Working Paper Series
Congressional Budget Office
Washington, DC

# ARE MARRIED WOMEN SECONDARY WORKERS? THE EVOLUTION OF MARRIED WOMEN'S LABOR SUPPLY IN THE U.S. FROM 1983 TO 2000 

Kyoo-il Kim<br>Department of Economics<br>University of California, Los Angeles<br>E-mail: kyookim@ucla.edu<br>José Carlos Rodríguez-Pueblita<br>Department of Economics<br>University of Pennsylvania<br>E-mail: joserp@econ.upenn.edu

December 2005
2005-11

The authors served as interns at CBO when they performed the analysis for this paper.

Working papers in this series are preliminary and are circulated to stimulate discussion and critical comment. These papers are not subject to CBO's formal review and editing processes. The analysis and conclusions expressed in them are those of the authors and should not be interpreted as those of the Congressional Budget Office. References in publications should be cleared with the authors. Papers in this series can be obtained at www.cbo.gov (select Publications then Working and Technical Papers).


#### Abstract

Applying several estimation procedures to the Panel Study of Income Dynamics, we find that labor supply elasticities with respect to own wages and to other household members' income for married white women have decreased significantly in absolute terms during the 1983-2000 period. The elasticities with respect to after-tax wages are statistically either not different from zero or negative, while the elasticities with respect to other household members' income are negative, significant, and relatively stable for much of the period. Our results are robust and consistent across models and specifications. These findings suggest an important change in the labor supply behavior of married women, revealing that younger females today are not behaving like younger females in the past. We informally explore several possible explanations to this phenomenon: changes in the intrahousehold resource allocation and in turnover rates for younger cohorts. These institutional adjustments, together with the increasing portion of younger females in the labor force pool, might explain the empirical findings of our study.


## 1. Introduction ${ }^{1}$

A conventional view of labor supply in the United States highlights the differences between men and women. However, women have changed their labor market behavior over time, prompting Heckman's (1993) empirical question: "Has the consensus view of the 1960s of high labor supply elasticities for married women and low labor supply elasticities for married men held up?"

Many early papers (Heckman (1974), Mroz (1987), Cogan (1980)) as well as relatively recent ones (Zabel (1993), Blundell, et al. (1998), Angrist (1991), Eissa (1995)) found relatively high labor supply elasticities with respect to wages for married women, in contrast to those for their partners. For instance, Eissa (1995) estimates an uncompensated elasticity of 0.6 using a difference-in-difference approach with data from the 1986 to 1988 and 1990 to 1992 March Current Population Surveys (CPS). Zabel (1993) reports an estimate of 0.197 using data from the 1987 Panel Study of Income Dynamics (PSID) and a Tobit-type model. The widely accepted conclusion of these studies is that secondary workers are, in comparison with primary workers, significantly more responsive to wage and income variations. ${ }^{2}$

To analyze the evolution of the behavior of married women's labor supply, we estimate laborsupply elasticities with respect to their own wages and to all other household income ("non-labor income" from now on) with data from the PSID for the period from 1983 to 2000. We check the

[^0]robustness of our estimates by using the simultaneous equations method and the two-step estimation method of Vella (1993), both with two models from Zabel (1993), and the difference-in-differences (DID) approach with instrumental variables used by Blundell, et al. (1998).

Our main findings from all three approaches are that the wage elasticity has trended down over time and is now zero or even negative, while the non-labor income elasticities are always significantly negative and fairly stable for much of the period. Compensated wage elasticities under different hypotheses of intra-family resource allocation also are not significantly different from zero in recent years. Our results are similar to those of Heim (2004), who found that the uncompensated wage elasticity of married women has shrunk dramatically over time using the CPS data from 1979 to 2003, a decrease mainly caused by a drop in the estimated wage and income coefficients of the labor supply regressions.

The remainder of the paper is organized in four sections. Section 2 explains the estimation methods we use. Data analysis and estimation results are presented in Section 3. Section 4 suggests possible explanations on what we found in this study. We conclude in Section 5.

## 2. Estimation Methods

Several econometric methods have been used to estimate workers' wage and non-labor income elasticities. Some of them focus on controlling for the endogeneity caused by the nonlinear budget set resulting from the tax system (see Triest (1990) and Heim and Meyer (2003)). Others, including Mroz's (1987) seminal paper, deal with other sources of endogeneity such as wage rates, non-labor incomes, the presence of children in the household, labor market experience, and
self-selection into the labor force. Among these potential sources of endogeneity, this study mainly considers wage rates and labor force participation for both the cross-sectional and the repeated cross-section analyses, although we also address potential simultaneity problems caused by other types of income and children in the household.

For the cross-section data, we adopt two models used by Zabel (1993). Zabel studies four models: 1) a simplified Tobit-type version of the Heckman (1974) model, 2) the fixed cost model, 3) the minimum hours constraint model, and 4) the generalized labor supply model. However, we only use two--the Heckman model and the generalized Tobit-type labor supply model-because Zabel's findings show that estimated labor supply elasticities are quite similar in their magnitudes and signs for all of the models except Heckman’s. We estimate the two models using the maximum likelihood (ML) simultaneous-equations approach. We also use the twostep estimation procedure of Vella (1993) to check the robustness of our ML estimates because ML estimates can be numerically inaccurate for high dimensional density functions (see Mroz (1997)).

For the repeated cross-section study, we use the DID approach proposed by Blundell, et al. (1998), which includes a "control function" method to eliminate the potential biases induced by the wage rate, other income, participation to the labor force, and data selection away from the kink in the after-tax budget constraint. However, we do not consider the endogeneity from the kink in the budget set for two reasons. First, it is unlikely that there are significant kinks in the U.S. tax system for many people given its complicated structure. ${ }^{3}$ Second, even for the case of a

[^1]significant kink in the U.K., Blundell, et al. (1998) conclude that the kink has very little effect on the estimated elasticities. Therefore, we only control for the possible endogeneity from the wage rate, other income, and participation in the labor force. ${ }^{4}$

### 2.1. The Simultaneous Equations Approach

The simplified Heckman model and the generalized labor supply model used by Zabel (1993) consist of two equations: one characterizing desired hours of work, and another for latent wages. The main difference between the two models is that the generalized labor supply model allows for separate equations for labor force participation (LFP) and hours of work.

Zabel (1993) specifies the hours-of-work and wage equations as:

$$
\begin{equation*}
H_{i}^{*}=\beta_{1} \ln W_{i}^{*}+\beta_{2} N I_{i}+X_{i}^{\prime} \beta_{3}+u_{1 i} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln W_{i}^{*}=Y_{i}^{\prime} \alpha+u_{2 i}, \tag{2}
\end{equation*}
$$

where $H_{i}^{*}$ is the latent value for desired hours of work, $\ln W_{i}^{*}$ is the latent value for the natural logarithm of hourly wages, $N I_{i}$ is income other than the wife's labor income, $X_{i}$ and $Y_{i}$ are vectors of individual characteristics, and $u_{1 i}$ and $u_{2 i}$ are jointly normal errors with zero mean and covariance matrix $\Sigma_{12}=\left(\begin{array}{ll}\sigma_{1}^{2} & \sigma_{12} \\ & \sigma_{2}^{2}\end{array}\right)$.

[^2]
### 2.1.1. Tobit-type Model

Individuals participate in the labor force when desired hours of work are greater than zero, while they do not work otherwise. That is:

$$
\begin{aligned}
& \text { work if } H_{i}^{*}>0 \text {, } \\
& \text { do not work if } H_{i}^{*} \leq 0 \rightarrow \frac{u_{1 i}+\beta_{1} u_{2 i}}{\sigma} \leq-t_{i} \text {, }
\end{aligned}
$$

where

$$
t_{i}=\frac{\beta_{1} Y_{i} \alpha+\beta_{2} N I_{i}+X_{i}^{\prime} \beta_{3}}{\sigma}
$$

and

$$
\sigma=\operatorname{std} \operatorname{dev}\left(u_{1 i}+\beta_{1} u_{2 i}\right)=\left(\sigma_{1}^{2}+\beta_{1}^{2} \sigma_{2}^{2}+2 \beta_{1} \sigma_{12}\right)^{1 / 2} .
$$

Thus, the corresponding log-likelihood function for this model is written as:

$$
\log L=\sum_{0} \log \left[\Phi\left(-t_{i}\right)\right]+\sum_{1} \log \left[b\left(u_{1 i}, u_{2 i} ; \Sigma_{12}\right)\right]
$$

where $\Phi$ is the standard normal cumulative density function and $b(v, w ; \Sigma)$ is the bivariate normal density with the covariance matrix $\Sigma$.

### 2.1.2. Generalized Tobit-type Model

The second labor supply model generalizes the Tobit-type model in two ways. First, the parameters of the LFP equation are not restricted to be proportional to the parameters in the hours-of-work equation. Second, the regressors in the LFP equation are not necessary identical to those in the reduced form hours-of-work equation. We characterize the LFP as:

$$
\text { work if } L F P_{i}^{*}>0,
$$

$$
\text { do not work if } L F P_{i}^{*} \leq 0 \rightarrow u_{3 g i} \leq-Z_{i}^{\prime} \pi
$$

where $L F P_{i}^{*}=Z_{i}^{\prime} \pi+u_{3 g i}$ is a latent tendency to work. Again, we assume that the three error terms follow a joint normal distribution with zero mean and covariance matrix as:

$$
\Sigma_{123 g}=\left(\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13 g} \\
& \sigma_{2}^{2} & \sigma_{23 g} \\
& & 1
\end{array}\right) .
$$

We perform the ML estimation based on the log-likelihood function:

$$
\begin{align*}
& \log L=\sum_{0} \log \left[\Phi\left(-Z_{i}^{\prime} \pi\right)\right]+  \tag{3}\\
& \sum_{1}\left\{\log \left[\Phi\left(Z_{i}^{\prime} \pi \mid u_{1 i}, u_{2 i}\right)\right]+\log \left[b\left(u_{1 i}, u_{2 i} ; \Sigma_{12}\right)\right]\right\}
\end{align*}
$$

The first term in (3) is the probability of not working. The second term is the probability of working conditional on the error terms from the wage and hours of work equations. This term would be zero under the restrictions made in the simple Tobit-type model. The last expression is the density associated with the hours-of-work decision.

We estimate both the Tobit-type model and the generalized labor supply model using the PSID data for every available year in the 1983 to 2000 period. ${ }^{5}$ The logarithm of wages, non-labor income, age, education, and variables related to the number of children and health status of the household head are included in the hours-of-work equation. The wage equation contains age and education variables up to cubic terms, health, a variable indicating residence in a SMSA (standard metropolitan statistical area), parents’ education, regional dummies, and the local labor

[^3]market variables. Finally, the union of the variables in the hours-of-work and wage equations are used for the LFP equation in the generalized labor supply model. The estimation results are discussed in Section 3.

We encountered several problems using maximum likelihood. For some years, we had difficulty obtaining convergence of the estimates because the likelihood surface was relatively flat, a common problem of estimating labor supply models. The sign of the wage elasticity was counterintuitive (i.e., negative). In addition, the wage parameters were not often significant. We overcame the first problem by using different initial values for certain years, which gave us consistent estimates across years. ${ }^{6}$ Nevertheless, given the counterintuitive signs and lack of significance of the ML estimates, we decided to use a more robust two-step method in hopes of obtaining better estimates.

### 2.2. Two-Step Approach

The two-step approach, widely used in the labor economics literature among other fields, has several virtues. Most importantly, it can deal with selection bias and other simultaneity problems in a rather simple manner as suggested by Vella (1993), and its results are numerically robust. Moreover, it relaxes some of the strong distributional assumptions and tends to impose fewer computational burdens than ML estimation. The main drawbacks of this approach are a loss of efficiency as compared with ML and a lack of flexibility. Nevertheless, we used this two-step methodology in order to overcome potential problems as mentioned in Mroz (1997) of numerically inaccurate estimates in our ML estimations.

[^4]In the first step, we estimate two reduced-form equations using the probit estimator: one for labor force participation and the other for wages. In the second step, we use ordinary least squares (OLS) on the hours-of-work equation with the inverse Mill's ratio constructed from the firststage probit estimation and the residuals from the estimated wage equation as additional regressors. To be more precise, we estimate the following bias-corrected, hours-of-work equation using OLS:

$$
H_{i}=\alpha+\beta_{1} \ln W_{i}+\beta_{2} N I_{i}+X_{i}^{\prime} \beta_{3}+\delta_{w} \hat{v}_{i}^{w}+\delta_{P} \hat{v}_{i}^{P}+\varepsilon_{i},
$$

where $X_{i t}$ includes age, education, children variables, and health, $\ln W_{i}$ and $N I_{i}$ stand for the logarithm of wage and other income, respectively. $v_{i}^{w}$ denotes the estimated residual from the wage equation estimation and $\hat{\hat{v}_{i}^{P}}$ is the inverse Mill's ratio obtained from the first-stage probit estimation. In the first-stage, reduced-form estimations, the wage equation contains age and education variables up to cubic terms, health, a SMSA dummy, parents’ education, regional dummies, and the local market variables. The union of the variables in the hours-of-work and wage equations are used for the probit estimation. A detailed description of the variables used and the estimation results will be presented in Section 3.

Our findings from the generalized Tobit-type estimation and the 2-step estimation suggest that our ML estimates have the wrong sign and are not very precise for certain years. The former suggests a possible misspecification of the model and the later might reflect the numerical inaccuracy of the ML estimates. Consequently, we implement the DID approach of Blundell, et al. (1998), which may produce more reasonable estimates.

### 2.3. Difference-in-Differences Approach

A DID approach is commonly used to measure the effect of a certain treatment on a group by comparing the behaviors of the treated group and the untreated group before and after the treatment. The difference in behavior (before and after the treatment) of the treated group will contain two factors: the effect of the treatment and a common shock (macro shock or time effect). The difference in behavior of the untreated group will contain only the common shock. Subtracting the two differences in behavior (difference in differences) eliminates the common shock, leaving the true effect of the treatment.

In our DID approach, we treat tax reforms natural experiments. The idea is that if two different cohort groups are affected differently by tax reforms, the difference of the responses by two different groups to the tax reforms will identify the labor supply responses. The main advantage of this DID approach is that we can use exogenous experiments (tax reforms) and can combine several years of data. We used the four major tax reforms in 1986, 1990, 1993, and 1997 during the 1983-2000 period. Our main identification assumption is that these exogenous changes had different effects on different groups of individuals, namely birth cohort and education level. We used those groups because they are likely to be affected differently by the tax reforms. Cohort/experience effects on wage and non-labor income as well as changes in returns to education across time suggest that wage and other income distributions are different across these groups. Moreover, birth cohort and educational attainment are exogenous to the labor supply decision at the time these women were analyzed, making them reasonable instrumental variables.

Although one might be tempted to split the sample up into groups based on tax status, that approach is invalid for the purposes of this paper. In contrast with the U.K. system studied by Blundell, et al., there is no salient kink or discontinuity in the United States tax system. All individuals in the U.K. have a tax allowance on earnings, regardless of the total level of household income or consumption. About 30 percent of working married women are exempt from tax under this allowance, which enables researchers to divide them into two groups as 'nontaxpayers' and 'taxpayers'. Another factor that creates a discontinuity in the budget constraint under the U.K. tax system is the national insurance system (NI). Contributions to the system are paid on the entire income between the lower earning limit and upper earnings limit. Interestingly, the NI kink (in the lower limit) and the tax kink are very close each other, creating a unique salient kink in the budget set in practice. By contrast, the U.S. tax system has several tax credits and tax brackets, but the after-tax budget set is relatively linear. A second reason for not using tax status as a grouping criterion is that even if there is one salient kink in the budget set, the composition of the groups defined by tax status will change over time in a nonrandom way, as argued in Blundell, et al. (1998).

