It is important to recognize that under identical conditions of bury the soil load generated on a flexible conduit is less than the load generated on a rigid conduit. The comparitive load on a rigid conduit verses the load on a flexible conduit is expressed as the ratio of trench width to the flexible pipe O.D.

By definition, a flexible conduit is one which will deflect before reaching failure.

Marston's Formulas for

Soil Loads
Rigid Pipe $W=C_{d} w B_{d}{ }^{2}$
Flexible Pipe $W=C_{d} w B_{c} B_{d}$
Where:
$\mathrm{W}=$ Load on pipe (lb/lin. ft.)
$\mathrm{C}_{\mathrm{d}}=$ Load Coefficient
w = Soil unit weight $\left(\mathrm{lb} / \mathrm{Ft}^{3}\right.$
$\mathrm{B}_{\mathrm{d}}=$ Ditch width (ft.)
$\mathrm{B}_{\mathrm{c}}=$ O.D. of pipe (ft.)

Prism Load
Loads imposed on buried conduits have been calculated by using the Marston load formulas for rigid and flexible pipe. However, it has been determined that the Marston formula for flexible pipe may not determine the maximum long term load - the "Prism Load" formula is more accurate. The "Prism Load" is the weight of the column of soil directly above the pipe. Thus, precautions in keeping the trench narrow are unnecessary for a flexible pipe installation. The important thing is to compact the haunching material from the pipe out to the undisturbed trench walls. Therefore, J-M suggests that the maximum long term load be determined by the prism load for design.

Prism Load: $\mathrm{P}_{\mathrm{v}}=\mathrm{wH}\left(\mathrm{lbs} / \mathrm{ft}^{2}\right)$

Where:

$\mathrm{P}_{\mathrm{v}}=$ Pressure at the top of the pipe due to the weight of the soil (lb/ft ${ }^{2}$)
$\mathrm{w}=$ Soil unit weight(lb/ft3)
$H=$ Depth from top of pipe to top of ground (ft.)

Note: To convert prism load (lb./ft. ${ }^{2}$) to lb./linear ft., multiply by the O.D. of the pipe in feet, or:
$\mathrm{W}=\mathrm{wHB}$ c
Live Loads
Live loads imposed on buried conduits from traffic must also be considered in a design and become more important at shallow depths. The combination of soil load and live load must be

H20 Highway Load

P_{V} Vertical Soil Pressure (Lbs/Ft${ }^{2}$)
Figure 2
Note: To convert vertical soil pressure to load on pipepounds per lineal foot-multiply by O.D. of pipe in ft.
\dagger Live load applied on assumed area of $36^{\prime \prime} \times 40^{\prime \prime}$.
added together to design for the maximum load as shown in curves above.

The soil load and live load must be added to determine the total external load on a buried conduit. This combined load should be used for design. Figure 2 illustrates the magnitude of soil and live loads separately and also charts the magnitude of the combined or total loads. The curves in figure 2 apply only for H 20 highway loading and a soil weight of $120 \mathrm{lbs} . / \mathrm{cu} . \mathrm{ft}$.

At shallow depths of cover - 3 feet and less, flexible conduits can deflect and
rebound under dynamic loading conditions if the trench width is not sufficienty bridged. Unless special precautions are taken to bridge the trench in shallow installations, the breaking up of flexible road surfaces may result. Therefore, for shallow installations under flexible road surfaces (less than 3 feet), J-M recommends Class 1* material be used in the pipe zone and up to the road elevation. This recommendation is not meant to conflict with the design engineer's specifications and his specifications will govern.

[^0]Prism Loads on
Flexible PVC
Sewer Pipe
(lb./lin. ft.)

Height of Cover

 Feet| | $\mathbf{l b} /$ ft $^{\mathbf{3}}$ |
| :--- | :--- |
| 3 | 100 |
| | 110 |
| | 120 |
| | 130 |
| | |
| | |
| | |
| | |

	100	141	209	280	350	417	510
4	110	155	230	308	385	458	561
	120	169	251	336	420	500	612
	130	183	272	364	455	542	663

5	100	176	262	350	438	521	638
	110	193	288	385	481	573	701
	120	211	314	420	525	625	765
	130	228	340	455	569	677	829

383
421
459
497
510
561
612
663
638
701
765
829

Height of Cover Feet	Soil Wt. $\mathrm{lb} / \mathrm{ft}^{3}$	Pipe Diameter (Inches)					
		4	6	8	10	12	15
15	100	527	785	1,050	1,313	1,563	1,913
	110	580	863	1,155	1,444	1,719	2,104
	120	632	941	1,260	1,575	1,876	2,295
	130	684	1,020	1,365	1,706	2,032	2,486
16	100	562	837	1,120	1,400	1,667	2,040
	110	618	920	1,232	1,540	1,834	2,244
	120	674	1,004	1,344	1,680	2,001	2,448
	130	730	1,088	1,456	1,820	2,167	2,652
17	100	597	889	1,190	1,488	1,771	2,168
	110	657	978	1,309	1,636	1,949	2,384
	120	716	1,067	1,428	1,785	2,126	2,601
	130	776	1,156	1,547	1,934	2;303	2,818
18	100	632	941	1,260	1,575	1,876	2,295
	110	696	1,035	1,386	1,733	2,063	2,525
	120	758	1,130	1,512	1,890	2,251	2,754
	130	821	1,224	1,638	2,048	2,438	2,984
19	100	667	994	1,330	1,663	1,980	2,423
	110	734	1,093	1,463	1,829	2,178	2,665
	120	800	1,192	1,596	1,995	2,376	2,907
		867	1,292	1,729	2,161	2,574	3,149
20	100	702	1,046	1,400	1,750	2,084	2,550
	110	773	1,150	1,540	1,925	2,292	2,805
	120	842	1,255	1,680	2,100	2,501	3,060
	130	913	1,360	1,820	2,275	2,709	3,315
21	100	737	1,098	1,470	1,838	2,188	2,678
	110	812	1,208	1,617	2,021	2,407	2,945
	120	885	1,318	1,764	2,205	2,626	3,213
	130	958	1,428	1,911	2,389	2,845	3,481
22	100	772	1,151	1,540	1,925	2,292	2,805
	110	850	1,265	1,694	2,117	2,522	3,086
	120	927	1,381	1,848	2,310	2,751	3,366
	130	1,004	1,496	2,002	2,503	2,980	3,647
23	100	807	1,203	1,610	2,013	2,397	2,933
	110	889	1,323	1,771	2,214	2,636	3,226
	120	969	1,444	1,932	2,415	2,876	3,519
	130	1,049	1,564	2,093	2,616	3,116	3,812
24	100	842	1,255	1,680	2,100	2,501	3,060
	110	927	1,381	1,848	2,310	2,751	3,366
	120	1,011	1,506	2,016	2,520	3,001	3,672
	130	1,095	1,632	2,184	2,730	3,251	3,978
25	100	878	1,308	1,750	2,187	2,605	3,188
	110	966	1,438	1,925	2,406	2,866	3,506
	120	1,053	1,569	2,100	2,625	3,126	3,825
	130	1,141	1,700	2,275	2,844	3,387	4,144

Deflection is defined as the change in vertical inside diameter of a flexible conduit when subjected to a vertical load. The amount of deflection that will occur in any flexible conduit is a function of three factors:

1. Pipe Stiffness $(F / \Delta y)$
2. Soil Stiffness
3. Load on the pipe

It is important to recognize that flexible conduits perform differently in the ground than they do under laboratory flat plate loading. The interaction of pipe stiffness and soil stiffness combine to give flexible conduits a high effective strength when buried.

Methods for Predicting Pipe Deflection The most commonly used approach in predicting deflection has been the modified "Iowa Deflection Formula."

Modified Iowa Formula:

$$
\Delta y=\frac{D L K w r^{3}}{E l+.061 E^{\prime} r^{3}}
$$

Where:
$\Delta \mathrm{y}=$ vertical deflection (Inches)
$\mathrm{D}_{\mathrm{L}}=$ lag factor (1.5 maximum)
K = bedding factor
w = earth load (lb/in.)
$r=\underset{\text { (in.) }}{\text { mean }}$ radius $\left(\frac{\mathrm{OD}-\mathrm{t}}{2}\right)$
$\mathrm{E}=$ modulus of elasticity (lb/in ${ }^{2}$)
। = moment of intertia $t^{3 / 12\left(i n^{3}\right)}$
$\mathrm{E}^{\prime}=$ soil stiffness $\left(\mathrm{lb} / \mathrm{in}^{2}\right)$
Although considered a conservative approach, considerable variation in predicted deflection will result depending upon the choice of empirical constants $\mathrm{E}^{\prime}, \mathrm{K}$ and D .
is based on actual laboratory test and previous field measurements it is unnecessary to know the actual load acting on the pipe or the soil stiffness. Thus an installation can be designed with a known factor of safety provided enough empirical data is available.

To accommodate the problem of having to establish data for the number of trench widths that are found in the field, the prism load was chosen because it represents the maximum loading condition on a flexible pipe. Time lag to account for future settlement of the backfill can be included by choosing long-term values of deflection.
$J-M$ has developed through laboratory tests and actual field data the maximum long term deflection chart, Figure 3 , shown on page 6 . This chart eliminates the guesswork in predicting deflection and gives the design engineer a quick ready reference. This chart is for PVC SDR 35 Sewer pipe only. The values given for deflection limits are the ultimate long term deflection that will occur in a particular soil class having a given density (compaction) in the haunching area of the pipe zone for various heights of cover (feet).

[^1]
Use of Maximum Long Term Deflection Chart

1. Where live loads are not a factor or not involved in the total external load on the pipe, the chart can be used directly to determine the limit of the maximum long-term deflection of the PVC pipe.

Example: If an $8^{\prime \prime}$ PVC SDR 35 Sewer Pipe is installed in Class IV material, having 85% compaction in the pipe zone and with 12 feet of cover, what will be the maximum long term deflection limit?

Answer: Pipe will never deflect more than 5\% (color code - dark green).
2. Where live loads must be considered, determine, first, the combined total external load on the pipe. Next determine the equivalent prism load (without live load) for the particular pipe size involved using the table of prism loads, Table 1. Read across to the left for the height of cover (ft.) for the equivalent prism load. Using this height of cover with the bedding class and proctor density, enter the maximum long term deflection chart, Figure 3, to determine the maximum long term deflection limit.

Example: If a $12^{\prime \prime}$ PVC SDR 35 Sewer Pipe is installed in Class III material, having 65% compaction in the pipe zone, with 3 feet of cover, and $120 \mathrm{lbs} . / \mathrm{ft}^{3}$ soil, and $\mathrm{H}-20$ (highway load) live load are imposed on the buried pipe, what will be the maximum long term deflection limit?

Answer: 1. The combined (dead and live) load on the pipe will be approximately $1000 \mathrm{lbs} . / \mathrm{ft}^{2}$ or $1000 \times 1 \mathrm{ft}$. (pipe diameter in feet) $=$ 1000 lbs ./lin ft. (per Figure 2). Enter table of prism loads (Table 1) under column 12 - Pipe Diameter (inches) - and read down until nearest figure to 1000 is reached, across from soil wt. of $120 \mathrm{lbs} . / \mathrm{ft}{ }^{3}$. In this case, 1000 appears opposite 120 $\mathrm{lbs} . / \mathrm{ft} .^{3}$. and 8 ft . - height of
cover. This represents the equivalent prism load for the combined (dead and live) load given above. Now enter maximum long term deflection chart and read the maximum long term deflection color code for Class III bedding classification, 65% density, and 8 ft . of cover. Dark green - maximum long term deflection will not exceed 5\%.

In working with these charts, it becomes apparent that:

1. Soil density in the pipe zone plays a greater role than soil type in the control of deflection in buried flexible conduits.
2. The amount of deflection is independent of pipe size, providing all pipe sizes are SDR 35. Note pipe size does not appear in the chart for maximum long term deflections.

Maximum Long-Term Deflections of PVC (SDR 35) Pipe (Percent)

ASTM Bedding Classification		DENSITY (Proctor)	Height of Cover (Feet)													
		$\begin{aligned} & \text { AASHO } \\ & \text { T-99 } \end{aligned}$	3	5	8	10	12	14	16	18	20	22	24	26	28	30
Gravel Class I			Maximum long term deflection will not exceed 5%													
	Class II	90\%														
		80\%	This zone not recommended													
Sand	Class III	90\%														
		85\%														
		75\%														
		65\%														
Clay	Class IV	85\%														
		75\%														
		65\%														
Peat	Class V		is	oil	ass	not r	com	men	ded							

Figure 3
Note: Deflection values shown do not include effect of live load or longitudinal bending.

