TESTIMONY OF GREGORY K. DELWICHE VICE PRESIDENT, ENVIRONMENT, FISH AND WILDLIFE BONNEVILLE POWER ADMINISTRATION UNITED STATES DEPARTMENT OF ENERGY

TESTIMONY ON

IMPLEMENTATION OF H.R. 4857 PROVISIONS TO INCLUDE IN CUSTOMER BILLINGS INFORMATION ON COSTS INCURRED TO COMPLY WITH THE ENDANGERED SPECIES ACT BY THE FEDERAL POWER MARKETING ADMINISTRATIONS

BEFORE THE

COMMITTEE ON RESOURCES
UNITED STATES HOUSE OF REPRESENTATIVES

MARCH 16, 2006

Madam Chairwoman and Members of the Committee, I appreciate the opportunity to be here today to discuss H. R. 4857 which would, if enacted, direct the Administrators of the Federal Power Marketing Administrations (PMA) to include on customers' monthly bills information about the costs the PMAs are incurring to comply with the Endangered Species Act (ESA).

ESA compliance costs incurred by Bonneville Power Administration (Bonneville) include the power share of debt service and operations and maintenance expense for fish passage facilities at Federal Columbia and Snake River Dams; the economic effects of operational changes at those dams to benefit fish, such as flow and spill; and off-site mitigation costs for hatcheries and habitat restoration. These costs are far easier to report as a percentage of BPA's total costs than as a specific amount borne by each customer; therefore, it would be BPA's preference to display that percentage on each power bill.

In the proposed legislation, we would consider "direct costs" to include debt service and operations and maintenance costs for fish facilities and off-site mitigation costs; and "indirect costs" to include the economic effects of flow and spill changes. Many of Bonneville's fish and wildlife mitigation costs relate to actions undertaken for both ESA compliance and for fish and wildlife mitigation under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (NWPA). Because of this, it would be Bonneville's preference to report the combined total of these costs, rather than reporting on the ESA-only compliance costs, which only partially represent the fish and wildlife mitigation recovery efforts funded by Bonneville. For Fiscal Year 2007, Bonneville estimates that these costs will total approximately \$700 million, or about 30 percent of Bonneville's power rates.

In my testimony today, I will discuss the approach Bonneville would intend to use for providing ESA-related cost information.

APPROACH FOR PROVIDING COST INFORMATION

Bonneville believes that providing ESA- and NWPA-related cost information on customer bills as a percentage of Bonneville's overall power service costs would be consistent with the bill's requirement that monthly customer billings include estimates and reports of the customer's share of the direct and indirect costs incurred by the Administrator related to fish and wildlife mitigation. The information necessary to report these costs as a percentage is much more readily available and efficiently calculated than that needed to specify costs applicable to each type of service and specific product(s) purchased by a customer. It is therefore the approach that Bonneville proposes to follow if the bill is enacted into law.

An alternative approach of developing a specific calculation of mitigation costs for each power customer would be extremely complicated to put into practice. This is because, unlike a retail utility bill, many of Bonneville's customer bills are based on services provided under more than one contract, and each contract often involves more than one rate schedule and applies to a variety of services. Each service is billed on the basis of what is called a "billing determinant." A billing determinant is a measure of electric power usage at a customer's metered point of delivery used in the computation of a customer's bill for the particular service for which they are being charged. Consequently, calculating these costs for each customer, given their unique and

individual mix of products, would require development of very complicated algorithms. We do not believe this is intended by the bill.

Therefore, in order to clearly show customers what percentage of their bill is attributable to direct and indirect ESA-related costs, Bonneville would calculate the percentage of its overall power costs attributable to ESA-and NWPA-related activities and investments, and specify that percentage on the customer's bill. This level of information would be system-specific, but not customer-specific, and could be shown on the summary page on each customer's bill, immediately under the line showing the total (see Attachment 1). Application of the percentage to the customer's monthly bill would tell the customer its estimated cost responsibility that month for fish and wildlife mitigation actions. As noted earlier, the reported costs would include both direct and indirect costs, the latter of which, per Section 2(c) of the proposed legislation, include foregone generation and replacement power costs and associated transmission costs. In economic terms, such costs are often called "opportunity" costs. While these are real costs, in that they impact Bonneville rates, we recognize there is substantial debate as to how water in the system should be allocated between competing uses.

