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Abstract 

 In evaluating risks from air pollution, health impact assessments often focus on the 

magnitude of the impacts without explicitly considering the distribution of impacts across 

subpopulations. In this study, we construct a model to estimate the magnitude and distribution of 

health benefits associated with emission controls at five older power plants in the Washington, 

DC area. We use CALPUFF to determine the primary and secondary fine particulate matter 

(PM2.5) concentration reductions associated with the hypothetical application of Best Available 

Control Technology to the selected power plants. We combine these concentration reductions 

with concentration-response functions for mortality and selected morbidity outcomes, using a 

conventional approach as well as considering susceptible subpopulations. Incorporating 

susceptibility has a minimal effect on total benefits, with central estimates of approximately 240 

fewer deaths, 60 fewer cardiovascular hospital admissions (CHA), and 160 fewer pediatric 

asthma emergency room visits (ERV) per year. However, since individuals with lower education 

appear to have both higher background mortality rates and higher relative risks for air pollution-

related mortality, stratifying by educational attainment implies that 51% of the mortality benefits 

accrue among the 25% of the population with less than high school education. Similarly, 

diabetics and African-Americans bear disproportionate shares of the CHA and ERV benefits, 

respectively. Although our ability to characterize subpopulations is constrained by the available 

information, our analysis demonstrates that incorporation of susceptibility information 

significantly affects demographic and geographic patterns of health benefits and enhances our 

understanding of individuals likely to benefit from emission controls.  
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Introduction 

 The issue of subpopulation susceptibility to fine particulate matter (PM2.5) has been given 

increased attention by researchers in recent years, motivated in part by the research priorities 

articulated by the National Academy of Science (1). Understanding patterns of susceptibility 

would not only help identify and protect sensitive subpopulations, but it would also contribute to 

the understanding of mechanisms by which PM2.5 might influence human health. 

 Often, air pollution policies are informed by risk assessments or benefit-cost analyses, 

which generally focus on the total health benefits of alternative emission control strategies (2-5). 

Because limited relevant susceptibility evidence exists, differential effects on susceptible 

subpopulations are rarely incorporated. Typically, the same relative risks are applied to all 

individuals in an “at-risk” age group, and baseline disease or health care utilization rates are 

assumed to be uniform across large geographic areas (often national averages).  

 However, it is likely that the effects of air pollution vary widely across subpopulations, 

depending on demographics, behavior patterns, income, access to health care, and other factors. 

Differences could exist either in relative risks (if an increment of air pollution yields a different 

percentage increase in effect in different populations) or in absolute risks (if there are differences 

in baseline disease patterns by subpopulation, independent of air pollution). For a benefits 

assessment, if policy makers were concerned about distributional issues or if the ultimate 

valuation of benefits depended on population characteristics, the incorporation of susceptibility 

could potentially influence the conclusions.  

 One current policy issue for which information on susceptibility could be influential is 

the regulation of emissions from older power plants. To date, older power plants have not been 

required to meet the same control requirements as new sources, helping to extend the useful 
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lifetime of older facilities (6-8). These facilities contribute a substantial fraction of national 

power sector emissions. In 1999, coal-fired power plants contributed approximately 86% of 

nitrogen oxide (NOx) emissions and 93% of sulfur dioxide (SO2) emissions from the utility 

sector, largely from facilities exempted from new source standards (9).  

At the time this article was written, multiple states (including Massachusetts, 

Connecticut, and Texas) had introduced multipollutant regulations or legislation to require older 

power plants to meet emission levels commensurate with the application of Best Available 

Control Technology (BACT). Pollutants considered typically included NOx and SO2, as well as 

mercury and carbon dioxide. Multipollutant power plant legislation was also being debated at the 

federal level, but no bills or regulations existed at the time of our analysis.  

From both a state and federal perspective, the question of how the benefits of emission 

controls would be distributed could be important. Policy makers may be concerned about 

providing benefits to high-risk communities, communities near power plants, or other 

subpopulations. If these questions were important, population susceptibility could influence the 

policy choices (e.g., emission trading versus mandatory on-site controls).  

 In this paper, we develop a model to estimate the health benefits associated with emission 

reductions at older fossil-fueled power plants. We focus on both primary PM2.5 and secondary 

sulfate and nitrate particles formed through emissions of SO2 and NOx, respectively. We 

consider a case study of all older power plants located within a 50 mile (80 km) radius of 

Washington, DC. We calculate three health endpoints – premature mortality, cardiovascular 

hospital admissions in the elderly, and pediatric asthma emergency room visits – both using 

conventional assumptions and then considering available evidence for differential effects on 

susceptible subpopulations. Our goal is both to quantify the health benefits associated with the 
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implementation of BACT at the selected power plants and to consider whether introduction of 

susceptibility models might affect the interpretation of our findings.  