1. No length of pipe installed under conditions specified will deflect more than is indicated; the pipe will deflect less than the amount indicated if specified density is obtained.
2. External loading based upon soil weight of 120 lbs . per cubic foot.
3. Deflections predicted are based upon pipe which was initially circular prior to installation. Actual deflections may differ because of initial out of roundness caused by storage and/or handling. These variations should be taken into account when measured deflections are compared with those in the table.
4. Bedding classifications are as indicated on page 7 and correspond to ASTM D2321.
5. Deflections listed in table are maximum long term values. The suggested maximum long term value is 7.5 percent which is approximately equal to a 5 percent initial deflection.
6. Initial deflection is deflection taken within the 1 st 24 hours after trench is backfilled.

Pipe Zone Terminology

Foundation preparation is only required when the trench bottom is unstable. Any foundation that will support a rigid pipe without causing loss of grade or flexural breaking of pipe will be more than adequate for PVC pipes.

Bedding. The bedding directly underneath the pipe is required only to bring the trench bottom up to grade. It should not be so thick or soft that the pipe will settle and lose grade. The purpose of the bedding is to provide uniform longitudinal support of the pipe.

Haunching. The haunching area is the most important in terms of limiting the deflection of a flexible pipe. This is the area that should be compacted to the proctor densities shown in chart on page 6.

Initial Backfill. Initial backfill begins above the springline of the pipe to a plane 6 inches to 12 inches above the pipe. Compacting soils
to levels above the springline gives little additional side support.

Most of the support is accomplished by compacting the soil surrounding the lower half of the pipe.

Caution: If hydro-hammers are used to prepare the bedding and backfill for the road surface, they should not be used within 3 feet of the top of the pipe and then only if the pipe zone soil density has been previously compacted to a minimum 85% standard proctor density.

Pipe Zone Materials Pipe zone materials include the material in the haunching area and the initial backfill (see figure 4). They include a number of processed materials plus the soil types listed under USCS Soil Classification System (FHA Bulletin No. 373). These materials are grouped into five broad categories according to their suitability for this application, as follows:

Class I. Angular, $1 / 4^{\prime \prime}$ to $11 / 2^{\prime \prime}$ graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone and crushed shells.

Class II. Coarse sands and gravels with maximum particle size of $11 / 2$ inch, including variously graded sands and gravels containing small percentages of fines, generally granular and non-cohesive, either wet or dry. Soil type GW, GP, SW and SP are included in this class.

Class III. Fine sand and clayey gravels, including fine sands, sand-clay mixtures, and gravel-clay mixtures. Soil types GM, GC and SM and SC are included in this class.

Class IV. Silt, silty clays, and clays, including inorganic clays and silts of medium to high plasticity and liquid limits. Soil types $\mathrm{MH}, \mathrm{ML}, \mathrm{CH}$ and CL are included in this class.

Class V. These materials are not recommended for bedding, haunching or initial backfill.

Key to Pipe Performance The performance of a flexible conduit does not depend only on the Class of embedment materials used, but more importantly, on the density of the material in the haunching zone. The chart on page 6 shows that SDR 35 PVC sewer pipe will perform in Class III material equally as well as a Class I material with adequate compaction. By utilizing a combination of soil Class and soil density, the design engineer can achieve the most economical installation within recommended deflection limits.

Excavation and Pipe Laying. As with other pipes, the trench for PVC is excavated with bell holes to give uniform bearing along the full length of each pipe section. The ditch should be wide enough to allow for proper placement and compaction of the selected materials in the haunching area.

Sheeting. If soil conditions or regulations require the use of sheeting or boxes, they should be used in a manner as not to disturb the embedment material within two pipe diameters on each side of the pipe.

Compaction Techniques . Flooding or jetting are commonly used methods for obtaining desired densities of granular embedment materials. If flooding is used, the embedment materials should be allowed to dry below optimum moisture before final backfill operations are begun. If jetting is used, desired density of the embedment
materials should be previously obtained by other methods. Neither flooding or jetting should be used if the possibility of washing away side support exists.

Permissable Horizontal Curvature. When curved sewers are installed J-M Ring-Tite PVC gravity sewer pipe can be safely deflected to the limits shown in table 2. Should design or field conditions dictate tighter radii, 5° deflection sweeps should be used

Deflection Testing When Is It Needed? J-M's position on deflection testing is that routine measurement of deflection of installed PVC Sewer pipe (SDR 35), with minimum pipe stiffness of 46 psi , is totally unnecessary and uneconomical - a superfluous added construction cost for PVC Sewer pipe installations. This position applies to all routine deflection testing whether performed by the "Go-No Go Gauge" method for

Nominal Size Inches	Min. Radius Feet	Force Req. to Bend-Lbs. At End of $\mathbf{2 0}^{\prime}$ Length	$\mathbf{1 2 1} \mathbf{1 2}^{\prime}$ Length

Liner Offset at Minimum Radii

Nominal Size Inches	$\mathbf{2 0}^{\prime}$ Length	
4	24.0 Inches	$\mathbf{1 2}^{1 / 2} \mathbf{2}^{\prime}$ Length
6	15.9	9.3 Inches
8	11.9	6.3
10	9.6	4.7
12	8.0	3.8
15	$\mathrm{~N} / \mathrm{A}$	3.1

Table 2
compliance to maximum deflection limits or by instruments which measure and record actual pipe deflections. When recommended installation practices are followed, including required compaction in the haunching area, pipe deflection will not exceed our recommended long term deflection limit of 7.5%. At this deflection limit, the PVC Sewer pipe will have a minimum factor of safety of 4 in deflection failure. Proof of this position is that more than
$150,000,000 \mathrm{ft}$. of PVC Sewer Pipe are performing satisfactorily in the field today.

On the other hand, where improper installation practices are known or suspected, questionable bedding materials are employed and/or installation conditions are severe, deflection testing of these sections of the sewer pipe installation should be considered advisable by the engineer.

Force Req. to Bend-Lbs.

J-M distributors, adaptors are available to connect J-M Ring-Tite PVC sewer pipe to other pipe materials.

The fitting illustrations below are representative only of the types of fittings and adaptors available. Actual configurations or design of fittings may vary with size or manufacturing origin of the fitting. Ask your J-M Sales Representative for more detailed information.

J-M offers a complete line of PVC sewer fittings to be used with PVC Ring-Tite sewer pipe. These fittings offer the same "locked-in" rubber ring feature which eliminates the need for ring insertion in the field.

Rubber gasketed tee and wye saddles are available for field service line taps into previously installed PVC sewer lines, which eliminate the need for field solvent welding. Through the large network of

Adaptors for Connecting

 Various Pipes| To Connect: $4^{\prime \prime}(0 . D .=4.215)$
 and $6^{\prime \prime}(\text { O.D. }=6.275)$
 PVC
 Sewer Pipe to | Joints Inc. | | | Fernco, Inc. | | J-M Pipeline Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Bushing | | (PVC Side)
 ushing | | Flexible Couplings
 Coupling
 Reducing Coupling | |
| 1. Transite Machined End | A | AC | D | $\begin{aligned} & 6^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-Bore Red. Donut } \\ & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC-N/A } \end{aligned}$ | N/A | |
| 2. Transite Plain End | None | AC | D | $6^{\prime \prime}$ to $4^{\prime \prime}$ PVC—Bore Red. Donut $6^{\prime \prime}$ to $6^{\prime \prime}$ PVC-N/A | $\begin{aligned} & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC-1051-66 } \\ & 6^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-1051-64 } \\ & 4^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-1051-44 } \end{aligned}$ | |
| 3. Transite Coupling | | N/A | | $6^{\prime \prime}$ to $6^{\prime \prime}$ PVC-A/C Coup. Donut $6^{\prime \prime}$ to $4^{\prime \prime}$ PVC-N/A | N/A | A-C Adaptor |
| 4. Clay Bell | | N/A | | $6^{\prime \prime}$ to $6^{\prime \prime}$ PVC-Bell Donut $6^{\prime \prime}$ to $4^{\prime \prime}$ PVC-Bell Reducing | N/A | |
| 5. Clay Plain End \square | None | Clay | J | $\begin{aligned} & 6^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-Bore Donut } \\ & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC—N/A } \end{aligned}$ | $\begin{aligned} & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC-1002-66 } \\ & 6^{\prime \prime} \text { to } 4^{\prime \prime} \mathrm{PVC}-1002-64 \\ & 4^{\prime \prime} \text { to } 4^{\prime \prime} \mathrm{PVC}-1002-44 \end{aligned}$ | |
| 6. Concrete Bell (C-14) \square | | N/A | | $6^{\prime \prime}$ to $6^{\prime \prime}$ PVC-Bell Donut $6^{\prime \prime}$ to $4^{\prime \prime}$ PVC-Bell Reducing | N/A | |
| 7. Concrete Plain End (C-14) \qquad | None | Clay | J | $6^{\prime \prime}$ to $4^{\prime \prime}$ PVC-Bore Donut $6^{\prime \prime}$ to $6^{\prime \prime}$ PVC-N/A $6^{\prime \prime} \text { to } 6^{\prime \prime} P V C-N / A$ | $\begin{aligned} & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC-1006.66 } \\ & 6^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-N/A } \\ & 4^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-1006-44 } \end{aligned}$ | |
| 8. Cast Iron Plain End (SW) | None | CIT | None | N/A | $\begin{aligned} & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC-1056-66 } \\ & 6^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC- } 1056-64 \\ & 4^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-1056-44 } \end{aligned}$ | 4" PAC Duplex Adaptor with . 55 Ring |
| 9. Cast Iron Plain End (XH) | None | CIT | None | N/A | $\begin{aligned} & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC-1056-66 } \\ & 6^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-1056-64 } \end{aligned}$ | 4" PAC Duplex Adaptor with . 375 Ring |
| 10. Cast Iron Hub | | N/A | | $6^{\prime \prime}$ to $6^{\prime \prime}$ PVC-C.I. Hub Donut $6^{\prime \prime}$ to $4^{\prime \prime}$ PVC-C.I. Hub Reducing Donut $4^{\prime \prime}$ to $4^{\prime \prime}$ PVC-C.I. Hub Donut | N/A | |
| 11. PVC, ABS DWV | None | CIT | None | N/A | $\begin{aligned} & 6^{\prime \prime} \text { to } 6^{\prime \prime} \text { PVC-1056-66 } \\ & 6^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-1056-64 } \\ & 4^{\prime \prime} \text { to } 4^{\prime \prime} \text { PVC-45-4 } \end{aligned}$ | 4" PAC Duplex Adaptor with 375 Ring |

Figure 6

Scope

This specification designates general requirements for unplasticized polyvinyl chloride (PVC) Plastic Gravity Sewer Pipe with integral wall bell and spigot joints for the conveyance of domestic sewage.

Materials

Pipe and fittings shall meet the requirements of ASTM Specification D3034 for SDR 35. The pipe shall be colored green for in-ground identification as sewer pipe.

Pipe

Pipe shall be suitable for use as a gravity sewer conduit. Provisions must be made for contraction and expansion at each joint with a rubber ring. The bell shall consist of an integral wall section with a solid cross-section rubber ring, factory assembled, securely locked in place to prevent displacement during assembly. Sizes and dimensions shall be as shown in this specification. Standard laying lengths shall be 20 ft . and 12.5 ft . ± 1 inch. At manufacture's option, random lengths of not more than 15% of total footage of each size may be shipped in lieu of standard lengths.

Drop Impact Test

Pipe ($6^{\prime \prime}$ long section) shall be subjected to impact from a free falling tup ($20-\mathrm{lb}$. Tup
A.) in accordance with ASTM Method of Test D2444. No shattering or splitting (denting is not a failure) shall be evident when the following energy is impacted:

Nominal Size Inches	Ft.-Lbs.
4	150
6	210
8	210
10	220
12	220
15	220

Fittings

All fittings and accessories shall be as manufactured and furnished by the pipe supplier or approved equal and have bell and/or spigot configurations compatible with that of the pipe.

Temperature for Testing Pipe shall be designed to pass all tests at $73^{\circ} \mathrm{F}$ $\left(\pm 3^{\circ} \mathrm{F}\right)$.

Pipe Stiffness

Minimum "pipe Stiffness" ($F / \Delta y$) at 5% deflection shall be 46 psi for all sizes when tested in accordance with ASTM Method of Test D2412, "External Loading Properties of Plastic Pipe by Parallel-Plate Loading."

Joint Tightness

Two sections of pipe shall be assembled in accordance with the manufacturer's recommendation. Joint shall be tested in accordance with ASTM D3212, "Joints for Drain and Sewer Plastic Pipe Using Flexible Elastomeric Seals."

Flattening

There shall be no evidence of splitting, cracking, or breaking when the pipe is tested as follows:

Flatten specimen of pipe, six inches long between parallel plates in a suitable press until the distance between the plates is forty percent of the outside diameter of the pipe. The rate of loading shall be uniform and such that the compression is completed within two to five minutes.

