Not all Information has been verified or corroborated. Subject to review based on additional information or analysis.

Deepwater Horizon Incident – Internal Investigation INVESTIGATION UPDATE – INTERIM REPORT

June 08, 2010

Areas of Discussion

Investigation Overview

Focus Areas

- Primary Well Control
 - ✓ Well integrity
 - Procedures
- Secondary Well Control
 - ✓ Blowout preventer
- Ignition Source
- Evacuation & Response
- Forward Plan

Investigation Overview

Remit

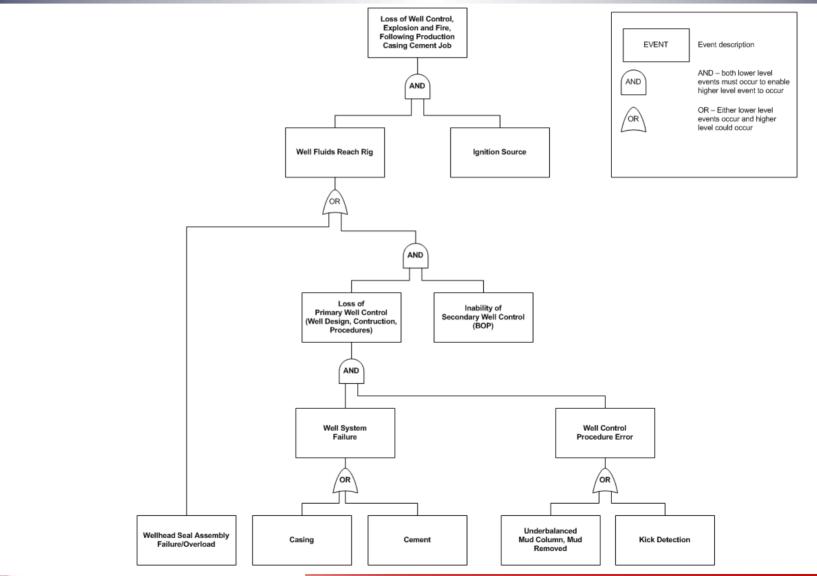
The purposes of this investigation are (1) to establish the root cause(s) of events that led to the incident onboard the *Deepwater Horizon* on the night of Tuesday, April 20, 2010 and (2) to review the personnel evacuation, the rig layout that allowed for an evacuation, and the emergency response.

• Key Questions to Address During the Investigation

1)	 Why was primary well control lost? Well design Casing, cement, well head hanger seal assembly 	See slides 6-12
2)	Why was secondary well control unable to stop the flow of well fluids?	See slides 13-15
3)	How did the well bore fluids ignite?	See slide 16
4)	Should the rig structural design be improved for personnel protection?	See slide 17
5)	Can evacuation and emergency response protocols be improved?	See slide 17

Investigation Overview

Investigation Team


- Internal and external experts
- External third-party experts
 - ✓ Well design
 - Cementing
 - ✓ Gas migration
 - Explosion analysis
 - Emergency response

Basis

- Interviews & witness statements (subject to factors restricting access)
- Reports & documentation (need BP well design and other requested documents)
- Equipment inspection & testing (need access, protocols, court and U.S. Coast Guard approvals)
- Real-time well data (needed from BP, Sperry Sun)
- Modeling & analysis (through external experts for well design review)

Investigation Overview High Level Root Cause Tree

Loss of Primary Well Control Cement – Areas of Investigation

- Design
 - Was it appropriate to utilize nitrogen foamed cement at this depth?
 - May be uncommon at this depth
 - Typically used for shallow conductor casing string
 - > Did the operator give the cement enough time to cure? (from Halliburton lab test reports)
 - Test on 3/29 of 9-7/8" liner slurry (previous casing): 15 hours needed to reach 2100 psi compressive strength
 - Test on 4/12 of 7" casing slurry : 0 psi compressive strength after 24 hours; needed 48 hours to reach compressive strength of 1590 psi
 - Negative test started ~18 hours after pumped
 - Do not have any sample test results from rig samples; requested
 - Was the volume for 7" production casing cement job appropriate?
 - ✓ 60 bbls pumped (requested third party caliper logs to determine if adequate)
 - ✓ 16.7 ppg cement in shoe track over 14 ppg mud in open hole beneath the 7" shoe
 - could fall out into the open hole
 - Estimate of 2 bbls nitrogen cement in shoe track normally would pump all into annulus