 

Case Study Setting 

 For this analysis, our goal was to select a geographic area that had multiple older power 

plants nearby and geographic heterogeneity in factors that might influence relative risks, baseline 

health status, or health care utilization (such as socioeconomic status). Washington, DC and its 

surrounding suburbs provide an example of such a region. According to 1990 US Census data, 

median household income in Washington, DC ranged from under $10,000 to over $150,000 

across census tracts (10). Washington, DC is also quite racially divided, with few African-

Americans residing in the western half of the city and mostly African-Americans residing in the 

eastern half of the city.  

 In addition, within a 50 mile (80 km) radius of Washington, there are five fossil-fueled 

power plants grandfathered under the Clean Air Act - Benning, Chalk Point, Dickerson, Possum 

Point, and Potomac River (Table 1). The choice of these five power plants is somewhat artificial, 

since any single regulation would not affect only these plants. However, our analysis is meant to 

be illustrative, and these five plants are likely the greatest contributors to heterogeneity in power 

plant-related exposures in the area.  Inclusion of additional power plants would increase the total 

benefits but decrease the relative concentration gradient across the Washington area.  
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Methods 

General 

 To quantify the magnitude and distribution of health benefits, we estimate the emission 

reductions of key pollutants, apply an atmospheric dispersion model to determine incremental 

concentration reductions, and derive concentration-response functions. Any such analysis 

involves numerous boundary decisions and contains substantial uncertainties. In this paper, we 

focus largely on issues related to susceptible subpopulations and the resulting implications. We 

do not extensively address the complexities of other elements of the model, nor do we provide a 

formal analysis of uncertainties. We also do not consider the economic valuation dimension of a 

benefits assessment. Additional information about parametric uncertainties in our atmospheric 

model (4,11) and issues related to differential particle toxicity or alternative interpretations of the 

health evidence (4) can be found elsewhere.  

 

Quantification of emissions 

 We estimate emissions of PM2.5 and its precursors (NOx and SO2), following the model 

structure in our earlier analyses (4,11) and supported by the fact that PM2.5 has dominated 

aggregate benefits in past air pollution risk assessments (2,3). This omits any benefits associated 

with ozone, air toxics, or other impact pathways from the power sector. Of note, most proposed 

regulations consider NOx and SO2 but do not directly require controls for primary PM2.5 

(although many NOx and SO2 control strategies would affect primary PM2.5).  

 We use 1999 as the base year for our analysis, evaluating the concentration and health 

benefits that would have been obtained had lower target emission rates been achieved. This is not 
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identical to the future benefits that might be obtained through pending regulation, since some 

facilities have ongoing or near-term plans for repowering or emission controls.  

Emissions of SO2 and NOx were taken from the US EPA Acid Rain Program Emissions 

Scorecard (12). To capture seasonality in emissions, we incorporated quarterly average emission 

rates when reported. When no data on seasonal emissions were available, we assumed constant 

emissions per unit of heat input. For filterable PM2.5, total plant emissions were taken from the 

US EPA National Emission Trends database (13). We estimated condensable PM2.5 emissions 

given fuel type and sulfur content, using AP-42 emission factors from US EPA.  

 We selected lower target emissions to correspond to the levels proposed in multiple 

regulations, which correspond to the application of Best Available Control Technology (BACT). 

This resulted in target emission rates of 0.3 lb/MMBTU of SO2, 0.15 lb/MMBTU of NOx, and 

0.01 lb/MMBTU of filterable PM. Lower target condensable PM emissions were taken from AP-

42, given assumed application of control technologies. Since both Dickerson and Benning have 

actual filterable PM2.5 emissions less than the lower target rate, we set the lower target filterable 

PM2.5 emission rate equal to actual emissions for these plants.  

  

Atmospheric modeling 

 We established a receptor grid covering a 400 km (250 mile) radius around Washington, 

DC (centered at 38.9°N, 77°W), to capture a significant fraction of total benefits without 

extending the dispersion modeling boundaries excessively (Figure 1). Because of our focus on 

spatial patterns, it was important to determine concentration reductions at small geographic 

scales close to the sources. Within 100 km of Washington, census tracts were selected, as they 

are relatively small (generally between 2,500 and 8,000 people) and were theoretically designed 
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to be socioeconomically homogeneous. Beyond 100 km, county-level resolution was used, 

resulting in a nested receptor grid with 1,908 receptors. Using 1990 Census data (the most recent 

data available at the time of our study), our receptor grid contained 47 million individuals, 7 

million of whom live within 100 km of Washington.   