Sizes, Dimensions

Tolerances and Weights

Bell and Spigot Assembly (Inches)

Pipe Size Inches	Pipe Details Average O.D.	Bell Details								
		Tol.	Min Wall Thickness	Tol.	C	D5	Tol.	D8	Tol.	N(Min)
4	4.215	$\pm .007$	0.125	+. 020	2.50	4.250	$\pm .020$	4.240	$\pm .010$	2.598
6	6.275	$\pm .009$	0.180	+. 028	3.50	6.318	$\pm .023$	6.308	± 0.13	3.622
8	8.400	$\pm .010$	0.240	+. 031	4.50	5.460	$\pm .040$	8.44	$\pm .020$	4.646
10	10.500	$\pm .013$	0.300	+. 039	5.00	10.570	$\pm .047$	10.548	$\pm .024$	5.197
12	12.500	$\pm .016$	0.360	+. 043	5.25	12.575	$\pm .047$	12.554	$\pm .024$	5.472
15	15.300	$\pm .021$	0.440	+. 048	5.40	15.362	$\pm .029$	15.362	$\pm .029$	5.40

Note: 4 "-12" pipe utilizes modified " M " ring, 15 " pipe utilizes an " O " ring.
Sizes, Lengths, Weights

Size Inches	Std. Lengths Feet	Weights (\#/Ft.)		Weights (\#/Length)	
		20'	121/2'	20'	121/2'
		Length	Length	Length	Length
4	20.0 \& 12.5	1.15	1.16	22.9	14.4
6	20.0 \& 12.5	2.47	2.50	49.4	31.2
8	20.0 \& 12.5	4.42	4.48	88.5	56.1
10	20.0 \& 12.5	6.93	7.03	138.6	87.9
12	20.0 \& 12.5	9.91	10.06	198.1	125.8
15	12.5	N/A	14.90	N/A	187.5

Figure 7

Customer Service Centers

California
P.O. Box 1587

Stockton, CA 95201
(209) 982-1500

Texas

Highway 75 N .
Denison, TX 75020
(214) 465-6390

Florida
P.O. Box 185

Green Cove Springs, FL 32043
(904) 284-3091

The physical (or chemical) properties of $\mathrm{J}-\mathrm{M}$ products described herein represent typical average values obtained in accordance with accepted test methods and are subject to normal manufacturing variations. They are supplied as a technical service and are subject to change without notice. Check the J-M district office to assure current information.

Warranty

We warrant that our products are manufactured in accordance with the applicable material specifications and are free from defects in workmanship and materials using our specifications as a standard. Every claim under this warranty shall be deemed waived unless in writing and received by J-M Manufacturing Company, Inc. within thirty (30) days of the date the defect was discovered or should have been discovered and within one (1) year of the date of the shipment of the product. J-M MANUFACTURING COMPANY, INC. MAKES NO OTHER REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, IN FACT OR IN LAW, INCLUDING WITHOUT LIMITATION, THE WARRANTY OF MERCHANTABILITY OR THE WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OTHER THAN THE LIMITED WARRANTY SET FORTH ABOVE.

Limitation of Liability

 It is expressly understood and agreed that the limit of $J-M ' s$ liability shall be the resupply of a like quantity of nondefective Product and that J-M shall have no such liability except where the damage or claim results solely from breach of J-M's warranty. IT IS ALSOAGREED THAT J-M SHALL NOT BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES FOR ANY ALLEGED NEGLIGENCE, BREACH OF WARRANTY, STRICT LIABILITY, OR ANY OTHER THEORY, OTHER THAN THE LIMITED LIABILITY SET FORTH ABOVE.

The information contained herein has not been updated since its last printing in 1982. Should up-to-date verification be required please contact your local J-M sales representative.

J-M PIPE
J-M Manufacturing Company, Inc.
1051 Sperry Road
Stockton, California 95201

J-M Manufacturing

 Company, Inc. was Formerly a Division of Johns-Manville Sales Corporation.Johns-Manjulle UM

Blue Brute
Class 100, 150 and 200
Ring-itite PVC water pipe

"Locked-in"rings
Meets AWWA C900

Reviewed ${ }^{2}$
Checked
Certified

For use in
 municipal water systems, firelines and other critical services.

Strength

Class 100, 150 and 200 Blue Brute water pipes have long-term hydrostatic strength that meet the commonly accepted high safety requirements of municipal water systems. Blue Brute conforms to cast iron O.D.'s and is available in $4^{\prime \prime}, 6^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ sizes in Class 100 and 150 , and $4^{\prime \prime}, 6^{\prime \prime}$ and $8^{\prime \prime}$ sizes in Class 200.

Meets AWWA C900, Underwriters' Laboratories listed, Factory Mutual and NSF approved
Johns-Manville Blue Brute Class 150 and 200 PVC water pipes are listed for critical use in firelines and water mains. Blue Brute Class 100 is intended for water mains.

Light weight
A 20 foot length of Class 150, 8" Blue Brute water pipe weighs approximately 181 pounds. That makes it easy to load, easy to transport and easy to handle. Installers prefer it because it goes into the ground quickly - thus saving on installation costs.

Long laying lengths
A standard laying length of Blue Brute PVC water pipe is 20 feet. That means you can cover a lot of ground during installation. At the same time, you eliminate the cost of unnecessary joints.

Corrosion resistance
Blue Brute is unaffected by electrolytic or galvanic corrosion, or any known soil or water condition. You don't have to worry about tuberculation, or the need for costly lining, wrapping, coating or cathodic protection.

Quality control
Without exception, each length of pipe is hydrostatically tested and subject to inspection by our quality control engineers throughout every step of the manufacturing process.

Flow capacity

This PVC water pipe has a smooth interior that stays smooth over long years of service with no loss in carrying capacity. Its coefficient of flow is $C=150$ (H\&W) - the best available in common use in water systems. This capacity often allows savings in pumping costs as well as savings on the size of pipe required.

Service life
Because it is nonmetallic, the pipe does not lose strength due to either potable water corrosion or external galvanic or soil corrosion. And its design includes a surge allowance for a 2 ft . sec . stoppage of flow.

Ring-Tite joints with locked-in rings Blue Brute's Ring-Tite locked-in joint can be assembled quickly. Seated in a deep groove, the locked-in, flexible elastomeric ring provides a tight seal that protects the line from shock, vibration, earth movement and compensates for expansion and contraction of pipe lengths. And there's no field mixing or application of cement. Its a simple push-together joint that remains tight under normal operating conditions.

Ring-Tite joint with "locked-in" ring

part of the pipe length with the same strength.

Field cutting

You can cut Blue Brute with a powersaw or an ordinary handsaw. It eliminates the need to invest in costly cutting equipment.

Short form specification

Accessories
Blue Brute is backed up by all the items it takes for smooth installation of water pipe. Direct taps can be made with tapping tools. (See detailed instructions on tapping in the "Blue Brute Installation Guide", TR-704A.)

Cast iron O.D.

Available in $4^{\prime \prime}, 6^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ sizes, this pipe can be connected directly into cast and ductile iron fittings without adaptors or complicated procedures.

Scope

This specification designates general requirements for unplasticized polyvinyl chloride (PVC) plastic class water pipe with integral bell containing a locked-in ring and spigot joints for the conveyance of water and other fluids.

Materials

Pipe shall meet the requirements of AWWA C900, "Polyvinyl Chloride (PVC) Pressure Pipe". All Class 100 pipe shall meet the requirements of DR 25 , Class 150 pipe shall meet the requirements of DR 18 and Class 200 the requirements of DR 14.

Pipe

All pipe shall be suitable for use as pressure conduit. Provisions must be made for expansion and contraction at each joint with an elastomeric ring. The bell shall consist of an integral wall section with a locked-in, solid cross section elastomeric ring which meets the requirements of ASTM F-477. The bell section shall be designed to be at least as hydrostatically strong as the pipe wall and meet the requirements of AWWA C900. Sizes and dimensions shall be as shown in this specification.

Physical requirements
Standard laying lengths Standard laying lengths shall be 20 feet ($\pm 1^{\prime \prime}$) for all sizes. At least 85% of the total footage of pipe of any class and size shall be furnished in standard lengths. The remaining 15% can be furnished in random lengths. Random lengths shall not be less than 10 feet long. Each standard and random length of pipe shall be tested to four times the class pressure of the pipe for a minimum of 5 seconds. The integral bell shall be tested with the pipe.

Pipe stiffness
The pipe stiffness using F/ $/ \Delta y$ for PVC class water pipe is contained in the table below:

Class	DR	$\mathrm{F} / \Delta \mathrm{y}(\mathrm{psi})$
100	25	129
150	18	435
200	14	914

Quick burst test

Randomly selected samples tested in accordance with ASTM D 1599 shall withstand, without failure, pressures listed below when applied in 60-70 seconds.

Class	Minimum burst pressure at $73^{\circ} \mathrm{F}(\mathrm{psi})$
100	535
150	755
200	985

Drop impact test
Pipe shall withstand, without failure at $73^{\circ} \mathrm{F}$, an impact of a falling missile, Tup C, at the following levels. (Per ASTM D 2444).

Pipe size (in.)	Impact (ft./lbs.)
4	100
6	100
8	100
10	120
12	120

There shall be no visible evidence of shattering or splitting when the energy is imposed.

Dimensions (average)
Class 100 (DR 25)*

Pipe size (in.)	Outside dia. (in.)	Nom. inside dia. (in.)**	T (nom.) thick. (in.)	T (min.) thick. (in.)	E dim. (in.)	D_{9}	Weight lbs./ft.	Weight, Ibs./20 ft. laying length
4	4.80	4.39	.204	.192	4.75	6.4	1.8	36.0
6	6.90	6.30	.298	.279	5.50	8.8	3.9	78.0
8	9.05	8.28	.384	.362	6.25	11.4	6.6	132.0
10	11.10	10.16	.470	.444	7.00	13.8	10.0	200.0
12	13.20	12.08	.559	.528	7.80	15.9	14.0	280.0
Class 150 (DR 18)*								
4	4.80	4.23	.283	.267	4.75	6.5	2.5	51.0
6	6.90	6.09	.406	.383	5.50	9.0	5.2	105.0
8	9.05	7.98	.533	.503	6.25	11.6	9.0	181.0
10	11.10	9.79	.654	.617	7.00	14.1	13.6	274.0
12	13.20	11.65	.777	.733	7.80	16.7	19.9	390.0
Class 200 (DR 14)*								
4	4.80	4.07	.364	.343	4.75	6.8	3.2	64.0
6	6.90	5.86	.522	.493	5.50	9.4	6.6	133.0
8	9.05	7.68	.685	.646	6.25	12.1	11.5	230.0

*DR (Dimension Ratio) is the outside diameter divided by the minimum wall thickness T (min.).
**Nominal inside diameter equals the outside diameter minus twice thickness T (nom.).

Flow characteristics

 and dimensionsFlow chart

Class 100 (DR 25)										
	Velocity ft /sec.	Head loss psi/100'	Velocity ft /sec.	Head loss psi/100'	Velocity ft ./sec.	Head loss psi/100'	Velocity ft ./sec.	Head loss psi/100'	Velocity ft ./sec.	Head loss psi/100
Gals./	Pipe size (in.)									
min.	4	4.39 I.D.	6	6.30 I.D.	8	8.28 I.D.	10	10.16 I.D.	12	12.08 I.D.
100	2.12	0.16								
200	4.24	0.57	2.05	0.10						
300	6.35	1.21	3.07	0.21						
400	8.47	2.07	4.10	0.35	2.38	0.09				
500			5.12	0.53	2.98	0.14				
600			6.15	0.75	3.57	0.20	2.38	0.07		
700			7.17	0.99	4.17	0.27	2.77	0.10		
800			8.20	1.27	4.76	0.34	3.17	0.13	2.24	0.05
900			9.22	1.58	5.36	0.42	3.56	0.16	2.52	0.07
1,000					5.96	0.51	3.96	0.19	2.80	0.08
1,500					8.93	1.09	5.94	0.40	4.20	0.17
2,000							7.92	0.69	5.60	0.29
2,500							9.90	1.04	7.00	0.45
3,000									8.40	0.62
3,500									9.80	0.83

Class 150 (DR 18)

Gals./	Pipe size (in.)									
min.	4	4.23 I.D.	6	6.09 I.D.	8	7.98 I.D.	. 10	9.79 I.D.	12	11.65 I.D.
100	2.28	0.19								
200	4.57	0.69	2.20	0.12						
300	6.85	1.46	3.30	0.25						
400	9.13	2.48	4.41	0.42	2.57	0.11				
500			5.51	0.64	3.21	0.17	2.13	0.06		
600			6.61	0.89	3.85	0.24	2.56	0.09		
700			7.71	1.18	4.49	0.32	2.98	0.12	2.11	0.05
800			8.81	1.52	5.13	0.41	3.41	0.15	2.41	0.06
900			9.91	1.89	5.77	0.51	3.84	0.19	2.71	0.08
1,000					6.41	0.61	4.26	0.23	3.01	0.10
1,500					9.62	1.30	6.39	0.48	4.51	0.21
2,000							8.52	0.82	6.02	0.35
2,500									7.52	0.53
3,000									9.03	0.74
Class 200 (DR 14)										
		Velocity ft./sec.		Head loss psi/100'	Velocity ft ./sec.		Head loss psi/100			Head loss psi/100'
Pipe size (in.)										
100		2.47		0.23						
200		4.93		0.83	2.38		0.14			
300		7.40		1.76	3.57		0.30	2.08		0.08
400		9.86		2.99	4.76		0.51	2.77		0.14
500					5.95		0.77	3.46		0.21
600					7.14		1.07	4.16		0.29
700					8.33		1.43	4.85		0.38
800					9.52		1.83	5.54		0.49
900								6.23		0.61
1,000								6.93		0.74

Coefficient of flow is $\mathrm{C}=150$ (Hazen and Williams).
Velocity and head loss data are based on nominal inside diameter, which is outside diameter minus twice thickness T (nom.).