Average federal tax rates across cohorts and education levels do not show any unusual patterns over the period (see Table 1). The tax rates are calculated for every married woman in the PSID using the NBER's TAXSIM tax calculator. On average, income tax rates faced by one cohort (or education level) differ consistently from those faced by any other cohort (or educational level). The income tax rates of people born in 1940s, for example, were always higher than those of people born in 1930s for comparable years on average. The same is true for the 1950s cohort as compared with the 1960s cohort for comparable years. Finally, higher education groups always

|  | 1920s | 1930s | 1940s | 1950s | 1960s | 1970s | Weighted Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Individuals |  |  |  |  |  |  |  |
| 1983 | 26.35 | 24.66 | 26.63 | 25.11 | - | - | 25.75 |
| 1984 | 24.10 | 25.44 | 25.95 | 24.88 | - | - | 25.30 |
| 1985 | 24.46 | 24.94 | 25.53 | 25.03 | - | - | 25.13 |
| 1986 | 22.79 | 23.10 | 26.19 | 24.14 | - | - | 24.54 |
| 1987 | 25.70 | 23.35 | 25.63 | 23.58 | - | - | 24.30 |
| 1988 | 21.85 | 21.16 | 23.10 | 21.65 | - | - | 22.04 |
| 1989 | 21.00 | 21.50 | 23.64 | 22.26 | - | - | 22.56 |
| 1990 | - | 19.09 | 21.11 | 20.94 | 18.79 | - | 20.58 |
| 1991 | - | 16.66 | 21.29 | 20.97 | 19.45 | - | 20.31 |
| 1992 | - | 19.45 | 22.35 | 21.44 | 19.69 | - | 21.20 |
| 1993 | - | - | 24.04 | 23.09 | 21.62 | - | 22.94 |
| 1994 | - | - | 24.44 | 22.98 | 21.45 | - | 22.85 |
| 1995 | - | - | 23.12 | 23.46 | 22.30 | - | 22.95 |
| 1996 | - | - | 23.05 | 24.09 | 22.89 | - | 23.33 |
| 1998 | - | - | 24.52 | 23.59 | 22.11 | - | 23.15 |
| 2000 | - | - | 24.10 | 24.72 | 23.40 | 21.97 | 23.98 |
| Weighted Average | 24.43 | 21.64 | 23.79 | 22.85 | 21.84 | 21.97 |  |
| Up to High School |  |  |  |  |  |  |  |
| 1983 | 25.40 | 23.38 | 24.86 | 23.98 | - | - | 24.34 |
| 1984 | 22.97 | 23.68 | 24.34 | 23.02 | - | - | 23.64 |
| 1985 | 23.45 | 22.73 | 22.94 | 23.05 | - | - | 22.99 |
| 1986 | 21.90 | 21.00 | 23.74 | 22.38 | - | - | 22.42 |
| 1987 | 25.14 | 20.77 | 23.68 | 21.22 | - | - | 22.13 |
| 1988 | 19.88 | 20.04 | 21.19 | 20.39 | - | - | 20.55 |
| 1989 | 20.80 | 19.48 | 21.20 | 20.44 | - | - | 20.47 |
| 1990 | - | 17.50 | 19.60 | 19.11 | 16.08 | - | 18.77 |
| 1991 | - | 15.32 | 19.39 | 19.76 | 17.75 | - | 18.66 |
| 1992 | - | 18.10 | 20.15 | 19.86 | 17.62 | - | 19.38 |
| 1993 | - | 19.96 | 22.60 | 21.60 | 19.52 | - | 21.38 |
| 1994 | - | 20.97 | 23.40 | 22.21 | 19.58 | - | 21.79 |
| 1995 | - | 19.84 | 21.06 | 22.15 | 20.58 | - | 21.33 |
| 1996 | - | 18.17 | 21.11 | 22.65 | 21.01 | - | 21.60 |
| 1998 | - | 21.50 | 23.03 | 22.45 | 20.10 | - | 21.66 |
| 2000 | - | - | 22.45 | 23.16 | 21.83 | 20.15 | 22.43 |
| Weighted Average | 23.40 | 19.97 | 21.85 | 21.29 | 19.86 | 20.15 |  |
| More Than High School |  |  |  |  |  |  |  |
| 1983 | 29.02 | 28.86 | 28.87 | 26.20 | - | - | 27.98 |
| 1984 | 27.94 | 30.57 | 28.39 | 26.86 | - | - | 28.08 |
| 1985 | 27.71 | 29.79 | 28.31 | 26.85 | - | - | 27.87 |
| 1986 | 24.90 | 28.31 | 28.82 | 25.67 | - | - | 27.08 |
| 1987 | 26.79 | 29.17 | 27.85 | 25.58 | - | - | 26.80 |
| 1988 | 28.53 | 23.69 | 25.17 | 22.71 | - | - | 23.71 |
| 1989 | 21.50 | 27.15 | 25.92 | 23.68 | - | - | 24.63 |
| 1990 | - | 23.85 | 23.38 | 23.01 | 22.46 | - | 23.16 |
| 1991 | - | 20.73 | 23.88 | 22.23 | 21.08 | - | 22.41 |
| 1992 | - | 23.28 | 25.43 | 23.12 | 21.77 | - | 23.47 |
| 1993 | - | 25.81 | 25.64 | 24.48 | 23.17 | - | 24.48 |
| 1994 | - | 22.79 | 25.59 | 23.69 | 23.03 | - | 23.89 |
| 1995 | - | 26.73 | 25.47 | 24.72 | 23.69 | - | 24.57 |
| 1996 | - | 23.53 | 25.12 | 25.50 | 24.34 | - | 24.96 |
| 1998 | - | - | 25.80 | 24.46 | 23.66 |  | 24.32 |
| 2000 | - | - | 25.19 | 25.89 | 24.57 | 22.63 | 25.06 |
| Weighted Average | 27.37 | 26.20 | 26.06 | 24.32 | 23.47 | 22.63 |  |

face higher income tax rates than lower education groups for all cohorts and comparable years on average. Table 1 highlights the non-randomness of tax rates as well as the power of the cohort instrumental variable as an identification tool.

We use 8 groups in all. We used 4 birth cohorts and and 2 levels of education, both interacted with the tax year. The four birth cohorts are: (i) those who were born before-1940; (ii) those born from 1940 to 1949; (iii) those born from 1950 to 1959; and (iv) those born in 1960 and thereafter. The 2 education groups are high school or less, and more than high school. ${ }^{7}$ Our main identifying assumption is the same as that of Blundell, et al. (1998) -- average differences in labor supply between groups are constant over time, after conditioning on the wage, other income, and demographic characteristics. In practical terms, that assumption means that while the full set of time and group effects are included in the hours-of-work equation, the time-group interactions can be ignored. That enables us to identify the parameters in the labor supply equation.

Suppose that we are interested in estimating the following labor supply equation (assuming, for simplicity, that there is no covariate and the logarithm of wage is exogenous):

$$
h_{i t}=a+b \ln w_{i t}+u_{i t},
$$

where individual i can be categorized in one of several demographic groups $g=\left\{g_{1}, g_{2}, \ldots g_{G}\right\}$, each sampled for a least two time periods. Define for a variable $x$ :

$$
D_{x}^{g t}=E\left(x_{i t} \mid P_{i t}, g, t\right)-E\left(x_{i t} \mid P_{i t}, g\right)-E\left(x_{i t} \mid P_{i t}, t\right),
$$

[^5]where $P_{i t}$ is an indicator for an individual's working status at time $t$. Blundell, et al. (1998) assume that:

Assumption A1: $E\left(u_{i t} \mid P_{i t}, g, t\right)=a_{g}+m_{t}$

Assumption A2: $E\left[\left(D_{w}^{g t}\right)^{2}\right] \neq 0$.
Assumption A1 implies that the unobserved differences in average labor supply across groups can be explained by a group effect $\left(a_{g}\right)$ plus an additive time effect $\left(m_{t}\right)$ without interaction terms, which creates exclusion restrictions for identification. Another implicit restriction of Assumption A1 is that we do not allow $E\left(u_{i t} \mid P_{i t}, g, t\right)$ to vary over time. More specifically, that restriction implies that labor participation $\left(P_{i t}\right)$ is completely explained by time and group effects without interaction terms, which is too restrictive (athough the data might show this is the case). Assumption A2 requires that after taking away time and group effects, wages still have some variation, excluding the possible multicollinearity of the wage variable with time and group dummies. In that sense, it is a usual rank condition for identification. Blundell, et al. (1998) relax the two assumptions presented above, but still allow exclusion restrictions for the interacting dummies:

Assumption B1: $E\left(u_{i t} \mid P_{i t}, g, t\right)=a_{g}+m_{t}+\rho \lambda_{g t}$
Assumption B2: $E\left[\left(D_{w}^{g t}-\rho_{\mathrm{w}} \lambda_{g t}\right)^{2}\right] \neq 0$ and $E\left[\left(D_{\lambda}^{g t}\right)^{2}\right] \neq 0$,
where $\lambda_{g t}$ is the inverse Mill's ratio evaluated at $\Phi^{-1}\left(L_{g t}\right)$ with $\Phi^{-1}$ being the inverse function of the standard normal distribution, and $L_{g t}$ being the proportion of group $g$ working in period $t$. $\rho_{w}$ is naturally defined as the population partial regression coefficient $\rho_{w}=E\left[D_{w}^{g t} D_{\lambda}^{g t}\right] / E\left[\left(D_{\lambda}^{g t}\right)^{2}\right]$. Assumption B2 is the same rank condition with Assumption A2. If
indeed $E\left[\left(D_{\lambda}^{g t}\right)^{2}\right]=0$, we can disregard the selection bias caused by $\rho \lambda_{g t}$ in the estimation of the wage coefficient.

### 2.3.1. Implementation of the DID Estimator

We implement the difference-in-differences estimator using a regression approach, controlling for several endogeneities using the control functions, similar to the two-step method. The potential endogenous variables are the wage rate, other income, participation in the labor market, and children variables. However, we ignore the potential endogeneity of the children variables for several reasons. First, we could not find any significant differences between treating children variables as endogenous or exogenous. Secondly, most of the studies, including Zabel (1993), Triest (1990), and Blundell, et al. (1998), that estimate intensive margins in married women labor supply treat children variables as exogenous. The last reason is a technical one regarding difficulties raised when treating dummy endogenous variables in the estimation. ${ }^{8}$

We first estimate the reduced-form equations for each of endogenous regressors. Right-hand side variables include a complete set of group and time dummies and their interactions along with several other demographic variables including regional variables, health, and parents’ education. The equation for the logarithm of wages was estimated using data for those employed; the other income equation and the participation probit were estimated with the entire sample.

In the second step, we estimate the hours-of-work equation using ordinary least squares. The

[^6]basic equation without the children dummy variable interactions is:
\[

$$
\begin{equation*}
H_{i t}=a_{g}+m_{t}+\beta_{1} \ln W_{i t}+\beta_{2} N I_{i t}+X_{i t}^{\prime} \beta_{3}+\delta_{w} \hat{v}_{i t}^{w}+\delta_{N I} \hat{v}_{i t}^{N I}+\delta_{P} \hat{v}_{i t}^{P}+\varepsilon_{i t}, \tag{4}
\end{equation*}
$$

\]

where $a_{g}$ are the group dummies, $m_{t}$ are time dummies, $X_{i t}$ are the children dummy variables and the health variable, $\ln W_{i t}$ and $N I_{i t}$ are the logarithm of the individual $i$ 's after-tax wage and her level of other income, respectively. Children dummy variables include a dummy for no children under seventeen in the household, a dummy for the youngest child under six years old, and a dummy indicating the youngest child between six to seventeen years old. The $\hat{v}$ 's variables are the residuals from the reduced-form estimations that control for the endogeneity of wages ( $\hat{v}_{i t}^{w}$ ), other income ( $\hat{v}_{i t}^{N I}$ ), and participation ( $\hat{v}_{i t}^{P}$, inverse Mill's ratio). One of the virtues of this control function approach is that we can directly test the exogeneity of every possible endogenous variable using $t$-statistics for the $\delta$ parameters (Smith and Blundell (1986)). In equation (4), we exclude all interactions of the group and time dummies, which is justified under Assumption A1 or Assumption B1 conditional on the wage, other income, demographic, and health variables. From these exclusions, we can identify this structural equation. Also note that in the reduced-form estimation, we drop the interacting time and group dummies if the cells associated with these interacting dummies have less than 45 observations. In addition, some of the interacting dummies are dropped to avoid multicollinearities, including the exact ones. The asymptotic covariance matrix accounts for the generated regressors used in the second step and heteroskedasticity as noted by Blundell, et al. (1998). A detailed description of the calculation of the standard errors is presented in Appendix F.

Finally, although equation (4) is a cross-sectional, marginal-rate-of-substitution equation with a full set of time dummies, it differs from an intertemporal Euler equation with a common real
interest rate because it excludes the average group interest rate which is assumed to vary over time and across groups. Such variation in the interest rate could arise from the tax system or liquidity constraints.

## 3. Empirical Results

### 3.1. The Data

The raw data used for this analysis are the annual interviews from the PSID longitudinal data set for the period 1983 to 2001. Data from two consecutive years were merged to create a consistent data set. The data for interview year $t$ includes actual information on wages, income, and hours of work for year $t-1$, while data from the interview year $t-1$ contains the actual individual and family information for $t-1$. Thus, individual and family data from interview year $t-1$ were merged with labor supply and income related information of the interview year $t$, for every possible $t$ and $t-1$, for those individuals who are present in both samples. We did not perform this merge for the last two interview years (1999 and 2001), because the PSID is produced every other year from 1997 on. Consequently, we decided to use labor and income data from the 1999 and 2001 interview years directly. We ended up with 16 cross-section data sets, which are named according to the date of the labor and income information they contain: yearly from 1983 to 1996; 1998, and 2000.

Our analysis is limited to white, married women with the following characteristics: (i) they are 30-60 years of age whose husbands earned labor income that year; (ii) they do not belong to the low-income sample in the PSID; (iii) their spouses are present and there was no change in household status for head and spouse; and (iv) they were neither retired nor students at the time
of the survey. We also dropped those individuals who met one or more of the following conditions: (i) the unemployment rate in their county of residence was above $50 \%$; (ii) they belonged to the top $2.5 \%$ of the non-labor income distribution and such income was more than $\$ 150,000$ in 1990 dollars; ${ }^{9}$ (iii) their reported annual hours of work were greater than 4,000 hours; ${ }^{10}$ (iv) their computed marginal tax rate was negative; and (v) there was missing information for any variable used in the estimations. ${ }^{11}$ The resulting data set contains a total of 16,385 observations (see Table 2).

| Table 2. Sample Sizes by Year |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Year | Observations <br> (Women) | Working | Not <br> Working | Percent <br> Working |
| 1983 | 620 | 449 | 171 | $72 \%$ |
| 1984 | 856 | 627 | 229 | $73 \%$ |
| 1985 | 858 | 632 | 226 | $74 \%$ |
| 1986 | 852 | 654 | 198 | $77 \%$ |
| 1987 | 923 | 719 | 204 | $78 \%$ |
| 1988 | 810 | 643 | 167 | $79 \%$ |
| 1989 | 842 | 686 | 156 | $81 \%$ |
| 1990 | 1,428 | 1,104 | 324 | $77 \%$ |
| 1991 | 1,506 | 1,218 | 288 | $81 \%$ |
| 1992 | 1,518 | 1,168 | 350 | $77 \%$ |
| 1993 | 927 | 747 | 180 | $81 \%$ |
| 1994 | 908 | 759 | 149 | $84 \%$ |
| 1995 | 1,179 | 957 | 222 | $81 \%$ |
| 1996 | 1,188 | 966 | 222 | $81 \%$ |
| 1998 | 952 | 814 | 138 | $86 \%$ |
| 2000 | 1,018 | 853 | 165 | $84 \%$ |
| Total | 16,385 | 12,996 | 3,389 | $79 \%$ |
| Source: Authors |  |  |  |  |

Source: Authors.
Note: The analysis could not be done in 1997 and 1999.

[^7]Exogenous methodological variations in the PSID sampling process account for the differences in sample size across years. ${ }^{12}$ We assume that the changes in sample size are on average neutral across all types of individuals. This assumption is supported by the lack of sudden jumps in the female labor force participation rate shown in Table 2 and in the descriptive statistics for each year shown in Appendix C and by the findings of other studies using the PSID data set, such as Gouskova and Schoeni (2002).

### 3.1.1. Construction of the Hours, Wage, and Income Variables

Hours of work are defined as "aggregated hours of work in all jobs." "Wage rate" is used for the years where this variable is available (1993 to 2000). In the years where pre-tax wage rates are not explicitly asked in the questionnaire, we constructed them by dividing "yearly income from work" by "aggregated hours in all jobs." Non-labor income is constructed by summing the taxable income of all other family members.

After-tax wages were calculated by using liabilities and tax rates of "secondary earners" in the TAXSIM (Internet TAXSIM version 5.1) software provided by the NBER. We used those imputed liabilities and tax rates because we wanted to get an overall effective tax rate and thus minimize possible measurement errors in the data caused by individuals' imprecise answers

[^8]about their tax burden and status. ${ }^{13}$ We were able to compute federal, state, and FICA tax rates accurately because the PSID has most of the necessary information (i.e., disaggregation by incomes and expenditures) to compute them via TAXSIM. ${ }^{14}$

### 3.1.2. Hours, Wages, and Participation in the PSID

From 1983 to 2000, the sample of married women in the PSID has increased its labor force participation and hours of work, and has earned greater after-tax wages. Figure 1 shows that both average yearly hours of work and the participation rate have trended up over time. Figure 2 indicates that real, after-tax wages for married women and their non-labor income also have trended up. Both income variables fell significantly at the beginning of the 1990s, however, possibly due in part to the rise in tax rates in the 1990 tax reform and the economic downturn of 1990-1991.

Although Figures 1 and 2 suggest a positive relationship between hours of work and real wages, that inference is not necessarily valid because we still have to control for the possible endogeneity problems and potential cohort/education effects.

Figures 3 and 4 show participation rates and average yearly hours by cohort for certain years. Those figures illustrate the marked differences in labor-market behavior across cohorts, consistent with their positions in their life cycles.

[^9]Figure 1. Women's Average Hours of Work per Year and Labor Force Participation, 1983-2000


Figure 2. Average After-Tax, Non-Labor Incomes and Wages of Married Women in Real Terms, 1983-2000


Source: Authors using the PSID.

Figure 3. Participation by Cohort


Source: Authors using the PSID.

Figure 4. Hours-of-Work by Cohort


Source: Authors using the PSID.

### 3.2. Estimation Results

### 3.2.1. Simultaneous Equation Approach

The estimation results using the after-tax variables are presented in Tables 3 and 4, where we report coefficients and elasticities from the hours-of-work equations. ${ }^{15}$ (Figures 5 and 6 show the elasticities over time.)

Table 3. Cross-Section Elasticities by Tobit-Type Model
After-tax non-labor

| Year | After-tax log wage |  |  | income |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Parameter |  | Elastictity | Parameter |  | Elastictity |
| 1983 | 668.64 | ${ }^{* * *}$ | 0.63 | -25.57 | * | -0.57 |
| 1984 | 617.39 |  | 0.57 | -24.88 | * | -0.57 |
| 1985 | 1406.57 | * | 1.29 | -22.91 | * | -0.54 |
| 1986 | 436.23 |  | 0.37 | -21.58 | * | -0.48 |
| 1987 | 952.49 | ** | 0.78 | -19.84 | * | -0.47 |
| 1988 | -947.21 | ** | -0.81 | -6.50 | * | -0.23 |
| 1989 | -308.85 |  | -0.25 | -13.31 | * | -0.33 |
| 1990 | -491.17 | ** | -0.40 | -8.18 | * | -0.26 |
| 1991 | -449.34 | ** | -0.35 | -15.29 | * | -0.35 |
| 1992 | -730.76 | * | -0.60 | -7.32 | * | -0.26 |
| 1993 | -2138.98 | * | -1.63 | -8.88 | * | -0.30 |
| 1994 | -1122.27 | * | -0.70 | -11.60 | * | -0.31 |
| 1995 | -2607.21 | * | -1.99 | -9.31 | * | -0.33 |
| 1996 | -2267.39 | * | -1.72 | -10.80 | * | -0.38 |
| 1998 | -2744.35 | * | -1.96 | -6.15 | * | -0.25 |
| 2000 | -1550.71 | * | -1.11 | -6.13 | * | -0.27 |

Source: Authors.

* Significant at $90 \%$ of confidence or more.
** Significant at $85 \%$ of confidence.
*** Significant at $80 \%$ of confidence.