 We conducted our atmospheric modeling using CALPUFF (CALMET version 5.2 

000602a, CALPUFF version 5.4-000602-1, CALPOST version 5.2 991104b; Earth Tech, 

Concord, MA). CALPUFF is a regional-scale Lagrangian puff model that has been 

recommended by US EPA for long-range transport modeling (14), given that it has been shown 

to be relatively unbiased at distances out to 200 km (15). In general, limitations in the 

atmospheric chemistry make the secondary pollutant estimates relatively more uncertain than the 

primary PM2.5 estimates, given the nonlinearities associated with sulfate and nitrate formation.  

 Our methodology to generate meteorological files for CALMET was similar to the 

approach in our past applications and is described in depth elsewhere (4,11). We combined 

NOAA prognostic model outputs with mesoscale data assimilation systems for each hour across 

our case study year (January 1999-January 2000). This involved combining lower-resolution 

upper air data (40 km grid spacing) generated through NOAA’s Rapid Update Cycle (RUC2) 

model with METAR surface observations and cloud cover data available at 15 km resolution.  

These data sources were combined using the ARPS Data Assimilation System (ADAS) and 

provided hourly CALMET windfields within eight vertical layers. Precipitation data were taken 

from all National Climatic Data Center stations within the receptor region, with CALMET 

defaults used for interpolation between stations. The primary difference from our previous 

applications was the inclusion of 50 evenly spaced "soundings" based on columns of the ADAS 
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data, to more accurately provide a reasonable high-resolution temperature field and subsequent 

planetary boundary layer depth estimates.  

In CALPUFF, we adopted recommended modeling assumptions that were used in our 

past applications (4,11). We used the MESOPUFF II chemical transformation mechanism, which 

is generally preferred in urban settings. Wet and dry deposition were incorporated using 

precipitation data and CALPUFF default deposition rates. Hourly background ozone 

concentrations were taken from five CASTNET stations spaced throughout our receptor region 

(Prince George’s, MD; Mercer, NJ; Elk, PA; Prince Edward, VA; Gilmer, WV), and we assumed 

a background ammonia concentration of 1 ppb.  

 For brevity’s sake, we do not provide sensitivity or uncertainty analyses for our 

atmospheric modeling in this article. In our past analyses (4,11), we found total benefits to be 

reasonably stable given single parametric changes in CALPUFF, including the chemical 

conversion mechanism, background ammonia concentration, and treatment of wet and dry 

deposition. In addition, we concluded that any bias associated with either hypothetical 

CALPUFF overestimation beyond 200 km or exclusion of long-range exposures is relatively 

small in comparison with other model uncertainties. A comprehensive risk assessment would 

need to incorporate these uncertainties in an evaluation of overall model uncertainty.  

 

Health evidence 

 Although numerous health outcomes have been incorporated into past analyses (2), we 

focus on a subset for which some evidence exists for differential effects on susceptible 

subpopulations. The choice of outcomes as well as the subpopulations considered is therefore 

entirely dependent on the current literature and is not meant to be comprehensive. Furthermore, 
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we restrict the health evidence to epidemiological studies conducted in the US, since patterns of 

health care utilization and the relationship between demographics and health status likely vary 

across countries. Given these criteria, we evaluate premature mortality (stratified by education), 

cardiovascular hospital admissions for the elderly (stratified by diabetic status and age), and 

asthma emergency room visits for children (stratified by race and age). For each outcome, we 

describe both a conventional approach and construct a susceptibility model. Our goal is not to 

consider the complete array of susceptible subpopulations, but rather to select one example for 

each outcome for which epidemiological evidence and population data exist.  

 

Premature mortality 

 For premature mortality, we derive a central estimate from the follow-up analysis of the 

American Cancer Society (ACS) cohort study (16). Multiple other cohort studies are available 

(17,18), but the ACS study has the largest and most geographically diverse population, with 

relative risks bounded by other studies and a statistical approach suggested by a detailed 

reanalysis (19). For all-cause mortality, the authors calculated a relative risk of 1.04 (95% CI: 

1.01, 1.08) for a 10 µg/m3 increase in annual mean PM2.5 concentrations (using 1979-1983 

concentrations). The relative risk was slightly higher (1.06) using more recent pollution data, but 

we use the lower figure to be conservative and since Pope and colleagues presented stratified 

estimates based on the 1979-1983 concentrations (16).  