Warranty

We warrant that our products are manufactured in accordance with our applicable material specifications and are free from defects in workmanship and materials using our specifications as a standard. Every claim under this warranty shall be deemed waived unless received in writing by Johns-Manville Sales Corporation within thirty (30) days of the date the defect was discovered or should have been discovered and within one (1) year of the date of the shipment of the product.
JOHNS-MANVILLE SALES CORPORATION MAKES NO OTHER REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, IN FACT OR IN LAW, INCLUDING WITHOUT LIMITATION, THE WARRANTY OF MERCHANTABILITY OR THE WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, OTHER THAN THE LIMITED WARRANTY SET FORTH ABOVE.

Limitation of Liability The limit and exclusive remedy for J-M liability shall be the resupply of a like quantity of nondefective product, regardless of whether the defect was latent or obvious, and J-M shall have no such liability except where the damage or claim results solely from breach of J-M's warranty. J-M SHALL NOT BE LIABLE FOR ANY INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES FOR ANY ALLEGED NEGLIGENCE, BREACH OF WARRANTY, STRICT LIABILITY, OR ANY OTHER THEORY, OTHER THAN THE LIMITED LIABILITY SET FORTH ABOVE.

The physical (or chemical) properties of Johns-Manville Blue Brute PVC water pipe represent typical average values obtained in accordance with accepted test methods and are subject to normal manufacturing variations. They are supplied as a technical service and are subject to change without notice. Check the Johns-Manville district office to assure current information

For information on other J-M products and systems, call the Product Information Center at (303) 978-4900.

District Sales Offices

Denver

P.O. Box 5771

Denver, CO 80217
(303) 773-2400

Northeastern

P.O. Box 1544

Englewood Cliffs, NJ 07632
(201) 894-1111

Mid-Atlantic

P.O. Box 1544

Englewood Cliffs, NJ 07632
(201) 894-1111

Southeastern

P.O. Box 4487

Atlanta, GA 30302
(404) 449-3300

Midwest

2222 Kensington Court
Oakbrook, IL 60521
(312) 887-7400

Dallas

Denison, TX 75021
(214) 465-6390

San Francisco

2600 Campus Drive
San Mateo, CA 94403
(415) 349-9500

Los Angeles

3701 Long Beach Blvd. Suite 205
Long Beach, CA 90807
(213) 595-6991

Customer
Service Centers

Florida

P.O. Box 185

Green Cove Springs, FL 32043
(904) 284-3091

California

P.O. Box 9067

Long Beach, CA 90810
(213) 834-6471

California
P.O. Box 1587

Stockton, CA 95201
(209) 982-1500

New Jersey
Main Street
Manville, NJ 08835
(201) 725-5000

Texas

Denison, TX 75020
(214) 465-6390

Johns-Manville Canada, Inc.
295 The West Mall
Etobicoke, Ontario M9C 4Z7
Toronto • Montreal •
Ottawa • Edmonton •
Vancouver
Johns-Manville
International Corp.
For Export
Until May 26, 1981:
(303) 979-1000

After May 26, 1981:
(303) 978-2000

Telex: Johnmanvil Dvr 454404

Johns-Manville

$$
0 \% \quad 4
$$

ach 5 statinstrexy

Troor = 招 5 3 3

\square

```
SO-EAR UTTLITIES
WWY, 17 ADORTH
TACRBONVIUTM, NC 28540
```

Projecta Unaccompanind kinlisted
Personal. HCusing MCB
Cump Liejeune, v. C.
Tpoation: Cant Johnson
,contuabtor: Sompax Utivities Stbatithed By: Fergusoh Fnterptises, Inc.
-

P2500 FIFE HYDRANT

 InspectionOperation Maintenance

Reviewed \angle
Checked
Certified

CLEW F2500 Fire Hydrant

```
Fire hydrants should be flusned, inspected
testec twice a year ispring
satisfactory operating conditic
Visualy inspect for damaged toase or
parts.
With main valve fully closed, remove nozzle Replace nozzle caps and sheck for free action
caps and check for water in the barrel. The
presence of water indicat ss one of the follow.
ing:
A. Leakage of the main valve.
B. Drains are below grourd water table level
C. Drains obstructed by soll or other foreign
    material
```


INSPECTION, TESTING AND MAINTENANCE

Tighten all caps except one for venting air. Tu the main valve to fully open. After all air has escaped and water appears. tighten cap and cheok nozztes, ftange connections and seals for leakaçe.

Fully close the main valve and remove one hose nozzle cap. Place palm of hand firmly over the $21 / 2$ "nozzle opening. A strong suction will indicate hydrant is draining properly

Suggested Installation Practice for "Break-Flange" Hydrant Styles

For hydrants intended to fail at the groundline joint on vehicle impact, it is good practice to install with extra care to ensure that there is adequate soif resistance. In loose or poor load-bearing soil, it is suggested that con rete blocking be installed around the hydrant barrel at or near the ground line

- F2500 Fire Hydrant Features

Dimension Data

\qquad
By Certified
So-Par Utilities Coo., Inc.
clow awwa double mec cati vaives Date $3 / 20 / 84$

C. 5062 Hub Ends Non-Rtsing Stam $2^{\prime \prime}$ Atre $42^{\prime \prime}$

F-5080* Pushoon Ends For Cast tron Pipe (4* thro 12* NRS

F-SOR1* Flongted and Fush-Om Ends, Whes 4) the 32

F-5063 Flonged and Hyb Ends, NRS 4^{4} then 36°

F-soro Flangud Ends Non-Klsing Stem $2^{\prime \prime}$. thus 48^{2}
 $\frac{\text { F-sob5 Mecin. Join }}{\text { Non-Rising Stem }} \begin{gathered}2^{\prime \prime} \text { thry } 36^{\circ}\end{gathered}$
open left

F-5066 Planged and Mechanical Joint, NRS $4^{\prime \prime}$ thru $36^{\prime \prime}$

F-5068 Threaded Ends Non-Rising Stem 2^{F} thry $4^{\prime \prime}$

- Top eset iron pipe Cha alao be furnished for other sizes and types of pipe.

IRON BODY, BRONZE MOUNTED, PARALLEL SEAT

DESCRIPTION AND ADVANTAGES

Clew AWWA Gute Valves are deaigned primarity for flow controt of water in anderground pipe lines. They equal or exceed the requirements ristablish de ty standardis of the American Weter Werks Association and conform to F'ederat spectifestiond WW.V-58t, Type II, (Masa I.

Clow AWWA Gate Valves are specifically desyiged for heavy pressure service. Neck, tiempes, and bell are made extra heavy to
withstand prye strain and phasibue shiting.
Pody, cover, gaten, uni का
sterngth, with clean and gim
steuntion,
working
intercheifureathe
Valves is clearly illustrated by the sectiont

OPE展ATION OF YHE VAbVE

Thurning the atony releases the wedging pressure on the gates ellowing them to move away (rom their seats before starting upwasd trave), Fops het tefriing of the stera caiges the gater into the efily opened position:
Wherit olosing the valve, the gates move freety downward wifhout friction, to a position
opposite tbeir seatr.
As the gates approach the bottom of the valve, the rrou books come into contact with stops which prevent further downward movement of the tooks. The bronze wedges riding on these booke spread the gated upart and force them against their seats

COMSTRUCTION

Sody: Cast tran bropne mounted. Sturdy propackíons provicte pratection agrainst daniage:
Spown tharggenes bronze of bigh tensile and tutsiozal secrengh, with seeurate, perfectly mathinged threads armple dimmetera assure smige th velve masement.
Stem Nut Solid bronzs. Iidependenf af booka, nulos, ind wedges. Stan or stem nut will bot binc of soring out of bue, ag can happen thien thin mint in athached to wedges:
Wodingsi Indeneadent, solud brenze. 2-inch thra 3 -inch valves bave integrel book and wedge. Iincty thru 8 -inch bave iudependent solid bromse bedges pthocel loosely in ron hooks, and are free to a djusi to wapying poritions of the gates. See retional view on page 120.
It 0 mineh tand larger valver, esth wedge bas ono tonce and oae ghort marface. The bottom of each wedge formes rocker besting on the iron buolio loftiong wenken stivist to varying po-
 sees in cloging. bhe widve and whe abort side ta Gpenits
Lov Torque Tirust Pearing: Vabses 4^{7} through 12° wre fitted bellow the stem collar with an exelugive low Thrque Thrist fearing whith provicor hiyt to capacity and law friotion. This bearine trauge rperating torgae on to 502 o. yet sests profictty for reprackiog whies presture.
Catesk and curpe Sings: Gales 3iuck and vmb/ at are bronge Catas 4 -inch and (arger are Wivh stherigth esat in with bronze gatíg rivige molled into magetwised ated dovetailect grohve under presture to make gate and rigy one ithe: separable unit. After litilige, gato rings are acewantifiy martynect

Cose Rings: Bronze, case ringe are screwed into place and machined. They can be removed and replaced if necessary
Packing: O-Ring packing is standard on a Don-rising stem gate valves Kising stero and gesred valves are furnished with eonveutional patking. See page 116.
Opecating Nut and Mandwheel: All vaives except flanged valven and outside serew and Yoke valves are supplied with 2 -inct equare opexatiug atais of high stivength cast iron unless otberwhe specibed. Flanged valves and outside serew and yoke valves are supplied with bandwheels of high strength cast iron unless otkervise specified. Direction of opening is indicated by arrow esst on operating nut ikirt or co the rim of the handwheel.
Yohe! Yokes for outhide serew and yoke valves are of rugged east iron. Careful machining as Fires accurate stem alignmeat.
Accessories: Vaives may be fitted with any of a iange number of accessories, detailed on pages 15:3 through 157 . cylinders, electric notor operafore, geariug, by-passes, et

Rollers, Tracks and Scrapers: Recommended for $14^{\prime \prime}$ and larger diameter valves to earry woight of the gates for valves instalied in a horzontal line is horizontal position. See sinue 166.
Stides. Pecommiended for 14^{*} and larger valves insitnilled borisontally in a vertiead line. See pase 156:

NOTE. All valves open to the left (counterdoskrise) ualess otherwise specified.

f-se8s Push-On Ends For PVC Pipe

Dimension M
center of park ta lap a twis
O-Ring Pocking atso upply io
Topping Valves Cuting-in Volves and Auxiliary Valves.

AR Sypars fottom Flanged

F-5072
Fianged Ends Outside Screw \& Yo

Dimensions-inches

TRINITY VALLEY IRON and STEEL
 COMPANY

P. O. BOX 2388

FORT WORTH, TEXAS 76113 817-738-1925
TELEX - 794825 ENSCO FTW

MECHANICAL JOINT DIMENSIONS

Trinity Valley Cast Iron Mechanical Joint Fittings Class 250 are manufactured in accordance with and conform to AWWA specification C110-71, C111-71-ANSI A21.10, ANSI A21.11 and federal specifications WW-P-421C.

Trinity Valley mechanical joint fittings sizes $4^{\prime \prime}-12^{\prime \prime}$ are listed by Underwriters Laboratories Inc.