[^10]| Year | After-tax log wage |  |  | After-tax non-labor income |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Parameter |  | Elastictity | Parameter |  | Elastictity |
| 1983 | -1658.44 |  | -1.56 | -11.89 | * | -0.26 |
| 1984 | n.d. |  | n.d. | n.d. |  | n.d. |
| 1985 | 494.19 | * | 0.45 | -6.88 | * | -0.16 |
| 1986 | 209.13 |  | 0.18 | -6.15 | * | -0.14 |
| 1987 | -148.80 |  | -0.12 | -8.51 | * | -0.20 |
| 1988 | -146.57 |  | -0.12 | -3.35 | * | -0.12 |
| 1989 | -1072.43 | * | -0.87 | -6.09 | * | -0.15 |
| 1990 | -444.96 |  | -0.36 | -4.42 | * | -0.14 |
| 1991 | -58.12 |  | -0.05 | -5.97 |  | -0.13 |
| 1992 | -269.50 |  | -0.22 | -1.21 | *** | -0.04 |
| 1993 | -802.23 |  | -0.61 | -2.12 | * | -0.07 |
| 1994 | -1142.91 | * | -0.71 | -4.91 | * | -0.13 |
| 1995 | n.d. |  | n.d. | n.d. |  | n.d. |
| 1996 | -1408.95 |  | -1.07 | -5.98 | * | -0.21 |
| 1998 | -1337.33 | * | -0.95 | -3.02 | * | -0.12 |
| 2000 | -809.40 | * | -0.58 | -4.45 |  | -0.20 |
| Source: Authors. |  |  |  |  |  |  |
| Significan Signific <br> Signifi . We do | $90 \%$ of confide at $85 \%$ of confid at $80 \%$ of confi report estimates | $\begin{aligned} & \text { ence } \\ & \text { dence } \\ & \text { idenc } \\ & s \text { give } \end{aligned}$ | or more. <br> n convergence $p$ | lems. |  |  |

The wage elasticities are quite surprising: they are all negative after 1987 in both models and generally significant in the later years. Moreover, the elasticities appear to fall over time for much of the sample period, particularly for the Tobit-type estimates. The elasticities with respect to after-tax non-labor income are negative as expected and mostly significant in both models; the estimates show much less variation over time than the wage elasticities, particularly after 1987. The elasticities from the Tobit-type model are usually larger in absolute value than those from the generalized Tobit-type model, also noted by Zabel (1993), because the standard labor supply elasticities for the Tobit-type model compound both the intensive margin and the extensive margin (participation effect). Given that the income elasticities are smaller in absolute value than
the wage elasticities, the compensated wage elasticities are negative in both models, contrary to expectations. ${ }^{16}$

Figure 5. Trends in Wage Elasticities over Time


To confirm that our estimation procedure was correct, we estimated before-tax elasticities for the year 1986 using both the Tobit-type and the generalized models in order to compare our results to those of Zabel (1993). For the Tobit-type model, Zabel reported 0.554 for the before-tax wage elasticity and -0.322 for the before-tax non-labor income elasticity, and our results are very close: 0.426 and -0.333 , respectively. In the case of the generalized Tobit-type model, we have 0.186 for the before-tax wage elasticity and -0.102 for before-tax non-labor income elasticity, also close to Zabel's estimates of 0.197 and -0.115 , respectively.

[^11]Figure 6. Trends in Non-Labor Income Elasticities over Time


The initial values for those ML estimations were obtained from OLS and instrumental variable (IV) approaches employed by Mroz (1987). After 1986, the IV estimates of the wage coefficients are negative, though they are smaller in absolute value than the ML estimates in many cases. The signs of the wage coefficients in the OLS hours-of-work equations after 1986 have positive signs, which are exactly opposite signs of the IV and the ML estimates for those years. Previous studies have shown that OLS produces negative signs for the wage coefficients, while IV estimates are positive. We observe exactly the opposite switch of signs, suggesting that endogeneity of wage is still a driving force of the sign switch of these parameter estimates.

The surprising values of the wage parameters obtained and their low significance in some years when using the simultaneous equations methods (Tobit-type and generalized Tobit), altogether with the similarity of the maximum log-likelihood values across models, suggests that we might have an identification problem caused by either a misspecification of the model or poor fitness of the data. ${ }^{17}$ As mentioned in an earlier version of this paper, our model specification has been widely used in the labor economics literature for estimating women's labor supply. ${ }^{18}$ So, in the first hand, we do not believe the misspecification is the source of the problem but we rather think

Table 5. Cross-Section Elasticities by Two-Step Model

Source: Authors.

* Significant at $90 \%$ of confidence or more.
** Significant at $85 \%$ of confidence.
*** Significant at $80 \%$ of confidence.

[^12]the estimation method we use creates the problem. Thus, we rely on a more robust method such as the two-step estimation proposed by Vella (1993) to investigate if our belief is correct.

### 3.2.2. Two-Step Method with Correction of Wage Endogeneity

The two-step method estimation correcting for wage endogeneity produces estimates that are similar to the ML estimations in sign, magnitude, and significance (see Figures 5 and 6 and Tables 5 and 6). The wage elasticities are still negative after 1986, but they are smaller in magnitude than the ML estimates. The income elasticities are the same order of magnitude as the ML estimates and appear to trend up over time.

We take three conclusions from these cross-section results. First, the driving force of our results is not the methodology but the specified model, which was used by others for estimating married women's labor behavior. Second, estimates of the wage elasticity for married women appear to have fallen over time, while estimates of the non-labor income elasticity from the Tobit model and the 2-step estimation have fallen in absolute terms. Third, the estimation results by Zabel (1993) appear to be very particular to the year 1986, and may not be applicable to later years. The following section attempts to solve for the model specification problem with a difference-indifferences approach used by Blundell et al (1998).

### 3.2.3. Difference-in-Differences Results

Like our previous models, our DID approach with interaction terms on the children dummy variables produces a significant decline in the after-tax wage elasticity over time. ${ }^{19}$ The

[^13]elasticities are shown in Table 7, and the underlying parameters in Table 8. The estimated wage elasticities are negative using the whole sample, but positive when using just years 1983 to 1989. Older cohorts (born before 1950) show positive wage elasticities, while younger cohorts (born in 1950 or later) exhibit negative wage elasticities. Noting that the data from the years 1983 to 1989 do not include individuals born after 1960 and that the estimation with years 1990 to 2000 includes a greater percentage of younger cohorts, those results suggest that the younger cohorts of married women behave differently than the older cohorts. The elasticities on other income, however, are significant and negative in all cases.

|  | Tobit |  |  |  | Generalized Tobit |  |  |  | Two-step |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | After-tax log wage |  | After-tax non-labor income |  | After-tax log wage |  | After-tax non-labor income |  | After-tax log wage |  | After-tax non-labor income |  |
| 1983 | 0.63 | *** | -0.57 |  | -1.56 |  | -0.26 |  | 0.29 |  | -0.61 |  |
| 1984 | 0.57 |  | -0.57 | * | n.d. |  | n.d. |  | -0.19 |  | -0.28 |  |
| 1985 | 1.29 | * | -0.54 | * | 0.45 | * | -0.16 | * | 0.45 | * | -0.21 |  |
| 1986 | 0.37 |  | -0.48 | * | 0.18 |  | -0.14 | * | 0.16 | * | -0.26 |  |
| 1987 | 0.78 | ** | -0.47 |  | -0.12 |  | -0.20 | * | -0.04 |  | -0.28 |  |
| 1988 | -0.81 | ** | -0.23 |  | -0.12 |  | -0.12 | * | -0.06 |  | -0.14 |  |
| 1989 | -0.25 |  | -0.33 | * | -0.87 | * | -0.15 | * | -0.17 | *** | -0.28 |  |
| 1990 | -0.40 | ** | -0.26 |  | -0.36 | *** | -0.14 | * | -0.23 | * | -0.15 |  |
| 1991 | -0.35 | ** | -0.35 | * | -0.05 |  | -0.13 | * | -0.09 |  | -0.25 |  |
| 1992 | -0.60 | * | -0.26 |  | -0.22 | *** | -0.04 | *** | -0.30 | * | -0.12 |  |
| 1993 | -1.63 | * | -0.30 | * | -0.61 | * | -0.07 | * | -0.43 | * | -0.03 | * |
| 1994 | -0.70 | * | -0.31 |  | -0.71 | * | -0.13 | * | -0.18 | ** | -0.19 |  |
| 1995 | -1.99 | * | -0.33 | * | n.d. |  | n.d. |  | -0.06 |  | -0.09 |  |
| 1996 | -1.72 | * | -0.38 |  | -1.07 | * | -0.21 | * | -0.37 | * | -0.16 |  |
| 1998 | -1.96 | * | -0.25 | * | -0.95 |  | -0.12 | * | -0.27 | *** | -0.15 | * |
| 2000 | -1.11 | * | -0.27 | * | -0.58 | * | -0.20 | * | -0.36 | * | -0.14 | * |

Source: Authors.

* Significant at $90 \%$ of confidence.
** Significant at $85 \%$ of confidence.
*** Significant at $80 \%$ of confidence.

Table 7 also reports compensated wage elasticities. In the column labeled 'compensated wage(a)', we use the income share of wives (Share1 = Wage/(Wage+Nonlabor income)), and in the column labeled 'compensated wage(b)' we use an income share of one,

Share2=Wage/Wage=1. In other words, Share1 stands for the families where their members share their resources fully (i.e., they pool their resources), while Share2 is applicable to families where each member lives on only their own income (i.e., purely individualistic resource allocation). Thus, we informally suggest that 'compensated wage(a)' is the lower bound of the compensated wage elasticity and 'compensated wage(b)' is the upper bound of the elasticity. We will revisit the issue of intrahousehold allocation in section 4.

The estimation using only data of the younger cohorts shows that the upper bounds of the compensated wage elasticities is negative for all three groups defined by children dummy variables, which contradicts economic theory. For the other cases, the upper bounds of the compensated wage elasticities are positive except for the "no children under seventeen years old" groups for the 1983-2000 and 1990-2000 panels. It is worthwhile mentioning that, even for negative values, we cannot reject the hypothesis that the compensated wage elasticity is zero for a moderate range of standard errors. ${ }^{20}$

[^14]Table 7. Wage and Income Elasticities with the Chldren Interactions

|  | Elasticities |  |  |  | Group Means |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wage | Compensated Wage (a) | Compensated Wage (b) | Other <br> Income | Hours | Wage | Income |
|  | 1983-2000 |  |  |  |  |  |  |
| No Children | -0.119 | -0.096 | -0.005 | -0.114 | 1722 | 1.85 | 42.95 |
|  | 0.051 |  |  | 0.043 |  |  |  |
| Youngest Child 0-6 | -0.156 | -0.115 | 0.081 | -0.237 | 1375 | 1.87 | 42.23 |
|  | 0.065 |  |  | 0.053 |  |  |  |
| Youngest Child 6-17 | -0.108 | -0.077 | 0.069 | -0.178 | 1594 | 1.76 | 43.01 |
|  | 0.056 |  |  | 0.046 |  |  |  |
|  | 1983-1989 |  |  |  |  |  |  |
| No Children | 0.084 | 0.134 | 0.315 | -0.231 | 1645 | 1.64 | 30.34 |
|  | 0.105 |  |  | 0.083 |  |  |  |
| Youngest Child 0-6 | 0.101 | 0.185 | 0.552 | -0.451 | 1243 | 1.68 | 29.29 |
|  | 0.141 |  |  | 0.107 |  |  |  |
| Youngest Child 6-17 | 0.077 | 0.135 | 0.363 | -0.286 | 1553 | 1.53 | 28.52 |
|  | 0.113 |  |  | 0.081 |  |  |  |
|  | 1990-2000 |  |  |  |  |  |  |
| No Children | -0.168 | -0.142 | -0.042 | -0.126 | 1759 | 1.96 | 49.40 |
|  | 0.064 |  |  | 0.057 |  |  |  |
| Youngest Child 0-6 | -0.227 | -0.180 | 0.043 | -0.269 | 1440 | 1.96 | 49.17 |
|  | 0.079 |  |  | 0.071 |  |  |  |
| Youngest Child 6-17 | -0.147 | -0.113 | 0.050 | -0.197 | 1615 | 1.87 | 50.35 |
|  | 0.070 |  |  | 0.063 |  |  |  |
|  | Older Cohorts (30s, 40s) |  |  |  |  |  |  |
| No Children | 0.120 | 0.150 | 0.275 | -0.155 | 1654 | 1.77 | 41.08 |
|  | 0.076 |  |  | 0.064 |  |  |  |
| Youngest Child 0-6 | 0.166 | 0.215 | 0.424 | -0.258 | 1378 | 1.77 | 33.97 |
|  | 0.100 |  |  | 0.073 |  |  |  |
| Youngest Child 6-17 | 0.157 | 0.197 | 0.381 | -0.224 | 1544 | 1.69 | 39.04 |
|  | 0.083 |  |  | 0.065 |  |  |  |
|  | Younger Cohorts (50s, 60s) |  |  |  |  |  |  |
| No Children | -0.206 | -0.183 | -0.106 | -0.100 | 1844 | 2.01 | 46.93 |
|  | 0.063 |  |  | 0.057 |  |  |  |
| Youngest Child 0-6 | -0.277 | -0.238 | -0.053 | -0.223 | 1375 | 1.88 | 43.22 |
|  | 0.083 |  |  | 0.071 |  |  |  |
| Youngest Child 6-17 | -0.210 | -0.182 | -0.051 | -0.159 | 1620 | 1.79 | 45.23 |
|  | 0.071 |  |  | 0.062 |  |  |  |

Source: Authors.
Notes: Asymptotic standard errors in italics.
Compensated Wage (a) is the lower-bound estimate and Compensated Wage (b) is the upper-bound estimate.
All wages and incomes are after-tax.

|  | $\begin{gathered} 1983 \text { to } \\ 1989 \\ \hline \end{gathered}$ | $\begin{gathered} 1990 \text { to } \\ 2000 \end{gathered}$ | $\begin{gathered} 1983 \text { to } \\ 2000 \\ \hline \end{gathered}$ | Older Cohorts (30s, 40s) | Younger <br> Cohorts (50s, <br> $60 \mathrm{~s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Constant | 1775.562 | 2475.879 | 2132.065 | 1204.487 | 2341.079 |
|  | 251.937 | 155.008 | 135.465 | 189.233 | 180.481 |
| Youngest Child 0-6 | -163.212 | -73.202 | -161.608 | -272.150 | -264.322 |
|  | 136.534 | 85.713 | 70.664 | 183.272 | 94.864 |
| Youngest Child 6-17 | -8.864 | -205.468 | -139.720 | -73.802 | -245.868 |
|  | 94.637 | 70.955 | 53.889 | 73.662 | 85.032 |
| Health | -121.163 | -137.373 | -118.118 | -219.407 | -175.524 |
|  | 180.280 | 129.135 | 98.004 | 136.992 | 126.246 |
|  | Wage Effects |  |  |  |  |
| No Children | 138.297 | -294.739 | -205.731 | 198.578 | -379.690 |
|  | 180.280 | 129.135 | 98.004 | 136.992 | 126.246 |
| Youngest Child 0-6 | 124.998 | -326.347 | -214.750 | 228.338 | -380.196 |
|  | 182.122 | 129.254 | 98.737 | 153.275 | 125.414 |
| Youngest Child 6-17 | 120.311 | -237.192 | -172.915 | 243.122 | -340.817 |
|  | 181.263 | 129.500 | 98.620 | 137.922 | 126.464 |
|  | Other Income Effects |  |  |  |  |
| No Children | -12.525 | -4.477 | -4.585 | -6.232 | -3.923 |
|  | 4.608 | 2.298 | 1.880 | 2.725 | 2.470 |
| Youngest Child 0-6 | -19.141 | -7.882 | -7.720 | -10.482 | -7.106 |
|  | 4.712 | 2.361 | 1.923 | 3.152 | 2.490 |
| Youngest Child 6-17 | -15.575 | -6.307 | -6.590 | -8.847 | -5.695 |
|  | 4.583 | 2.298 | 1.872 | 2.685 | 2.459 |
|  | Residuals |  |  |  |  |
| Wage | -62.417 | 374.373 | 283.825 | -132.768 | 449.801 |
|  | 179.230 | 127.943 | 97.246 | 135.938 | 124.107 |
| Other Income | 7.425 | 3.261 | 2.387 | 3.936 | 1.937 |
|  | 4.555 | 2.287 | 1.868 | 2.723 | 2.448 |
| Participation | -253.594 | -340.706 | -397.135 | 306.341 | -232.828 |
|  | 226.613 | 134.061 | 122.306 | 212.558 | 152.518 |

Source: Authors.
Notes: Asymptotic standard errors in italics.
All wages and incomes are after-tax.