 Relative risks did not vary substantially across most demographic factors, with the 

exception of educational attainment. Educational attainment appeared to be a strong effect 

modifier across all causes of mortality. The relative risk for a 10 µg/m3 increase in annual mean 

PM2.5 concentrations was 1.085 (95% CI: 1.031, 1.142) for individuals with less than high school 
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education, 1.045 (95% CI: 1.004, 1.087) for individuals with high school education, and 1.003 

(95% CI: 0.967, 1.040) for individuals with more than high school education.  

There are numerous uncertainties related to the application of this stratified relative risk. 

The ACS cohort is somewhat more educated than the population at large, and correlated terms 

such as race and poverty status have not been significant in time-series mortality or hospital 

admissions studies (20-22). In addition, the statistical approach implies that we are modeling the 

effect of education controlling for smoking and other factors, which would ideally be included to 

model the influence of all risk factors correlated with educational attainment. Regardless, we use 

the education-stratified values to determine the implications of the reported relationship.  

 For background mortality rates, the standard approach is to apply county-level averages 

to individuals age 30 and older (the age range considered in the ACS study). We use this as our 

baseline approach, but for our susceptibility model, consider whether mortality rates vary as a 

function of education while still averaging to the reported county-level rates.  

 There is a strong and consistent negative relationship between socioeconomic status and 

all-cause mortality (23). Socioeconomic status can be measured by occupation, income, 

education, or some combination of these terms. It is generally believed that both income (24) and 

educational attainment (25) are independent predictors of mortality, although the bases for these 

relationships are not well understood. Some argue that those in lower socioeconomic classes 

display high-risk behaviors, such as smoking, being overweight, and not exercising (26), 

resulting in higher mortality rates. However, only a small fraction of the increased mortality can 

be explained by a higher prevalence of high-risk behaviors (27), so there must be other 

contributing factors. In any case, it is clear that those in low education or income categories 

represent a susceptible subpopulation for all-cause mortality.  
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 Educational attainment is a useful predictor of mortality since it typically does not change 

after adulthood. Additionally, this term is available for all segments of the adult population, even 

those not in the workforce. Although it may be a proxy for other factors, various hypotheses have 

been presented for why lower education might be a causal factor for mortality. Education may be 

a marker for factors (such as intelligence and good health in early childhood) that allow for both 

educational attainment and good health in adulthood, for acquired knowledge that can be used to 

obtain positive health outcomes, for relative status in society, or for the development of positive 

social networks (28). The protective effect of higher education has been seen in the US (28) and 

worldwide (29,30).  

 We select our baseline mortality risk ratios from a study that evaluated risks for all-cause 

mortality as a function of both education and annual income among a cohort aged 25-64, drawn 

from the National Longitudinal Mortality Study (28). The relationship between education and 

mortality was best described by a trichotomy (less than high school education, high school 

diploma or greater but no college diploma, or a college diploma or greater). When compared 

with the highest education group, the annual mortality relative risk for men was 1.7 for less than 

high school education and 1.5 for high school diploma or greater but no college diploma. For 

women, the corresponding relative risks were 1.5 and 1.2. The attenuation in women has been 

documented previously and can be attributed largely to the married subpopulation of women 

(31). We apply these relative risks to all individuals over age 30, although there is some evidence 

that socioeconomic differences play less of a role in determining mortality rates among the aged 

(32).  
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Cardiovascular hospital admissions 

 A number of studies in the US have evaluated the relationship between particulate matter 

exposure and cardiovascular hospital admissions (CHA) among individuals age 65 and older 

(21,22,33-40). Most central estimates from these studies fall in the range of a 0.5-1% increase in 

CHA for a 10 µg/m3 increase in daily PM10 concentrations. Using a typical PM2.5/PM10 ratio of 

60%, we would consider a central estimate of an approximate 1% increase in CHA per 10 µg/m3 

increase in daily PM2.5 concentrations appropriate. As a baseline, we apply this percentage to the 

average background rate of 0.084 CHA per year per individual age 65 and older (41). 

 Although numerous factors might influence either the baseline risk or the relative risk of 

an air pollution-related CHA, we focus on diabetes to illustrate the influence of a risk factor that 

varies demographically and might influence both risks. To estimate the number of diabetic and 

non-diabetic CHA in a county or census tract, we consider two relationships – the risk factors for 

diabetes among the elderly and the differential risk for a CHA given the presence of diabetes.  