Loss of Primary Well Control Cement – Areas of Investigation

• Was there contamination of the cement?

- Wiper plug was run through two casing internal diameters
 - Potential for mud bypassing plug into cement
- Circulated bottoms up only to the wellhead rather than to the surface
 - Potential cuttings in well bore
 - Potential non-homogeneous mud or gas content
 - Could lead to cement channeling and flow path for formation fluids

Was there a problem with the float equipment?

- There were 9 attempts to activate (IADC and BP daily report 4/19)
- Double flapper type
 - Requires back pressure from annulus side to close
 - Less than 40 psi back pressure from annulus by calculation
 - Potential to open while cement is setting
- 1st positive test on casing against wiper plug at 10 hours set time potential to slightly open flappers during cure time

• Were the appropriate tests run following the cement job?

- No cement bond log was run prior to proceeding with pressure tests
- Need to test samples of cement recovered by BP from the Damon Bankston deck

Loss of Primary Well Control

Casing Hanger Seal Assembly – Areas of Investigation

• Were Operator procedures appropriate?

- Operator did not run lock down sleeve prior to negative test or displacement
- > No bottoms up circulation prior to landing of 7" casing hanger
 - Potential to allow debris in seal area

• Was the hanger design adequate?

- Was outer lock ring run on assembly?
 - Need to understand rating or tolerance for pressure on annulus side
- Annulus side pressure
 - Could pressures measured (Sperry Sun data) unseat seal assembly?
 - ✓ Pressures seen at well head had potential to make 9-7/8" X 7" casing string neutral weight
- Need Dril-quip hanger running report showing hanger arrangement as it was run, including 9-7/8" seal assembly

Loss of Primary Well Control Procedures – Negative Test

Negative pressure testing

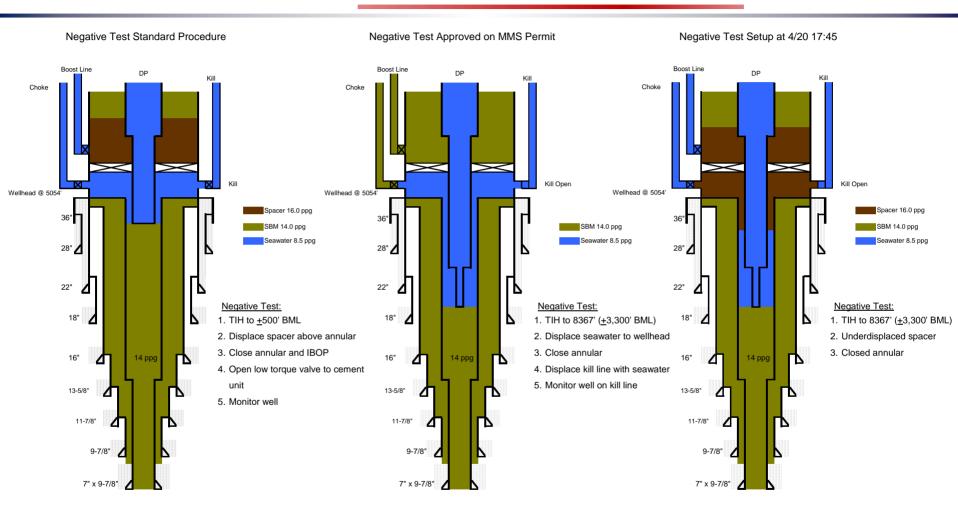
- Set up for negative pressure test began approximately 17:00
 - ✓ ~17:15, 60 barrels of spacer moved below annular
 - Increased annular activating pressure from 1200 to 1900 psi
 - ✓ Set up fluids through crew handover at 18:00