CONCLUSION

In conclusion, the Administration shares the interest in accountability that prompts this legislation. Power bills result from complicated calculations and the public debate about what affects power rates often strays from hard numbers. H.R. 4857 would take a step toward clarifying the matter. There are many ideas in the legislation that are feasible and many concepts that are in line with the overall Administration policy in terms of properly reflecting the costs of regulation to the ratepayers. The Administration has no position on the legislation at this time, but there are many concepts in the legislation which the Administration would not oppose. The Administration is still studying the legislation as a whole and looks forward to participating in the broader debate as it unfolds.

Bonneville believes that the approach of specifying Bonneville's ESA-and NWPA-related costs as a percentage of Bonneville's overall power service costs in monthly customer billings would be consistent with the bill's requirement that those billings include estimates and reports of the customer's share of the direct and indirect costs incurred by the Administrator related to ESA compliance. It is an approach that is readily and efficiently calculated, and it is the approach that Bonneville proposes to follow if the bill is enacted into law. Bonneville recommends the approach of reporting its combined ESA-related and NWPA fish and wildlife mitigation costs assigned to power as a percentage of total power costs. While this would be an approximation of the actual amount of cost recovered from each individual customer, it would seem to be consistent with the intent behind this proposed legislation and the information would be more readily available and efficiently calculated.

I thank the members of the Committee for the opportunity to offer this testimony and welcome any questions you may have at this time.

ATTACHMENT 1

SAMPLE BONNEVILLE POWER ADMINISTRATION CUSTOMER POWER BILL

Bonneville POWER ADMINISTRATION

POWER BILL FINAL

Bill ID:

DECOS-PWROL

Issue Date

January 05, 2006

Bill Period:

December 2005

Period Ending:

Due on or before

December 31, 2005

PAYMENT SUMMARY

Total Amount Calculated For This Bill

\$1,434,663

Total Amount Due

\$1,434,663

PAY THIS AMOUNT TO:

Bonneville Power Administration

\$1,434,663

FINAL

anuary 25, 2006

Data should be paid by electronic funds transfer unless otherwise specifically provided. If pre-approved by BPA, mail check or mone order payable to Bouneville Power Administration, P O Box 894196, Los Angeles, CA 90189-4196 and send a copy of the bill or writidentifiable account numbers on or attached to your check.

Late payment charges will be assessed if this bill is not paid on or before the close of business on the due date. See Section I.B and C of the Grazzal Rates Schedule effective October 1, 2001. All debts are subject to collection under applicable Federal laws.

Thank you, we appreciate your business.

POWER BILL

Purchaser:

Issue Date:

Invoice Number:

DEC05-PWR01-M01-

January 05, 2006

Billing Period:

December 2005

Period Ending:

December 31, 2005

GENERATION

Rate Schedule	Service Description	Contract Number	Service Amount	Servio Unit	-	Rate	Revenue \$	
PF-02	Demand		68,466	kW	@	2.8700000	196,497	
PF-02	FB Demand		68,466	ĿW	@	0.1000000	6,847	
PF-02	SN Demand		68,466	kW	@	0.0400000	2,739	
PF-02	Energy HLH Flat		22,662,246	kWh	@	0.0281800	638,622	
PF-02	FB Energy HLH Flat		22,662,246	kWh	@	0.0010000	22,662	
PF-02	SN Energy HLH Flat		22,662,246	kWh	@	0.0004000	9,065	
PF-02	Energy LLH Flat		12,494,204	kWh	@	0.0216100	270,000	
PF-02	FB Energy LLH Flat		12,494,204	kW5	@	0.0007700	9,621	
PF-02	SN Energy LLH Flat		12,494,204	አ ₩ħ	@	0.0003000	3,748	
PF-02	Load Variance		46,316,450	kWb	@	0.0010000	46,316	
PF-02	FB Load Variance	-	46,316,450	kWh	@	0.0000400	1,853	
PF-02	SN Load Variance		16,316,430	kWh	æ	0.0000100	463	
PF-02	LB CRAC True Up		3,678,806	Del	a /	0.0022860	8,410	17.
FPS-96R	Energy HLH		6,480,000	kWh	0	0.0206700	133,942	-
FPS-96R	Energy LLH	-	4,680,000	1Wh	@	0.0206700	96,736	
	C&R Discount		-25,715,345	kWh	@	0.0005000	(12,858)	2_/

Total		\$1,434,663

Notes:

Questions concerning this POWER BILL may be directed to Rod Kelley, (503) 230-7546. Mail inquiries may be directed to Bonneville Power Administration; Revenue, Metering and Contract Analysis - PSR; PO Box 2784; Portland, OR 97208-2784.

¹_/ The LB CRAC True Up is computed by multiplying the customer's Net Non-Slice LB CRAC revenues for Apr - Sep times the Non-Slice Adjustment Factor. Net Non-Slice LB CRAC revenues = Actual dollars received from the sale of energy, capacity and load variance products with LDD and C&RD subtracted out. This includes adjustments for the Apr - Sep revenues made through 11/10/05. The Adjustment Factor used in this calculation appears in the bill's rate column for illustration. The Adjustment Factor itself is not a rate nor does it modify any previously published rate.

²_/ Conservation and Renewables Discount monthly credit is 1/12 of annual eligibility, which is determined by net requirements forecast. To obtain the cumulative value of monthly eligibility, access the RTF web site or eligibility letter.