In those over 65, non-insulin dependent diabetes mellitus (NIDDM) accounts for virtually 

all of the diabetic caseload. There are numerous risk factors for NIDDM, including age, obesity, 

family history, and sedentary lifestyle. Although lifestyle variables are the strongest predictors of 

diabetic status (accounting for as much as 90% of population attributable risk (42)), we cannot 

estimate these variables at the census tract level from publicly available data. In the absence of 

this information, we estimate NIDDM prevalence as a function of gender, age, and race. 

According to a national survey (43), NIDDM prevalence in individuals over age 65 is higher 

among African-Americans and Mexican-Americans than in non-Hispanic whites, ranging from 

10.9% for non-Hispanic white males aged 65-74 to 29% for Mexican-American females aged 

65-74. We apply these estimates to our study populations, despite the limitations in applying 
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national relationships based on race to a specific geographic setting. The relationship between 

race and common risk factors likely varies widely across regions and within small geographic 

areas, a feature that is not captured by our model.  

 Regarding risks for a CHA, it has been well established that diabetics have an increased 

risk of heart disease. Several studies also indicate that diabetics are admitted to the hospital more 

frequently than non-diabetics (44,45). Thus, it is unsurprising that CHA rates are elevated in 

diabetic populations. According to a national diabetes surveillance report (46), as of 1996, the 

annual CHA rate was 0.20 admissions per year per diabetic age 65-74 and 0.27 for diabetics 75 

and older. In contrast, the rates for the population as a whole are 0.06 (age 65-74) and 0.11 (75 

and older) (41). Using these two rates and the estimated diabetes prevalence across our study 

population, we can calculate the CHA rate for non-diabetics. Clearly, there are several 

appreciable assumptions underlying these estimates. Although we know that marked differences 

can exist in hospital utilization rates among states and communities, we assume that tract-

specific rates vary only as a function of the estimated number of diabetics, with CHA rates 

invariant for non-diabetics. This likely underestimates the degree of spatial and demographic 

variability in CHA rates.  

 On the relative risk side, a time-series study in Chicago (35) found a 2% increase in CHA 

for diabetic individuals over age 65 for a 10 µg/m3 increase in PM10, versus a 0.9% increase for 

non-diabetics. In contrast, the studies that evaluated factors such as race, education, or poverty  

(21,34,40) found no significant effect modification for CHA relative risks. To ensure that our 

concentration-response function is in agreement with our non-stratified estimate, we assume that 

a factor of two difference exists between diabetics and non-diabetics and calculate the 

concentration-response function given the estimated number of CHA in diabetics and non-
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diabetics in our study population. The result is a 0.7% increase in CHA per 10 µg/m3 increase in 

PM2.5 for non-diabetics, with a 1.5% increase for diabetics.  

 

Pediatric asthma emergency room visits 

 Many studies have associated emergency room visits (ERV) for numerous respiratory 

and cardiovascular causes with particulate matter, but to date only two studies in the US have 

considered asthma-related visits among children (defined here as 18 years of age or younger). In 

Seattle (47), an 11.6 µg/m3 increase in PM10 was associated with a 14% increase in asthma ERV 

(95% CI: 5%, 23%), with a 9.5 µg/m3 increase in PM2.5 associated with a 15% increase. This 

study found the relative risk to be similar in high-utilization and low-utilization areas (a proxy 

for socioeconomic status). In Atlanta (48), a 4% increase in pediatric asthma ERV was estimated 

for a 15 µg/m3 increase in PM10 concentrations (95% CI: 0.4%, 7%). As in Seattle, there did not 

appear to be effect modification due to race or socioeconomic status. Simply pooling these two 

studies using a random effects model (49) provides a central estimate of a 0.7% increase in 

asthma ERV per µg/m3 increase in PM10, which we translate into an approximate 1% increase in 

asthma ERV per µg/m3 increase in daily PM2.5. This can be applied to a background asthma ERV 

rate of 0.012 for children age 0-4, 0.0081 for children age 5-14, and 0.0069 for children above 

age 15 (50). 

 Although the published studies did not identify susceptible subpopulations from a relative 

risk perspective, the background rate of asthma ERV would be anticipated to differ widely across 

subpopulations. This would be a function both of trends in asthma prevalence and in patterns of 

health care utilization across populations.  
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Asthma prevalence has increased substantially in recent years (50), with lower-income 

individuals and minorities disproportionately affected by the disease (51-55). Many of the 

significant predictors of childhood asthma, such as cockroach presence in the home (56) or 

maternal education (57), are related to socioeconomic status. Furthermore, patterns of health care 

utilization are strongly related to income. The ratio of anti-inflammatory to beta-agonist 

medication is lower in low-income communities and is inversely correlated with hospitalization 

rates (58), and lower-income populations lacking health insurance often use emergency services 

as a means of primary care. Thus, it would be expected that low-income populations would have 

somewhat higher pediatric asthma ERV rates. 