	Size	Bolts			Wt. of Bell, lb.		Weight of Gland, Bolts and Gasket, lbs.	Pipe Barrel O. D.	Pipe Pat- tern
		No.	Size	Lgth.	Pipe	Fittings			
Only.	2	2	5/8	3	5	5	5	2.50	\cdots
Mox (10)	$21 / 4$	2	5/8	3	6	6	6	2.75	\cdots
\square	3	4	5/8	3	11	11	7	3.96	$B C D$
(-x)er	4	4	$3 / 4$	$31 / 2$	16	16	10	4.80	A
운 \$ 1 M 2	6	6	3/4	$31 / 2$	22	23	16	6.90	A
	8	6	$3 / 4$	4	30	31	25	9.05	$A B$
잉	10	8	$3 / 4$	4	40	41	30	11.10	$A B$
1	12	8	$3 / 4$	4	50	51	40	13.20	${ }^{\text {AB }}$
K2 A DC F Kı	14	10	$3 / 4$	4	78	79	45	15.30	$A B$
	16	12	$3 / 4$	$41 / 2$	95	97	55	17.40	$A B$
	18	12	$3 / 4$	$41 / 2$	113	117	65	19.50	AB
	20	14	3/4	$41 / 2$	134	140	85	21.60	AB
	24	16	3/4	5	177	185	105	25.80	AB

Dimensions in inches

Size		A	B		c		D		F	ϕ	x	J	K,	K_{2}	L	M	\bigcirc	P	s
3	$\pm .06$	3.96	2.50	$\pm .04$	4.84	$+.06$	$\begin{array}{r} -.04 \\ 4.94 \end{array}$	$+.07$	$\begin{array}{r} -.03 \\ 4.06 \end{array}$	28°	$+.06-.0$	$\begin{array}{r} \pm .06 \\ 6.19 \end{array}$	$\begin{array}{r} -.06 \\ 7.62 \end{array}$	$\begin{array}{r} -.12 \\ 7.69 \end{array}$	$\begin{array}{r} -.06 \\ \hline .94 \end{array}$	$\begin{array}{r} -.06 \\ .62 \end{array}$. 31	. 63	$\begin{array}{r} -.05 \\ -.47 \end{array}$
4	$\pm .06$	4.80	2.50	$\pm .04$	5.92	$+.06$	$\begin{array}{r} -.04 \\ 6.02 \end{array}$	$+.07$	$\begin{array}{r} -.03 \\ 4.90 \end{array}$	28°	$+.06-.0$	$\begin{array}{r} \pm .06 \\ 7.50 \end{array}$	$\begin{array}{r} -.06 \\ 9.06 \end{array}$	$\begin{array}{r} -.12 \\ 9.12 \end{array}$	$\begin{array}{r} -.06 \\ 1.00 \end{array}$	$\begin{array}{r} -.06 \\ \hline .75 \end{array}$. 31	. 75	$\begin{array}{r} -.05 \\ \hline .55 \end{array}$
6	$\pm .06$	6.90	2.50	$\pm .04$	8.02	$+.06$	$\begin{array}{r} 6-.04 \\ 8.12 \end{array}$	$+.07$	$\begin{array}{r} -.03 \\ 7.00 \end{array}$	28°	$+.06-.0$	$\pm .06$	$\begin{aligned} & -.06 \\ & 11.06 \end{aligned}$	$\begin{array}{r} -.12 \\ 11.12 \end{array}$	$\begin{array}{r} -.06 \\ 1.06 \end{array}$	$\begin{array}{r} -.06 \\ .88 \end{array}$. 31	. 75	$\begin{array}{r} -.05 \\ .60 \end{array}$
8	$\pm .06$	9.05	2.50	$\pm .04$	10.17	$+.06$	$6-.04$	$+.07$	$\begin{array}{r} -.03 \\ 9.15 \end{array}$	28°	$+.06-.0$	$\begin{gathered} \pm .06 \\ 11.75 \end{gathered}$	$\begin{array}{r} -.06 \\ 13.31 \end{array}$	$\begin{array}{r} -.12 \\ 13.37 \end{array}$	$\begin{array}{r} -.08 \\ 1.12 \end{array}$	$\begin{array}{r} -.08 \\ 1.00 \end{array}$. 31	. 75	$\begin{array}{r} -.05 \\ .66 \end{array}$
10	$\pm .06$	11.10	2.50	$+.06$	$\begin{aligned} & -.04 \\ & 12.22 \end{aligned}$	$+.06$	$6-.04$	+. 07	$\begin{array}{r} -.03 \\ 11.20 \end{array}$	28°	$+.06-.0$	$\begin{aligned} & \pm .06 \\ & 14.00 \end{aligned}$	$\begin{array}{r} -.06 \\ 15.62 \end{array}$	$\begin{array}{r} -.12 \\ 15.62 \end{array}$	$\begin{array}{r} -.08 \\ 1.19 \end{array}$	$\begin{array}{r} -.08 \\ 1.00 \end{array}$. 31	. 75	$\begin{array}{r} -.06 \\ \hline 72 \end{array}$
12	$\pm .06$	13.20	2.50	+. 06	$\begin{array}{r} -.04 \\ 14.32 \end{array}$	+. 06	$6-.04$	$+.07$	$\begin{array}{r} 7-.03 \\ 13.30 \end{array}$	28°	$+.06-.0$	$\begin{aligned} & \pm .06 \\ & 16.25 \end{aligned}$	$\begin{aligned} & -.06 \\ & 17.88 \end{aligned}$	$\begin{aligned} & -.12 \\ & 17.88 \end{aligned}$	$\begin{array}{r} -.08 \\ 1.25 \end{array}$	$\begin{array}{r} -.08 \\ 1.00 \end{array}$. 31	. 75	$\begin{array}{r} -.06 \\ \hline 79 \end{array}$
14	$+.05$	$\begin{array}{r} -.08 \\ 15.30 \end{array}$	3.50	$+.07$	$\begin{aligned} & -.05 \\ & 16.40 \end{aligned}$	$+.07$	$\begin{array}{r} 7-.05 \\ 16.54 \end{array}$	$+.06$	$\begin{array}{r} -.07 \\ 15.44 \end{array}$	28°	$+.06-.0$	$\pm .06$	$\begin{aligned} & -.08 \\ & 20.25 \end{aligned}$	$\begin{array}{r} -.12 \\ 20.25 \end{array}$	$\begin{array}{r} -12 \\ 1.31 \end{array}$	$\begin{array}{r} -.12 \\ 1.25 \end{array}$. 31	. 75	$\begin{array}{r} -.08 \\ .85 \end{array}$
16	$+.05$	$\begin{array}{r} -.08 \\ 17.40 \end{array}$	3.50	$+.07$	$\begin{aligned} & -.05 \\ & 18.50 \end{aligned}$	$+.07$	$\begin{array}{r} 7-.05 \\ 18.64 \end{array}$	$+.06$	$\begin{aligned} & -.07 \\ & 17.54 \end{aligned}$	28°	$+.06-.0$	$\frac{ \pm .06}{21.00}$	$\begin{aligned} & -.08 \\ & 22.50 \end{aligned}$	$\begin{aligned} & -.12 \\ & 22.50 \end{aligned}$	$\begin{array}{r} -.12 \\ 1.38 \end{array}$	$\begin{array}{r} -.12 \\ 1.31 \end{array}$. 31	. 75	$\begin{array}{r} -.08 \\ .91 \end{array}$
18	$+.05$	$\begin{array}{r} -.08 \\ 19.50 \end{array}$	3.50	$+.07$	$\begin{aligned} & -.05 \\ & 20.60 \end{aligned}$	$+.07$	$\begin{array}{r} 7-.05 \\ 20.74 \end{array}$	$+.06$	$\begin{array}{r} 6-.07 \\ 19.64 \end{array}$	28°	$+.06-.0$	$\pm .06$	$\begin{array}{r} -.08 \\ 24.75 \end{array}$	$\begin{aligned} & -.15 \\ & 24.75 \end{aligned}$	$\begin{array}{r} -.12 \\ 1.44 \end{array}$	$\begin{array}{r} -.12 \\ 1.38 \end{array}$. 31	. 75	$\begin{array}{r} -.08 \\ \hline \end{array}$
20	$+.05$	$\begin{aligned} & -.08 \\ & 21.60 \end{aligned}$	3.50	$+.07$	$-.05$	$+.07$	$\begin{array}{r} 7-.05 \\ 22.84 \end{array}$	$+.06$	$\begin{array}{r} 6-.07 \\ \hline-. .74 \\ \hline \end{array}$	28°	$+.06-.0$	$\frac{ \pm .06}{25.50}$	$\begin{aligned} & -.08 \\ & 27.00 \end{aligned}$	$\begin{aligned} & -.15 \\ & 27.00 \end{aligned}$	$\begin{array}{r} -.12 \\ 1.50 \end{array}$	$\begin{array}{r} -12 \\ 1.44 \end{array}$. 31	. 75	$\begin{array}{r} -.08 \\ 1.03 \end{array}$
24	$+.05$	$\begin{aligned} & -.08 \\ & 25.80 \end{aligned}$	3.50	$+.07$	$\begin{aligned} & -.05 \\ & 26.90 \end{aligned}$	$+.07$	$\begin{array}{r} 7-.05 \\ 27.04 \end{array}$	$+.06$	$6-.07$	28°	$+.06-.0$	$\begin{aligned} & \pm .06 \\ & 30.00 \end{aligned}$	$\begin{aligned} & -.08 \\ & 31.50 \end{aligned}$	$\begin{aligned} & -.15 \\ & 31.50 \end{aligned}$	$\begin{array}{r} -.12 \\ 1.62 \end{array}$	$\begin{array}{r} -.12 \\ 1.56 \end{array}$. 31	. 75	$\begin{array}{r} -.08 \\ 1.08 \end{array}$

Refer to current price sheet for items manufactured by, and available through, Trinity Valley Iron and Steel Company.

MECHANICAL JOINT BENDS

TV-104
MJ $1 / 16\left(221 / 2^{\circ}\right)$

TV-105
MJ x PE $1 / 16\left(22^{1 / 2}{ }^{\circ}\right)$

TV-106 MJ $1 / 32\left(11 / 4^{\circ}\right)$

MJ \times PE $1 / 32\left(11 \frac{114}{}{ }^{\circ}\right)$

SIZE	$1 / 4 \mathrm{BENDS}\left(90^{\circ}\right)$					$1 / 8$ BENDS (45°)					1/16 BENDS ($221 / 2^{\circ}$)					$1 / 32 \operatorname{BENDS}\left(111 / 4^{\circ}\right.$)				
	Dimensions			Weights																
	R	A	S	TV-100	TV-101	R	A	s	TV-102	2 TV. 103	R	A	S	TV-104	4 TV-105	R	A	S	TV. 106	TV-107
2	2.69	3.5	- ---	12	\cdots	2.87	2.0	\cdots	12	\cdots	3.47	1.5	\cdots	12	\cdots	7.00	1.5	\cdots	12	\cdots
21/4	2.69	3.5	\cdots	18	\cdots	2.85	2.0	\cdots	16	\cdots	3.42	1.5	\cdots	16	\cdots	6.9	1.5	\cdots	16	---
3	4.0	5.5	13.5	35	35	3.62	3.0	11.0	30	30	7.56	3.0	11.0	30	30	15.25	3.0	11.0	30	30
4	4.5	6.5	14.5	55	50	4.81	4.0	12.0	50	45	10.06	4.0	12.0	50	45	20.31	4.0	12.0	50	45
6	6.0	8.0	16.0	85	80	7.25	5.0	13.0	75	70	15.06	5.0	13.0	75	70	30.50	5.0	13.0	75	70
8	7.0	9.0	17.0	125	120	8.44	5.5	13.5	110	105	17.62	5.5	13.5	110	105	35.50	5.5	13.5	110	105
10	9.0	11.0	19.0	190	190	10.88	6.5	14.5	155	155	22.62	6.5	14.5	160	160	45.69	6.5	14.5	160	160
12	10.0	12.0	20.0	255	255	13.25	7.5	15.5	215	215	27.62	7.5	15.5	220	220	55.81	7.5	15.5	220	220
14	11.5	14.0	22.0	380	365	12.06	7.5	15.5	300	280	25.12	7.5	15.5	300	285	50.75	7.5	15.5	305	285
16	12.5	15.0	23.0	490	470	13.25	8.0	16.0	380	360	27.62	8.0	16.0	385	365	55.81	8.0	16.0	385	365
18	14.0	16.5	24.5	625	600	14.50	8.5	16.5	470	445	30.19	8.5	16.5	480	455	60.94	8.5	16.5	480	455
20	15.5	18.0	26.0	790		16.88	9.5	17.5	595	565	35.19	9.5	17.5	605	575	71.06	9.5	17.5	610	575
24	18.5	22.0	30.0	1215	1175	18.12	11.0	19.0	865	825	37.69	11.0	19.0	880	840	76.12	11.0	19.0	885	845

NOTE: Weights shown do not include joint accessories. See page 2 for accessory weight information.

TV-109
Bases will be furnished not faced and not drilled unless otherwise specified.