Under-displaced 16 ppg spacer

- ✓ Spacer was not in MMS permit
- Position under annular led to confusing pressure readings
- Float equipment under tested by 285 psi

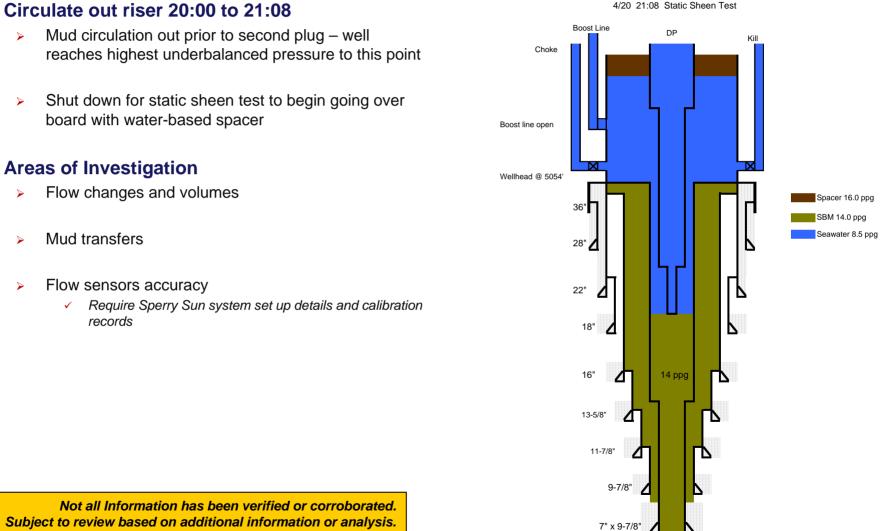
Discussion 18:00-19:00

- About fluid volumes due to movement below annular and line up for monitoring either from drill pipe (normal procedure used by rig) or kill line (MMS permit)
- Either line up is appropriate and will correctly monitor well


Area of Investigation

- Typically negative test to ~500 ft below well head with sea water
 - ~3300 ft below stated on MMS permit in order to prevent well head seal area contamination
 - Imposed additional 1000 psi differential on float equipment/casing/cement
- Where did ~60 bbls from riser go below annular
 - ✓ U-tube up kill line or up drill pipe?
 - Impacts final negative test pressure applied to well

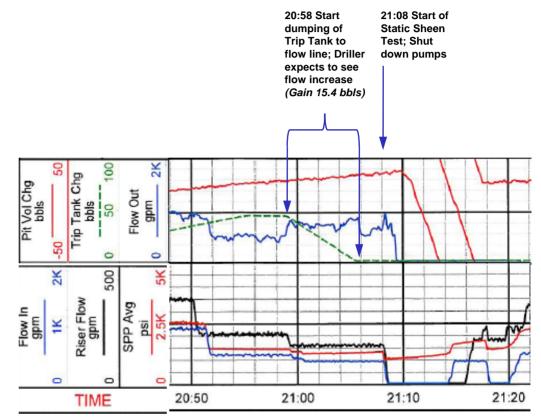
Not all Information has been verified or corroborated. Subject to review based on additional information or analysis.


Loss of Primary Well Control Procedures – Negative Test Setups

Not all Information has been verified or corroborated. Subject to review based on additional information or analysis.

Loss of Primary Well Control Review of Procedures

Subject to review based on additional information or analysis.