 Data on pediatric asthma ERV rates as a function of income were limited, but substantial 

racial differences have been documented. According to data from the National Hospital 

Ambulatory Medical Care Survey (50), across all ages, the asthma ERV rate for African-

Americans is nearly five times greater than for whites (0.023 and 0.0049 per capita, 

respectively). No data were provided on asthma ERV rates stratified across both age and race, 

but a study of three-year olds in the US finds a racial differential of similar magnitude but with 

some independent effects of both race and income (51).  

 Given available information, we estimate baseline pediatric asthma ERV rates as a 

function of age and race, assuming the racial disparity to exist in all age groups. This 

encompasses both differences in prevalence and in health care utilization. As with our diabetes 

estimates, there are some substantial limitations in using only race as a predictor, since the 

relationship between race and asthma ERV risk factors varies by income, urban/rural status, and 

other factors. Regardless, the consistent relationship between race and ERV and the ability to 

gather racial information at the census tract level make this the best available covariate.  
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Results 

Concentration Reductions 

 Using our atmospheric dispersion model, the emission reductions at the five selected 

power plants lead to annual average PM2.5 (primary plus secondary) concentration reductions 

ranging from 0.009-0.9 µg/m3 in our receptor region (Figure 2). By way of comparison, 

according to EPA AIRS data, annual average PM2.5 concentrations in Washington were 

approximately 14-18 µg/m3 in 1999. The maximum annual average PM2.5 concentration 

reduction is found within Washington, as might be anticipated by the power plant selection 

criteria and the inclusion of primary PM2.5.  

The geographic distribution of benefits varies somewhat across particle types, power 

plants, and seasons. Annual average primary PM2.5 concentration reductions peak closer to the 

plants and decrease more rapidly with distance than secondary sulfates or nitrates (Figure 2). As 

a result, a greater fraction of total exposure reduction (defined as the sum across receptors of the 

product of concentration reduction and population assigned to the receptor) occurs closer to the 

power plants for primary than for secondary PM2.5 (Figure 3). However, there is tremendous 

variability in the distribution of total exposure reduction, principally due to variations in source 

locations and pollutant type (primary versus secondary). In addition, total exposure reduction per 

unit emissions displayed expected seasonal patterns, with slightly higher values for primary 

PM2.5 in the winter and fall (related in part to lower mixing heights) and higher values for 

sulfates and lower values for nitrates in the summer due to the effect of temperature on relative 

conversion rates.  
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Health Benefits 

For premature mortality, using non-stratified relative risks and homogeneous baseline 

mortality rates within counties, our central estimate is that emission reductions from the five 

power plants would lead to 210 fewer deaths per year (Table 2). The estimated impact under the 

current emissions scenario is 270 deaths per year. Of the total mortality benefits, approximately 

25% occur in individuals with less than high school education (identical to the proportion in the 

population). Approximately 16% of mortality benefits accrue within 50 km of the power plants, 

largely related to the substantial contribution of secondary sulfates (62%) and nitrates (19%) to 

total PM2.5 exposures. 

In our susceptibility model, with both baseline mortality rates and PM2.5 relative risks 

stratified by educational attainment, our understanding of the affected subpopulations changes 

substantially (Table 2). The total mortality benefit is largely unaffected, with a slight increase 

associated with differences in educational attainment between the Washington area and the ACS 

cohort. However, 51% of the estimated mortality benefits now accrue among individuals with 

less than high school education, double the prediction in the homogenous risk model.  

Although stratification by education does not significantly influence the broad geographic 

patterns of benefits (i.e., the fraction of benefits within 50 km), at the census tract level, benefits 

differ by as much as a factor of 13 between the models. Figure 4 depicts the geographic patterns 

of benefits under both the baseline and susceptibility models, focusing solely on census tracts in 

Washington, DC for simplicity. Using the baseline model, the mortality risk reductions in 

Washington are reasonably homogeneous, ranging from 36 to 67 fewer deaths per year per 

million individuals over age 30. Under the education-stratified model, the range broadens 

considerably and the distribution is more complex, with per capita benefits now ranging by more 
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than a factor of 10 across census tracts. The mortality benefits are generally increased in 

southeastern Washington, the lowest-income area of the city.  