In Tables 9 and 10, we report the same set of experiments but excluding the children dummy variable interactions. The overall results are quite similar to those using interaction terms as shown in Tables 7 and 8.

|  | Elasticities |  |  |  | Group Means |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wage | Compensated Wage (a) | Compensated Wage (b) | Other Income | Hours | Wage | Income |
| 1983-2000 | -0.126 | -0.095 | 0.041 | -0.167 | 1588 | 1.82 | 42.80 |
|  | 0.062 |  |  | 0.052 |  |  |  |
| 1983-1989 | 0.111 | 0.176 | 0.428 | -0.317 | 1513 | 1.60 | 29.34 |
|  | 0.118 |  |  | 0.088 |  |  |  |
| 1990-2000 | -0.188 | -0.155 | -0.008 | -0.180 | 1625 | 1.92 | 49.73 |
|  | 0.079 |  |  | 0.070 |  |  |  |
| Older Cohorts (30s, 40s) | 0.153 | 0.191 | 0.357 | -0.204 | 1597 | 1.74 | 39.89 |
|  | 0.085 |  |  | 0.067 |  |  |  |
| Younger Cohorts (50s, 60s) | -0.249 | -0.220 | -0.094 | -0.155 | 1583 | 1.87 | 44.80 |
|  | 0.079 |  |  | 0.069 |  |  |  |

Source: Authors.
Notes: Asymptotic standard errors in italics.
All wages and incomes are after-tax.

|  | $\begin{gathered} 1983 \text { to } \\ 1989 \end{gathered}$ | $\begin{gathered} 1990 \text { to } \\ 2000 \end{gathered}$ | $\begin{gathered} 1983 \text { to } \\ 2000 \end{gathered}$ | Older Cohorts (30s, 40s) | Younger Cohorts $(50 s, 60 s)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Constant | 1778.239 | 2530.792 | 2150.677 | 1220.095 | 2434.088 |
|  | 249.951 | 153.142 | 131.289 | 187.800 | 173.081 |
| Youngest Child 0-6 | -394.357 | -302.786 | -320.429 | -366.097 | -412.947 |
|  | 74.037 | 36.392 | 33.966 | 63.382 | 46.151 |
| Youngest Child 6-17 | -124.751 | -193.626 | -172.412 | -101.129 | -262.887 |
|  | 35.820 | 25.238 | 19.618 | 23.933 | 31.555 |
| Health | -132.688 | -142.806 | -127.581 | -210.861 | -184.932 |
|  | 178.519 | 128.475 | 98.350 | 135.609 | 124.600 |
| Log Wage | 168.419 | -305.328 | -200.578 | 243.820 | -394.692 |
|  | 178.519 | 128.475 | 98.350 | 135.609 | 124.600 |
| Other Income | -16.326 | -5.868 | -6.205 | -8.165 | -5.489 |
|  | 4.527 | 2.288 | 1.948 | 2.663 | 2.448 |
|  | Residuals |  |  |  |  |
| Wage | -101.664 | 398.313 | 288.899 | -155.642 | 480.068 |
|  | 179.232 | 128.867 | 98.678 | 136.082 | 124.686 |
| Other Income | 8.552 | 3.197 | 2.546 | 4.744 | 1.712 |
|  | 4.547 | 2.300 | 1.961 | 2.709 | 2.463 |
| Participation | -153.193 | -324.715 | -351.655 | 276.029 | -199.734 |
|  | 223.690 | 134.916 | 120.123 | 210.700 | 153.126 |

Source: Authors.
Notes: Asymptotic standard errors in italics.
All wages and incomes are after-tax.

|  | (1) | (2) | (3) | (4) | (5) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Constant | 2132.065 | 1862.607 | 2169.103 | 1919.643 | 1477.919 |
|  | 120.754 | 87.204 | 117.861 | 105.500 | 44.226 |
| Youngest Child 0-6 | -161.608 | -137.532 | -179.174 | -262.994 | -255.158 |
|  | 58.819 | 58.365 | 57.484 | 51.707 | 51.634 |
| Youngest Child 6-17 | -139.720 | -110.983 | -151.069 | -157.451 | -131.840 |
|  | 45.575 | 44.712 | 44.859 | 45.331 | 44.592 |
| Health | -118.118 | -96.246 | -127.220 | -191.623 | -160.255 |
|  | 87.992 | 17.227 | 63.379 | 87.055 | 17.203 |
| Wage Effects |  |  |  |  |  |
| No Children | -205.731 | 72.526 | -291.712 | -252.970 | 65.881 |
|  | 87.992 | 17.227 | 63.379 | 87.055 | 17.203 |
| Youngest Child 0-6 | -214.750 | 64.869 | -300.586 | -259.213 | 62.865 |
|  | 88.787 | 19.085 | 64.575 | 87.970 | 19.088 |
| Youngest Child 6-17 | -172.915 | 108.589 | -259.630 | -219.754 | 103.720 |
|  | 88.673 | 15.562 | 63.821 | 87.760 | 15.550 |
| Other Income Effects |  |  |  |  |  |
| No Children | -4.585 | -8.384 | -2.241 | -2.590 | -2.384 |
|  | 1.709 | 1.239 | 0.390 | 1.618 | 0.390 |
| Youngest Child 0-6 | -7.720 | -11.534 | -5.392 | -5.577 | -5.509 |
|  | 1.730 | 1.264 | 0.513 | 1.626 | 0.509 |
| Youngest Child 6-17 | -6.590 | -10.373 | -4.272 | -4.570 | -4.439 |
|  | 1.689 | 1.216 | 0.380 | 1.594 | 0.379 |
| Residuals |  |  |  |  |  |
| Wage | 283.825 | - | 370.260 | 330.051 | - |
|  | 88.017 | - | 63.101 | 87.122 | - |
| Other Income | 2.387 | 6.197 | - | 0.348 | - |
|  | 1.695 | 1.215 | - | 1.598 | - |
| Participation | -397.135 | -448.734 | -345.510 | - | - |
|  | 109.999 | 108.869 | 103.717 | - | - |

Source: Authors.
Notes: Asymptotic standard errors in italics.
All wages and incomes are after-tax.
Table 11 presents the parameter estimates for a number of different specifications using the data for all the years. In column (1), we correct for the endogeneity of the wage rate, non-labor income, and labor force participation. In columns (3) and (4), we drop the corrections for nonlabor income and for participation, respectively. As in Blundell, et al. (1998), the results in these
three columns are quite similar because the changes in those endogenous variables can be controlled by the group and time effects without the correction terms. In column (2), we do not include the correction term for the wage rate, observing an important difference from the corrected model of column (1), suggesting that what really matters is the correction for the endogeneity of the wage rate. Moreover, column (2) provides quite similar estimates to the OLS results of column (5), which has a positive sign for the wage coefficient. The positive signs of the OLS estimate for the wage rate (expected from the relationship between the hours of work

## Table 12. Variations in Job Stability and Job Security, 1975 versus 2000

 (as a percentage of 1975 transition rates)|  | Men |  | Women |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Job Stability | Job <br> Variation | $\begin{gathered} \text { Job } \\ \text { Stability } \\ \hline \end{gathered}$ | Job <br> Variation |
| All | 45.22\% | -28.50\% | 58.47\% | -20.30\% |
|  | Age |  |  |  |
| 19-24 | 25.44\% | -25.73\% | 30.33\% | -16.89\% |
| 25-34 | 23.23\% | -43.78\% | 54.53\% | -29.70\% |
| 35-44 | 78.67\% | -8.55\% | 52.18\% | -8.85\% |
| 45-54 | 144.08\% | 13.57\% | 190.11\% | -19.10\% |
|  | Education |  |  |  |
| High School Dropouts | 23.40\% | -18.40\% | 69.39\% | -5.28\% |
| High School | 59.50\% | -28.00\% | 67.71\% | -21.72\% |
| Some College | 47.21\% | -40.55\% | 47.59\% | -26.71\% |
| College Graduates | 35.52\% | -21.42\% | 41.83\% | -34.57\% |
|  | Race |  |  |  |
| White | 43.62\% | -29.48\% | 48.41\% | -22.28\% |
| Nonwhite | 61.71\% | -22.38\% | 146.64\% | -12.53\% |
|  | Martial Status |  |  |  |
| Married-Spouse Present | 50.56\% | -25.50\% | 61.01\% | -26.98\% |
| Other | 34.82\% | -23.52\% | 52.52\% | -14.12\% |

Source: Table 2, Stewart (2002).
and the wage rate depicted in Figures 1 and 2) and the estimate in column 2 confirms the idea that wages are the main source of endogeneity in this model.

## 4. Possible Explanation of Our Findings

Our empirical analysis shows that the wage elasticity for married women has been decreasing across time regardless of methodology and model specification. There are two compelling arguments for that result. One, there have been important changes in the intrahousehold resource allocation that have affected women's labor supply behavior. Two, women have raised their turnover rates that in turn generates the negative wage estimates.

Support for the first potential explanation comes from Browning, et al. (1994) who study a sample of Canadian couples with no children and find that relative incomes between partners are one of the main factors determining the final allocations of expenditures on each partner. If this is a current driving factor of labor behavior, then a married woman cannot be treated as a 'secondary worker' anymore, because informally speaking, she lives on her own income, which implies she is a separate "primary worker." Thus, when younger cohorts make up a higher percentage of working women, aggregate behavior changes.

Our second probable explanation relies on the fact that younger generations change their careers and jobs more often than do older cohorts. This phenomenon might have become more important as women had gained more access to the labor market, allowing them to switch jobs more easily than before. According to empirical evidence, it is indeed unlikely for a woman of a younger generation to stay in a single firm during her whole career. Evidence of this trend can be found in Stewart (2002), who reports that job stability has fallen for married couples, while job security has increased in the March CPS data over the period from 1975-76 to 2000-2001. Stewart notes that there has been a dramatic increase in employment-to-employment transitions for those job
changes with two or fewer weeks of unemployment (58.47\% for all women and $61.01 \%$ for married women as a percentage of 1975 as shown in Table 13), indicating that it has become easier to change employers than before. These trends are consistent with findings from the PSID (see Rose (1995) and Marcotte (1996)). ${ }^{21}$

One of the reasons why women move to a new job may be that they can earn more total income than in their previous job with the same or fewer hours of work. If so, that creates a selection problem in the estimation, or at least makes statistical inference difficult if movements from job to job are frequent enough. This phenomenon, if it is significant, can make the estimated wage elasticities negative. Therefore, the higher portion of younger cohorts we have in our sample, the more salient negative wage elasticities will result from the estimation.

## 5. Conclusion

The aim of this paper was to estimate the responsiveness of secondary workers to changes in their wages and other income in a world where average hours-of-work of these individuals, as well as their participation rates, have increased substantially over the last two decades. Implementing several econometric methodologies and using PSID for the period of 1983-2000, we found that the wage elasticity for white, married women has decreased significantly in magnitude, while their elasticity with respect to other income has remained relatively constant for much of the period. In particular, the secondary workers' labor supply elasticities with respect to their after-tax wages are either not different from zero or negative across methodologies and several specifications, while their elasticities with respect to non-labor

[^15]income are negative, statistically significant and stable or shrinking in absolute value over the years depending on the estimation approach. These findings might imply that our conventional models of married women labor behavior are not powerful anymore. Another possible important implication is that married women's elasticity is not a good reference any more when talking about the most sensitive group of individuals to changes in wage rates. Therefore, younger cohorts of married women do not fit the "secondary worker" definition anymore compared to several decades ago, confirming the saying that the labor supply behavior gap between women and men is indeed shrinking. In that sense, our study partially answers the original question raised by Heckman (1993): "Has the consensus view of the 1960s of high labor supply elasticities for married women and low labor supply elasticities for married men held up?" Our answer is "no." Our results are robust and consistent across models and specifications in the sense that all of them show declining wage elasticities over the time span studied.

Interestingly, when we use the difference-in-differences approach, the only case where our IV estimates of wage coefficients show a significant difference between the bias-corrected and uncorrected models is when the endogeneity of the wage rate is addressed. Moreover, when we do not control for this endogeneity bias, our estimates are quite similar to the OLS results, suggesting that the wage is the main source of endogeneity in our model.

Finally, the cross-section results suggest that in recent years the non-labor income elasticities are smaller in magnitude than the wage elasticities, resulting in negative compensated wage elasticities, contradicting theory. One way to reconcile our empirical findings with theory is by arguing changes in the intrahousehold resource allocation pattern for younger cohorts, a
phenomenon with interesting social implications that has not been taken into account explicitly in the labor model of secondary workers. Additionally, changing patterns in younger cohorts on turnover rates, together with their increasing portion in the pool of the labor force, can help us to understand our results. Future research in these hypotheses is required in order to find a solution to this puzzle.

## References

[1] Angrist, Josh (1991). "Grouped Data Estimation and Testing in Simple Labor Supply Models", Journal of Econometrics, Vol. 47, pp. 243-265.
[2] Angrist, J. D. and Krueger, A. B. (1991). "Does Compulsory School Attendance Affect Schooling and Earnings," Quarterly Journal of Economics, Vol. 106, pp. 979-1014.
[3] Blundell, R. A. Duncan, and C. Meghir (1998). "Estimating Labor Supply Responses Using Tax Reforms," Econometrica, Vol. 66, pp. 827-861.
[4] Bound, J. , D. A. Jaeger, and R. Baker (1995). "Problems With Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogenous Explanatory Variable Is Weak," Journal of the American Statistical Association, Vol. 90, pp. 443-450.
[5] Browning, M., F. Bourguignon, P. A. Chiappori, and V. Lechene (1994). "Income and Outcomes: A Structural Model of Intrahousehold Allocation," Journal of Political Economy, Vol. 102, pp. 1067-1096.
[6] Cogan, J. F. (1980). "Labor Supply with Costs of Labor Market Entry," In Female Labor Supply, edited by J. P. Smith, Princeton, N.J., Princeton University Press.
[7] Diebold, F. X., D. Neumark, and D. Polsky (1997). "Job Stability in the United States," Journal of Labor Economics, Vol. 15(2), April 1997, pp. 206-33.
[8] Eissa, N. (1995). "Taxation and Labor Supply of Married Women: The Tax Reform Act of 1986 as a Natural Experiment," Mimeo, Department of Economics, University of California, Berkeley.
[9] Farber, H. S. (1998). "Are Lifetime Jobs Disappearing? Job Duration in the United States: 1973-1993," in Labor Statistics Measurement Issues, John Haltiwanger, Marilyn Manser, and Robert Topel, eds., University of Chicago Press.
[10] Gouskova, E. and R. F. Schoeni (2002). "Comparing of Family Income in Panel Survey of Income Dynamics and the March Current Population Survey, 1968-1999"; Institute for Social Research, University of Michigan.
[11] Hardin, J. W. (2002). "The Robust Variance Estimator of Two-Stage Models", The Stata Journal, Vol. 2, No. 3, Q4, pp. 253-265.
[12] Heckman, J. J. (1974). "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Vol. 42, pp. 679-94.
[13] Heckman, J. J. (1978). "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Vol. 46, pp. 931-959.
[14] Heckman, J. J. (1993). "What Has Been Learned About Labor Supply in the Past Twenty Years?", American Economic Review, Vol. 83, No. 2, pp. 116-121.
[15] Heim, B. T. (2004). "The Incredible Shrinking Elasticities: Married Female Labor Supply, 1979-2003," working paper, Duke University.
[16] Heim, B. T. and B. D. Meyer (2003). "Structural Labor Supply Models When Budget Constraints are Nonlinear," Working Paper.
[17] Jaeger, D and A. Huff Stevens (1997). "Is Job Stability in the United States Falling? Trends in the Current Population Survey and Panel Study of Income Dynamics," Journal of Labor Economics, Vol. 17(2, pt. 2). October 1999, pp. S1-28.
[18] Kim, K. (2004). "Sample Selection Models with a Common Dummy Endogenous Regressor in the Simultaneous Equations: Alternative Two-step Estimation vs. Discrete Factor Approximation," Working paper, Department of Economics, UCLA.
[19] Kim, K. and Rodríguez-Pueblita, J. C. (2004). "Do We Have Secondary Workers? Labor Supply Estimations of Married Women in the US, 1986-2000," Working paper, Congressional Budget Office.
[20] Marcotte, D. (1996). "Has Job Stability Declined? Evidence from the Panel Study of Income Dynamics," unpublished manuscript, Northern Illinois University, February 1996.
[21] Mroz, T. A. (1987). "The Sensitivity of an Empirical Model of Married Women’s Hours of Work to Economic and Statistical Assumptions," Econometrica, Vol. 55, pp. 765-799.
[22] Mroz, T. A. (1997). "Discrete Factor Approximations in Simultaneous Equation Models: Estimating the Impact of a Dummy Endogenous Variable on a Continuous Outcome", unpublished manuscript, University of North Carolina, and the Carolina Population Center.
[23] Nelson, C. R., and R. Startz (1990a). "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Vol. 58, pp. 967-976.
[24] Nelson, C. R., and R. Startz (1990b). "The Distribution of the Instrumental Variable Estimator and its t-Ratio When the Instrument Is a Poor One," Journal of Business, Vol. 63, pp. 3125-3140.
[25] Rose, S. (1995). "Declining Job Security and the Professionalization of Opportunity," National Commission for Employment Policy, Research Report 95-4, April 1995.
[26] Staiger, D. and J. H. Stock (1997). "Instrumental Variable Regression with Weak Instruments," Econometrica, Vol. 65, pp. 557-586.
[27] Stewart J. (2002). "Recent Trends in Job Stability and Job Security: Evidence from the March CPS", BLS Working Papers, U.S. Department of Labor, February 2002.
[28] Triest, R. K. (1990). "The Effect of Income Taxation on Labor Supply in the United States," Journal of Human Resources, Vol. 25, pp. 491-516.
[29] Vella, F. (1993). "A Simple Estimator for Models with Censored Endogenous Regressors," International Economic Review, Vol. 34, pp. 441-57.
[30] Wales, T. J. and A. D. Woodland (1980). "Sample Selectivity and the Estimation of Labor Supply Functions, " International Economic Review, Vol. 21, pp. 437-468.
[31] Zabel, J. E. (1993). "The Relationship between Hours of Work and Labor Force Participation in Four Models of Labor Supply Behavior," Journal of Labor Economics, Vol. 11, pp. 387-416.