MJ Base $1 / 4$ Bends (90°)

Size	R	D	T	U	Base Wt.	Total Wts TV-109
3	4.88	5	.56	.50	10	45
4	5.50	6	.62	.50	10	65
6	7.00	7	.69	.62	20	105
8	8.38	9	.94	.88	40	165
10	9.75	9	.94	.88	45	235
12	11.25	11	1.00	1.00	65	320
14	12.50	11	1.00	1.00	70	450
16	13.75	11	1.00	1.00	75	565
18	15.00	13.5	1.12	1.12	115	740
20	16.00	13.5	1.12	1.12	120	910
24	18.50	13.5	1.12	1.12	130	1345

MECHANICAL JOINT TEES

TV-110
MJ

TV-111
MJ \times PE \times MJ

Reducing on Run Reducing on Run
TV-112
MJ
and Branch TV-113

Bullhead
TV-114

SIZE			DIMENSIONS			WEIGHTS		
Run	Run	Branch	H	J	S	$\underset{113,114}{\text { TV-110, }}$	TV-111	TV-115
2	2	2	3.5	3.5	---	22	-----	----
21/4	21/4	21/4	3.5	3.5	\cdots	26	------	----
3	3	3	5.5	5.5	13.5	55	55	50
4	4	2	6.5	6.5	14.5	65	60	60
4	4	3	6.5	6.5	14.5	75	70	70
4	4	4	6.5	6.5	14.5	80	75	70
4	4	6	8.0	8.0	---	115	------	-----
6	4	4	8.0	8.0	\cdots	110	------	-------
6	4	6	8.0	8.0	-----	115	-	---
6	6	2	8.0	8.0	----	100	---	------
6	6	3	8.0	8.0	16.0	110	105	105
6	6	4	8.0	8.0	16.0	115	110	109
6	6	6	8.0	8.0	16.0	125	120	115
6	6	8	9.0	9.0	-----	185	-------	----
8	6	4	9.0	9.0	----	155	\cdots	-----
8	6	6	9.0	9.0	\cdots	165	--.----	-------
8	6	8	9.0	9.0	----	175	-------	-----
8	8	3	9.0	9.0	17.0	155	150	150
8	8	4	9.0	9.0	17.0	165	160	159
8	8	6	9.0	9.0	17.0	175	170	165
8	8	8	9.0	9.0	17.0	185	180	175
10	10	4	11.0	11.0	19.0	235	235	229
10	10	6	11.0	11.0	19.0	250	250	237
10	10	8	11.0	11.0	19.0	260	260	250
10	10	10	11.0	11.0	19.0	310	310	295
12	12	4	12.0	12.0	20.0	315	315	309
12	12	6	12.0	12.0	20.0	325	325	315
12	12	8	12.0	12.0	20.0	340	340	330
12	12	10	12.0	12.0	20.0	390	390	377
12	12	12	12.0	12.0	20.0	410	410	401
14	14	4	14.0	14.0	22.0	470	455	510
14	14	6	14.0	14.0	22.0	485	470	475
14	14	8	14.0	14.0	22.0	500	480	490
14	14	10	14.0	14.0	22.0	515	500	502

SIZE			DIMENSIONS			WEIGHTS	
Run	Run	Branch	H	J	S	$\begin{gathered} \text { TV-110, } 112, \text { TV- } 113 \\ 113,114 \end{gathered}$	TV-115
14	14	12	14.0	14.0	22.0	540525	530
14	14	14	14.0	14.0	22.0	585570	575
16	16	4	15.0	15.0	23.0	600575	575
16	16	6	15.0	15.0	23.0	615590	605
16	16	8	15.0	15.0	23.0	625605	615
16	16	10	15.0	15.0	23.0	$645 \quad 620$	632
16	16	12	15.0	15.0	23.0	660640	651
16	16	14	15.0	15.0	23.0	710690	630
16	16	16	15.0	15.0	23.0	740720	730
18	18	6	13.0	15.5	21.0	$670 \quad 645$	665
18	18	8	13.0	15.5	21.0	685655	675
18	18	10	13.0	15.5	21.0	700670	690
18	18	12	13.0	15.5	21.0	715690	705
18	18	14	16.5	16.5	24.5	865840	850
18	18	16	16.5	16.5	24.5	905880	885
18	18	18	16.5	16.5	24.5	945920	915
20	20	6	14.0	17.0	22.0	830800	820
20	20	8	14.0	17.0	22.0	845810	835
20	20	10	14.0	17.0	22.0	860825	850
20	20	12	14.0	17.0	22.0	875840	865
20	20	14	14.0	17.0	22.0	910875	890
20	20	16	18.0	18.0	26.0	10951060	1075
20	20	18	18.0	18.0	26.0	11401110	1120
20	20	20	18.0	18.0	26.0	11851155	1165
24	24	6	15.0	19.0	23.0	11451105	1125
24	24	8	15.0	19.0	23.0	$1160 \quad 1115$	1140
24	24	10	15.0	19.0	23.0	$1170 \quad 1130$	1150
24	24	12	15.0	19.0	23.0	11851145	1165
24	24	14	15.0	19.0	23.0	12201180	1200
24	24	16	15.0	19.0	23.0	12451200	1225
24	24	18	22.0	22.0	30.0	16601615	1640
24	24	20	22.0	22.0	30.0	17201680	1700
24	24	24	22.0	22.0	30.0	18151775	1795

SIZE	DIMENSIONS D					
	R	T	U	Base Wt.	Total Wts. TV-116	
3	4.88	5.0	.56	.50	5	60
4	5.50	6.0	.62	.50	10	90
6	7.00	7.0	.69	.62	15	140
8	8.38	9.0	.94	.88	30	215
10	9.75	9.0	.94	.88	30	340
12	11.25	11.0	1.00	1.00	45	455
14	12.50	11.0	1.00	1.00	50	635
16	13.75	11.0	1.00	1.00	50	790
18	15.00	13.5	1.12	1.12	75	1020
20	16.00	13.5	1.12	1.12	75	1260
24	18.50	13.5	1.12	1.12	80	1895

SIZE		DIMENSIONS			WEIGHTS	
Run	Branch	N	P	S	TV-117	TV-118
3	3	3.0	10.0	11.0	60	60
4	3	3.0	12.0	11.0	80	75
4	4	3.0	12.0	11.0	90	85
6	4	3.5	14.5	11.5	130	125
6	6	3.5	14.5	11.5	145	140
8	4	4.5	17.5	12.5	190	185
8	6	4.5	17.5	12.5	205	200
8	8	4.5	17.5	12.5	230	225
10	4	5.0	20.5	13.0	270	270
10	6	5.0	20.5	13.0	285	285
10	8	5.0	20.5	13.0	310	310
10	10	5.0	20.5	13.0	340	340
12	4	5.5	24.5	13.5	380	380
12	6	5.5	24.5	13.5	400	400
12	8	5.5	24.5	13.5	425	425
12	10	5.5	24.5	13.5	450	450
12	12	5.5	24.5	13.5	490	490
14	6	6.0	27.0	14.0	570	555
14	8	6.0	27.0	14.0	595	580
14	10	6.0	27.0	14.0	625	610
14	12	6.0	27.0	14.0	685	695
14	14	6.0	27.0	14.0	750	760
16	6	6.5	30.0	14.5	735	715
16	8	6.5	30.0	14.5	760	740
16	10	6.5	30.0	14.5	800	780
16	12	6.5	30.0	14.5	835	815
16	14	6.5	30.0	14.5	930	940
16	16	6.5	30.0	14.5	990	1000
18	10	7.0	32.0	15.0	975	950
18	12	7.0	32.0	15.0	1015	990
18	14	7.0	32.0	15.0	1075	1050
18	16	7.0	32.0	15.0	1175	1195
18	18	7.0	32.0	15.0	1255	1270
20	12	8.0	35.0	16.0	1260	1230
20	14	8.0	35.0	16.0	1320	1290
20	16	8.0	35.0	16.0	1375	1345
20	18	8.0	35.0	16.0	1510	1530
20	20	8.0	35.0	16.0	1525	1535
24	14	9.0	40.5	17.0	1865	1825
24	16	9.0	40.5	17.0	1925	1885
24	18	9.0	40.5	17.0	1990	1950
24	20	9.0	40.5	17.0	2105	2135
24	24	9.0	40.5	17.0	2390	2425

NOTE: Weights shown do not include joint accessories. See page 2 for accessory weight information.
Refer to current price sheet for items manufac-

SIZE		DIMENSIONS			WEIGHTS	
Run	Branch	H	J	S	TV-119	TV-120
2	2	3.5	3.5	-------	27	--.----
21/4	$21 / 4$	3.5	3.5		30	
3	3	5.5	5.5	13.5	70	70
4	2	6.5	6.5	14.5	60	
4	3	6.5	6.5	14.5	90	85
4	4	6.5	6.5	14.5	105	100
6	3	8.0	8.0	16.0	125	120
6	4	8.0	8.0	16.0	140	135
6	6	8.0	8.0	16.0	160	155
8	3	9.0	9.0	17.0	170	165
8	4	9.0	9.0	17.0	185	180
8	6	9.0	9.0	17.0	205	200
8	8	9.0	9.0	17.0	235	230
10	4	11.0	11.0	19.0	260	260
10	6	11.0	11.0	19.0	285	285
10	8	11.0	11.0	19.0	310	310
10	10	11.0	11.0	19.0	380	380
12	4	12.0	12.0	20.0	340	340
12	6	12.0	12.0	20.0	360	360
12	8	12.0	12.0	20.0	385	385
12	10	12.0	12.0	20.0	460	460
12	12	12.0	12.0	20.0	495	495
14	4	14.0	14.0	22.0	500	475
14	6	14.0	14.0	22.0	525	505
14	8	14.0	14.0	22.0	550	535
14	10	14.0	14.0	22.0	585	570
14	12	14.0	14.0	22.0	630	615
14	14	14.0	14.0	22.0	710	695
16	4	15.0	15.0	23.0	630	610
16	6	15.0	15.0	23.0	650	630
16	8	15.0	15.0	23.0	675	655
16	10	15.0	15.0	23.0	710	690
16	12	15.0	15.0	23.0	745	725
16	14	15.0	15.0	23.0	830	810
16	16	15.0	15.0	23.0	895	875
18	6	13.0	15.5	21.0	705	680
18	8	13.0	15.5	21.0	730 760	705 735
18	10	13.0	15.5	21.0	760	735
18	12	13.0	15.5	21.0	790	765
18	14	16.5	16.5	24.5	990	965
18	16	16.5	16.5	24.5	1060	1035
18	18	16.5	16.5	24.5	1130	1105
20	6	14.0	17.0	22.0	865	835
20	8	14.0	17.0	22.0	890	860
20	10	14.0	17.0	22.0	920	890
20	12	14.0	17.0	22.0	955	920
20	14	14.0	17.0	22.0	1025	990
20	16	18.0	18.0	26.0	1245	1215
20	18	18.0	18.0	26.0	1330	1300
20	20	18.0	18.0	26.0	1415	1385
24	6	15.0	19.0	23.0	1180	1140
24	8	15.0	19.0	23.0	1200	1160
24	10	15.0	19.0	23.0	1230	1190
24	12	15.0	19.0	23.0	1260	1220
24	14	15.0	19.0	23.0	1325	1285
24	16	15.0	19.0	23.0	1375	1335
24	18	22.0	22.0	30.0	1865	1820
24	20	22.0	22.0	30.0	1965	1925
24	24	22.0	22.0	30.0	2155	2115

MECHANICAL JOINT SLEEVES

Size	MJ Sleeve				MJ Transition Sleeve		MJ Split Sleeve			
	TV-121		TV-122				TV-124		TV-125	
	Short		Long		TV-123		Short		Long	
	L	W + .	L	Wt.	L	Wt.	L	Wt.	L	Wt.
2	8	12	---	$\cdots-$	----	-----	10	26	--	\cdots
$21 / 4$	8	15	---	----	----	-----	\cdots	\cdots	---	-
3	7.5	25	12	30	7.5	25	10	65	15	90
4	7.5	35	12	45	7.5	35	10	90	15	115
6	7.5	45	12	65	7.5	45	10	125	18	165
8	7.5	65	12	85	7.5	65	10	150	18	215
10	7.5	85	12	115	7.5	85	10	190	18	270
12	7.5	110	12	145	7.5	110	10	235	18	335
14	9.5	165	15	225	15	235	11	425	18	530
16	9.5	200	15	275	15	285	11	490	18	620
18	9.5	240	15	330	15	340	11	560	18	715
20	9.5	275	15	380	15	390	11	655	18	840
24	9.5	360	15	505	15	520	11	915	18	1150

MECHANICAL JOINT TAPPED TEES AND CROSSES

TV-126
TV-127
Tapped Tee Tapped Cross

Dimension	Weights		
Size	L	TV-126	TV-127
$2^{\prime \prime}$	8	11	11
$21^{\prime \prime \prime}$	8	14	14
$3^{\prime \prime}$	8	35	35
$4^{\prime \prime}$	8	45	45
$6^{\prime \prime}$	8	70	70
$8^{\prime \prime}$	8	95	95
$10^{\prime \prime}$	8	130	130
$12^{\prime \prime}$	8	165	165
$14^{\prime \prime}$	8	235	235
$16^{\prime \prime}$	8	290	290
$18^{\prime \prime}$	8	350	350
$20^{\prime \prime}$	8	420	420
$24^{\prime \prime}$	8	555	555