U.S. Department of Energy BONNEVILLE POWER ADMINISTRATION POWER ATTACHMENT

40II 1173+	DESCRIPTION OF LAND			Bill Period:				
Bill ID: DEC06-PWR01-M01					Pe	riod Ending:	December 31, 2005	
GENERATION								
Monthly Federal Generation System Peak			12/15 @ 1800	(Power Supply Acco		Supply Accou	int 202100)	
		Meter		Meter	Loss		kW After	
POD's/Meter Poli	nts	No.		Fac	tor		Losses	
Nehalem			1	1.00	142		6,909	
South Fork (In	n)			(1.01	118)		0	
South Fork (Out) 1				1.01	118		223	
Beaver	-			1.01	122		3,274	
Garibaldi 2				1.00	58		9,334	
Mohler				1.00			4,314	
Tillamook # 2			l	1.00			11,673	
Tillamook # 2	Reverse			(1.00			0	
Tillamook # 3				1.00			6,541	
Tillamook # 4				1.00	45		23,104	
Trask River C	Dut ³			1.00	40		7.410	
Hebo				1.00	38		2,750	
Nestucca Out	l .			1.0018			7,934	
							83,466	
Demand Charge								
Demand	. Stock		83,466	kW				
Demand Less Energy	/ Block		(15,000)	kW	_	\$0.070000		*****
Demand Less Energy Demand	/ Block		(15,000) 68,466	kW	0	\$2.870000		
Demand Less Energy	Block		(15,000) 68,466 68,466	kW kW		\$0.100000		\$6,84
Demand Less Energy Demand FB Demand	/ Block		(15,000) 68,466	kW kW kW	8			\$196,49 \$6,84 \$2,73
Demand Less Energy Demand FB Demand SN Demand	/ Block	Meter	(15,000) 68,466 68,466	kW kW kW kW	6 6 Loss	\$0.100000	kWh After	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge		Meter	(15,000) 68,466 68,466	kW kW kW Meter	© @ Loss tor	\$0.100000	kWh After Losses	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH	Nohalem		(15,000) 68,466 68,466	kW kW kW kW Meter Fac 1.00	E Loss	\$0.100000	kWh After Losses 2,496,222	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH	Nehalem South Fork (In)		(15,000) 68,466 68,466	kW kW kW Meter Fac 1.00 (1.02	E Loss tor (60 (275)	\$0.100000	kWh After Losses 2,496,222 0	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH HLH	Nehalem South Fork (In) South Fork (Out)		(15,000) 68,466 68,466	kW kW kW Meter Fac 1.00 (1.03	6 6 E E E E E E E E E E E E E E E E E E	\$0.100000	kWh After Losses 2,496,222 0 90,068	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH HLH HLH	Nehalem South Fork (In) South Fork (Out) Beaver		(15,000) 68,466 68,466	kW kW kW kW Meter Fac 1.00 (1.02 1.03	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH HLH HLH HLH	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi		(15,000) 68,466 68,466	kW kW kW Meter Fac 1,00 (1,03 1,03 1,03	68 Loss tor 060 275) 275 193	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler		(15,000) 68,466 68,466	kW kW kW Meter Fac 1,00 (1.03 1,03 1,03 1,00 1,00	6 6 8 Loss tor 060 275) 275 193 194 175	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler Tillamook # 2		(15,000) 68,466 68,466	kW kW kW kW W Meter Fac 1.00 (1.02 1.01 1.00 1.00 1.00	& & & Loss stor ()60 (275) (275 (193 (194 (175 (175 (175 (175 (175 (175 (175 (175	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010	\$6,84
Demand Less Energy Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH HLH HL	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler Tillamook # 2 Tillamook # 2		(15,000) 68,466 68,466	kW kW kW kW W Meter Fac 1.00 (1.02 1.01 1.00 1.00 (1.00 (1.00	& & & & & & & & & & & & & & & & & & &	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010 0	\$6,84
Demand Less Energy Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH HLH HL	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohier Tillamook # 2 Tillamook # 2 Tillamook # 3		(15,000) 68,466 68,466	kW kW kW kW Meter Fac 1.00 (1.02 1.02 1.00 1.00 (1.00 1.00	8 8 Loss tor 960 275) 275 193 94 175 167 167 167	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010 0 2,393,323	\$6,84
Demand Less Energy Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH HLH HL	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler Tillamook # 2 Tillamook # 2 Tillamook # 3 Tillamook # 4		(15,000) 68,466 68,466	kW kW kW kW Meter Fac 1.00 (1.02 1.00 1.00 1.00 (1.00 1.00 1.00	8 8 Loss tor 960 275) 275 193 194 175 167 167 167 160	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010 0 2,393,323 8,206,643	\$6,84
Demand Less Energy Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH HLH HL	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler Tillamook # 2 Tillamook # 2 Reverse Tillamook # 3 Tillamook # 4 Trask River Out		(15,000) 68,466 68,466	kW kW kW kW Meter Fac 1.00 (1.03 1.00 1.00 1.00 (1.00 1.00 1.00 1.00	8 8 Loss tor 160 275) 275 193 194 1975 167 167 167 160 141	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010 0 2,393,323 8,206,643 2,505,026	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH HLH HL	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler Tillamook # 2 Tillamook # 2 Tillamook # 3 Tillamook # 4 Trask River Out		(15,000) 68,466 68,466	kW kW kW kW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	8 8 Loss tor 060 275) 275 193 194 175 167 167 167 160 141 146	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010 0 2,393,323 8,206,643 2,505,026 906,008	\$6,84
Demand Less Energy Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH HLH HL	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler Tillamook # 2 Tillamook # 2 Reverse Tillamook # 3 Tillamook # 4 Trask River Out		(15,000) 68,466 68,466	kW kW kW kW Meter Fac 1.00 (1.03 1.00 1.00 1.00 (1.00 1.00 1.00 1.00	8 8 Loss tor 060 275) 275 193 194 175 167 167 167 160 141 146	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010 0 2,393,323 8,206,643 2,505,026 906,008 2,734,579	\$6,84
Demand Less Energy Demand FB Demand SN Demand Energy Charge HLH HLH HLH HLH HLH HLH HLH HLH HLH HL	Nehalem South Fork (In) South Fork (Out) Beaver Garibaldi Mohler Tillamook # 2 Tillamook # 2 Tillamook # 3 Tillamook # 4 Trask River Out Hebo Nestucca Out		(15,000) 68,466 68,466	kW kW kW kW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	8 8 Loss tor 060 275) 275 193 194 175 167 167 167 160 141 146	\$0.100000	kWh After Losses 2,496,222 0 90,068 1,066,315 3,164,997 1,523,055 4,056,010 0 2,393,323 8,206,643 2,505,026 906,008	\$6,8