## Appendix A

## Estimations using After-Tax Wages and Non-Labor Income

Table A1. Estimates from Unrestricted Tobit-Type Model

| Year | $\begin{aligned} & \text { After-tax } \\ & \text { Inwage } \end{aligned}$ | After-tax nonlabor income | Age | Education | Number of kids 0 to 6 years old | Number of kids 6 to 17 years old | Number of kids 0 to 17 years old | Whether kids younger than 6 years old | Health | Constant | $\sigma_{1}$ | $\mathrm{\sigma}_{2}$ | $\rho_{12}$ | Log <br> likelihood |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 668.64 | -25.57 | -8.14 | 36.37 | -556.00 | -60.57 | - | - | -672.64 | 640.36 | 1091.71 | 0.54 | -0.35 | -4265.56 |
|  | 534.21 | 2.96 | 7.08 | 43.26 | 87.46 | 50.17 | - | - | 265.35 | 597.22 | 110.93 | 0.02 | 0.47 | - |
| 1984 | 617.39 | -24.88 | -13.13 | 18.37 | -462.66 | -56.15 | - | - | -244.58 | 1196.04 | 1043.02 | 0.51 | -0.21 | -5917.46 |
|  | * | 2.50 | 5.57 | 18.25 | 68.51 | 40.31 | - | - | 163.71 | 369.44 | 35.07 | 0.01 | 0.24 | - |
| 1985 | 1406.57 | -22.91 | -17.20 | -22.55 | -560.36 | -104.69 | - | - | -545.09 | 749.62 | 1176.29 | 0.48 | -0.55 | -5889.93 |
|  | 458.64 | 2.44 | 6.25 | 43.52 | 66.98 | 39.62 | - | - | 198.68 | 463.60 | 131.49 | 0.01 | 0.32 | - |
| 1986 | 436.23 | -21.58 | -26.76 | 33.51 | -550.90 | -132.51 | - | - | 38.00 | 1882.70 | 995.64 | 0.48 | -0.17 | -6255.35 |
|  | 806.89 | 2.41 | 5.51 | 67.49 | 62.56 | 36.97 | - | - | 126.62 | 444.99 | 69.36 | 0.01 | 0.62 | - |
| 1987 | 952.49 | -19.84 | -29.46 | -8.68 | -631.77 | -122.45 | - | - | -232.74 | 1771.67 | 1117.45 | 0.52 | -0.52 | -6708.41 |
|  | 649.15 | 2.06 | 6.02 | 59.37 | 60.18 | 36.35 | - | - | 128.63 | 450.37 | 179.26 | 0.01 | 0.41 | - |
| 1988 | -947.21 | -6.50 | -26.68 | 150.12 | -608.35 | -132.06 | - | - | -505.06 | 2368.82 | 1150.70 | 0.56 | 0.48 | -6434.16 |
|  | 641.32 | 1.41 | 6.67 | 66.87 | 63.92 | 38.13 | - | - | 183.37 | 404.43 | 177.71 | 0.02 | 0.44 | - |
| 1989 | -308.85 | -13.31 | -16.52 | 95.24 | -442.33 | -70.87 | - | - | -429.37 | 1746.10 | 942.53 | 0.54 | 0.20 | -6380.96 |
|  | 369.48 | 1.86 | 5.64 | 45.63 | 60.18 | 34.26 | - | - | 119.80 | 336.58 | 49.17 | 0.01 | 0.46 | - |
| 1990 | -491.17 | -8.18 | -23.20 | 96.37 | -365.18 | -64.08 | - | - | -596.02 | 2218.90 | 1130.38 | 0.52 | 0.42 | -10427.07 |
|  | 318.98 | 1.23 | 4.60 | 26.99 | 50.32 | 28.04 | - | - | 119.52 | 324.68 | 75.67 | 0.01 | 0.33 | - |
| 1991 | -449.34 | -15.29 | -14.41 | 119.01 | -378.84 | -107.80 | - | - | -122.62 | 1689.63 | 1049.60 | 0.53 | 0.30 | -11680.71 |
|  | 306.25 | 1.41 | 4.23 | 32.04 | 46.65 | 26.23 | - | - | 88.76 | 266.94 | 54.97 | 0.01 | 0.37 | - |
| 1992 | -730.76 | -7.32 | -18.50 | 116.63 | -421.55 | -128.47 | - | - | -697.99 | 2415.06 | 1083.75 | 0.60 | 0.26 | -11342.08 |
|  | 247.22 | 1.13 | 4.77 | 19.29 | 50.89 | 28.12 | - | - | 99.21 | 346.94 | 47.99 | 0.01 | 0.36 | - |
| 1993 | -2138.98 | -8.88 | 0.04 | 275.97 | - | - | -101.23 | -169.37 | -572.07 | 2414.06 | 1448.45 | 0.53 | 0.74 | -7074.11 |
|  | 777.62 | 1.40 | 8.60 | 84.99 | - | - | 94.40 | 34.25 | 201.13 | 602.91 | 308.56 | 0.01 | 0.25 | - |
| 1994 | -1122.27 | -11.60 | 3.21 | 195.67 | - | - | -286.72 | -59.11 | -143.83 | 1287.19 | 1181.72 | 0.58 | 0.59 | -7183.40 |
|  | 574.31 | 1.70 | 7.59 | 64.96 | - | - | 89.07 | 32.53 | 140.16 | 410.50 | 202.11 | 0.02 | 0.35 | - |
| 1995 | -2607.21 | -9.31 | -12.09 | 405.63 | - | - | -388.89 | -1.78 | -749.20 | 1756.93 | 1895.76 | 0.55 | 0.87 | -9041.93 |
|  | 1520.54 | 1.11 | 9.34 | 192.87 | - | - | 79.81 | 29.10 | 222.49 | 687.93 | 729.12 | 0.01 | 0.16 | - |
| 1996 | -2267.39 | -10.80 | -24.02 | 338.85 | - | - | -429.56 | -25.32 | -750.13 | 2719.95 | 1763.45 | 0.56 | 0.85 | -9121.31 |
|  | 959.56 | 1.13 | 8.23 | 111.12 | - | - | 79.81 | 29.56 | 188.70 | 671.38 | 463.58 | 0.01 | 0.16 | - |
| 1998 | -2744.35 | -6.15 | -5.86 | 354.66 | - | - | -607.78 | -111.04 | -1031.12 | 3021.66 | 1892.88 | 0.55 | 0.88 | -7767.41 |
|  | 1738.02 | 1.00 | 10.03 | 200.48 | - | - | 89.42 | 32.52 | 292.19 | 974.45 | 848.25 | 0.01 | 0.16 | - |
| 2000 | -1550.71 | -6.13 | -10.04 | 218.96 | - | - | -498.70 | -150.08 | -751.46 | 2762.13 | 1361.36 | 0.56 | 0.72 | -8347.07 |
|  | 594.93 | 0.84 | 7.52 | 68.51 | - | - | 94.95 | 32.54 | 149.61 | 494.35 | 242.82 | 0.01 | 0.24 | - |

Source: Authors.
Notes: Estimates
No restrictions were imposed on the wage parameter. When it was restricted to be nonnegative, convergence was achieved with values very close to zero in those years where the unrestricted parameter was negative.

* There are no standard errors for the wage estimate in
Table A2. Estimates from the Generalized Tobit-Type Model

| Year | After-tax Inwage | After-tax nonlabor income | Age | Education | Number of kids 0 to 6 years old | Number of kids 6 to 17 years old | Number of kids 0 to 17 years old | Whether kids younger than 6 years old | Health | Constant | $\sigma 1$ | $\boldsymbol{\sigma} 2$ | p12 | p13 | p23 | Log <br> likelihood |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | -1658.44 | -11.89 | -8.99 | 119.81 | -309.90 | -56.78 | - | - | -893.73 | 3073.16 | 1129.20 | 0.55 | 0.82 | 0.18 | 0.07 | -4218.4 |
|  | 1511.92 | 3.01 | 7.35 | 104.71 | 80.42 | 36.91 | - | - | 489.86 | 1121.37 | 681.08 | 1.04 | 0.28 | 0.43 | 0.41 | - |
| 1984* | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | - | n.d. |
|  | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | - | n.d. | - |
| 1985 | 494.19 | -6.88 | -4.20 | -51.20 | -179.94 | -90.11 | - | - | -156.24 | 2000.07 | 711.15 | 0.51 | -0.22 | -0.36 | -0.55 | -5857.3 |
|  | 252.52 | 2.45 | 4.33 | 21.91 | 59.73 | 30.15 | - | - | 141.58 | 329.13 | 36.10 | 1.04 | 0.44 | 0.40 | 0.31 | - |
| 1986 | 209.13 | -6.15 | -1.96 | -36.26 | -208.73 | -68.69 | - | - | -90.75 | 2189.97 | 696.92 | 0.54 | 0.08 | -0.57 | -0.80 | -6173.8 |
|  | 297.15 | 1.91 | 4.48 | 23.24 | 49.99 | 28.10 | - | - | 94.05 | 299.14 | 27.88 | 1.04 | 0.49 | 0.36 | 0.12 | - |
| 1987 | -148.80 | -8.51 | -5.73 | 3.69 | -258.27 | -76.44 | - | - | -161.98 | 2475.00 | 655.11 | 0.54 | 0.15 | -0.33 | -0.49 | -6629.9 |
|  | 283.39 | 2.19 | 4.59 | 25.06 | 63.65 | 27.07 | - | - | 79.24 | 283.19 | 37.04 | 1.04 | 0.50 | 0.51 | 0.35 | - |
| 1988 | -146.57 | -3.35 | -13.91 | 18.73 | -361.36 | -111.19 | - | - | -104.96 | 2417.13 | 677.25 | 0.56 | 0.12 | 0.09 | -0.22 | -6375.8 |
|  | 450.63 | 1.20 | 4.91 | 47.76 | 64.67 | 27.67 | - | - | 124.18 | 266.23 | 36.92 | 1.03 | 0.62 | 0.55 | 0.48 | - |
| 1989 | -1072.43 | -6.09 | 4.84 | 93.34 | -268.47 | -109.51 | - | - | 13.72 | 2584.91 | 1006.44 | 0.63 | 0.77 | -0.81 | -0.75 | -6337.2 |
|  | 460.38 | 1.44 | 7.18 | 53.15 | 46.49 | 25.90 | - | - | 151.59 | 352.07 | 223.94 | 1.04 | 0.22 | 0.16 | 0.16 | - |
| 1990 | -444.96 | -4.42 | -16.60 | 31.10 | -303.24 | -115.18 | - | - | -369.99 | 2973.22 | 743.28 | 0.56 | 0.38 | 0.28 | -0.19 | -10901.6 |
|  | 192.86 | 0.98 | 3.57 | 17.63 | 39.33 | 20.00 | - | - | 86.75 | 233.22 | 48.06 | 1.02 | 0.34 | 0.40 | 0.40 | - |
| 1991 | -58.12 | -5.97 | 0.24 | -12.41 | -135.89 | -80.73 | - | - | -12.21 | 2305.32 | 714.07 | 0.59 | 0.26 | -0.63 | -0.74 | -11713.2 |
|  | 156.39 | 1.12 | 3.20 | 13.51 | 36.67 | 19.18 | - | - | 64.16 | 207.87 | 30.72 | 1.03 | 0.34 | 0.24 | 0.13 | - |
| 1992 | -269.50 | -1.21 | -0.37 | -3.70 | -141.33 | -93.16 | - | - | -24.08 | 2588.69 | 768.74 | 0.67 | 0.34 | -0.78 | -0.65 | -11320.8 |
|  | 151.19 | 0.90 | 3.57 | 11.98 | 39.20 | 20.80 | - | - | 75.82 | 252.85 | 39.95 | 1.03 | 0.33 | 0.16 | 0.16 | - |
| 1993 | -802.23 | -2.12 | 2.71 | 60.08 | - | - | -86.83 | -47.68 | 78.41 | 2716.92 | 884.00 | 0.61 | 0.62 | -0.81 | -0.72 | -7168.5 |
|  | 243.70 | 1.11 | 5.17 | 27.55 | - | - | 25.37 | 67.21 | 107.45 | 345.10 | 94.21 | 1.03 | 0.26 | 0.13 | 0.15 | - |
| 1994 | -1142.91 | -4.91 | 13.56 | 108.22 | - | - | -51.32 | 40.52 | 13.99 | 2348.50 | 1060.64 | 0.63 | 0.77 | -0.83 | -0.77 | -7065.7 |
|  | 552.82 | 1.36 | 7.01 | 53.92 | - | - | 24.97 | 67.34 | 127.65 | 466.64 | 269.58 | 1.03 | 0.24 | 0.13 | 0.13 | - |
| 1995* | n.d. | n.d. | n.d. | n.d. | - | - | n.d. |
|  | n.d. | n.d. | n.d. | n.d. | - | - | n.d. | - |
| 1996 | -1408.95 | -5.98 | -7.14 | 168.59 | - | - | -38.12 | -223.91 | -308.12 | 2733.57 | 1112.09 | 0.56 | 0.80 | 0.22 | 0.00 | -9099.6 |
|  | 518.40 | 1.38 | 5.97 | 60.50 | - | - | 22.26 | 76.58 | 142.36 | 441.88 | 239.21 | 1.02 | 0.19 | 0.46 | 0.33 | - |
| 1998 | -1337.33 | -3.02 | -7.63 | 160.12 | - | - | -79.07 | -370.40 | -398.34 | 2892.12 | 1030.30 | 0.55 | 0.79 | 0.12 | 0.08 | -7700.0 |
|  | 755.32 | 0.87 | 5.87 | 86.34 | - | - | 25.39 | 75.84 | 147.06 | 525.22 | 332.18 | 1.03 | 0.24 | 0.37 | 0.42 | - |
| 2000 | -809.40 | -4.45 | -9.77 | 98.29 | - | - | -117.37 | -335.14 | -286.24 | 3017.30 | 841.86 | 0.60 | 0.57 | -0.17 | -0.69 | -8325.4 |
|  | 259.29 | 0.80 | 4.82 | 32.40 | - | - | 27.22 | 78.19 | 109.19 | 321.11 | 87.45 | 1.04 | 0.28 | 0.51 | 0.25 | - |

Source: Authors.
Notes: Estimates were computed both with and without initial values. The estimates shown in this table are those with the smallest standard errors.
No restrictions were imposed on the wage parameter. When it was restricted to be nonnegative, convergence was achieved with values very close to zero in those years where the unrestricted parameter was negative.

* There were convergence problems in 1984 and 1995 .

| Year | After-tax lnwage | After-tax non-labor income | Age | Education | Number of kids 0 to 6 years old | Number of kids 6 to 17 years old | Number of kids 0 to 17 years old | Whether kids younger than 6 years old | Health | Residuals | Mills Ratio | Constant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 302.95 | -27.49 | -8.71 | 60.24 | -614.39 | -65.25 | - | - | -871.47 | -327.74 | 1378.48 | 895.74 |
|  | 264.20 | 5.01 | 4.73 | 29.43 | 109.65 | 35.77 | - | - | 231.82 | 272.87 | 391.68 | 485.25 |
| 1984 | -211.44 | -12.39 | -0.69 | 20.66 | -234.77 | -90.26 | - | - | -3.95 | 301.04 | -65.10 | 2020.23 |
|  | 356.68 | 3.40 | 4.03 | 28.27 | 68.27 | 28.44 | - | - | 127.48 | 362.00 | 268.31 | 419.58 |
| 1985 | 489.03 | -8.91 | -4.92 | -45.06 | -214.65 | -98.48 | - | - | -190.67 | -459.52 | -243.68 | 2001.40 |
|  | 210.27 | 2.94 | 4.46 | 23.09 | 75.43 | 29.25 | - | - | 139.82 | 218.64 | 232.52 | 318.99 |
| 1986 | 189.81 | -11.93 | -9.09 | -10.16 | -334.13 | -100.56 | - | - | -64.69 | -123.89 | 81.55 | 2179.87 |
|  | 221.13 | 2.52 | 5.14 | 24.34 | 71.06 | 29.98 | - | - | 88.18 | 227.53 | 260.34 | 263.84 |
| 1987 | -47.53 | -11.57 | -10.89 | 13.03 | -350.45 | -92.78 | - | - | -205.08 | 10.34 | 174.74 | 2395.49 |
|  | 219.45 | 2.37 | 4.93 | 22.41 | 73.57 | 27.73 | - | - | 80.43 | 224.48 | 231.46 | 261.06 |
| 1988 | -65.99 | -4.09 | -17.14 | 18.94 | -419.74 | -116.41 | - | - | -136.55 | 71.42 | 333.54 | 2374.70 |
|  | 199.76 | 1.25 | 4.87 | 25.47 | 72.90 | 27.58 | - | - | 102.34 | 204.47 | 244.02 | 254.49 |
| 1989 | -212.68 | -11.20 | -10.74 | 48.11 | -403.19 | -93.80 | - | - | -270.13 | 244.62 | 578.35 | 2102.87 |
|  | 161.76 | 1.93 | 4.58 | 26.74 | 56.51 | 24.79 | - | - | 98.03 | 167.75 | 268.17 | 277.36 |
| 1990 | -281.70 | -4.90 | -19.13 | 25.61 | -332.04 | -131.54 | - | - | -346.44 | 369.38 | 550.82 | 2838.51 |
|  | 132.68 | 0.99 | 3.82 | 16.32 | 44.29 | 20.76 | - | - | 79.85 | 137.35 | 234.92 | 206.95 |
| 1991 | -119.28 | -11.17 | -6.72 | 32.98 | -267.38 | -107.64 | - | - | -55.42 | 192.50 | 459.91 | 2039.88 |
|  | 129.71 | 1.43 | 3.26 | 16.40 | 43.56 | 19.29 | - | - | 61.25 | 134.17 | 196.91 | 194.13 |
| 1992 | -371.61 | -3.37 | -6.71 | 32.89 | -258.60 | -122.22 | - | - | -252.54 | 281.84 | 129.68 | 2477.26 |
|  | 134.55 | 0.97 | 3.62 | 15.92 | 47.54 | 20.36 | - | - | 92.11 | 138.54 | 197.74 | 212.87 |
| 1993 | -560.97 | -0.98 | 3.53 | 27.36 | - | - | -72.25 | -32.07 | 111.35 | 462.86 | -764.13 | 2604.08 |
|  | 206.49 | 1.45 | 4.39 | 28.83 | - | - | 27.99 | 67.92 | 107.51 | 210.81 | 270.43 | 281.79 |
| 1994 | -288.38 | -7.09 | 5.69 | 53.12 | - | - | -68.22 | -47.86 | -20.75 | 288.40 | 150.44 | 1610.38 |
|  | 180.90 | 1.70 | 4.40 | 25.50 | - | - | 24.49 | 75.87 | 87.27 | 186.68 | 254.55 | 275.69 |
| 1995 | -81.10 | -2.64 | 3.50 | 11.03 | - | - | -55.49 | -62.46 | -178.95 | 179.23 | -549.95 | 1902.23 |
|  | 219.68 | 1.37 | 3.85 | 29.93 | - | - | 21.26 | 86.96 | 99.02 | 222.73 | 272.21 | 258.49 |
| 1996 | -489.81 | -4.45 | -2.88 | 52.69 | - | - | -28.11 | -175.17 | -199.33 | 651.05 | -138.95 | 2338.96 |
|  | 204.81 | 1.50 | 4.49 | 30.06 | - | - | 21.34 | 85.08 | 101.79 | 208.42 | 269.85 | 249.96 |
| 1998 | -384.66 | -3.64 | -7.47 | 59.09 | - | - | -89.75 | -418.77 | -383.04 | 502.51 | 258.92 | 2318.12 |
|  | 297.60 | 0.98 | 4.09 | 35.80 | - | - | 25.16 | 92.76 | 117.07 | 300.42 | 249.05 | 282.44 |
| 2000 | -500.38 | -3.10 | -7.89 | 46.56 | - | - | -74.62 | -284.83 | -115.97 | 568.90 | -458.79 | 3000.85 |
|  | 177.74 | 0.85 | 4.34 | 25.40 | - | - | 30.91 | 75.46 | 104.60 | 182.09 | 321.06 | 269.42 |

Source: Authors.
Note: Standard errors are in italics

Figure A1. Maximum Log-likelihood Values with
Tobit-type and Generalized Tobit-type Models


## Appendix B

## Variable Definitions

| Variable <br> age <br> atnonlinc | Age at the time of the interview. <br> (husband's total taxable income + other family members' taxable <br> income - wife's labor income - household's total tax)/1000 |
| :--- | :--- |
| basiceduc | 1 if elementary school degree <br> educ |
| fedrate | Years of education. <br> Federal income tax marginal rate |
| fedtax | Federal income tax payable |
| feduccol | 1 if father attended to college |
| feduchs | 1 if father attended to college |
| fica | Contribution to federal insurance |
| ficarate | Contribution marginal rate to federal insurance <br> Annual hours of work |
| lfp | Labor force participation |
| lkaw | 1 if there was a health condition that limited working (a lot, |
| somewhat or just a little). |  |