 When we consider CHA among the elderly, our baseline model estimates 59 fewer CHA 

per year. Although it seems counterintuitive that the mortality numbers could exceed the 

morbidity numbers, this is related to the limited focus on cardiovascular admissions due to only 

short-term exposures among the elderly (versus all-cause mortality from long-term exposures 

among individuals age 30 and older). Using a conventional model that assumes diabetics not to 

differ in any way from non-diabetics, 13% of the CHA benefits are estimated to occur among 

diabetics, while 80% are found among non-Hispanic whites (Table 2). The geographic 

distribution of CHA benefits is similar to the exposure reduction and mortality benefits, with 

differences reflecting the relative number of individuals age 65-74 and above age 75 within 

census tracts.  

 As expected, incorporating the diabetes-based information has a minimal impact on 

aggregate benefits but dramatically alters the profile of the affected individuals (Table 2). Using 

this model, 54% of the CHA benefits are found among diabetics, with 76% among non-Hispanic 

whites. Since we have assumed that baseline CHA risk for non-diabetics does not differ as a 

function of race or income, the CHA estimates under the susceptibility model are closer to those 

from the baseline model than for mortality (Figure 4). However, even only considering diabetes-

related susceptibility changes the census tract-level benefits by as much as 40%.  

Finally, we estimate 140 fewer pediatric asthma ERV per year using our non-stratified 

model (38% in children age 0-4, with 46% in children age 5-14). Twenty-seven percent of 

benefits occur in African-American children (who represent 21% of the study population). When 

we stratify asthma ERV risk by race, the total benefits increase to 160 fewer visits per year, with 
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significant changes in the geographic and demographic distributions (Table 2). The census tract-

level risk reduction varies by an order of magnitude across Washington, with the benefits 

increased by more than a factor of two in the eastern half of the city (Figure 4). The proportion of 

benefits among African-American children is increased to 64%, commensurate with the 

assumption of greater baseline asthma ERV rates.   

  

Discussion 

 Our analytical approach demonstrates two important points. First, given an interpretation 

of the epidemiological evidence that assumes that ambient concentrations in the Washington, DC 

area exceed any potential population threshold for PM2.5 health effects, emission controls at older 

fossil-fueled power plants would provide tangible and quantifiable health benefits. Second, when 

we take account of susceptible subpopulations and differences in both relative risk and baseline 

disease rates across these populations, the small-scale geographic and demographic distributions 

of those benefits are strongly affected. For the example of premature mortality, if educational 

attainment influences both the relative risk of air pollution and the baseline mortality risk, then 

more than half of the mortality benefits accrue among the 25% of our study population with less 

than high school education. Similarly, for pediatric asthma emergency room visits, the fact that 

background rates are substantially greater in African-Americans implies that a majority of the 

emergency room visit benefits accrue in 21% of the population, even given identical relative 

risks from air pollution. The relatively smaller differences found for cardiovascular hospital 

admissions when diabetes is considered illustrates that evidence for differential effects on a 

relatively small fraction of the population has a smaller effect than a population-wide model.  
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There are clearly some barriers in both interpretation of the study findings and 

application of our model to other settings. One important uncertainty is related to the stratified 

risk models we selected. For all health outcomes, we used stratification variables (such as race) 

that might have independent effects on baseline health but likely are proxies for numerous 

socioeconomic endpoints. If the stratification variables represent other factors, this adds to the 

uncertainty in a site-specific stratified analysis.  

In general, we have applied susceptibility models based on national data to a small 

number of states, which has multiple inherent limitations. Clearly, it would be preferable to use 

local health data, but data at small geographic scales for a large region are difficult to obtain and 

are rarely stratified across all demographic variables of interest. In addition, the reliance on 

national data increases the generalizability of our findings. Despite these issues, our models 

demonstrate that simple assumptions about susceptibility can be influential in our understanding 

of health risks and benefits. The alternative is an assumption of homogeneity, which itself 

introduces implicit uncertainty and may contribute to biases in selected settings.  

Another limitation of our study is the fact that we have devoted limited attention to 

uncertainty analysis, a crucial element in interpreting sensitive and complex findings. Drawing 

on the uncertainty analyses in our earlier work (4,11), most parametric changes in CALPUFF led 

to changes to aggregate benefits of less than a factor of two, while variations in concentration-

response assumptions (particularly for mortality) could influence estimates by as much as a 

factor of five. The influence of population susceptibility is generally at the lower end of this 

range, even for small geographic scales. However, susceptibility information has a greater 

influence on the relative distribution of benefits than other assumptions, many of which tend to 

affect all populations identically (e.g., the population average concentration-response). 
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Furthermore, a broader view of areas of heterogeneity or susceptibility (e.g., assumptions 

regarding particle size and chemical composition, time-activity data, or physiological factors 

(59)) could increase the importance of this evidence. Further analysis that considered the full 

array of uncertainties and evaluated which (if any) would be influential in policy decisions would 

be warranted.  