MECHANICAL JOINT REDUCERS

TV-128
MJ Reducer

TV-129
MJ Large End Bell Reducer

TV-130
MJ Small End Bell Reducer

TV-131
Plain End - Plain End Reducer

SIZE	LAYING LENGTHS (L)			
	MJ	MJ-SEB	MJ-LEB	PE \times PE
3×2	6	14	14	22
4×2	7	15	15	23
$4 \times 21 / 4$	7	15	15	23
4×3	7	15	15	23
6×2	9	17	17	25
$6 \times 21 / 4$	9	17	17	25
6×3	9	17	17	25
6×4	9	17	17	25
8×3	11	19	19	27
8×4	11	19	19	27
8×6	11	19	19	27
10×4	12	20	20	28
10×6	12	20	20	28
10x8	12	20	20	28
12×4	14	22	22	30
12×6	14	22	22	30
12×8	14	22	22	30
12×10	14	22	22	30
14×6	16	24	24	32
14×8	16	24	24	32
14×10	16	24	24	32
14×12	16	24	24	32
16×6	18	26	26	34
16×8	18	26	26	34
16×10	18	26	26	34
16×12	18	26	26	34
16×14	18	26	26	34
18×8	19	27	27	35
18×10	19	27	27	35
18×12	19	27	27	35
18×14	19	27	27	35
18×16	19	27	27	35
20×10	20	28	28	36
20×12	20	28	28	36
20×14	20	28	28	36
20×16	20	28	28	36
20×18	20	28	28	36
24×12	24	32	32	40
24×14	24	32	32	40
24×16	24	32	32	40
24×18	24	32	32	40
24×20	24	32	32	40

WEIGHTS			
MJ	MJ-SEB	MJ-LEB	PE x PE
25	25	20	20
30	30	30	25
30	30	30	25
40	35	40	35
45	45	45	40
45	45	45	40
55	50	55	50
60	60	60	55
75	70	75	70
80	80	80	75
95	90	90	85
105	100	100	100
115	115	115	115
135	130	130	130
135	130	130	130
150	150	145	145
165	165	165	165
190	190	185	185
200	185	200	185
220	205	220	205
245	230	245	230
270	255	275	260
250	230	250	2300
270	250	270	250
300	280	300	280
325	305	330	310
370	350	355	335
320	295	320	295
350	325	350	325
380	355	385	360
425	400	410	385
465	440	445	420
410	380	410	380
440	410	445	415
485	455	470	440
530	500	510	475
575	545	550	520
610	570	615	575
660	620	645	605
705	655	685	645
760	720	735	695
815	775	785	745

NOTE: Weights shown do not include joint accessories. See page 2 for accessory weight information.

Trinity Valley mechanical joint fittings sizes $4^{\prime \prime}-12^{\prime \prime}$ are listed by Underwriters Laboratories Inc.

AWWA C110-71, C111-71; ANSI A-21.10, ANSI A-21.11. Class 250.

Refer to current price sheet for items manufactured by, and available through, Trinity Valley Iron and Steel Co.

MECHANICAL JOINT ADAPTERS

TV-132
MJ x MIPT Adapter

TV-135
Flange \times PE

SIZE	TV-135		TV-136			TV-137	
	L	Wt.	L	Wt.	L	Wt.	
3	16	30	8	40	8	30	
4	16	40	8	55	8	40	
6	16	55	8	80	8	60	
8	16	85	8	115	8	85	
10	16	115	8	150	8	115	
12	16	155	8	190	8	165	
14	16	195	8	255	8	195	
16	16	240	8	320	8	240	
18	16	280	8	385	8	280	
20	16	335	8	465	8	340	
24	16	455	8	620	8	455	

TV-140

TV-136
MJ x Bell

TV-137
Flange x Flange

TV-133
MJ x Flange

TV-134 MS \times PE

SIZE		DIMENSIONS		WEIGHTS	
	M	L	D	TV-138	TV-

	M	L	D	TV-138	TV
3	19	27	6	50	
3	22	30	12	60	
3	30	38	18	75	
4	19	27	6	75	

4	19	27	6	75	
4	22	30	12	85	
4	30	38	18	105	1
4	26	34	24	140	1
	20	28	6	10	

6	20	28	6
6	26	34	12

6	33	41	18
6	22.25	30.25	24
8	21	29	6
8	28	36	12

8	28	36	12
8	35	43	18
8	34.25	42.25	24
10	22	30	6
10	30	38	12

12	26	34	6	320	3
12	37	45	12	420	4
12	48	56	18	520	5
14	27	35	6	435	4

14	27	35	6	435	4
14	38	46	12	560	5
14	49	57	18	680	665
16	27	35	6	535	5

16	27	35	6	535
16	40	48	12	715
16	50	58	18	850
18	28	36	6	565
18	40	48	12	720

,

TV-142

PLUGS		CAPS		GLANDS	
Size	Weight	Size	Weight	Size	Weight
2	5	2	5	2	3
$21 / 4$	6	$21 / 4$	6	$21 / 4$	4
3	14	3	13	3	5
4	20	4	20	4	6
6	30	6	30	6	11
8	50	8	45	8	18
10	65	10	55	10	20
12	85	12	75	12	30
14	115	14	130	14	35
16	150	16	175	16	45
18	195	20	215	18	55
20	25	24	370	20	70
24	330			24	90

ciow tapionta yalyes ands sareves Date 3/23/84

DESCRUPION AND ADVANTAGES
In use tapping steves are bolted around the Oversize seat rings on the tapping vabies main, and the kolts tightened. The vidve is peront entry of the tapping machine cutters. bolted to the flanged outhet of the sheever and with the valve open, the tapping roatho is bitted on and the top inado. The entter sa then wethdravou the valve closed, and the amothine ren-meet. Tapping i. wemptished whth unt tateruption of nervae
Tapring aleevs ave built in two sertions for pasy hastuitation, satd assembled around the main without listling eervice. Mectanient jome tapping sjeeves are fumblasd complete with joftrinctensories. One end of the push-on tapping valve has a standard flange for bolting to the slecve; the other end has a regular Push-On bell with of flomed for bolting it way standacd tapping machive.

It mechaniond jomit tarping watvas are providet with a stamiardized cuectimmeal joint
 pipe. In at othor regpecte these vaives are smolar to the Clow in W A gate valves as regerty aperation and materfais.

With one gosket
4: thru 12° Tappins Steeves and Crosses fil all ciasses of Cast tron pipes. For 14 and $16^{\prime \prime}$ specify either A否 or CD pipe diameter.

MECHANICAL JOINT IAPPING VALVGS AND SLEEVES

Not ithustrated F-5220
Mechanical Joint Tapping Cross $4^{*} \times 2^{4}$ thrie $16^{*} \times 12^{2}$

Pressure Ratiogs

F-S082 Volve with Push-On Joint fon PVC Pipe with the same O. D . as Steel Pipe

Mechanmethomt Sioove

Reviewed L Checked

B. ${ }^{\text {Certified }}$
 Certified Forman So-par Utilities $\mathrm{Can}_{\mathrm{n}}$ Inc.

 Dake 3/23/84Dozurik PERMASEAL

design and construction

$4-6-9-2-4-1 L_{10}$

CDEZURIK FEBRUAMY 1978
REV. JANUARY 1979
REV. MARCH 1981
REV. FEBFUABY ig82

Unique design of the Dezukik Permaseal non-tubricatec pleg

 velve centers around a tapered plug and wo individual seats to provide a double seal and biofrectionil shutolf: Design featitres provide long life fera broed vanco of aplicationa 4. Sethadiusing,ptus - Compresicer aetevilio Wagheis me tritur positive contact betweenthe ajered plus encitra spols The Setta ilte whishertare occated bietwenan the phug and the cover distritittivig a consiant thrust on the plug to compensate forseat wear as weil as for therma sxanision and contraction The Pothaseal design does not rely on line: pressure for tight sealing.2Selfaligning double seat Tapered designiof the plug provides automstic self alignment of the two separate seats. Unicue seat deston combined with the seth-adjustinc plug seats both ports at the same time and provides br-dtrectional shutoff for working pressures to 40 psi (ANsi300).

3.

Dy mics en seat Thrust from the Belleville wasiers atso provides a sell-adjusting stem seat. Unifo mit pressure on the mutiofe ring packing contintuousty aulusts for wear to assureitilonglite stem seal and Pecucer mintimenace.

1. Seat viping zction E. Wiend agtion of tho blug on the raised seats prevents the rradoind of metaria) that can cruse excessive wear.
2. Topontry allows ease of 2). malntanance Ton entry desion a llows seat sepracement witheut fromoving the yatye from the line Whom seats are duckly removed and hew seats inserteo withont. special tools, xxternakindication if seat wear is proviced by the position step plate. As the seats Wean the stor oilte moves closer to the valve cover. When confact
Is reade, the searis shoulid be repiaced. the stop platoratso restricteco whward piug movement tapreventinetas to.
metai contact that
plug damage. A. groundina sorine
is located between the plug stem
and stop lug to prevent statio

electricity buttaup.

High fow capacity

1. Strataht-throwigh flow and a laree port minimize turbulence lind press via loss.

7.- Low torque, guarientum f = operation Because the Pertuaseal plug contacts only the Seats and not the body wails;
torque is much less twan in a mon th sienved or linec valve and remains constant. This lower terque altows the use of smatier actuators for iower cost.
8. Choice of actuators
Q. Optional actuators include a
somplete fine of manual or powered models: tever handwheel, double acting eylinder spring retum cyfinder and eiectrio motor
6. Variely of seat maleriais 3) Seat options ment a wide range of application requirements Seat inalerials include RTFE, Reinfarced PTFE and UHMW* polyethylene, all of which provide drip tight shutoff. A carbon graphite seat is avaitable for high temperature applications whore drie tight shuioff is not reduired.

10.Choice of body and plug materials A choice of bod and plug materials includes stainless steel carbon steei, Alloy 20 , and others.

11Bociy designs 11. The versatile Permaseal cesign offers a variety of modela inoluding two-way and throe-way fiow patierns, partial full, and boit-on jackets, double block and dleed elus flush through valves:

Cheice of end

 includomertons Optrons thay. $1 / 22^{\prime \prime}$ threaded flanged, $1 / 2$ " 2 " sooket weld $1 / 2^{\prime \prime}-8^{\prime \prime}$ butt weld, Ralsed face flanges are standard for all ratings and roaterials,13. Temperature ratings to 13. $1000^{\circ} \mathrm{F}$ Seat materials engineered to application requirements provide the right seat for temperatures to $1000^{\circ} \mathrm{F}$ 14. ANS: 150 and 300 ratings 4. Valves in sizes from $1 / 2^{-6}$ can be furnished in ANSI 150 and 300 ib . models.

IRON BODY, BRONZE MOURTEE
 4 THRU I?

(See Page 137 for othar sizes and details)

DESCNIPTION

(\%ow ho

thoo nhd where any wererse flow wuat
pumping efations, fiteration pifarits, spu
Wher thatallations whore fluw intat to
zontal or warticat motelations abd wo denged with amph

DESIGN AND CONSTRUCTION

End Types A vailalite

Alonged
Serhermicat Jom $4^{\prime \prime}-18$
$4^{\prime \prime}+2$

Vaives ara reguta mazndiftured ion bod

\qquad

F-5385 Atwchanical Joint A they ? 2 -foch

Ferssure Raning Varve sine A shook Hyd
Inchen

Not bilusirated
F-3386 Mechonical Joint, Outside Spling and F-5387 Mechanizat Joins, Outside Lever and Weight

F. 53 月0 Flanged Finds 4 tiaru 12 ingh

F-\$381 Flaaged Ends witz Outside Spring ond Lever

F-5382 Hanged Ends, with
Oufside Lever and Weight 4 thry 19 nith

OROERZ谓G HRORMATON
Please fumish all the information requested below:

1. Quantily.
2. Size.
3. Eype: Whethar plam, outside lever and weight, or outside lever and spering.
4. End 7ypes: Whether flanged or Machan ieal Joint.
5. Special Feafures: Leyther of mbuer Iav
[^2]

4" ther it
EIMEWSBONS

F. 5386 , mectanical Jeint, showmg typica timensions of Outsice Sp

F-5332 Ficinged Ends, sfizioxiaga Outside lever ond W eight

5 Wimesvsions-irches

Flangee faced and drilled to A NSl i25 pound templase, maiess of herwise instructed.

W.ssae stantend incis, showing Outidelal Saring and Eever
F-5383 Side View Fianged Ends, showing Outside Spring and Laver

Penasetitunioh 7. Qumaity. 2. 5120.
3. Wype Whethel prain, etfaide lever anol
we fiti, of untrade le pet upr spariag.

> 4. Euad T ypes: Whe
5. Spaciat Features:

\bullet

-

CERTIFICATES OF CONFORMANCE

J-M Manufacturing Company, Inc.
P. O. Box 185

J-M Manufacturing Company, Inc.
Green Cove Springs, Florida 32043

March 13, 1984

So-Par Utilities Co., Inc. P. O. Box 384

Jacksonville, N.C. 28540

REF: UNACCOMPANIED EM HOUSE
CAMP JOHNSON
JACKSONVILLE, N.C. 28540

Gentlemen:

This is to certify that J-M Manufacturing Co., Inc. proposes to furnish the below listed materials manufactured in accordance with the specifications for the above listed project. These specifications are also listed below opposite the material to which they refer. We further cerfity that we will furnish a notorized certificate of compliance, if requested, that we have furnished materials to the specifications as listed:

Sincerely,
2. 6. os ir
L. G. Foster

Physical Distribution Manager

STATE OF \qquad FLORIDA

COUNTY OF CLAY

On the 13 day of MARCH, 1984, before me came L.G. FOSTER
to me known to be the individual described in and who executed the forefoing instrument and acknowledged that he executed the same.
Reviewed

March 7, 1984

```
FERGUSON ENTERPRISES, INC.
l36 Center Street (24 Rd)
Jacksonville, NC 28540
```

Reference: MATERIAL FURNISHED BY TRINITY VALLEY IRON AND STEEL COMPANY TO FERGUSON ENTERPRISES, INC., JACKSONVILLE, NORTH CAROLINA FOR SO-PAR UTILITIES, UNACCOMPANIED ENLISTED PERSONNEL HOUSING, MARINE CORP. BASE, CAMP LE JUENE, NORTH CAROLINA.