## Appendix C

Estimations using Before-tax Wages and Non-Labor Incomes

| Inwage | 1986 | 1988 | 1991 | 1994 | 1999 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 280.37 | -249.79 | -74.57 | -522.90 | -1175.63 | -716.00 |
|  | 223.71 | 258.00 | 160.08 | 257.25 | 658.94 | 239.65 |
| nonlinc | -4.05 | -2.35 | -4.01 | -4.35 | -1.81 | -2.84 |
|  | 1.43 | 0.97 | 1.02 | 1.25 | 0.73 | 0.63 |
| age | -3.96 | -12.52 | 0.22 | 5.33 | -3.99 | -6.58 |
|  | 4.49 | 4.61 | 3.37 | 4.41 | 6.06 | 4.49 |
| educ | -41.59 | 33.00 | -7.10 | 88.21 | 158.45 | 87.38 |
|  | 17.77 | 31.63 | 14.55 | 38.67 | 86.83 | 32.15 |
| nkid1t6 | -225.06 | -360.60 | -125.83 | - | - | - |
|  | 50.10 | 61.03 | 37.84 | - | - | - |
| nkid6t17 | -65.21 | -109.61 | -76.08 | - | - | - |
|  | 27.69 | 27.41 | 19.27 | - | - | - |
| nkid0t17 | - | - | - | -79.60 | -76.53 | -97.59 |
|  | - | - | - | 21.30 | 25.00 | 24.26 |
| whkidt6 | - | - | - | -69.36 | -362.41 | -300.36 |
|  | - | - | - | - | 74.55 | 71.36 |
| Ikaw | -81.45 | -134.13 | 8.15 | -13.61 | -432.81 | -301.37 |
|  | 89.11 | 110.57 | 65.99 | 93.07 | 159.14 | 102.23 |
| cons | 2074.83 | 2412.38 | 2267.08 | 1743.31 | 2892.38 | 3035.95 |
|  | 276.85 | 284.70 | 238.54 | 261.03 | 515.41 | 323.12 |
| sigma1 | 687.38 | 697.85 | 729.65 | 771.73 | 1011.30 | 834.69 |
|  | 134.98 | 180.81 | 175.55 | 254.46 | 558.00 | 262.35 |
| sigma2 | 0.68 | 0.59 | 0.69 | 0.62 | 0.59 | 0.57 |
|  | 0.13 | 0.11 | 0.11 | 0.11 | 0.10 | 0.09 |
| rho12 | 0.10 | 0.27 | 0.34 | 0.49 | 0.78 | 0.59 |
|  | 0.18 | 0.20 | 0.12 | 0.13 | 0.06 | 0.07 |
| rho13 | -0.47 | 0.11 | -0.59 | 0.11 | 0.19 | -0.09 |
|  | 0.14 | 0.27 | 0.08 | 0.25 | 0.13 | 0.20 |
| rho23 | -0.88 | -0.18 | -0.86 | 0.17 | 0.27 | -0.04 |
|  | 0.01 | 0.27 | 0.01 | 0.36 | 0.14 | 0.24 |

Source: Authors.

Variable definitions are in Appendix B.

Table C2. Estimated Wage and Nonlabor Income Elasticities

| Year | Wage <br> Coefficient | Wage <br> Elasticity | Nonlabor <br> Income <br> Coefficient | Nonlabor <br> Income <br> Elasticity |
| :--- | :---: | :---: | :---: | :---: |
| 1986 | 280.367 | 0.186 | -4.045 | -0.102 |
| 1988 | -249.788 | -0.164 | -2.347 | -0.067 |
| 1991 | -74.575 | -0.046 | -4.008 | -0.094 |
| 1994 | -522.902 | -0.324 | -4.348 | -0.122 |
| 1999 | -1175.626 | -0.703 | -1.813 | -0.065 |
| 2001 | -716.000 | -0.425 | -2.163 | -0.084 |
| Source: Authors. |  |  |  |  |

## Appendix D

## Descriptive Statistics for the Whole Sample and for Each Year

| Variable | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: |
| age | 40.99 | 7.88 | 30 | 60 |
| atnonlinc* | 42.81 | 26.61 | -42 | 188 |
| basiceduc | 0.53 | 0.50 | 0 | 1 |
| educ | 13.21 | 2.43 | 1 | 21 |
| fedrate** | 22.85 | 8.17 | -40 | 52 |
| fedtax* | 8.49 | 8.12 | -4 | 102 |
| feduccol | 0.12 | 0.33 | 0 | 1 |
| fica* | 7.26 | 3.84 | 0 | 29 |
| ficarate** | 14.70 | 2.01 | 0 | 15 |
| h | 1258.59 | 878.10 | 0 | 4000 |
| lfp | 0.79 | 0.41 | 0 | 1 |
| lkaw | 0.11 | 0.31 | 0 | 1 |
| lnatwage | 1.44 | 0.92 | -2 | 5 |
| lnwage | 1.90 | 1.11 | -1 | 5 |
| meduccol | 0.08 | 0.27 | 0 | 1 |
| meduchs | 0.46 | 0.50 | 0 | 1 |
| nkid1t6 | 0.34 | 0.65 | 0 | 4 |
| nkid6t17 | 0.97 | 1.07 | 0 | 6 |
| nonlinc* | 47.07 | 27.07 | 0 | 150 |
| northcen | 0.30 | 0.46 | 0 | 1 |
| northest | 0.22 | 0.41 | 0 | 1 |
| south | 0.30 | 0.46 | 0 | 1 |
| unemprate (\%) | 5.82 | 2.30 | 1 | 31 |
| west | 0.18 | 0.38 | 0 | 1 |
| 1920s | 0.04 | 0.20 | 0 | 1 |
| 1930s | 0.12 | 0.32 | 0 | 1 |
| 1940s | 0.27 | 0.45 | 0 | 1 |
| 1950s | 0.44 | 0.50 | 0 | 1 |
| 1960s | 0.23 | 0.42 | 0 | 1 |
| 1970s | 0.06 | 0.23 | 0 | 1 |
| Source: Authors. <br> * Thousands of dollars. <br> ** Effective imputed rate. |  |  |  |  |

Variable definitions are in Appendix B.

Table D2. Summary Statistics by Year

| 1983 |  |  |  |  | 1984 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.724 | 0.447 | 0.0 | 1.0 | lfp | 0.732 | 0.443 | 0.0 | 1.0 |
| h | 1062.365 | 879.284 | 0.0 | 3606.0 | h | 1089.875 | 874.848 | 0.0 | 3232.0 |
| Inatwage | 1.076 | 0.827 | 0.0 | 4.3 | lnatwage | 1.070 | 0.796 | 0.0 | 3.4 |
| atnonlinc | 23.632 | 15.911 | 0.1 | 107.0 | atnonlinc | 24.719 | 15.551 | 0.1 | 105.8 |
| age | 40.994 | 8.715 | 30.0 | 60.0 | age | 40.991 | 8.866 | 30.0 | 60.0 |
| educ | 12.955 | 2.151 | 3.0 | 17.0 | educ | 12.937 | 2.215 | 3.0 | 17.0 |
| lkaw | 0.052 | 0.221 | 0.0 | 1.0 | lkaw | 0.062 | 0.241 | 0.0 | 1.0 |
| nkid1t6 | 0.340 | 0.627 | 0.0 | 3.0 | nkid1t6 | 0.353 | 0.659 | 0.0 | 3.0 |
| nkid6t17 | 0.927 | 1.001 | 0.0 | 4.0 | nkid6t17 | 0.937 | 1.053 | 0.0 | 5.0 |
| northest | 0.198 | 0.399 | 0.0 | 1.0 | northest | 0.246 | 0.431 | 0.0 | 1.0 |
| northcen | 0.294 | 0.456 | 0.0 | 1.0 | northcen | 0.304 | 0.460 | 0.0 | 1.0 |
| south | 0.260 | 0.439 | 0.0 | 1.0 | south | 0.318 | 0.466 | 0.0 | 1.0 |
| west | 0.245 | 0.431 | 0.0 | 1.0 | west | 0.129 | 0.335 | 0.0 | 1.0 |
| meduchs | 0.469 | 0.499 | 0.0 | 1.0 | meduchs | 0.479 | 0.500 | 0.0 | 1.0 |
| educ | 12.955 | 2.15128 | 3.0 | 17.0 | educ | 12.937 | 2.215468 | 3.0 | 17.0 |
| meduccol | 0.071 | 0.257 | 0.0 | 1.0 | meduccol | 0.070 | 0.255 | 0.0 | 1.0 |
| feduccol | 0.118 | 0.323 | 0.0 | 1.0 | feduccol | 0.105 | 0.307 | 0.0 | 1.0 |
| fedtax | 7298.255 | 7818.725 | -500.0 | 89379.0 | fedtax | 7360.409 | 6847.630 | -500.0 | 69550.0 |
| fica | 4249.053 | 1979.896 | 0.0 | 9567.0 | fica | 4726.790 | 2108.172 | 0.0 | 10584.0 |
| fedrate | 25.725 | 9.373 | 0.0 | 44.0 | fedrate | 25.283 | 8.447 | 0.0 | 45.6 |
| ficarate | 13.314 | 1.074 | 0.0 | 13.4 | ficarate | 13.918 | 1.067 | 0.0 | 14.0 |
| 1985 |  |  |  |  | 1986 |  |  |  |  |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.735 | 0.441 | 0.0 | 1.0 | lfp | 0.768 | 0.423 | 0.0 | 1.0 |
| h | 1085.957 | 872.566 | 0.0 | 3430.0 | h | 1178.306 | 879.733 | 0.0 | 3568.0 |
| lnatwage | 1.118 | 0.809 | 0.0 | 4.3 | lnatwage | 1.211 | 0.809 | 0.0 | 3.3 |
| atnonlinc | 25.625 | 15.924 | 0.1 | 103.2 | atnonlinc | 26.081 | 15.948 | 0.0 | 98.3 |
| age | 40.753 | 8.764 | 30.0 | 60.0 | age | 40.590 | 8.464 | 30.0 | 60.0 |
| educ | 13.111 | 2.239 | 3.0 | 17.0 | educ | 13.336 | 2.361 | 5.0 | 21.0 |
| lkaw | 0.068 | 0.251 | 0.0 | 1.0 | lkaw | 0.094 | 0.292 | 0.0 | 1.0 |
| nkid1t6 | 0.351 | 0.664 | 0.0 | 4.0 | nkid1t6 | 0.370 | 0.695 | 0.0 | 4.0 |
| nkid6t17 | 0.967 | 1.045 | 0.0 | 5.0 | nkid6t17 | 0.941 | 1.039 | 0.0 | 5.0 |
| northest | 0.245 | 0.430 | 0.0 | 1.0 | northest | 0.184 | 0.388 | 0.0 | 1.0 |
| northcen | 0.333 | 0.472 | 0.0 | 1.0 | northcen | 0.345 | 0.476 | 0.0 | 1.0 |
| south | 0.298 | 0.458 | 0.0 | 1.0 | south | 0.271 | 0.445 | 0.0 | 1.0 |
| west | 0.117 | 0.321 | 0.0 | 1.0 | west | 0.197 | 0.398 | 0.0 | 1.0 |
| meduchs | 0.487 | 0.500 | 0.0 | 1.0 | meduchs | 0.516 | 0.500 | 0.0 | 1.0 |
| educ | 13.111 | 2.239062 | 3.0 | 17.0 | educ | 13.336 | 2.361062 | 5.0 | 21.0 |
| meduccol | 0.080 | 0.272 | 0.0 | 1.0 | meduccol | 0.092 | 0.289 | 0.0 | 1.0 |
| feduccol | 0.106 | 0.308 | 0.0 | 1.0 | feduccol | 0.137 | 0.344 | 0.0 | 1.0 |
| fedtax | 7606.915 | 7123.363 | -512.0 | 59725.0 | fedtax | 7900.812 | 7289.652 | 0.0 | 66679.0 |
| fica | 4855.936 | 2306.297 | 0.0 | 11167.0 | fica | 5274.962 | 2503.109 | 0.0 | 12012.0 |
| fedrate | 24.854 | 9.113 | 0.0 | 45.9 | fedrate | 24.536 | 9.685 | -10.0 | 46.8 |
| ficarate | 14.018 | 1.074 | 0.0 | 14.1 | ficarate | 14.199 | 1.196 | 0.0 | 14.3 |
| 1987 |  |  |  |  | 1988 |  |  |  |  |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.779 | 0.415 | 0.0 | 1.0 | lfp | 0.794 | 0.405 | 0.0 | 1.0 |
| h | 1222.205 | 878.525 | 0.0 | 3556.0 | h | 1219.559 | 873.583 | 0.0 | 3710.0 |
| lnatwage | 1.296 | 0.852 | 0.0 | 4.1 | lnatwage | 1.331 | 0.879 | 0.0 | 4.0 |
| atnonlinc | 29.125 | 17.366 | 0.4 | 108.8 | atnonlinc | 43.437 | 21.652 | 0.3 | 138.8 |
| age | 40.606 | 8.159 | 30.0 | 60.0 | age | 40.853 | 8.145 | 30.0 | 60.0 |
| educ | 13.271 | 2.207 | 5.0 | 17.0 | educ | 13.391 | 2.388 | 5.0 | 21.0 |
| lkaw | 0.143 | 0.350 | 0.0 | 1.0 | lkaw | 0.136 | 0.343 | 0.0 | 1.0 |
| nkid1t6 | 0.353 | 0.668 | 0.0 | 3.0 | nkid1t6 | 0.330 | 0.634 | 0.0 | 3.0 |
| nkid6t17 | 0.960 | 1.041 | 0.0 | 5.0 | nkid6t17 | 0.933 | 1.068 | 0.0 | 5.0 |
| northest | 0.237 | 0.426 | 0.0 | 1.0 | northest | 0.298 | 0.457 | 0.0 | 1.0 |
| northcen | 0.355 | 0.479 | 0.0 | 1.0 | northcen | 0.262 | 0.440 | 0.0 | 1.0 |
| south | 0.220 | 0.414 | 0.0 | 1.0 | south | 0.248 | 0.432 | 0.0 | 1.0 |
| west | 0.185 | 0.389 | 0.0 | 1.0 | west | 0.189 | 0.392 | 0.0 | 1.0 |
| meduchs | 0.525 | 0.500 | 0.0 | 1.0 | meduchs | 0.532 | 0.499 | 0.0 | 1.0 |
| educ | 13.271 | 2.207335 | 5.0 | 17.0 | educ | 13.391 | 2.388409 | 5.0 | 21.0 |
| meduccol | 0.093 | 0.291 | 0.0 | 1.0 | meduccol | 0.095 | 0.293 | 0.0 | 1.0 |
| feduccol | 0.132 | 0.339 | 0.0 | 1.0 | feduccol | 0.131 | 0.337 | 0.0 | 1.0 |
| fedtax | 7566.868 | 7335.532 | -820.0 | 45584.0 | fedtax | 7285.477 | 6882.240 | -874.0 | 44859.0 |
| fica | 5741.359 | 2522.265 | 0.0 | 12526.0 | fica | 6124.515 | 2809.093 | 0.0 | 13517.0 |
| fedrate | 24.018 | 9.323 | 0.0 | 39.3 | fedrate | 22.043 | 8.031 | 0.0 | 33.0 |
| ficarate | 14.161 | 1.406 | 0.0 | 14.3 | ficarate | 14.872 | 1.486 | 0.0 | 15.0 |