U.S. Department of Energy BONNEVILLE POWER ADMINISTRATION POWER ATTACHMENT

Customer:						Bill Period:	December 2005	
Bill ID:	DEC05-PWR01-M01				Pe	eriod Ending:	December 31, 20	005
GENERATION (c	continued)							
Energy HLH			22,662,246	kWh	0	\$0.028180		\$638,622
FB Energy H			22,662,246	kWh	e	\$0.001000		\$22,662
SN Energy H	ILH Flat		22,662,246	kWh	_e_	\$0.000400		\$9,065
		Meter			Loss		kWh After	
Energy Charge		No.			ctor		Losses	
LLH	Nehalem				060		1,520,023	
шн	South Fork (In)				275)		0	
LLH	South Fork (Out)				275		56,527	
LLH	Beaver				193		636,640	
LLH	Garlbaldi			1.00			1,946,717	
ШН	Mohler			1.00	075		929,147	
ШН	Tillamook # 2			1.00	067		2,264,926	
LLH	Tillamook # 2 Reverse			(1.0	067)		0	
шн	Tillamook #3			1.00	067		1,363,379	
шн	Tillamook # 4			1.00	060		4,786,166	
шн	Trask River Out			1.00	041		1,383,816	
LLH	Hebo			1.00	046		535,772	
шн	Nestucca Out			1.00	010		1,751,091	
							17,174,204	
Less Energ	у В						(4,680,000)	
						,	12,494,204	
Energy LLH		· · ·	12,494,204	kWh	8	\$0.021610		\$270,000
FB Energy LI			12,494,204	kWh	e	\$0.000770		\$9,621
SN Energy L	LH Flat		12,494,204	kWh	. e	\$0.000300		\$3,748
Load Variance	F							
HLH	Energy		29,142,246					
шн	Energy		17,174,204	kWh				
Load Variano		-	46,316,450	kWh	8	\$0.001000		\$46,316
FB Load Vari			46,316,450	kWh	•	\$0,000040		\$1,853
SN Load Var	iance		46,316,450	kWh	-0_	\$0.000010		\$463
LB CRAC True U								
LB CRAC Tr	ue Up		3,678,806	Dol	8	0.002286		\$8,410
nergy Block Ou								
			6 400 000	LABOR	0	## 600 and		\$400 O46
Energy HLH Energy LLH	-		6,480,000 4,680,000	kWh kWh	8	\$0.020670		\$133,942 \$96,736

U.S. Department of Energy BONNEVILLE POWER ADMINISTRATION POWER ATTACHMENT

Bill ID:	DEC05-PWR01-M01			Р	eriod Ending:	December 31, 2005	
GENERATION	(continued)						
	& Renewables Discount Credit						
C&R Disco	unt	(25,715,345)	kWh	0	\$0.000500	(\$12	2,858)
TOTAL						\$1,43	4,663
NOTES:							
1 Outage occu		5 until 11:05 due trouble on l	ine from	Winter	Storm.		
² Outage occu		until 1:00 due trouble on line	from Wi	nter \$1	om.		
3 Outage occu	urred .	00 until 11:00 due trouble on	line from	Winte	r Storm.		