This is to certify that the Cast Iron Mechanical Joint Fittings manufactured by ùs will conform to ANSI/AWWA Cllo/A21.10-82 Specifications covering Class 250 Short Body Fittings and ANSI/ AWWA Clll/A2l.ll-80 for Mechanical Joints.

Sincerely,
TRINITY VALLEY IRON \& STEEL CO.

H.E. Ward

Vice President of Sales

SUBSCRIBED AND SWORN TO
BEFORE ME THIS TH DAY
OF MARCH, 1984.

Tarrant County, Texas.
My commission expires $8 / 15 / 87$.


```
CERTIFICATEOF
CO MP L I ANCE
```

This is to certify that the product below supplied by Clow Corporation is in compliance with the following specifications.

> ANSI/AWWA

C502-80

Sold ToFerquson Entr.
136 Center st

Jacksonville, NC 28540

Shipped To: Unaccompanied
Enlisted Personnel Hing. Marine Corp-Base Station Camp LeJeune, NC

Certification Mailed To:
Sold to 12- spiesQuantity Product Number Glow SO Number Customer PO Number
\qquad

Product Description: \qquad Clow 2500 Fire Hydrant

Subscribed and sworn to before me this th_ day of March, 1984-.

Lana P. Ferguson, Notary Public
commision expires August 31, 1986

Reviewed/
Checked

J-M Manufacturing Company, Inc.
P. O. Box 712

Butner, North Carolina 27509
\qquad
(DATE)

$$
3-19-84
$$

$$
\frac{S_{a}-P_{\text {(NAE OF PURCHASER) }}}{}
$$

$$
\frac{\text { P. } 0 \text { Box } 384}{\text { (ADDRESS OF PURCHASER) }}
$$

$$
\frac{\text { facksonarlle R.C. } 28540}{\text { (ADDRESS OF PURCHASER) }}
$$

CERTIFICATE OF INSPECTION
"THIS IS TO CERTIFY THAT J-M MANUFACTURING COMPANY, INC., STANDARD INSPECTION PROCEDURE HAS BEEN USED IN THE INSPECTION OF THE MATERIALS COVERED BY THIS ORDER. THIS INSPECTION INDICATES THAT THE MATERIAL TESTED FOR JIM MANUFACTURING COMPANY, INC., ORDER NO. \qquad (YOUR ORDER NO. PB UR 24318) COMPLIES WITH THE MATERIAL REQUIREMENTS OF SPECIFICATION \qquad a wwa-c900-15 ."

MATERIAL:

DIAMETER
\qquad

CLASS/TYPE
\qquad
150 DR 18
150 DR 18
\qquad
\qquad
\qquad
\qquad
\qquad

BY:

\bullet

J-M Manufacturing Company, Inc. P. O. Box 712

Butner, North Carolina 27509
\qquad
(DATE)
$\frac{\text { Lo- Pan. Utilities co enc. }}{\text { (NAME OF PURCHASER) }}$
Pro. Bax 384
(ADDRESS OF PURCHASER)
$\frac{\text { facksamill } 1 \text {. C } 28540}{\text { (ADDRESS OF PURCHASER) }}$

CERTIFICATE OF INSPECTION
"THIS IS TO CERTIFY THAT J-M MANUFACTURING COMPANY, INC., STANDARD INSPECTION PROCEDURE HAS BEEN USED IN THE INSPECTION OF THE MATERIALS COVERED BY THIS ORDER. THIS INSPECTION INDICATES THAT THE MATERIAL TESTED FOR JIM MANUFACTURING COMPANY, INC., ORDER NO. \qquad (YOUR ORDER NO. PBX GL O1348 \qquad) COMPLIES WITH THE MATERIAL REQUIREMENTS OF SPECIFICATION \qquad
QSTM-D 2241
MATERIAL:

DIAMETER
6×20

CLASS/TYPE
160 SR 26

FT. SHIPPED
340
\qquad
\qquad
\qquad
\qquad
\qquad

BY:

RALEIGH, NORTH CAROLINA
April 24, 1984
Resident Engineer
Camp Lejeune, N. C.
Dear Sir: RE: Unaccompanied Enlisted Personnel Housing Contract N62470-82-C-2244

In accordance with request of Westminster Company, Prime Contractor, and So-Par Utilities, P. O. Box 384, Jacksonville, N. C. 28540, Sub-Contractor on above project, we wish to advise that the Precast Concrete Manholes and Joint Materials we propose to furnish to this project meet the following applicable specifications:

ASTM C-4.78, Precast Reinforced Concrete Manhole Sections.
AASHTO M-198 for Type B, Flexible Plastic Gaskets for Pipe Joints, Certified by the Manufacturer, (NCDOT Sect. 932-1 (F)).

Trusting the above will comply with your requirements, we remain,
Yours very truly,

Asst. Sales Manager - Pipe

AFFIDAVIT
State of North Carolina County of Wake

Personally April 1984, Paul D. Gardner, a resident of Raleigh,N. C., who deposes and swears he is Asst. Sales Manager - Pipe for N. C. PRODUCTS CORP. and that the statement as made above is correct and true in accordance with his best knowledge and belief. Notary Public: \qquad
My Commission Expires: July 6, 1986.

NOTES

1. ALLINNITS ARE CONSTRUCTED W ACCORDANCE W ANP REINFORCHNG EQLALS OR EXCEEDS AASHO SPECIFICATION M199-73I (ATM C478)" PRECAST. REINFORCED CONCRETE MANHOLE SECTIONS."
2. CONCRETE IS 4000 PSI PER AASHO MISO.
3. MANHOLE STEPS ARE MA. INDUSTRIES MODEL PS-IPF, STEELRENIERCED PASTE.
4. ALL LINITS ARE POURED MONOLITHICLY AND STEAM CURED. 5. PIPE OPENINGS, SIZE AND LOCATION ARE TO GUIT SPCFIC MANHOLE UGE.
N.C. PRODUCTS

Circular Pipe • Arched Pipe Elliptical Pipe

PIPE SIZE (ID)	ConSeal SIZES RECOMMENDED			PIECES PER JOINT	
				$\begin{gathered} \hline 1 / 2^{\prime \prime} \text { to } 1^{\prime \prime} \\ \text { SIZE } \\ 36^{\prime \prime} \text { STRIP } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1-1 / 4^{\prime \prime} \text { to } 2^{\prime \prime} \\ \text { SIZE } \\ 42^{\prime \prime} \text { STRIP } \\ \hline \end{array}$
	$\begin{gathered} 1 / 64^{n} \text { to } \\ 1 / 4^{n *} \end{gathered}$	$\begin{aligned} & 5 / 16^{\prime \prime} \text { to } \\ & 1 / 2^{\prime \prime *} \end{aligned}$	$\begin{aligned} & 9 / 16^{\prime \prime} \text { to } \\ & 11 / 16^{\prime \prime *} \end{aligned}$		
$12^{\prime \prime}$	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	1	-
15"	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	2	-
$18^{\prime \prime}$	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	2	-
$21^{\prime \prime}$	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	2	-
$24^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	1-1/4"	3	2
$27^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1{ }^{\prime \prime}$	1-1/4"	3	2-1/2
$30^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	1-1/4"	4	3
$33^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	1-1/4"	4	3
$36^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	1-1/4"	4	3
$39^{\prime \prime}$	$1{ }^{\prime \prime}$	1-1/4"	1-1/4"	4	3-1/2
42"	$1^{\prime \prime}$	1-1/4"	1-1/2"	4	3-1/2
$45^{\prime \prime}$	$1^{\prime \prime}$	1-1/4"	1-1/2"	5	4
$48^{\prime \prime}$	$1^{\prime \prime}$	1-1/4"	1-1/2"	5	4
54 "	1-1/4"	1-1/2"	1-3/4"	-	4-1/2
$60^{\prime \prime}$	1-1/4"	1-1/2"	1-3/4"	-	5
$66^{\prime \prime}$	1-1/4"	1-1/2"	1-3/4"	-	5-1/2
$72^{\prime \prime}$	1-1/4"	1-1/2"	$2^{\prime \prime}$	-	6
$78^{\prime \prime}$	1-1/4"	1-1/2"	$2^{\prime \prime}$	-	6-1/2
84"	1-1/2"	1-3/4"	$2^{\prime \prime}$	-	7
$90^{\prime \prime}$	1-1/2"	1-3/4"	2"	-	7-1/2
$96{ }^{\prime \prime}$	1-1/2"	1-3/4"	2"	-	8
102"	1-1/2"	$2^{\prime \prime}$	2"	-	8
108"	1-1/2"	2"	2"	-	9

* Annular space-Determine by subtracting tongue OD from groove ID, and dividing by 2. For example: if tongue OD is $55^{\prime \prime}$ and groove ID is $56^{\prime \prime}$, annular space is $(56-55) \div 2=1 / 2^{\prime \prime}$.

INSTALLATION NOTE: Remove dirt and loose particles from surfaces to be joined. Primer is not usually required; however, if temperature is below $40^{\circ} \mathrm{F}$, or installation is in a wet hole, or a dust condition exists, apply Concrete Sealants Primer CS-100 to joint. Remove strip or roll ConSeal from carton, and place on joint surface. On horizontal installations, place ConSeal on upper 180° of spigot, and place ConSeal on lower 180° of bell, allowing sufficient overlap of seals, then push the two surfaces together.

Sewer Manholes • Wet Wells

ID OF STRUCTURE	ConSeal SIZES RECOMMENDED			PIECES PER JOINT	
				$\begin{gathered} 1 / 2^{\prime \prime} \text { to } 1^{\prime \prime} \\ \text { SIZE } \\ 36^{\prime \prime} \text { STRIP } \end{gathered}$	$\begin{array}{\|c\|} \hline 1-1 / 4^{\prime \prime} \text { to } 1-3 / 4^{\prime \prime} \\ \text { SIZE } \\ 42^{\prime \prime} \text { STRIP } \\ \hline \end{array}$
	$\begin{gathered} 1 / 64^{n} \text { to } \\ 1 / 4^{\prime \prime *} \\ \hline \end{gathered}$	5/16"to $1 / 2^{\prime \prime *}$	$\begin{aligned} & 9 / 16^{\prime \prime} \text { to } \\ & 11 / 16^{\prime \prime *} \end{aligned}$		
42"	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	1-1/4"	4	3-1/2
$48^{\prime \prime}$	3/4"	$1^{\prime \prime}$	1-1/4"	5	4
$54{ }^{\prime \prime}$	$1^{\prime \prime}$	$1^{\prime \prime}$	1-1/2"	5-1/2	4-1/2
60"	$1^{\prime \prime}$	1-1/2"	1-1/2"	6	5
$66^{\prime \prime}$	$1^{\prime \prime}$	1-1/2"	1-1/2"	6-1/2	5-1/2
$72^{\prime \prime}$	$1^{\prime \prime}$	1-1/2"	1-1/2"	7	6
84"	$1^{\prime \prime}$	1-1/2"	1-3/4"	8	7
$96{ }^{\prime \prime}$	$1^{\prime \prime}$	1-1/2"	1-3/4"	9	8

Apply ConSeal on upper half of spigot and lower half of bell. Allow sufficient overlap of ConSeal to form a joined seal.
\bullet

FOUNDERS, MACHINISTS, MILL SUPPLIES

LETTER OF TRANSMITTAL

TO: So-Par Utilities Co. P. O. Box 384

Jacksonville, NC 28540
Attention: Jim Conman

Date:-..... April 24, 1984
S. O. No.

Ref: \qquad
\qquad
\qquad

Gentlemen:

We are sending you \quad Herewith \square Under Separate Cover:
Copies

Dug. No.	Title		
2	MH-RCR-2001		manhole ring \& cover

For Your:

(X Approval: Please return one print marked "Approved" or "Approved as noted".
\square File and Field Use.
REMARKS: Reviewed Checked

Very truly yours, DEWEY BROS., Inc.
Hywardinymall
By: Howard Tyndall Allard

[^0]: *see page 6 for definition of Class 1.

[^1]: Empirical methods of predicting deflection have evolved in recent years which eliminate the guesswork inherent in the lowa method. When design

[^2]: ings, slumptuin or becnze gates, pte