| 1989 |  |  |  |  | 1990 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.815 | 0.389 | 0.0 | 1.0 | lfp | 0.773 | 0.419 | 0.0 | 1.0 |
| h | 1233.151 | 846.065 | 0.0 | 3840.0 | h | 1236.875 | 896.367 | 0.0 | 4000.0 |
| lnatwage | 1.448 | 0.886 | 0.0 | 4.0 | lnatwage | 1.323 | 0.876 | 0.0 | 3.8 |
| atnonlinc | 30.665 | 18.906 | 0.4 | 106.1 | atnonlinc | 48.632 | 30.283 | 0.1 | 188.3 |
| age | 40.232 | 7.821 | 30.0 | 60.0 | age | 41.008 | 8.147 | 30.0 | 60.0 |
| educ | 13.378 | 2.173 | 5.0 | 17.0 | educ | 12.552 | 3.153 | 1.0 | 21.0 |
| lkaw | 0.100 | 0.300 | 0.0 | 1.0 | lkaw | 0.122 | 0.327 | 0.0 | 1.0 |
| nkid1t6 | 0.337 | 0.643 | 0.0 | 3.0 | nkid1t6 | 0.344 | 0.645 | 0.0 | 3.0 |
| nkid6t17 | 0.969 | 1.057 | 0.0 | 5.0 | nkid6t17 | 1.020 | 1.129 | 0.0 | 6.0 |
| northest | 0.298 | 0.458 | 0.0 | 1.0 | northest | 0.172 | 0.378 | 0.0 | 1.0 |
| northcen | 0.287 | 0.453 | 0.0 | 1.0 | northcen | 0.250 | 0.433 | 0.0 | 1.0 |
| south | 0.242 | 0.429 | 0.0 | 1.0 | south | 0.363 | 0.481 | 0.0 | 1.0 |
| west | 0.167 | 0.374 | 0.0 | 1.0 | west | 0.214 | 0.410 | 0.0 | 1.0 |
| meduchs | 0.555 | 0.497 | 0.0 | 1.0 | meduchs | 0.460 | 0.499 | 0.0 | 1.0 |
| educ | 13.378 | 2.17266 | 5.0 | 17.0 | educ | 12.552 | 3.152642 | 1.0 | 21.0 |
| meduccol | 0.097 | 0.297 | 0.0 | 1.0 | meduccol | 0.078 | 0.268 | 0.0 | 1.0 |
| feduccol | 0.135 | 0.342 | 0.0 | 1.0 | feduccol | 0.119 | 0.324 | 0.0 | 1.0 |
| fedtax | 7636.119 | 7310.315 | -910.0 | 52912.0 | fedtax | 6562.172 | 6824.522 | -953.0 | 57074.0 |
| fica | 6376.342 | 3005.572 | 0.0 | 14419.0 | fica | 6193.675 | 3238.133 | 0.0 | 15697.0 |
| fedrate | 22.213 | 7.994 | 0.0 | 33.0 | fedrate | 20.576 | 7.964 | 0.0 | 33.0 |
| ficarate | 11.791 | 6.174 | 0.0 | 15.0 | ficarate | 15.204 | 1.211 | 0.0 | 15.3 |
| 1991 |  |  |  |  | 1992 |  |  |  |  |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.809 | 0.393 | 0.0 | 1.0 | lfp | 0.769 | 0.421 | 0.0 | 1.0 |
| h | 1308.296 | 879.471 | 0.0 | 3984.0 | h | 1225.528 | 898.435 | 0.0 | 3765.0 |
| lnatwage | 1.458 | 0.888 | 0.0 | 4.4 | lnatwage | 1.463 | 0.981 | 0.0 | 4.5 |
| atnonlinc | 29.005 | 19.692 | -42.1 | 108.6 | atnonlinc | 46.672 | 24.445 | 0.4 | 166.4 |
| age | 40.898 | 8.045 | 30.0 | 60.0 | age | 40.901 | 7.741 | 30.0 | 60.0 |
| educ | 12.964 | 2.707 | 5.0 | 21.0 | educ | 12.845 | 2.999 | 1.0 | 21.0 |
| lkaw | 0.107 | 0.309 | 0.0 | 1.0 | lkaw | 0.113 | 0.316 | 0.0 | 1.0 |
| nkid1t6 | 0.323 | 0.638 | 0.0 | 4.0 | nkid1t6 | 0.360 | 0.662 | 0.0 | 4.0 |
| nkid6t17 | 0.972 | 1.083 | 0.0 | 6.0 | nkid6t17 | 1.033 | 1.112 | 0.0 | 6.0 |
| northest | 0.189 | 0.392 | 0.0 | 1.0 | northest | 0.190 | 0.392 | 0.0 | 1.0 |
| northcen | 0.260 | 0.439 | 0.0 | 1.0 | northcen | 0.260 | 0.439 | 0.0 | 1.0 |
| south | 0.349 | 0.477 | 0.0 | 1.0 | south | 0.346 | 0.476 | 0.0 | 1.0 |
| west | 0.199 | 0.399 | 0.0 | 1.0 | west | 0.205 | 0.404 | 0.0 | 1.0 |
| meduchs | 0.492 | 0.500 | 0.0 | 1.0 | meduchs | 0.501 | 0.500 | 0.0 | 1.0 |
| educ | 12.964 | 2.707448 | 5.0 | 21.0 | educ | 12.845 | 2.999375 | 1.0 | 21.0 |
| meduccol | 0.086 | 0.280 | 0.0 | 1.0 | meduccol | 0.090 | 0.287 | 0.0 | 1.0 |
| feduccol | 0.131 | 0.338 | 0.0 | 1.0 | feduccol | 0.135 | 0.342 | 0.0 | 1.0 |
| fedtax | 6664.983 | 6929.807 | -1235.0 | 61549.0 | fedtax | 7901.779 | 7793.148 | -1384.0 | 72696.0 |
| fica | 6789.175 | 3553.104 | 0.0 | 19080.0 | fica | 7476.242 | 3623.971 | 15.0 | 20491.0 |
| fedrate | 20.303 | 8.182 | 0.0 | 36.7 | fedrate | 21.196 | 7.487 | 0.0 | 31.9 |
| ficarate | 15.193 | 1.147 | 2.9 | 15.3 | ficarate | 15.177 | 1.227 | 2.9 | 15.3 |
| 1993 |  |  |  |  | 1994 |  |  |  |  |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.806 | 0.396 | 0.0 | 1.0 | lfp | 0.836 | 0.371 | 0.0 | 1.0 |
| h | 1301.162 | 864.112 | 0.0 | 3854.0 | h | 1337.704 | 838.554 | 0.0 | 3822.0 |
| lnatwage | 1.583 | 0.940 | 0.0 | 4.3 | lnatwage | 1.615 | 0.919 | -0.4 | 4.6 |
| atnonlinc | 49.360 | 23.133 | 0.7 | 143.2 | atnonlinc | 58.000 | 27.828 | 1.3 | 146.7 |
| age | 40.098 | 6.949 | 30.0 | 60.0 | age | 40.303 | 7.195 | 30.0 | 60.0 |
| educ | 13.472 | 2.171 | 5.0 | 21.0 | educ | 13.417 | 2.083 | 5.0 | 18.0 |
| lkaw | 0.106 | 0.308 | 0.0 | 1.0 | lkaw | 0.096 | 0.294 | 0.0 | 1.0 |
| whkidt6 | 0.268 | 0.443 | 0.0 | 1.0 | whkidt6 | 0.256 | 0.436 | 0.0 | 1.0 |
| nkid0t17 | 1.389 | 1.180 | 0.0 | 5.0 | nkid0t17 | 1.356 | 1.194 | 0.0 | 6.0 |
| northest | 0.200 | 0.400 | 0.0 | 1.0 | northest | 0.193 | 0.395 | 0.0 | 1.0 |
| northcen | 0.313 | 0.464 | 0.0 | 1.0 | northcen | 0.334 | 0.472 | 0.0 | 1.0 |
| south | 0.297 | 0.457 | 0.0 | 1.0 | south | 0.284 | 0.451 | 0.0 | 1.0 |
| west | 0.191 | 0.393 | 0.0 | 1.0 | west | 0.157 | 0.364 | 0.0 | 1.0 |
| meduchs | 0.600 | 0.490 | 0.0 | 1.0 | meduchs | 0.589 | 0.492 | 0.0 | 1.0 |
| educ | 13.472 | 2.170649 | 5.0 | 21.0 | educ | 13.417 | 2.083379 | 5.0 | 18.0 |
| meduccol | 0.104 | 0.305 | 0.0 | 1.0 | meduccol | 0.116 | 0.320 | 0.0 | 1.0 |
| feduccol | 0.164 | 0.370 | 0.0 | 1.0 | feduccol | 0.169 | 0.375 | 0.0 | 1.0 |
| fedtax | 9660.294 | 8915.409 | -1511.0 | 60373.0 | fedtax | 9378.040 | 8000.635 | -2528.0 | 59926.0 |
| fica | 8310.889 | 3468.592 | 76.0 | 20084.0 | fica | 8575.335 | 3607.615 | 687.0 | 20829.0 |
| fedrate | 22.941 | 7.290 | 0.0 | 44.1 | fedrate | 22.851 | 6.948 | 0.0 | 44.2 |
| ficarate | 15.180 | 1.217 | 2.9 | 15.3 | ficarate | 15.204 | 1.085 | 2.9 | 15.3 |


| 1995 |  |  |  |  | 1996 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.812 | 0.391 | 0.0 | 1.0 | lfp | 0.813 | 0.390 | 0.0 | 1.0 |
| h | 1318.374 | 850.871 | 0.0 | 3950.0 | h | 1327.015 | 880.307 | 0.0 | 3920.0 |
| lnatwage | 1.558 | 0.922 | 0.0 | 4.1 | lnatwage | 1.605 | 0.944 | 0.0 | 4.3 |
| atnonlinc | 50.846 | 24.644 | 0.6 | 161.7 | atnonlinc | 52.319 | 24.701 | 1.5 | 152.0 |
| age | 40.584 | 7.180 | 30.0 | 60.0 | age | 40.853 | 7.356 | 30.0 | 60.0 |
| educ | 13.331 | 2.052 | 5.0 | 17.0 | educ | 13.429 | 2.118 | 5.0 | 17.0 |
| lkaw | 0.119 | 0.324 | 0.0 | 1.0 | lkaw | 0.122 | 0.327 | 0.0 | 1.0 |
| whkidt6 | 0.255 | 0.436 | 0.0 | 1.0 | whkidt6 | 0.246 | 0.431 | 0.0 | 1.0 |
| nkid0t17 | 1.320 | 1.182 | 0.0 | 6.0 | nkid0t17 | 1.258 | 1.161 | 0.0 | 6.0 |
| northest | 0.209 | 0.407 | 0.0 | 1.0 | northest | 0.210 | 0.407 | 0.0 | 1.0 |
| northcen | 0.330 | 0.470 | 0.0 | 1.0 | northcen | 0.315 | 0.465 | 0.0 | 1.0 |
| south | 0.287 | 0.452 | 0.0 | 1.0 | south | 0.300 | 0.458 | 0.0 | 1.0 |
| west | 0.174 | 0.379 | 0.0 | 1.0 | west | 0.176 | 0.381 | 0.0 | 1.0 |
| meduchs | 0.010 | 0.100 | 0.0 | 1.0 | meduchs | 0.013 | 0.115 | 0.0 | 1.0 |
| educ | 13.331 | 2.051748 | 5.0 | 17.0 | educ | 13.429 | 2.117656 | 5.0 | 17.0 |
| meduccol | 0.002 | 0.041 | 0.0 | 1.0 | meduccol | 0.005 | 0.071 | 0.0 | 1.0 |
| feduccol | 0.005 | 0.071 | 0.0 | 1.0 | feduccol | 0.008 | 0.087 | 0.0 | 1.0 |
| fedtax | 9755.809 | 9189.152 | -2968.0 | 62655.0 | fedtax | 10238.230 | 9111.899 | -3556.0 | 58243.0 |
| fica | 8573.605 | 3845.917 | 260.0 | 21122.0 | fica | 8909.821 | 3905.548 | 91.0 | 21349.0 |
| fedrate | 22.951 | 7.295 | 0.0 | 42.6 | fedrate | 23.330 | 7.355 | 0.0 | 41.9 |
| ficarate | 15.205 | 1.080 | 2.9 | 15.3 | ficarate | 15.23737 | 0.8793717 | 2.9 | 15.3 |
|  |  | 1998 |  |  |  |  | 2000 |  |  |
| Variable | Mean | Std. Dev. | Min | Max | Variable | Mean | Std. Dev. | Min | Max |
| lfp | 0.842 | 0.365 | 0.0 | 1.0 | lfp | 0.838 | 0.369 | 0.0 | 1.0 |
| h | 1407.417 | 855.874 | 0.0 | 3904.0 | h | 1413.684 | 869.846 | 0.0 | 4000.0 |
| lnatwage | 1.721 | 0.923 | -0.2 | 3.6 | lnatwage | 1.809 | 0.964 | -1.5 | 4.1 |
| atnonlinc | 60.828 | 26.847 | 6.4 | 164.8 | atnonlinc | 64.527 | 28.209 | 7.5 | 167.6 |
| age | 42.372 | 7.035 | 30.0 | 60.0 | age | 43.265 | 7.248 | 30.0 | 60.0 |
| educ | 13.634 | 2.052 | 5.0 | 17.0 | educ | 13.723 | 2.051 | 8.0 | 17.0 |
| lkaw | 0.135 | 0.342 | 0.0 | 1.0 | lkaw | 0.130 | 0.336 | 0.0 | 1.0 |
| whkidt6 | 0.214 | 0.410 | 0.0 | 1.0 | whkidt6 | 0.184 | 0.387 | 0.0 | 1.0 |
| nkid0t17 | 1.204 | 1.141 | 0.0 | 6.0 | nkid0t17 | 1.137 | 1.144 | 0.0 | 7.0 |
| northest | 0.191 | 0.394 | 0.0 | 1.0 | northest | 0.195 | 0.397 | 0.0 | 1.0 |
| northcen | 0.359 | 0.480 | 0.0 | 1.0 | northcen | 0.345 | 0.476 | 0.0 | 1.0 |
| south | 0.283 | 0.451 | 0.0 | 1.0 | south | 0.278 | 0.448 | 0.0 | 1.0 |
| west | 0.164 | 0.371 | 0.0 | 1.0 | west | 0.180 | 0.384 | 0.0 | 1.0 |
| meduchs | 0.690 | 0.463 | 0.0 | 1.0 | meduchs | 0.679 | 0.467 | 0.0 | 1.0 |
| educ | 13.634 | 2.052219 | 5.0 | 17.0 | educ | 13.723 | 2.051424 | 8.0 | 17.0 |
| meduccol | 0.092 | 0.289 | 0.0 | 1.0 | meduccol | 0.104 | 0.306 | 0.0 | 1.0 |
| feduccol | 0.134 | 0.341 | 0.0 | 1.0 | feduccol | 0.141 | 0.349 | 0.0 | 1.0 |
| fedtax | 10619.130 | 8498.126 | -3756.0 | 66801.0 | fedtax | 11969.060 | 10005.250 | -3888.0 | 101645.0 |
| fica | 10064.530 | 4083.007 | 0.0 | 22473.0 | fica | 10946.590 | 4656.959 | 918.0 | 28612.0 |
| fedrate | 23.151 | 8.041 | -40.0 | 39.2 | fedrate | 23.976 | 6.879 | 0.0 | 51.8 |
| ficarate | 15.210 | 1.052 | 2.9 | 15.3 | ficarate | 15.117 | 1.495 | 2.9 | 15.3 |

## Appendix E

## Reduced-Form Estimation

This appendix presents reduced-form estimates for the difference-in-differences approach. The first row in each table shows the group effect, defined by cohort and education level, while the first column illustrates the time effect. Each cell represents the interaction effect of the corresponding group and year. Some of cells are empty because of multicollinearity or because the number of observations in those cells is too small (i.e. less than 45). The base year is 1983. Demographic variables such as health, parents' education, regional dummies, children dummy variables, and local unemployment rates are included in each reduced-form estimation. Tables E1 to E3 display results for all years and all cohort groups. Estimation results for subsamples (1983-1989 only, 1990-2000 only, younger cohorts only, and older cohorts only) will be provided upon request.

The strength of the instruments is a relevant question here. The problem of weak instruments has been treated in theoretical and empirical work, including the well-known Angrist and Krueger (1991) study of the returns to schooling using quarter of birth as an instrument (the problem of their instruments was raised by Bound, et al. (1996)). Standard asymptotic theory can be misleading when the instruments are weak as pointed by Nelson and Startz (1990a, b) and Staiger and Stock (1997) among others.

The results presented here suggest that all of the first-stage estimations are statistically valid. All of the regressions show high $R^{2}$ values of over 80 percent, much greater than the guideline commonly used, as suggested by Staiger and Stock (1997).

Table E1. Estimates of the Reduced-Form Wage Equation

|  | Time Effects | Up to High School |  |  |  | More than High School |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | <1940 | 1940-1949 | 1950-1959 | 1960+ | <1940 | 1940-1949 | 1950-1959 | 1960+ |
| Group Effects |  | 1.439 | 1.510 | 1.439 | 1.340 | 1.661 | 1.686 | 1.676 | 1.642 |
|  |  | 0.054 | 0.064 | 0.080 | 0.132 | 0.065 | 0.062 | 0.081 | 0.190 |
| year=84 | 0.079 | -0.148 | -0.140 | - | - | -0.143 | -0.048 | -0.138 | - |
|  | 0.094 | 0.116 | 0.120 | - | - | 0.133 | 0.122 | 0.134 | - |
| year $=85$ | -0.025 | 0.004 | 0.100 | 0.071 | - | -0.023 | 0.045 | - | - |
|  | 0.093 | 0.119 | 0.123 | 0.132 | - | 0.134 | 0.121 | - | - |
| year $=86$ | -0.018 | 0.150 | 0.066 | 0.120 | - | 0.038 | 0.176 | - | - |
|  | 0.089 | 0.116 | 0.118 | 0.126 | - | 0.133 | 0.117 | - | - |
| year=87 | 0.162 | 0.027 | -0.090 | 0.043 | - | - | -0.011 | -0.029 | - |
|  | 0.101 | 0.124 | 0.128 | 0.135 | - | - | 0.119 | 0.134 | - |
| year=88 | 0.239 | -0.130 | -0.159 | -0.141 | - | - | - | -0.078 | - |
|  | 0.067 | 0.102 | 0.104 | 0.110 | - | - | - | 0.110 | - |
| year=89 | 0.313 | -0.121 | -0.180 | -0.113 | - | - | 0.040 | -0.055 | - |
|  | 0.131 | 0.155 | 0.155 | 0.158 | - | - | 0.146 | 0.157 | - |
| year=90 | 0.110 | 0.065 | 0.052 | 0.090 | - | 0.106 | 0.220 | 0.145 | - |
|  | 0.161 | 0.166 | 0.176 | 0.180 | - | 0.185 | 0.174 | 0.181 | - |
| year=91 | 0.514 | -0.325 | -0.247 | -0.247 | -0.369 | - | -0.112 | -0.143 | -0.182 |
|  | 0.105 | 0.124 | 0.127 | 0.133 | 0.174 | - | 0.120 | 0.133 | 0.219 |
| year=92 | 0.612 | -0.335 | -0.219 | -0.222 | -0.191 | - | -0.124 | -0.205 | -0.172 |
|  | 0.116 | 0.137 | 0.136 | 0.142 | 0.177 | - | 0.129 | 0.142 | 0.222 |
| year=93 | 0.400 | - | 0.002 | 0.047 | - | - | 0.064 | 0.093 | 0.102 |
|  | 0.109 | - | 0.136 | 0.139 | - | - | 0.132 | 0.139 | 0.164 |
| year=94 | 0.362 | - | 0.003 | 0.087 | -0.061 | - | 0.126 | 0.096 | 0.075 |
|  | 0.114 | - | 0.140 | 0.143 | 0.172 | - | 0.137 | 0.142 | 0.218 |
| year=95 | 0.395 | - | -0.025 | 0.061 | 0.033 | - | 0.109 | 0.142 | 0.228 |
|  | 0.109 | - | 0.135 | 0.138 | 0.165 | - | 0.132 | 0.138 | 0.213 |
| year=96 | 0.477 | - | -0.113 | -0.009 | 0.069 | - | 0.065 | 0.115 | 0.162 |
|  | 0.132 | - | 0.157 | 0.157 | 0.181 | - | 0.150 | 0.157 | 0.225 |
| year=98 | 1.172 | - | -0.840 | -0.663 | -0.644 | - | -0.696 | -0.639 | -0.629 |
|  | 0.560 | - | 0.567 | 0.567 | 0.573 | - | 0.566 | 0.566 | 0.589 |
| year $=00$ | 0.583 | - | -0.025 | - | 0.031 | - | 0.037 | 0.066 | 0.031 |
|  | 0.088 | - | 0.133 | - | 0.163 | - | 0.121 | 0.122 | 0.211 |
| health | -0.093 |  |  |  |  |  |  |  |  |
|  | 0.017 |  |  |  |  |  |  |  |  |


|  |  | Other Coefficients |  |
| :---: | :---: | :---: | :---: |
| Regional Dummies | Parents' Education |  |  |
| northest | 0.074 | meduchs | 0.051 |
|  | 0.016 |  | 0.014 |
| northcen | -0.090 | feduchs | 0.055 |
|  | 0.015 |  | 0.013 |
| south | -0.043 | meduccol | 0.088 |
|  | 0.015 |  | 0.023 |
| unemprate | -0.008 | feduccol | 0.121 |
|  | 0.003 |  | 0.020 |
| Youngest Child <6 | -0.031 |  |  |
|  | 0.016 |  |  |
| Youngest Child 6-17 | -0.099 |  |  |
|  | 0.013 |  |  |

Source: Authors.
Notes: The adjusted R-squared is 0.916
Missing cells are due to multicollinearity and a small number of observations ( $<45$ ).