In addition, although we have focused on power plants (in part due to pending regulatory 

decisions at the time of our analysis), the issue of susceptible subpopulations is likely more 

significant for motor vehicle pollution. Given that motor vehicles have low stack heights and 

have a strong presence in urban street canyons with high population density, it is likely that 

aggregate impacts would be spread over a smaller population than for power plants. If the 

exposed population had demographic differences from the US average, assumptions of 

homogeneity would bias the risk calculations.   

Finally, any assessment of impacts from a limited number of sources is somewhat 

impaired by the relatively small reductions when compared with baseline concentrations. This 

makes field validation of model results difficult and implies that an ultimate comparison of the 

costs and benefits of taking action would be required to determine if action is warranted.  

Despite these limitations, our analysis illustrates that emission controls at older fossil-

fueled power plants could lead to quantifiable concentration and health benefits and that 

susceptibility information informs the interpretation of those benefits. Although the individual 

benefits represent a small increment over baseline risks, the number of people affected due to 

long-range pollution transport implies aggregate benefits that are relevant for policy evaluation. 

As the health literature develops additional information about differences in relative and absolute 
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risk across populations, risk assessments and benefit-cost analyses should take advantage of this 

information to provide more interpretable information to decision makers.  

 

Conclusions 

We have evaluated the health benefits of emission controls at five older fossil-fueled 

power plants in the Washington, DC area, using both conventional risk assessment assumptions 

and incorporating available information about susceptible subpopulations. We find that the 

geographic and demographic distribution of benefits differs substantially between the two 

approaches. If robust and causal, our susceptibility models identify subpopulations that bear a 

disproportionate air pollution burden and account for a substantial fraction of the benefits of 

emission controls (lower-educated individuals for mortality, diabetics for cardiovascular hospital 

admissions, and African-Americans for asthma emergency room visits). The characterization of 

high-risk subpopulations can help both in the interpretation of the risk assessment and in 

targeting future exposure assessment or epidemiological efforts. 
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Table 1: Characteristics of five power plants in Washington, DC case study (1999 data). 

 

 Benning Chalk Point Dickerson Possum Potomac 
       Point River 
________________________________________________________________________ 
Initial year of  1968  1964  1959  1948  1949 
commercial operation 
      
Nameplate capacity  580  2046  588  1373  514 
(MW) 
      
Heat input   3,304,107 85,352,274 33,592,811 28,930,805 32,100,184 
(MMBTU)      
 
Emissions (Tons, 
% per quarter) 
 SO2   1,432  57,630  30,637  19,497 17,627 
  (2,21,76,2)  (21,25,31,23) (30,17,34,18) (24,22,32,23) (22,28,29,21) 
 NOx   447  25,222  10,709  5,116  6,893 
  (2,22,74,1)  (20,24,30,26) (30,17,34,18) (25,22,32,21) (21,28,30,21) 
 PM2.5 12  304  14  156  106 
  (2,22,74,2)  (21,27,33,20) (30,17,34,18) (23,20,37,20) (21,28,29,22) 
______________________________________________________________________________________ 
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Table 2: Magnitude and distribution of health benefits associated with modeled emission 

reductions at five power plants near Washington, DC (rounded to two significant figures; sums 

may not add due to rounding).  

 
 Baseline model Full susceptibility model  
 (No stratification)  (Stratification by listed covariate) 
________________________________________________________________________ 
 
Deaths/year 
 
 Total  210  240 
  
 < HS education  52  120  
 ≥ HS education  150  120 
 
Cardiovascular hospital admissions/year 
 
 Total  59  60 
 
 Diabetic  8  33 
 Non-diabetic  51  27 
 
Asthma emergency room visits/year 
 
 Total  140  160 
   
 African-American  38  100 
 Non-African-American 100  57 
 
________________________________________________________________________ 
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Figure 1: Receptor grid and power plant locations for Washington, DC case study. 
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Figure 2: Combined concentration reductions (annual average, µg/m3) from hypothetical 

emission controls at five power plants (primary PM2.5, secondary PM2.5, and total PM2.5). 
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Figure 3: Cumulative distribution of total exposure reduction as a function of distance from the 

source, by power plant and pollutant type. 
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Figure 4: Distribution of health benefits by census tract in Washington, DC (no color indicates 

zero at-risk population).  

 

   