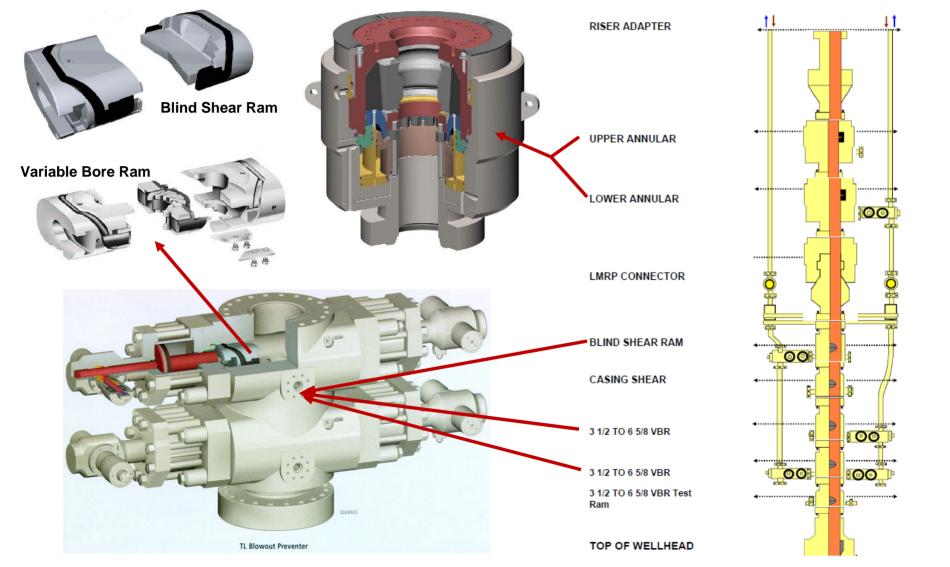

Riser Displacement

Loss of Primary Well Control Review of Procedures (continued)

- Flow Show at 20:58
 - Trip tank being discharged to pits through flow line (normal procedures ahead of change from oil to water mud in active system)
 - At same point pumps ramp down for stop at static sheen test
 - Increased flow out due to discharge of trip tank
 - ✓ Driller expected to see flow increase
 - Flow returned near pre-tank discharge level when trip tank pump stopped, THEN increased
 - Potentially masked the gain

Area of Investigation

- Complete review of all volumes and real time data (received 5/24)
- Use of trip tank in operation
- Sperry Sun sensors failure to record a flow out after 21:10



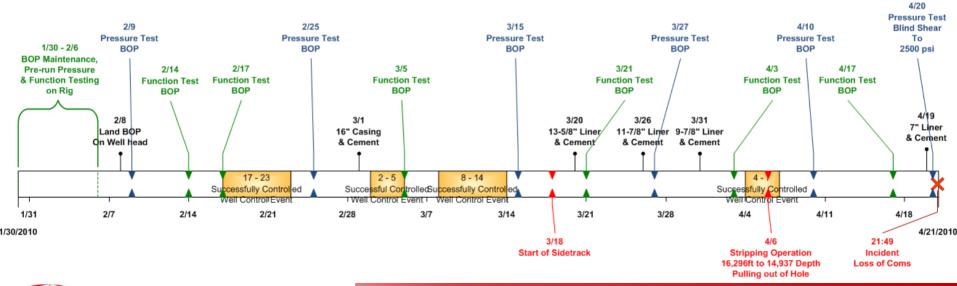
Source: BP OCS-G 32306 001 ST00BP01 Mississippi Canyon 252 Macondo, Last 2 hours before end of transmission

Not all Information has been verified or corroborated. Subject to review based on additional information or analysis.