Table E2. Estimates of the Reduced-Form for Non-Labor Income


Other Coefficients

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Regional Dummies |  | Parents' Education |  |
| northest | 5.425 | meduchs | 2.547 |
|  | 0.554 |  | 0.484 |
| northcen | 0.298 | feduchs | 3.638 |
|  | 0.518 |  | 0.473 |
| south | -2.122 | meduccol | 5.126 |
|  | 0.517 |  | 0.827 |
|  |  | feduccol | 7.109 |
| unemprate | -0.489 |  | 0.703 |
|  | 0.087 |  |  |
| Youngest Child <6 | 1.902 |  |  |
|  | 0.557 |  |  |
| Youngest Child 6-17 | 1.789 |  |  |
|  | 0.457 |  |  |

Source: Authors.
Notes: The adjusted R-squared is 0.916 .
Missing cells are due to multicollinearity and a small number of observations (<45).

Table E3. Estimates of the Reduced-Form of the Participation Probit

|  | Time Effects | Up to High School |  |  |  | More than High School |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | <1940 | 1940-1949 | 1950-1959 | 1960+ | $<1940$ | 1940-1949 | 1950-1959 | 1960+ |
| Group Effects |  | 0.617 | 0.851 | 1.050 | 1.187 | 1.114 | 1.232 | 0.996 | 1.904 |
|  |  | 0.109 | 0.132 | 0.168 | 0.277 | 0.152 | 0.144 | 0.164 | 0.435 |
| year=84 | -0.002 | -0.105 | 0.101 | - | - | -0.016 | 0.005 | 0.058 | - |
|  | 0.196 | 0.235 | 0.250 |  |  | 0.303 | 0.273 | 0.274 |  |
| year=85 | 0.058 | -0.233 | -0.042 | -0.116 | - | -0.140 | 0.058 | - | - |
|  | 0.187 | 0.233 | 0.250 | 0.271 |  | 0.295 | 0.268 |  |  |
| year=86 | 0.348 | -0.409 | -0.183 | -0.182 | - | -0.476 | -0.364 | - | - |
|  | 0.185 | 0.233 | 0.249 | 0.268 |  | 0.295 | 0.261 |  |  |
| year=87 | -0.171 | 0.011 | 0.307 | 0.412 | - | - | 0.243 | 0.364 | - |
|  | 0.232 | 0.265 | 0.285 | 0.302 |  |  | 0.283 | 0.294 |  |
| year=88 | -0.029 | -0.023 | 0.093 | 0.384 | - | - | - | 0.295 | - |
|  | 0.160 | 0.216 | 0.231 | 0.253 |  |  |  | 0.241 |  |
| year=89 | -0.336 | 0.210 | 0.460 | 0.480 | - | - | 0.652 | 0.684 | - |
|  | 0.289 | 0.327 | 0.340 | 0.345 |  |  | 0.345 | 0.340 |  |
| year=90 | -0.241 | 0.094 | 0.194 | 0.429 | - | -0.073 | 0.140 | 0.658 | - |
|  | 0.326 | 0.331 | 0.357 | 0.370 |  | 0.384 | 0.365 | 0.369 |  |
| year=91 | 0.040 | -0.043 | 0.004 | 0.276 | -0.133 | - | 0.020 | 0.416 | -0.384 |
|  | 0.255 | 0.281 | 0.295 | 0.309 | 0.384 |  | 0.293 | 0.307 | 0.518 |
| year=92 | -0.273 | 0.161 | 0.278 | 0.458 | -0.062 | - | 0.273 | 0.584 | -0.209 |
|  | 0.253 | 0.284 | 0.293 | 0.307 | 0.372 |  | 0.291 | 0.305 | 0.504 |
| year=93 | 0.006 | - | 0.072 | 0.133 | - | - | 0.049 | 0.258 | -0.642 |
|  | 0.218 |  | 0.278 | 0.286 |  |  | 0.289 | 0.282 | 0.394 |
| year=94 | -0.130 | - | 0.392 | 0.292 | 0.214 | - | 0.155 | 0.651 | -0.525 |
|  | 0.220 |  | 0.288 | 0.290 | 0.355 |  | 0.296 | 0.290 | 0.484 |
| year=95 | -0.170 | - | 0.246 | 0.314 | 0.246 | - | 0.248 | 0.535 | -0.342 |
|  | 0.207 |  | 0.267 | 0.274 | 0.336 |  | 0.280 | 0.272 | 0.473 |
| year=96 | -0.365 | - | 0.107 | 0.482 | 0.504 | - | 0.500 | 0.845 | -0.071 |
|  | 0.237 |  | 0.288 | 0.298 | 0.354 |  | 0.304 | 0.298 | 0.485 |
| year=98 | -0.390 | - | 0.365 | 0.781 | 0.395 | - | 0.413 | 0.897 | -0.291 |
|  | 0.931 |  | 0.951 | 0.953 | 0.968 |  | 0.954 | 0.950 | 1.022 |
| year=00 | 0.144 | - | -0.299 | - | -0.138 | - | -0.297 | 0.201 | -0.883 |
|  | 0.197 |  | 0.284 |  | 0.351 |  | 0.281 | 0.269 | 0.480 |
| health | -0.442 |  |  |  |  |  |  |  |  |
|  | 0.035 |  |  |  |  |  |  |  |  |
|  | Other Coefficients |  |  |  |  |  |  |  |  |
| Regional Dummies northest |  | Parents' Education |  |  |  |  |  |  |  |
|  | 0.037 |  | meduchs | 0.081 |  |  |  |  |  |
|  | 0.037 |  |  | 0.032 |  |  |  |  |  |
| northcen | 0.105 |  | feduchs | 0.029 |  |  |  |  |  |
|  | 0.035 |  |  | 0.032 |  |  |  |  |  |
| south | 0.033 |  | meduccol | 0.048 |  |  |  |  |  |
|  | 0.034 |  |  | 0.057 |  |  |  |  |  |
| unemprate | -0.029 |  | feduccol | 0.040 |  |  |  |  |  |
|  | 0.006 |  |  | 0.048 |  |  |  |  |  |
| Youngest Child <6 | -0.526 |  |  |  |  |  |  |  |  |
|  | 0.038 |  |  |  |  |  |  |  |  |
| Youngest Child 6-17 | -0.067 |  |  |  |  |  |  |  |  |
|  | 0.032 |  |  |  |  |  |  |  |  |

Source: Authors.
Notes: The adjusted R-squared is 0.916 .
Missing cells are due to multicollinearity and a small number of observations (<45).

## Appendix F

## Computation of the Standard Errors

The model we consider for the two-step method and difference-in-difference estimation has the form:

$$
y_{i}=x_{i}{ }^{\prime} \beta+\sum_{k=1}^{K} \delta_{k} \hat{z}_{i}^{k}+v_{i}
$$

where $i$ denotes individuals (with the sample size $n$ ), $x_{i}$ contains all the regressors of the model including the time and the group dummies for the difference-in-difference estimation, and $\hat{Z}_{i}=\left(\begin{array}{lll}\hat{Z}_{i} & \ldots & \hat{Z}_{i}^{K}\end{array}\right)^{\prime}$ is the vector of estimated residuals and/or the inverse Mill's ratio used as correction terms. Let the $k$-th estimated correction term be defined as $\hat{Z}_{i}^{k}=s_{k}\left(m_{i}^{k} \hat{\gamma}_{k}\right)$ for a smooth function of $s_{k}(\cdot)$ and $\hat{\gamma}_{k}$ be the $q_{k} \times 1$ vector of coefficients in the $k$-th reduced form. Finally, denote $\hat{Q}_{i}=\left(x_{i}{ }^{\prime} \quad \hat{z}_{i}\right)^{\prime}$ ' and $Q_{i}=\left(\begin{array}{ll}x_{i}{ }^{\prime} & z_{i}\end{array}\right)^{\prime}$, where $z_{i}$ represents the residuals evaluated at the true parameter estimates, thus we can write $z_{i}^{k}=s_{k}\left(m_{i}^{k} \gamma_{k}\right)$.

Here we assume:

Assumption F1: $\frac{n}{n_{k}} \rightarrow p_{k}$ with $0<p_{k}<1$ as $n_{k} \rightarrow \infty$ and $n \rightarrow \infty$ for $k=1, \ldots, K$.
Assumption F2:
$p \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \hat{Q_{i}} \hat{Q}_{i}{ }^{\prime}=p \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} Q_{i} Q_{i}{ }^{\prime}$ and $p \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \hat{Q_{i}} \hat{\Gamma}_{i}^{{ }^{\prime}}{ }^{\prime}=p \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} Q_{i} \Gamma_{i}^{k}{ }^{\prime}, k=1, \ldots, K$.
Assumption F3: $p \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \hat{v}_{i}^{2} \hat{Q}_{i} \hat{Q}_{i}{ }^{\prime}=E\left[v_{i}{ }^{2} Q_{i} Q_{i}{ }^{\prime}\right]$ and $E\left(\left\|v_{i} Q_{i}\right\|^{2}\right)<\infty$.
Assumption F4: $\sqrt{n_{k}}\left(\hat{\gamma}_{k}-\gamma_{k}\right) \xrightarrow{d} N\left(0, \Omega_{k}\right)$ and $\hat{\Omega}_{k}=\Omega_{k}+o_{p}(1)$,
where $\hat{\Gamma}_{i}^{k}\left(\Gamma_{i}^{k}\right)$ denotes the derivative of $s_{k}\left(m_{i}^{k} \hat{\gamma}_{k}\right)\left(s_{k}\left(m_{i}^{k} \gamma_{k}\right)\right)$ with respect to $\gamma_{k}$, respectively.

Assumption F1 is clearly satisfied in our model. Assumption F2 through F4 can be justified under some regularity conditions as usual. Now let $\hat{Q}$ represent the entire sample for the $x$ and $\hat{z}$ variables and define $\hat{\Gamma}^{k}$ to be the $n \times q_{k}$ matrix whose $i$-th row is given by the derivative of $s_{k}\left(m_{i}^{k} \hat{\gamma}_{k}\right)$ with respect to $\gamma_{k}{ }^{\prime}$. Finally, let $\theta=\left(\begin{array}{llll}\beta^{\prime} & \delta_{1} & \ldots & \delta_{K}\end{array}\right)^{\prime}$ and then given Assumptions F1-F4, we can estimate the asymptotic covariance of $\hat{\theta}$ as:

$$
\begin{equation*}
V(\hat{\theta})=\left(\hat{Q}^{\prime} \hat{Q}\right)^{-1}\left[\sum_{i=1}^{n} \hat{v}_{i}^{2} \hat{Q}_{i} \hat{Q}_{i}^{\prime}+\sum_{k=1}^{K} \hat{\delta}_{k}^{2} \hat{Q}^{\prime} \hat{\Gamma}^{k} \frac{\hat{\Omega}_{k}}{n_{k}} \hat{\Gamma}^{k} ' \hat{Q}\right]\left(\hat{Q} \hat{Q}^{\prime} \hat{Q}\right)^{-1}, \tag{FE1}
\end{equation*}
$$

where $\frac{\hat{\Omega}_{k}}{n_{k}}$ is the asymptotic variance of $\hat{\gamma}_{k}$.

Here, we note that the covariance matrix is robust to possible heteroskedasticity and corrects for the effects of estimated correction terms. In this formula, we ignore the covariance of the reduced form coefficients $\hat{\gamma}_{k}$ across the $k=1, \ldots, K$ reduced forms, for computational simplicity, as Blundell et al. (1998) did. We also note that if the absolute values of $\hat{\delta}_{k}$ 's are small, then the usual standard errors formula without correction will give us very similar results with the corrected standard errors based on (FE1).

Practically we can decompose (FE1) into two parts:
$V_{1}(\hat{\theta})=\left(\hat{Q}^{\prime} \hat{Q}\right)^{-1}\left[\sum_{i=1}^{n} \hat{v}_{i}^{2} \hat{Q}_{i} \hat{Q}_{i}^{\prime}\right]\left(\hat{Q}^{\prime} \hat{Q}\right)^{-1}$ and
$V_{2}(\hat{\theta})=\left(\hat{Q}^{\prime} \hat{Q}\right)^{-1}\left[\sum_{k=1}^{K} \hat{\delta}_{k}^{2} \hat{Q}^{\prime} \hat{\Gamma}^{k} \frac{\hat{\Omega}_{k}}{n_{k}} \hat{\Gamma}^{k} \hat{Q}^{\prime}\right]\left(\hat{Q}^{\prime} \hat{Q}\right)^{-1}$.
$V_{1}(\hat{\theta})$ is the covariance matrix that one will obtain using "robust" option in STATA. $V_{2}(\hat{\theta})$ requires a separate STATA programming, which could be cumbersome. Thanks to Hardin (2002) we can overcome this computational burden. The authors would like to thank James W. Hardin for providing us a copy of his paper, Hardin (2002).

Table F1 illustrates how much a usual inference without correction for the estimated residuals and estimated inverse Mill's ratio underestimates the standard errors. For comparison, we present three alternative standard errors for the models considered in Table 9; under homoskedasticity assumption (HOM S.E.), heteroskedasticity robust ones (HET S.E.), and twostep estimation robust ones (TSE S.E.) based on (FE1). For example, in the subsample estimation of 1983-1989, standard errors of wage effects are underestimated around 4 percent under the homoskedasticity assumption without correction, if compared to the corrected ones; while in the subsample of 1990-2000, standard errors of wage effects are underestimated around 14 percent.
Table F1. Comparison of Standard Errors



[^0]:    ${ }^{1}$ We thank the Congressional Budget Office for the opportunity to work on this project as members of its Summer Internship Program. We also thank David Brauer, Eva De Francisco, Tom DeLeire, Ufuk Demiroglu, Bob Dennis, Doug Hamilton, Joe Kile, Kim Kowalewski, Rob McClellan, Ben Page, and Frank Russek, as well as other participants of the CBO seminar series, for their useful comments.
    ${ }^{2}$ Possible explanations for the difference include the responsibility for child care and cultural elements. In this paper, married women are classified as "secondary workers" when their husbands are working and receiving a paycheck.

[^1]:    ${ }^{3}$ Blundell, et al. (1998) did not find strong arguments to support bunching around the kink in the UK, a country where the tax system is far less complicated (only two well identified brackets) than the US tax system in terms of number of brackets, and

[^2]:    thus, number of kinks. Moreover, the U.S. tax system has been subject recently to multiple changes in a relatively short period of time; a fact that we believe can deter individuals from deciding their hours of work based on current tax rates.
    ${ }^{4}$ In an earlier version of this paper, we also treated children variables as endogenous.

[^3]:    ${ }^{5}$ We estimate the two models using both before- and after-tax wages and incomes. It turns out that accounting for taxes makes little difference to the estimates.

[^4]:    ${ }^{6}$ We used both OLS and IV estimates for each year as initial values following Mroz (1987).

[^5]:    ${ }^{7}$ This is a standard cut-off, although alternatives could be used. Given the importance of a college degree in the labor market, this cut-off is useful for identifying differences in individuals' labor supply behavior.

[^6]:    ${ }^{8}$ We could estimate reduced-form equations for the children dummy variables using a probability index model such as a probit. However, the treatment of dummy endogenous variables in a censored equation is beyond the scope of this paper. See Heckman (1978) and Kim (2004) for a discussion of the issue.

[^7]:    ${ }^{9}$ This limit makes the nonlabor income distribution in our 1986 sample more similar to that in Zabel's (1993) sample.
    ${ }^{10}$ This upper bound is the total number of hours for a person who works two 8-hour jobs per day, 5 days a week with no vacations.
    ${ }^{11}$ The number of individuals deleted for the first four criteria never exceeded $5 \%$ of observations for any criterion in any year.

[^8]:    ${ }^{12}$ For instance, (i) there was a change from pencil and paper to computer-assisted telephone interview in 1994; (ii) after 1996, about 2,000 low-income families were dropped from the sample; (iii) a sample of families who immigrated to the U.S. since 1968 was added in 1997; and (iv) the length of the interview was doubled from 1995 to 1999. See Gouskova and Schoeni (2002) for more details on the reliability of income data from the PSID and their remarkable similarity to the March Current Population Survey.

[^9]:    ${ }^{13}$ The overall tax rate includes federal, state and FICA taxes. City tax rates cannot be computed because individuals' city of residency is unavailable.
    ${ }^{14}$ We compared the tax data returned by this software with tax data reported by individuals in the survey for comparable years and we did not find significant differences. Nevertheless, we used TAXSIM data because we think it provides a relevant overall effective tax rate.

[^10]:    ${ }^{15}$ Additional estimation results are in Appendix A. Appendix B shows that the estimation results from the generalized Tobit-type model using before-tax variables are very similar to those using after-tax wage and income.

[^11]:    ${ }^{16}$ The upper bound of compensated wage elasticities can be obtained by subtracting the income elasticities (adjusted by a factor smaller or equal to one) from the uncompensated wage elasticities.

[^12]:    ${ }^{17}$ See Appendix A.
    ${ }^{18}$ Kim and Rodríguez-Pueblita (2004).

[^13]:    ${ }^{19}$ Appendix E presents reduced-form estimates of the wage, non-labor income, and participation equations.

[^14]:    ${ }^{20}$ Assuming the covariance between the wage elasticity and the income elasticity is positive, the range of standard errors is 0.074 to 0.104 for the 'no children' case in the $1983-2000$ panel and 0.098 to 0.138 for the 'no children' case in the 1990-2000 panel.

[^15]:    ${ }^{21}$ We should note that there are several other papers reporting little or no changes in job stability including Farber (1998), Diebold, Neumark, and Polsky (1997), and Jaeger and Stevens (1999).

