

Content

- 1. Basis of the LCC Analysis Method
- 2. Comparison of the Technology between Wheel-on-Rail and Maglev
- 3. System Comparison
- 4. Identification of the Quantity and Cost Frameworks
- 5. Analysis of the LCC
- 6. Summary of Evaluation

Basis of the LCC Analysis

Life-cycle phases

Witt,Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 3 of 29

Dornier Consulting

Basis of the LCC Analysis

Basis of the LCC Analysis

Simplified LCC Model for the comparison of Railway Systems

Witt,Enders/24.04.2006/060424_Presentation_L-Biow.pp//Page 5 of 29

Dornier Consulting

11111

Comparison of the Technology between Wheel-on-Rail and Maglev Technique

Mechanical stresses and costs of track maintenance

Type of guided system	Function of carrying guiding and propulsion	Load Effect	Mechanically stressed due to carrying (static load)	Track main- tenance costs in percentage of initial capital
Wheel-on-rail	Through contacts	High point load Heavy wear	5000 . 10000 kg/cm² (approx.) ^{1) 2)}	2,6. 4,5
Maglev (Transrapid)	No contact	Low area load Little wear	1 kg/cm² (approx.) ³⁾	0,2.0,5

- 1) Passenger coach and ICE end power car respectively
- 2) Mean additional dynamic element for wheel-on-rail approx. 30%
- Mean additional dynamic element for maglev approx. 10%

Comparison of the Technology between Wheel-on-Rail and Maglev Technique

Alignment Parameters

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 7 of 29

Comparison of the Technology between Wheel-on-Rail and Maglev Technique

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 8 of 29

Comparison of the Technology between Wheel-on-Rail and Maglev Technique

Crest and Sag of the High Speed Systems

	Wheel/Rail System ICE3		Maglev Transrapid	
	Crest	Sag	Crest	Sag
Vertical Acceleration	0,5 m/s²	0,6 m/s²	0,6 m/s²	1,2 m/s²
Design Speed 200 km/h	6.400 m	5.200 m	5.150 m	2.600 m
300 km/h 330 km/h	14.400 m	11.700 m	11.600 m	5.790 m
	17.400 m	14.200 m	14.000 m	7.000 m
400 km/h	-	-	20.600 m	10.300 m
450 km/h	-	-	26.000 m	13.000 m

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 9 of 29

Comparison of the Technology between Wheel-on-Rail and Maglev Technique

At grade guideway Typ III

Dornier Consulting

System Comparison

Dornier Consulting

System Comparison

System Comparison

<u>Vehicle</u>

Parameters	Wheel on Rail System	Maglev System
Carriages/Sections per Train	8	5
Seats	415 (+ 24 in the dining car)	446
Operational speed	300 km/h	450 km/h
Max. engine power	8000 KW	25000 KW
Net weight of the train	409 t	247 t
Weight / Seat	Approx. 930 kg	Approx. 550 kg
Total length of train	200m	128 m
Width	2,95 m	3,70 m
Heigth	3,89 m	4,16 m
Axel load	17 t (2,1 t/m)	2,2 t/m

System Comparison

Subsystems for Maglev and Wheel/Rail

Energy Supply Vehicle

Propulsion Signal & Control System

System Comparison

Comparison of general system structure

Subsystem Maglev Wheel on rail Vehicle Maglev vehicle Vehicle Vehicle-OCS incl. Propulsion components and OCS **Operations control** Signal box, ETCS Operation center, system control facilities, Radio facilities Substation (incl. current converter), Overhead catenary **Propulsion**/ Conductor rail Incoming current converter, Intermediate circuit, Braking chopper, Inverter, Output converter, Track cable, Stator windings, Feeder rail Power Station. **Energy supply** Power station, local energy network (3~ 110 kV 50 Hz), railway energy supply network High voltage converter, 3~ 20 kV 50 Hz (1~ 110 kV 16,7 Hz), Substation Guideway At grade, elevated At grade

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 15 of 29

System Comparison

Time Witt,Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 16 of 29

Dornier Consulting

System Comparison

System Comparison

Energy consumption

	Wheel/Rail	modified MAGLEV	MAGLEV
running time including timetable reserves	32 min.	32 min.	21 min.
Design Speed	300 km/h	246 km/h	450 km/h
Energy supply	Substation 15 kV	Substation 20 kV	Substation 20 kV
Traction energy consumption	62,2 GWh/a	44,1 GWh/a	89,6 GWh/a
secondary energy consumption	6,2 GWh/a	13,2 GWh/a	13, 2 GWh/a

Identification of the Quantity and Cost Frameworks

Cost Structure of the system comparison

Investment Costs

Infrastructure costs

Land requirement Guideway / track Power supply Propulsion/feeder Operation control system Noise protection Vehicle Costs

Other Costs

Facilities

Planning costs

Operational Costs

Personnel costs

Energy Costs

Maintenance Costs

Identification of the Quantity and Cost Frameworks

Comparison of the Investments Costs

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 20 of 29

Identification of the Quantity and Cost Frameworks

Comparison of Personnel Costs

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 21 of 29

Identification of the Quantity and Cost Frameworks

Comparison of Maintenance Costs

System Comparison

Analysis of the LCC

Periodic Cost Development

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 24 of 29

Analysis of the LCC

Total Cost Development for Maglev and for Rail

Witt,Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 25 of 29

Dornier Consulting

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 26 of 29

Journey time Comparison

System Comparison

Witt, Enders/24.04.2006/060424_Presentation_L-Blow.ppt/Page 28 of 29

Summary of Evaluation

Potential Cost Savings of the High Speed Maglev System

High Speed Maglev System has Lower Costs than the Wheel-on-Rail System

High Speed Maglev System has Lower Maintenance Expenses than the Wheel-on-Rail System

High Speed Maglev System has Lower Life Cycle Costs than the Wheel-on-Rail System

Environmentally Compatible Operation

Macro-economical Benefits