Blowout Preventer

Transocean

Blowout Preventer Testing


Function Test

- > Preventers activated individually from surface to confirm commands perform subsea
- No pressure applied
- Required every 7 days

Pressure Test

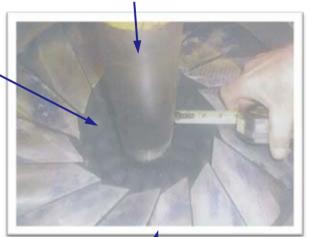
- > Preventers activated individually from surface
- > Pressure applied individually to maximum anticipated well bore pressure (per Operator or MMS)
- Required every 14 days

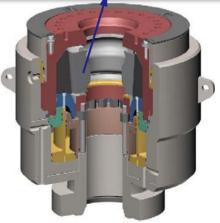
• Timeline of tests from start of drilling – all tests passed (source: IADC reports)

Blowout Preventer Events & History

• Stripping Operation – 6 April

- > Witness stated pieces of rubber returned in mud flow over shakers
- Estimated to be from stripping operations during well control event (~1300 ft pipe stripped)
- > Expected normal wear on lower annular rubber element
- Annular passed subsequent pressure test on 10 April (250psi/3500psi)


Condition at the time of incident


- > Lower annular & diverter closed prior to explosion (witness statements)
 - Visual indications on Toolpusher panel
 - ✓ Fluid seen coming from diverter line by rig & boat crew (diverter confirmation)
 - Flow subsided and then started again (annular confirmation)
 - ✓ Last pressure reading over 5400 psi and exceeds lower annular rating of 5000 psi
- > Evidence of upper pipe ram activation
- > Potential for multiple tubulars in BOP at time of incident

Action items/work needed

- > Full control system software review
 - Software code requested from manufacturer for investigation
- Review of data from ROV intervention
- > Assemble 10-yr history of BOP maintenance, modifications, & upgrades

Annular closed on drill pipe

Source: Cameron web site

Ignition of Well Fluids

From witness statements

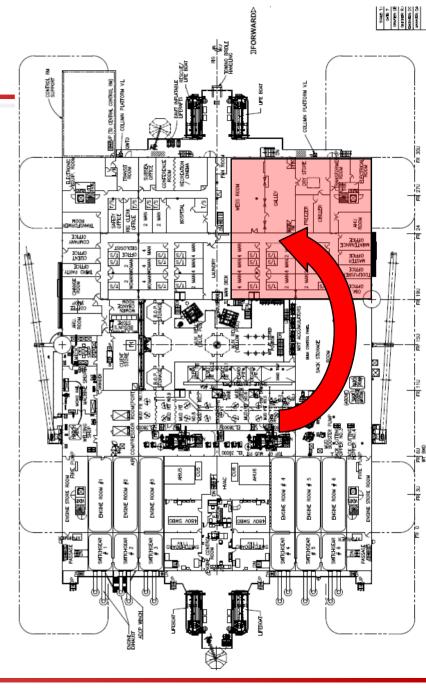
- Gas cloud like fog from water up to main deck (observer on Bankston supply boat)
- > Fishing boat motoring from under aft lifeboat station (roustabout)
- > Gas/well fluids exiting diverter lines, derrick, and degasser overflow line
- > Gas "hiss" like bleeding off pressure (potential release from slip joint packer to moon pool)

Potential ignition sources

- Fishing boat
- Supply boat
- Engines
- EX-equipment in derrick and moon pool

Area of investigation

- Gas dispersion study in prevailing weather conditions (little or no wind)
 - Incorporate rig ventilation system
 - Proximity of boats
- Structural damage assessment with review of bulkhead strength against design


Evacuation & Response

• From witness statements

- Most damage on 2nd deck, starboard side (light red area)
- Believed blast moved forward from pit/pump rooms through sack room and then into accommodations
- Main deck significantly damaged on starboard side, fire aft of derrick

Areas to evaluate

- Muster and orders to evacuate
- Launching of boats
- Recovery of personnel in water
- Supply boat impact
- Shore-based response

- Complete interviews and fact gathering
- Complete BOP maintenance and modification history review
 - > BOP control software code review against known sequence of events

Continue well construction review

- Cementing
- Obtain well head casing hanger information
- Casing load calculations
- > Hydraulic model and gas migration study to determine likely failure point

Well procedures

- > Time line displacement to seawater and mud transfers
- > Real time data analysis require mud loggers pump schedules
- Negative test review

